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Asymptotic properties of Hulthén model form factors on the light front
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Department of Physics, University of Washington, Box 351560, Seattle, Washington 98195-1560

~Received 28 November 2000; published 23 March 2001!

We use light-front dynamics to calculate the electromagnetic form factor for the Hulthe´n model of the
deuteron. For a small momentum transferQ2,5 GeV2, the relativistic effects are quite small. ForQ2;11
GeV2 there is a;13% discrepancy between the relativistic and nonrelativistic approaches. For asymptotically
large momentum transfer, however, the light-front form factor; ln Q2/Q4 differs markedly from the nonrela-
tivistic version ;1/Q4. This behavior is also present for any wave function, such as those obtained from
realistic potential models, which can be represented as a sum of Yukawa functions. Furthermore, the
asymptotic behavior is in disagreement with the Drell-Yan-West relation. We investigate precisely how to
determine the asymptotic behavior, and confront the problem underlying troublesome form factors on the light
front.
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I. INTRODUCTION

The light-front approach to quantum dynamics was int
duced by Dirac@1# a half-century ago. Since then, light-fron
dynamics has developed into an active area of research
variety of reasons, e.g., its minimal set of dynamical ope
tors, the simplicity of the light-front vacuum, and the clo
connection to experimental observables. Light-front te
niques have long been used in analyzing high-energy exp
ments with nuclear and nucleon targets@2–5#. Indeed, light-
front dynamics is relevant to a description of such reactio
since, for example, in the parton model, the ratiok1/p1

~where k15k01k3 is the plus momentum of the struc
quark, andp1 that of the target! is nothing more than the
Bjorken x variable.

Some recent efforts have been made@6# to render the
theory more understandable by using models reminiscen
basic quantum mechanics rather than by invoking quan
field theory. These models find particular reality in nucle
physics @7#, where some nucleon interactions may be d
scribed by a mean-field potential. Nevertheless, the simila
of the light-front bound state equation to the Schro¨dinger
equation is grounds enough to apply light-front dynamics
familiar quantum-mechanical problems. Below, we do p
cisely this for the Hulthe´n model of the deuteron and it
electromagnetic form factor. Of particular concern here is
asymptotic behavior of the form factor, which differs fro
the nonrelativistic version. This may be of interest to expe
mentalists seeking to probe asymptopia. Recent meas
ments of deuteron form factors at the Jefferson Natio
Laboratory @8# reached momentum transfers ofQ256
GeV2, and future projects hope to reach upward ofQ2511
GeV2. In this range of momentum transfer, there is a;13%
discrepancy between the relativistic and nonrelativistic fo
factors calculated in this paper~as we will illustrate in
Fig. 3!.

This paper’s organization is similar to that of a detect
story. First, in Sec. II, we recall a minimal amount of ligh
front dynamics, and explain how we apply light-front d
namics to the nonrelativistic Hulthe´n potential. Next, in Sec
III, we calculate the electromagnetic form factor using ligh
0556-2813/2001/63~4!/044014~12!/$20.00 63 0440
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front dynamics, and compare with the nonrelativistic vers
calculated in Sec. IV. The low-momentum behavior of the
form factors shows only minimal differences, while the hig
momentum behavior leads to surprising trouble in asymp
pia ~Sec. V!. We could solve the mystery at this point b
deriving the asymptotic behavior of the form factor. Instea
we proceed by assuming that factorization holds in
asymptotic limit. This leads us to consider various previo
attempts to deal with the end-point region and to dispel a
lingering misconceptions. In Sec. VI, we discover th
troublesome asymptotic behavior also lurks in other mod
on the light front. With enough clues at hand, we are able
pinpoint the cause. The asymptotic behavior is then dedu
in Sec. VII, and is similar to that obtained for the Wick
Cutkosky model in Ref.@9#. Finally, we summarize our find
ings in a brief concluding section.

II. HULTHE´ N MODEL ON THE LIGHT FRONT

In light front dynamics, one quantizes the fields at eq
light-front time specified byx15x01x35t1z. This redefi-
nition of the time variable leaves us with a new spatial va
ablex25x02x35t2z. The remaining spatial variables ar
left unchanged by this transformation:x'5(x1,x2).

If one usesx2 as a spatial variable, then its momentu
conjugate isp15p01p3. This leavesp25p02p3 as the
energy, or thex1-development operator. The details of th
formalism do not concern us here—the interested rea
should consult Ref.@10# for a good overview. What is im-
portant to note, however, is that the relativistic dispers
relationpmpm5m2 takes the form

p25
p'2

1m2

p1
, ~1!

and thus the expression for the kinetic energy avoids
historically problematic square root.
©2001 The American Physical Society14-1
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For a bound state of two particles interacting via a pot
tial V, the light-front wave function is determined by solvin
the equation@11#

c5
1

M22 (
i 51,2

ki
'2

1mi
2

xi

Vc, ~2!

whereM is the invariant mass of the system,mi the particle
mass, andxi the plus momentum fraction carried by thei th
particle, namely,xi5ki

1/P1, with P1 as the total plus mo-
mentumk1

11k2
1 . Let us take the nucleons to be of equ

mass, and usem5(mp1mn)/2 as the nucleon mass. Furthe
more, since we have only two particles, the sum ofx1 andx2
is 1. So we choosex1[x and, consequently,x2512x.

