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Asymptotic properties of Hulthén model form factors on the light front
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We use light-front dynamics to calculate the electromagnetic form factor for the Huitiwalel of the
deuteron. For a small momentum trans@t<5 Ge\?, the relativistic effects are quite small. F#~11
GeV? there is a~13% discrepancy between the relativistic and nonrelativistic approaches. For asymptotically
large momentum transfer, however, the light-front form factdn Q%Q* differs markedly from the nonrela-
tivistic version ~1/Q*. This behavior is also present for any wave function, such as those obtained from
realistic potential models, which can be represented as a sum of Yukawa functions. Furthermore, the
asymptotic behavior is in disagreement with the Drell-Yan-West relation. We investigate precisely how to
determine the asymptotic behavior, and confront the problem underlying troublesome form factors on the light
front.
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[. INTRODUCTION front dynamics, and compare with the nonrelativistic version
calculated in Sec. IV. The low-momentum behavior of these
The light-front approach to quantum dynamics was intro-form factors shows only minimal differences, while the high-
duced by Dirad1] a half-century ago. Since then, light-front momentum behavior leads to surprising trouble in asympto-
dynamics has developed into an active area of research forpia (Sec. ). We could solve the mystery at this point by
variety of reasons, e.g., its minimal set of dynamical operadel‘iving the asymptotic behavior of the form factor. Instead,
tors, the simplicity of the light-front vacuum, and the closewe proceed by assuming that factorization holds in the
connection to experimental observables. Light-front techasymptotic limit. This leads us to consider various previous
niques have long been used in analyzing high-energy experttempts to deal with the end-point region and to dispel any
ments with nuclear and nucleon targg?s-5]. Indeed, light-  lingering misconceptions. In Sec. VI, we discover that
front dynamics is relevant to a description of such reactionstroublesome asymptotic behavior also lurks in other models
since, for example, in the parton model, the raktio/p* on the light front. With enough clues at hand, we are able to
(where k"=k°+k? is the plus momentum of the struck Pinpoint the cause. The asymptotic behavior is then deduced
quark, andp™ that of the targétis nothing more than the in Sec. VII, and is similar to that obtained for the Wick-
Bjorken x variable. Cutkosky model in Ref.9]. Finally, we summarize our find-
Some recent efforts have been md@# to render the ings in a brief concluding section.
theory more understandable by using models reminiscent of
basic quantum mechanics rather than by invoking quantum
field theory. These models find particular reality in nuclear .
physics[7], where some nucleon interactions may be de- !l HULTHE N MODEL ON THE LIGHT FRONT

scribed _by a mean-field potential. Ne\_/ertheless, the_similarity In light front dynamics, one quantizes the fields at equal
of the light-front bound state equation to the Salinger light-front time specified by<+=x°+x3:t+z. This redefi-

equation is grounds enough to apply light-front dynamics tGyition of the time variable leaves us with a new spatial vari-

familiar quantum-mechanical problems. Below, we do pre-gpiex— =x0—x3=t—z. The remaining spatial variables are

cisely this for the Hulthe model of the deuteron and its left unchanged by this transformation’ = (x*,x2).

electromagnetic form factor. Of particular concern hereisthe 1 oo sesx™ as a spatial variable, then' its momentum

asymptotic behavior of the form factor, which differs from conjugate isp*=p°+p. This leavesp™ =p°—p? as the

the nonrelativistic version. This may be of interest to experi-energy or thex -development operator. The details of this

mentalists seeking to probe asymptopia. Recent measurgs majism do not concern us here—the interested reader

ments of deuteron form factors at the Jefferson 2Nation hould consult Reff10] for a good overview. What is im-

Laboratory [8] reached momentum transfers @°=6 a0t to note, however, is that the relativistic dispersion

GeV?, and future projects hope to reach upwardQsft=11 relation p“p,,=m? takes the form

GeV2. In this range of momentum transfer, there is 43% "

discrepancy between the relativistic and nonrelativistic form

factors calculated in this papdas we will illustrate in )

Fig. 3. _ptm? L
This paper’s organization is similar to that of a detective b= p* ' @)

story. First, in Sec. Il, we recall a minimal amount of light-

front dynamics, and explain how we apply light-front dy-

namics to the nonrelativistic Hulthepotential. Next, in Sec. and thus the expression for the kinetic energy avoids the

[ll, we calculate the electromagnetic form factor using light- historically problematic square root.
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For a bound state of two particles interacting via a poten- b2— a2

tial V, the light-front wave function is determined by solving VH(r)= oo @)

the equatiorf11] 1-e

and the well-known ground-state solution
1
V= k.iz-}- m.szl @ g ar_gbr

M2= > ——— P(r)or ————, (®)

i=12 X r

whereM is the invariant mass of the system, the particle  with a= \em— €%/4 as dictated by Eq6). The experimen-
mass, and; the plus momentum fraction carried by thid  tally determined values of the model parameters[af a
particle, namelyx;=k;"/P*, with P* as the total plus mo- =0.23161 fm! andb=1.3802 fm .