In order to simplify Eq.~2!, it is customary to define the
relative light-front variables@12#

P'5k1
'1k2

'

~3!

p'52xk2
'1~12x!k1

' .

Straightforward algebra transforms Eq.~2! into

M2c5S p'2
1m2

x~12x!
1VDc, ~4!

which is the coordinate representation of the Weinberg eq
tion @13#. Equation~4! is still quite complicated to solve, s
we define an auxiliary operator

p35S x2
1

2DAp'2
1m2

x~12x!
~5!

to cast the equation into a familiar form. DefiningM52m
2e ~where e is the binding energy! and using the above
definition, we find

S e2

4
2emDc5S p'2

1~p3!21
V

4 Dc

[~p21VH!c, ~6!

where we have efficaciously chosenVH5V/4 to be the
Hulthén potential@14#.

The above equation is the coordinate-space version
sidered by others; see, e.g., Ref.@15#. Takingp conjugate to
r , we have
04401
-

l

a-

n-

VH~r !5
b22a2

12e(b2a)r
, ~7!

and the well-known ground-state solution

c~r !}
e2ar2e2br

r
, ~8!

with a5Aem2e2/4 as dictated by Eq.~6!. The experimen-
tally determined values of the model parameters are@16# a
50.23161 fm21 andb51.3802 fm21.

III. ELECTROMAGNETIC FORM FACTOR

The electromagnetic form factor on the light front has t
form @17#

F~Q2!5E dx dp'

x~12x!
c* @x,p'1~12x!q'#c~x,p'!, ~9!

where the momentum transferQ25q' 2. The momentum-
space Hulthe´n wave function is the Fourier transform of ou
solution @Eq. ~8!#, namely,

c~x,p'![
mAN

4 S 1

a21p'2
1~p3!2

2
1

b21p'2
1~p3!2D

5
mANx~12x!

4x~12x!a21~2x21!2m21p'2 ~da
a2db

a!.

~10!

To calculate the form factor, we must perform three in
grals. Writingdp'5p'dp'df, with f as the angle betwee
p' andq', we see that thef integral and subsequently th
p' integral can be computed analytically. Performing the
integrals leaves us with

F~Q2!5E
0

1

f @x,~12x!2Q2#dx, ~11!

where

f ~x,k2!5m2Nx~12x!gab~x,k2!~da
ada

b2da
adb

b

2db
ada

b1db
adb

b!, ~12!

with
gab~x,k2!5
p

rab~x,k2!
lnFk41k2@2ga~x!1gb~x!1rab~x,k2!#1gb~x!@rab~x,k2!2gb~x!2ga~x!#

ga~x!@2k21rab~x,k2!1gb~x!2ga~x!#
G ,
4-2
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where we have defined

gm~x![4x~12x!m21~2x21!2m2,
~13!

rab~x,k2![Ak412k2gb~x!1ga~x!2.

We chooseN so that the form factor is normalized
F(0)51. The constantN is determined by settingQ50 in
Eq. ~9!, which yieldsN514.93121. Figure 1 shows the form
factor as a function ofQ. We have also calculated the d
rivative of F(Q2) in the limit Q→0, in order to find the
root-mean-square deuteron radius

Rrms5 lim
Q2→0

A26
dF

dQ2
51.9467 fm. ~14!

IV. NONRELATIVISTIC LIMIT AND COMPARISON

Our solution to the Hulthe´n model on the light-front
closely resembles the nonrelativistic treatment. In fact,
have used the nonrelativistic solution as a guide in constr
ing the relativistic wave function. Clearly relativistic effec
are contained in the light-front variablex. Quite simply, then,
the nonrelativistic limit of Eq.~9! is found in the limit m
→` by retaining terms toO@1/m#. Inverting Eq. ~5!
yields

x5
1

2
1

p3

2Ap'2
1~p3!21m2

'
1

2
1

p3

2m
. ~15!

Since the measuredx dp'→dp/2m is already first order, we
need only keep leading-order terms in the wave function
find the nonrelativistic form factor. It is clear that, to leadin
order,c(x,p')→c(p), where the latter is the nonrelativisti
wave function. Quite similarly, we see

c@x,p'1~12x!q'#→ 1

a21p21p'
•q'1q'2

/4
~da

a2db
a!.

~16!

FIG. 1. Plot of the light front Hulthe´n form factor@Eq. ~11!# as
a function ofQ in GeV.
04401
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Returning to the expression for the form factor, the nonre
tivistic limit is then

F~Q2!→E dp c* ~p1q'/2!c~p!. ~17!

The form factor above depends on the orientation of neit
q', nor p. Let us then rotate our coordinate system so t
q' is no longer completely transverse. This thre
dimensional rotation is only possible now because we
integratingdp, which cannot be done in the light-front ve
sion. Thus we haveq'→q, while maintaining the length
q25Q2. After this rotation, the form factor is strikingly non
relativistic ~NR!, and can be computed analytically using E
~8!,

F~Q2!NR5E dr uc~r !u2e2 iq•r /2

5
mN8

Q F tan21S Q

4aD22 tan21S Q

2~a1b! D
1tan21S Q

4bD G , ~18!

with N8 chosen to makeF(0)NR51.
From this analytical result, the rms radius can be ea

calculated@see Eq.~14!#:

Rrms5
Aa415a3b112a2b215ab31b4

23/2ab~a1b!
51.9395 fm.

~19!

Comparing with our previous result, the relativistic system
larger by only 0.37%. This confirms our suspicion that re
tivistic effects in this deuteron model are small. We can f
ther confirm this by looking at the difference of the relati
istic form factor @Eq. ~11!# and the nonrelativistic version
@Eq. ~18!#. The percent difference is plotted for lowQ in Fig.
2, illustrating a difference only;1% in this momentum re´-

FIG. 2. Relativistic and nonrelativistic form factor compariso
percent difference 1003(FNR2F)/FNR plotted as a function ofQ
in GeV.
4-3
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gime. The small nature of relativistic effects was noted ea
on @18#.

V. TROUBLE IN ASYMPTOPIA

The above plot shows that the absolute percent differe
continually increases asQ increases. In this section, we in
vestigate how the light-front form factor compares with t
nonrelativistic version for largeQ.

A. Exploring asymptopia

Given our analytic expression for the nonrelativistic for
factor @Eq. ~18!#, it is simple to Taylor expand aboutQ5`
to find its asymptotic behavior. To leading order,

lim
Q→`

F~Q2!;
64ab~a1b!2

Q4
5

0.080585 ~GeV!4

Q4
. ~20!

The asymptotic behavior of the relativistic form factor
found with the aid of the Drell-Yan-West relation@19# ~un-
der the assumption that the end-point region dominates
form factor for largeQ). This relation takes the form

lim
x→1

x f~x,0!;~x21!2d21⇔ lim
Q→`

F~Q2!;~Q2!2d.

~21!

Thex-distribution functionf (x,0) can be calculated analyt
cally using Eq.~9!, with q'50, and subsequently expande
about x51. The leading-order term in the expansion
O@(x21)3#, from which we deduce 1/Q4 behavior in as-
ymptopia. Given that there were only small differences
tween the relativistic and nonrelativistic form factors for lo
Q, we might expect agreement in the asymptotic regi
04401
y
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Moreover, both form factors tend to 1/Q4 for large Q. So,
when scaled byQ4, at worst the form factors will tend to
some common difference asQ→`.

To compare the asymptotic behavior, we have plotted
relativistic and nonrelativistic form factors~scaled byQ4)
for largeQ ~in Fig. 3 we plot for the experimentally relevan
Q2, whereas in Fig. 4 we mathematically contrast the asym
totics!. The nonrelativistic form factor lines up well with th
asymptotic limit predicted by Eq.~20!. The relativistic form
factor, however, differs markedly from its nonrelativist
counterpart, in disagreement with the Drell-Yan-West re
tion @Eq. ~21!#. We remind the reader that the relativist
form factor is computed exactly for our model@20#. The
huge disparity between the nonrelativistic and relativistic
sults, shown in Fig. 4, warrants a complete journey throu
asymptopia.

B. Sharp peaks atxÄ1

Before proceeding, we note that our light-front wa
function @Eq. ~10!# is properly behaved:

p'2
c~x,p'!→0 as p'2→`,

~22!
c~x,p'!→0 as x→0 and 1.

These conditions stem from nonrelativistic versions, and w
be trivially satisfied for light-front wave functions create
using Eqs.~5! and ~6!. Thus, knowing the nonrelativistic
wave functions are peaked for small momenta, our lig
front Hulthén wave function must be peaked for small tran
verse momenta. For a large momentum transferQ, Eq. ~9!
shows large momentum flows through eitherc or c* . Fol-
lowing Brodsky and Lepage@11#, the dominant contributions
to the form factor in the asymptotic limit come from the tw
regions which minimize wave function suppression:
w

~ i! up'u!u~12x!q'u where c* @p'1~12x!q'# is small andc~p'! is large,
~23!

~ ii ! up'1~12x!q'u!u~12x!q'u where c~p'! is small andc* @p'1~12x!q'# is large.

Working first in region~i!, we can neglectp' relative toq' in c* , since the light-front wave functions are peaked for lo
transverse momenta. The contribution from region~i! is exactly the same as that from region~ii !, which is made obvious by
shifting p'. Thus dominant contributions to the form factor in the asymptotic regime appear as

F~Q2!'2E dx

x~12x!
c* @x,~12x!q'#E dp'c~x,p'! ~24!

'
8pNm2~b22a2!

Q4 E
0

1 dx x2

~12x!2
lnF4x~12x!b21~2x21!2m2

4x~12x!a21~2x21!2m2G
[E

0

1dx g~x!

Q4
, ~25!

where we have retained the same normalization constant
4-4
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thatappears in Eq.~12!.1 But to determine the asymptoti
behavior, we must perform the integral overx, which di-
verges. The end-point region is too peaked for the integra
converge, as illustrated by Fig. 5.

The end-point region appears to dominate the form fac
in asymptopia~as suggested in Ref.@21#!. Perhaps the actua
asymptotic behavior can be extracted by placing the e
point region under scrutiny. Above, we merely assumed
validity of the Drell-Yan-West relation; now we will rigor
ously investigate it for our model.