mentumk; +kj . Let us take the nucleons to be of equal

mass, and use=(m,+m,)/2 as the nucleon mass. Further- Ill. ELECTROMAGNETIC FORM FACTOR

more, since we have only two particles, the sunxpandx,

is 1. So we choosg; =x and, consequently,=1— x. The electromagnetic form factor on the light front has the

In order to simplify Eq.(2), it is customary to define the form[17]
relative light-front variable$12]
F(QZ):J b P Ixpt+(1=x)q 1g(x,pH), (9
Pt =k +k; x(1—x) 7 P g lgx.p),
3
L 4 (1K ( where the momentum transf@?=q" 2. The momentum-
pr=—xkz +(1-x)ky . space Hulthe wave function is the Fourier transform of our
Straightforward algebra transforms H@) into solution[Eg. (8)], namely,
pL2+m2 pb) m\/ﬁ 1 1
2. — X’p = _
M=y X(1—x) +V |, (4) 4 a2+pl2+(p3)2 b2+pL2+(p3)2
which is the coordinate representation of the Weinberg equa- myNx(1—Xx) (55— 5
tion [1?_,]. Equa’uor_1(4) is still quite complicated to solve, so 4x(1—x)a2+(2x—1)2m2+pﬁ a” )
we define an auxiliary operator
(10)

2
/Pl +m? 5) To calculate the form factor, we must perform three inte-
X(1—x) grals. Writingdp* =p*dp*-d¢, with ¢ as the angle between
pt andg’, we see that theb integral and subsequently the

to cast the equation into a familiar form. Definildg=2m  p' integral can be computed analytically. Performing these
—€ (where € is the binding energyand using the above integrals leaves us with

definition, we find

1
3| y— =

1
2 v F szfx,l—xzzdx, 11
(e——em>¢/= e w92+ Yy (@)= | 1D, (1-%%Q7] (1D
4 4
=(p?+VMy, (6) where
where we have efficaciously chosef'=V/4 to be the f(x. k2)=m2Nx(1—x x.k2) (8288 — 5258
Hulthen potential[14]. (x) ( )9p(X,K) (9395 = 030%
The above equation is the coordinate-space version con- —op68+ 60 8E), (12
sidered by others; see, e.g., Ref5]. Takingp conjugate to
r, we have with
O S — K*+ K2[274(X) + 7500 + pap(x KA T+ ¥500[ap(X.k?) = ¥5(X) = Ya(X)]
T b YalOL =K+ P,k + 7500 — 7a(X) ] ’
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F(Q")

Q (Gev) Q (GeV)
FIG. 1. Plot of the light front Hulthe form factor[Eq. (11)] as FIG. 2. Relativistic and nonrelativistic form factor comparison:
a function ofQ in GeV. percent difference 100(FNR—F)/FNR plotted as a function of
in GeV.

where we have defined

B 5 2 2 Returning to the expression for the form factor, the nonrela-
Yu(X)=AX(1=X) "+ (2x—1)"m, tivistic limit is then

13

paﬁ(xikz)z \/k4+ ZkZYﬁ(X) + ya(x)z'

We chooseN so that the form factor is normalized,

F(0)=1. The constanN is determined by settin®=0 in  The form factor above depends on the orientation of neither
Eqg. (9), which yieldsN=14.931"*. Figure 1 shows the form g*, nor p. Let us then rotate our coordinate system so that
factor as a function o. We have also calculated the de- g is no longer completely transverse. This three-

rivative of F(Q?) in the limit Q—O0, in order to find the dimensional rotation is only possible now because we are

F(QZ)HJ dp ¢* (p+0"/2) (). 17

root-mean-square deuteron radius integratingdp, which cannot be done in the light-front ver-
sion. Thus we havef-—q, while maintaining the length
_ [ dF q%=Q?2. After this rotation, the form factor is strikingly non-
Rims= I|2m _6d sz 1.9467 fm. (14) relativistic(NR), and can be computed analytically using Eq.
0 8,

IV. NONRELATIVISTIC LIMIT AND COMPARISON S NR o a2
F(QH)™ = [ drly(r)|*e 9"
Our solution to the Hulthe model on the light-front

closely resembles the nonrelativistic treatment. In fact, we mN’ Q Q
have used the nonrelativistic solution as a guide in construct- :T tan™* E) —2tant 2(a+tb)
ing the relativistic wave function. Clearly relativistic effects
are contained in the light-front varialske Quite simply, then,
the nonrelativistic limit of Eq.(9) is found in the limitm +tan %) : (18)
—oo by retaining terms toO[1/m]. Inverting Eg. (5)
yields with N’ chosen to maké& (0)NR=1.
From this analytical result, the rms radius can be easily
1 p 1 pd calculated see Eq(14)]:
X=—=+ > %E + 2— (15)
2 2\pt + (pH2+m? m Ja*+5a% + 12a2b%+ 5ab3+ b*
ms= 7 =1.9395 fm.