In ascertaining the dominant contributions to the fo
factor in asymptopia, we have neglected the casex51. The
form factor includes contributions from the end point, b
this is where the scheme set up in Eq.~23! breaks down.
Thus the above approximation@Eq. ~24!# is really only valid
for x<12l(m/Q), wherel is some dimensionless cuto
less than 1. For 12l(m/Q)<x<1, we must return to the
full expression for the form factor to obtain the end-po
contribution. To leading order, however, (12x)q'

'lmq'/Q in the end-point~EP! region, and the contribu
tion to the form factor reads

F~Q2!EP'E
12l m/Q

1 dx

x~12x!
E dp'

3c* ~x,p'1lmq̂'!c~x,p'!, ~26!

whereq̂'5q'/Q is the direction ofq'. Since this contribu-
tion to the form factor depends only onQ2, we can rotate our
coordinates about thez axis to makeq' parallel to x̂. The
resulting functional form is entirely similar to the full form
factor, enabling a swift evaluation,

1We obtained the same result by a brute force Taylor expansio
Eq. ~12! aboutQ5`. Since the integral overx diverges, the series
expansion off (x,Q2) lacks uniform convergence inx.

FIG. 3. Relativistic and nonrelativistic comparison for expe
mentally relevantQ2: the form factors are scaled byQ4 and plotted
as a function ofQ2 in GeV2.
04401
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F~Q2!EP5E
12l(m/Q)

1

f ~x,l2m2!dx, ~27!

with f (x,k2) given by Eq.~12!. The leading-order contribu
tion to the above integral in asymptopia is found by expa
ing the integrand aboutx51 and integrating. The result is

F~Q2!EP58pN~b22a2!2

3
l612l428l222l~l211!Al214

Q4~l211!3

3 lnF Al2142l

l313l1~l211!Al214
G , ~28!

which agrees with the Drell-Yan-West relation. To consid
the contribution from the end-point region quantitatively, w
have plotted the percent contribution to the form factor fro
0<x<12l(m/Q). We have chosen the value ofl to be

of

FIG. 4. Relativistic and nonrelativistic comparison in th
asymptotic limit: the form factors are scaled byQ4 and plotted as a
function of Q in GeV.

FIG. 5. Plot ofg(x) appearing in Eq.~24!. The singularity at
x51 is too severe to bound a finite area under the curve.
4-5



rm

av
d

e

a

e

s

n

v

za

e
ex

n-

.

es
f

he
st

ns

-
/

to

ny
re-
t

al

ed

m

B. C. TIBURZI AND G. A. MILLER PHYSICAL REVIEW C 63 044014
smaller than one. Figure 6 shows that the bulk of the fo
factor does not come from the end-point region.

C. Divide and conquer

In the process of trying to deduce the asymptotic beh
ior, our model has become infinitely sensitive to the en
point region. From the exact Hulthe´n form factor@Eq. ~11!#,
however, we know that the end-point region does not ov
whelmingly contribute~as Fig. 6 confirms!. Our dilemma
sounds familiar@22#, and our approach, not surprisingly, is
regularization cutoff.

To start, let us just toss away the troublesome diverg
part of Eq.~24! by introducing the cutoffl into thex inte-
gral:

F~Q2!→2E
0

12l(m/Q) dx

x~12x!
c* @x,~12x!q'#

3E dp'c~x,p'!. ~29!

The cutoff integral above can be computed analytically. U
ing the integrand of Eq.~25!, the result reads

lim
Q→`

F~Q2!;
32pN~b22a2!2

Q4 Fx~a,b,m!2 ln l1 ln
Q

mG ,
~30!

wherex(a,b,m) is a rather complicated, page-long functio
independent ofl. For our parametersa, b, andm, we have
x51.3635. Nonetheless, we have discovered behavior
regularization which differs from 1/Q4 in a model which
knows nothing about ultraviolet divergences, renormali
tion, etc.

One would think that, with Eq.~30!, we have determined
the asymptotic behavior of the form factor. Although w
threw away the end-point region to arrive at the above

FIG. 6. Percent contribution to the form factor@Eq. ~11!# from
the region 0<x<12l(m/Q) as a function ofQ in GeV for differ-
ent l ’s. As indicated, the end-point region isnot dominant for
asymptoticQ.
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pression, we know precisely its contribution for a givenl;
cf. Eq. ~28!. The question remains: have we found all co
tributions toO@1/Q4#?

There are order 1/Q6 corrections to the integrand of Eq
~25!. Adding these gives a correction term:

216pm2N~b22a2!

Q6 E
0

12l(m/Q) dx x2

~12x!4
@2x~12x!~a21b2!

1~2x21!2m2# lnF4x~12x!b21~2x21!2m2

4x~12x!a21~2x21!2m2G . ~31!

Evaluating this correction term to leading order giv
@232pN(b22a2)2#/Q4l2. Thus terms in the integrand o
order 1/Q6 give a contribution of order 1/Q4 to the
asymptotic form factor. We have not exhausted all of t
1/Q6 corrections, however—we originally took only the fir
term in the Taylor expansion of Eq.~9! about p'5(1
2x)q', and the next nonvanishing term gives contributio
of order 1/Q6. Even if we were to collect all theO@1/Q6#
corrections to thex integrand, we would have only just be
gun. One can easily find terms in the integrand of order 1Q8

which emerge from the regularizedx integral 1/Q4. In fact,
the integrand’s correction terms of any order contribute
leading order in asymptopia.

Certainly we cannot hope to evaluate infinitely ma
leading-order terms. At least we have stumbled onto a p
diction for the functional form in the asymptotic limit. Tha
is, we have seen

lim
z→`

z4F~z2!5a1b ln z, ~32!

with z[Q/m. We can test this prediction against the actu
form factor’s asymptotic limit calculated from Eq.~11!. In
Fig. 7, we test this hypothesis for empirically determin
coefficientsa50.039472 andb50.044930~calculated forz
around 400!. As the figure shows, this is indeed the for

FIG. 7. Asymptotic behavior ofF(Q2) given by Eq.~11!: W
5(z4F(z2)2a)/b ln z is plotted as a function ofz5Q/m for the
parametersa50.039472 andb50.044930, which were graphically
determined forz around 400.
4-6
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factor’s behavior in asymptopia. It is quite curious to no
the following: Using Eq. ~30!, we would predict b
50.045020, a difference of only 0.20% when compar
with the empirical value. We believe this discrepancy resu
from approximating asymptoticz to be around 400, not from
ignoring infinitely many leading-order corrections. Indee
we never found corrections of order lnz/z4 above, only a
myriad of 1/z4 terms. It is our belief that the coefficientb
can be ascertained from the regularization integral@Eq.
~30!#.The leading correction2 to b determined graphically is
O@1/z5#—which gives a relative correction of 0.25% forz
;400. Takingz larger in order to reduce this term on
results in an appreciable error in the numerical integrati
To verify our conjecture, we have attempted to find the
efficientb by varyingz . Figure 8 shows a plot of the graph
cally found value ofb as a function ofz ~the midpoint of our
interval!. Specifically we use a simple linear fit in the plot

b~z!5@~z150!4F~z150!2~z250!4F~z250!# lnFz250

z150G .
~33!

The plot shows our cited valueb50.044930 atz5400. The
trend is clear;b increases to some limiting value asz in-
creases. The numerical integration, however, becomes u
liable to;1% past 600. Nevertheless, it appears that we
determineb from the regularization integral@Eq. ~30!#. We
are at a loss, however, to predicta: there are simply an
infinite number of correction terms toO@1/Q4# to evaluate.

VI. SIMILAR PROBLEMS

The problems encountered above are not unique to
Hulthén model. In this section, we begin by exploring a
other model with similar behavior in asymptopia.

A. Coulomb potential

Let us suppose our particles interact via a Coulomb
tential V(r );1/r , for which we takec(r )5e2kr . Then our
momentum-space solution to Eq.~6! is given by

2Expanding the integrand of the form factor in powers ofQ, there
are only even terms. Once we exit the cutoff integral, however,
can now have any power ofQ in the expansion.

FIG. 8. Simple numerical determination ofb @via Eq. ~33!#
plotted as a functionz5Q/m. The numerical integration clearly
becomes imprecise pastz5600.
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c~x,p'![
m3AN

16~k21p2!2

5
m3ANx2~12x!2

@4x~12x!k21p'2
1~2x21!2m2#2

, ~34!

where we have used Eq.~5! to reexpressp3 in the light-front
center of mass. To find the asymptotic behavior of this m
el’s form factor, we use Eq.~24!. Performing the integration
leaves us with a logarithmically divergentx integral

lim
Q→`

F~Q2!

5
m6Np

Q4 E
0

1 dx x3

~12x!@4x~12x!k21~2x21!2m2#
. ~35!

Restrictingx to the range 0<x<12l(m/Q), and perform-
ing the integral, yields

lim
Q→`

F~Q2!5
m4Np

Q4 Fx~k,m!2 ln l1 ln
Q

mG . ~36!

B. Why regularization?

As we have seen above, determining the exact asymp
behavior of light-front form factors is no trivial task. Th
Drell-Yan-West relation is still apt at describing the cont
bution from the end-point region; however, this region do
not dominate our form factors for asymptoticQ. Further-
more, techniques to determine the asymptotic beha
~brute force Taylor expansion, finding contributions from r
gions of minimal wave-function suppression! led to logarith-
mically divergentx integrals, suggesting the noncommutati
ity of the limits Q→` and x→1. Here we show how the
potentials we use cause peculiarities forx→1.

Starting with the expression for the light-front form fact
@Eq. ~9!#, we were led to the dominant contribution in a
ymptopia via a process of isolating the regions of minim
wave-function suppression, namely,

lim
Q→`

F~Q2!'2E dx

x~12x!
c@x,~12x!q'#E dp'c~x,p'!.

~37!

Now let us utilize the Weinberg equation@13#, which is the
momentum-space version of our Eq.~4!,

c~x,p'!5
1

M22
p'2

1m2

x~12x!

3E dy dk'

y~12y!
c~y,k'!V~x,p';y,k'!, ~38!

with V as the Fourier transform of the potential. We can u
this information in the asymptotic limit of the form facto
namely, for

e

4-7
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c@x,~12x!q'#'2
x

~12x!Q2E dy dk'

y~12y!
c~y,k'!

3V@x,~12x!q';y,k'#. ~39!

Of course, in asymptopia the integral containingV can be
simplified. The potentials considered above are of the fo
V5V(up2ku), where

~p2k!25~p'2k'!21S ~x21/2!Ap'2
1m2

x~12x!

2~y21/2!Ak'2
1m2

y~12y!
D 2

, ~40!

which makes explicit use of having two equally massive p
ticles in the center-of-mass frame@cf. Eq. ~5!#. As a result
of the above equation,V@x,(12x)q';y,k'#5V@x,(1
2x)q';1/2,0# to leading order. Henceforth we shall abbr
viate V@x,(12x)q';1/2,0#5V@ uq(x)u#, where

uq~x!u5A~12x!2Q21~q3!2'
Q

2
A12x

x
. ~41!

Revising the expression for the asymptotic form factor,
find ~neglecting overall constants!

lim
Q→`

F~Q2!;E dx f~x!

~12x!2Q2
V@ uq~x!u#, ~42!

wheref(x)5*dp'c(x,p'), and they dependence has inte
grated itself away. Equation~42! contains the answer to ou
troubled journey through asymptopia. At first glance, the
tegrand appears singular at the end point, containing
factor of 12x from the measure, and another from the
2x)q' contained in the form factor. These factors are qu
general, and contain nothing specific about the interact
While Eq. ~22! spells out the criteria for good wave func
tions, it is necessary to be further restrictive by requiri
c(x,p');(12x)2 asx→1 if we wish to cancel the poten
tially singular denominator in Eq.~42!. This is not much of
an imposition; both the Hulthe´n wave function@Eq. ~10!# and
the Coulomb wave function@Eq. ~34!# go like (12x)2 asx
→1.

Only one x-dependent piece of Eq.~42! remains to be
considered—the potential. It is now immediately obvio
that the Coulombic form factor should suffer logarithmic d
vergences in asymptopia:

VC@ uq~x!u#;2
1

q~x!2
52

4x

~12x!Q2
. ~43!

The potential brings along the anticipated factor ofQ2, but,
on the light front, an unwanted (12x) tags along. Given the
behavior of the light-front wave function, this extra factor
just enough to make the integral in Eq.~42!, diverge. The
same is true for the Hulthe´n potential @Eq. ~7!#, since we
have
04401
-

e

-
ne

e
n.

lim
Q→`

VH@ uq~x!u#52
12p~a1b!

q~x!2
52

48p~a1b!x

~12x!Q2
.

~44!

As illustrated above~Figs. 1–4!, the form factor itself is
not singular at asymptoticQ, just our means of obtaining it
This is made obvious by commuting the limits. Above w
looked atQ→` first, and found a problematic behavior fo
x→1 stemming from the potential. On the other hand, let
now consider takingx to be near 1 first. We already did thi
for the Hulthén form factor; see Eq.~26!. Now we are in a
position to generalize this result. Since we know our wa
functionsc(x,p');(12x)2 asx→1, the contribution from
the end point becomes

F~Q2!EP;E
12l(m/Q)

1

~12x!3 dx→ 1

Q4
. ~45!

This is just the Drell-Yan-West relation, which, as we ha
seen, does not account for the majority of the form factor
asymptopia. A clearly different behavior is seen when loo
ing at asymptotic expressions near the end point, versus
end-point region for asymptoticQ.

Logarithmically divergent form factors in asymptop
need not plague us any longer. The culprit has been
masked: potentials in theauxiliary coordinate space, such a
1/r of the Coulomb model or Eq.~7! for the Hulthén, which
are;1/r for small r, will lead to logarithmic divergences in
the expression for the asymptotic form factor. Of course,
asymptotic form factoritself is not singular. The logarithmic
divergence of our asymptotic expression is a thornlike wa
ing: the series expansion in 1/Q does not converge uniformly
in x.

C. Realistic models on the light front

Above we have seen that rather simplistic models lead
electromagnetic form factors with nonstandard asympto
behavior. It is not likely, however, that this behavior
physical—though certainly it is the true asymptotic behav
for the models considered.

Early work on factorization in quantum chromodynami
showed similar logarithms appearing in asymptopia@23# for
the nucleon electric form factor, and thus a failure
renormalization-group techniques. Quite soon thereafte
was realized@24# that these logarithms were just manifest
tions of neglected higher-order corrections. Apparent e
point singularities are removed when the evolution of t
longitudinal momentum amplitudef is properly included,
and consequently factorization is saved@25#.

Obviously our models do not have such higher-order c
rections, and thus the logarithm remains. We must then w
der whether factorization breaks down for more realis
models on the light front. Let us then consider a more
phisticated model of the deuteron arising from meso
theoretic~MT! potentials@26#. The general parametrizatio
of the s-wave deuteron wave function is
4-8
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c~r !5
1

r (
j 51

N

Cje
2mjr , ~46!

with

mj5a1~ j 21!mo . ~47!

The usual boundary condition~finite wave function at the
origin! leads to the constraint

(
j 51

N

Cj50. ~48!

To place this realistic deuteron model on the light fro
we work in momentum space and use the longitudinal m
mentum prescription above@Eq. ~5!#. The resulting form fac-
tor is completely similar to that of the Hulthe´n @Eq. ~11!#
except there are nowN2 terms instead of four. At this point
the similarity leads us to suspect thatQ4 behavior is modi-
fied by a logarithm in asymptopia. Based on our abo
analysis, verification of the logarithm’s presence requi
that we checkc(x,p');(12x)2 asx→1, and that the po-
tential in r space behaves as 1/r near the origin.

The momentum-space wave function has the end-p
behavior

c~x,p'!;(
j 51

N

Cjmj
2 ~12x!2

~m21p'2
!2

1O@~12x!3#, ~49!

where the term linear in 12x has vanished due to the con
straint@Eq. ~48!#. Appealing to Eq.~6!, we can determine the
potential which generates this deuteron wave function,

VMT~r !5

(
j 51

N

Cj@2~a2mo!moj 1mo
2 j 2#e2mor j

(
l 51

N

Cle
2morl

1const,

~50!
,

er

he

a
ca
-

04401
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where the constant ensures the potential vanishes asr→`. It
is then straightforward to find the behavior near the origi

lim
r→0

VMT~r !52
1

r F2~a2mo!1mo

l ~N!

k~N!G , ~51!

wherel (N)5( jC j andk(N)5( j 2Cj . Thus, based on thes
analytical observations, Eq.~42! shows that even a realisti
deuteron model will be troublesome in asymptopia.

VII. CONQUERING ASYMPTOPIA

As we have seen, Eq.~42! is a rather naive way to deter
mine a form factor’s asymptotic behavior. This equation a
the analysis leading to it were extrapolated from our kno
edge of nonrelativistic wave functions. Indeed one m
verify that Eq. ~24! ~derived by an analysis parallel to th
nonrelativistic one@11#! gives exactly the same results as E
~42!. The breakdown of factorization for the above models
clearly a relativistic problem @further verified by Eq.~41!#.
Equation ~42! may not be useful in determining th
asymptotic behavior. Without it, however, we would not
aware of the cause of our problems at high-momentum tra
fer. Now knowing when to expect trouble in asymptopia,
us proceed to deduce the asymptotic behavior correctly.

A. Wick-Cutkosky model

Before returning to the asymptotics of the Hulthe´n form
factor, let us take a worthwhile look at the Wick-Cutkosk
~WC! model. Consider two equally massive scalar partic
which interact by exchanging a massless scalar particle.
potential for such a process has been found, and co
quently the ground-state wave function can be deduced u
the momentum-space version of Eq.~6!. The wave function
is @27#
c~x,p'!5
8Apk5/2

~p21k2!2S 11U p3

E~p!
U D 5

27Apk5/2x2~12x!2

@4x~12x!k21p'2
1~2x21!2m2#2~11u2x21u!

, ~52!
.
da-

o-
where we have used the energy E(p)

5 1
2
A(p'2

1m2)/x(12x) in the two-particle center of mass
and p3 is given by Eq. ~5!. Here k5 1

2 ma and a5g2/
16pm2, with g as the coupling constant present in the int
action term. The invariant mass of the system isM52m
2 1

4 ma2. To write this wave function, we have converted t
explicitly covariant form cited in Ref.@27# into our own
z-axis-dependent form. The difference between these
proaches does not concern us for the ground state of s
particles. For a review of explicitly covariant light-front dy
-

p-
lar

namics, see Refs.@28# or @29#. The wave function in Eq.~52!
is quite similar to our Coulomb wave function in Sec. VI A
The extra term in the denominator originates from retar
tion effects contained in the relativistic potential~effects
which our naı¨ve models clearly lack!. The behavior of the
wave function at the end point is not modified~to leading
order in 12x) by retardation. Furthermore, the retarded p
tential is @27#

V~x,p';y,k'!WC524pa/K2, ~53!
4-9
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with

K25~p2k!22~2x21!~2y21!@E~p!2E~k!#2

12ux2yuS E~p!21E~k!22
M2

2 D , ~54!

where (p2k)2 is given by Eq.~40!. Using this potential for
asymptoticQ, we note that

V@x,~12x!q';1/2,0#WC'2
16pax

~12x!Q2~11u2x21u!
~55!

which is singular atx51. Given this and the wave func
tion’s end-point behavior, we once again appeal to Eq.~42!,
and a logarithmically divergentx integral confronts us in
deducing the asymptotic behavior of the form factor. O
experience above leads us to believe the true asymptotic
havior isQ24 modified by a logarithm. This asymptotic be
havior for the Wick-Cutkosky model was previously foun
by Karmanov and Smirnov@9# by considering regions which
dominate thex andp' integrals of the form factor. The sam
asymptotic behavior of the Wick-Cutkosky model was a
found @9# by using the Bethe-Salpeter approach. Karman
and Smirnov stated that the logarithmic lnQ2/Q4 behavior
was also found earlier in Ref.@30#—a paper which admitted
the possibility of such logarithms only by announcing tha
did not consider such cases. The presence of logarith
modifications to relativistic form factors was discussed
Ref. @17#, where the authors interpreted the Drell-Yan-We
relation as valid modulo logarithms. Nonetheless, the cor
asymptotic behavior of the Wick-Cutkosky form factor w
deduced in Ref.@9#, as we shall now demonstrate using tec
niques considered above.

Considering the analytical form of wave function~52!, we
can see a region which dominates the form factor
asymptoticQ: x near 1

2 . In this case, we can surely say th
(12x)Q'(Q/2)@m and consequently the analysis leadi
to Eq. ~24! is certainly valid. Moreover, the Wick-Cutkosk
wave function is identical to our Coulomb wave function f
x' 1

2 . Thus, appealing to Eq.~24!, we find ~to leading order
aboutx5 1

2 )

lim
Q→`

F~Q2!5
16m4a5

pQ4 E
0

1 dx

a2

4
1~2x21!2

5
16m4a4

Q4
~11O@a# !, ~56!

where we have assumeda!1, so thatx(12x)a2'a2/4. In
order to compare with Ref.@9#, we have been careful toadop
their normalization@we have multiplied our expression~9!
by (m/2)(2p)23.]

The other dominant contribution in asymptopia com
from near the end-point region12 ,(12x)!12l(m/Q), as
we have seen above, by producing logarithms from regu
izedx integrals. We can thus deduce the remaining contri
04401
r
e-

v

t
ic

t
ct

-

r

s

r-
-

tion in asymptopia via regularization. This result will be di
ferent from the Coulomb result@Eq. ~36!# due to the
retardation factor. First we note that in the near end-po
region x(12x)a2'0. Now take 1

2 ,xo,12l(m/Q), and
hence the contribution which interests us reads

lim
Q→`

Fl~Q2![
64m4a5

pQ4 E
xo

12l(m/Q) x dx

4~12x!~2x21!2

5
16m4a5

pQ4 Fj~xo ,a,m!2 ln l1 ln
Q

mG
3S 11OF 1

QG D . ~57!

Combining these two results~using only the logarithmic par
of the latter!, we arrive at the asymptotic behavior~to leading
order ina)

lim
Q→`

F~Q2!'
16m4a5

pQ4 S ln
Q

m
1

p

a D , ~58!

which agrees with the result found by Karmanov a
Smirnov @9#. Furthermore one can use the Wick-Cutkos
wave function above to numerically calculate the form fa
tor, and test Eq.~58! to predict its asymptotic behavior. Thi
form factor is less complicated than the Hulthe´n model’s.
Consequently, the numerical integration is precise to lar
Q. As before, we have graphically determined the coe
cients a and b in Eq. ~32!, and observed the asymptot
behavior to tend toward (a1b ln z)/z4, with z5Q/m. The
coefficientb agrees well with Eq.~58!, differing by ,0.1%
for a50.08 and 0.007. The error of the coefficienta depends
on how rapidly the series ina converges. Fora50.08, our
graphically determineda differs from Eq.~58! by ;12%.
While for a50.007, the error is;2%. Indeed, we have
deduced the form factor’s asymptotic behavior.

B. Back to the Hulthén model

Our analysis above has been quite general, and we s
now apply it to the Hulthe´n form factor. To finish our ques
through asymptopia, it remains to determine the coefficiena
in Eq. ~32! for the Hulthén model. As we learned above3

considering the contribution forx' 1
2 gives us a for

asymptoticQ. So we return to Eq.~25! and expand to leading
order aboutx5 1

2 ,

lim
Q→`

F~Q2!'
4pm2N~b22a2!

Q4 E
0

1

lnFb21~2x21!2m2

a21~2x21!2m2Gdx

~59!

3A more precise statement is this: expanding aboutx5
1
2 in Eq.

~24! gives the coefficienta up to a possible factor of 2.
4-10
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having useda/m,b/m!1. At first glance, it appears we hav
dropped a factor of 2 from the asymptotic expression@Eq.
25#. However, careful consideration of region~i! @in Eq.
~23!#, shows that its contribution vanishes~to leading order
in 1/Q). Evaluating the above integral and combining w
the logarithmic part of our previous result@Eq. ~30!#, we find

lim
Q→`

F~Q2!5
32pN~b22a2!2

Q4 F ln
Q

m
1

1

8 S mp

b1a
21D G .

~60!

From which we deducea50.046493~and b50.045020 as
discussed previously!. Comparing with the graphically deter
mined result of Sec. V C, we see that there is a 17.8%
ference. Again this difference is due to the series expan
in small parameters:a/m50.048943 andb/m50.29007. For
smaller values of the parameters, we expect better res
However, with smaller parameters one needs higherQ’s to
graphically determinea and b, and the numerical integra
tion becomes imprecise. Nonetheless, within our constra
we have verified Eq.~60! as the asymptotic behavior of th
Hulthén form factor.

VIII. CONCLUDING REMARKS

We have undertaken a relatively simple task to comp
relativistic and nonrelativistic form factors for the Hulthe´n
e

C

s

i

04401
f-
n

ts.

ts

e

model of deuteron. For small momentum transfer, the t
versions differ by about 1% and the root-mean-square r
differ by even less. The behavior for largeQ, however, led us
on an unexpected journey.

Our expedition through asymptopia helped us learn
Hulthén form factor’s true behavior; ln Q2/Q4 for largeQ.
The path was circuitous, because conventional me
~asymptotic expressions, Taylor series expansions! lead di-
rectly to logarithmic divergences. These difficulties a
manifestations of the noncommutativity of the limitsQ→`
andx→1, and hence indicative of the breakdown of facto
ization.

Indeed, we find that this behavior is not particular to t
Hulthén model. Equation~42! tracks down the root of thes
difficulties. Generating our light-front wave functions from
nonrelativistic potentials singular at the origin will lead
problematic relativistic form factors in the asymptotic lim
Such problems do not plague calculations in fundame
theories, because higher-order corrections necessarily ca
the divergences. For realistic models, however, the bre
down of factorization persists, and is an obstruction
straightforward asymptotic calculations.
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