Since the measuréx dp- — dp/2m is already first order, we 2°*ab(a+h)
need only keep leading-order terms in the wave functions to (19)

find the nonrelativistic form factor. It is clear that, to leading
order, y(x,p*)— (p), where the latter is the nonrelativistic
wave function. Quite similarly, we see

Comparing with our previous result, the relativistic system is
larger by only 0.37%. This confirms our suspicion that rela-
tivistic effects in this deuteron model are small. We can fur-
ther confirm this by looking at the difference of the relativ-
(82— 6%). istic form factor[Eq. (11)] and the nonrelativistic version
[Eq. (18)]. The percent difference is plotted for lovin Fig.
(16) 2, illustrating a difference only- 1% in this momentum re

1
Q?+pP+pt-qt+qtla

Y, pr+(1=-x)0"]—
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gime. The small nature of relativistic effects was noted earlyvoreover, both form factors tend toQ? for large Q. So,

on[18]. when scaled byQ*, at worst the form factors will tend to
some common difference &3—cc.
V. TROUBLE IN ASYMPTOPIA To compare the asymptotic behavior, we have plotted the
. relativistic and nonrelativistic form factor@caled byQ*)
The above plot shows that the absolute percent differencg,, largeQ (in Fig. 3 we plot for the experimentally relevant

continually increases & increases. In this section, we in- Q2, whereas in Fig. 4 we mathematically contrast the asymp-
vestigate how the light-front form factor compares with thegticg. The nonrelativistic form factor lines up well with the

nonrelativistic version for largQ. asymptotic limit predicted by Eq20). The relativistic form
factor, however, differs markedly from its nonrelativistic
A. Exploring asymptopia counterpart, in disagreement with the Drell-Yan-West rela-

tion [Eq. (21)]. We remind the reader that the relativistic
form factor is computed exactly for our modgt0]. The
huge disparity between the nonrelativistic and relativistic re-
sults, shown in Fig. 4, warrants a complete journey through
asymptopia.

Given our analytic expression for the nonrelativistic form
factor[Eq. (18)], it is simple to Taylor expand abo@ =«
to find its asymptotic behavior. To leading order,

_ 64ab(a+b)?> 0.080585(GeV)*
lim F(Q?)~ = . (20) B. Sharp peaks atx=1

4 4
Q= Q Q Before proceeding, we note that our light-front wave

The asymptotic behavior of the relativistic form factor is function[Eq. (10)] is properly behaved:
found with the aid of the Drell-Yan-West relatigd9] (un-
der the assumption that the end-point region dominates the pizlp(x,pi)—>o as pL2—>oo,
form factor for largeQ). This relation takes the form (22)

Y(x,p-)—0 asx—0 and 1.
lim xf(x,0)~(x—1)?°"1o lim F(Q?%) ~(Q?) ~°.

1 0w These conditions stem from nonrelativistic versions, and will

(21) be trivially satisfied for light-front wave functions created
using Egs.(5) and (6). Thus, knowing the nonrelativistic

The x-distribution functionf(x,0) can be calculated analyti- wave functions are peaked for small momenta, our light-
cally using Eq.(9), with g =0, and subsequently expanded front Hulthen wave function must be peaked for small trans-
about x=1. The leading-order term in the expansion isverse momenta. For a large momentum tran§ieiEqg. (9)
O[(x—1)3], from which we deduce @* behavior in as- shows large momentum flows through eithleor *. Fol-
ymptopia. Given that there were only small differences belowing Brodsky and Lepagl1], the dominant contributions
tween the relativistic and nonrelativistic form factors for low to the form factor in the asymptotic limit come from the two
Q, we might expect agreement in the asymptotic regionregions which minimize wave function suppression:

(i) |pt|<|(1—=x)g*| where ¢*[p*+(1—x)q"] is small and y(p*) is large,

23
(ii) |p*+(1—x)g*|<|(1—x)g"| where (p*) issmall and ¢*[p-+(1—x)g*] is large. &

Working first in region(i), we can neglecp* relative tog- in ¢*, since the light-front wave functions are peaked for low
transverse momenta. The contribution from regipris exactly the same as that from regi6r, which is made obvious by
shifting pt. Thus dominant contributions to the form factor in the asymptotic regime appear as

d
F(Q2)~2f x(li(x) w*[x,(l—X)qi]fdpiw(x,pi) (24
877Nmz(b2—a2)J1 dxx® | 4x(1—x)b?+(2x—1)’m?
~ In
Q* 0(1—-x)? [4x(1—x)a%+(2x—1)’m?
1d
75

where we have retained the same normalization constant
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FIG. 4. Relativistic and nonrelativistic comparison in the
asymptotic limit: the form factors are scaled @ and plotted as a
function of Q in GeV.

FIG. 3. Relativistic and nonrelativistic comparison for experi-
mentally relevan?: the form factors are scaled I§y* and plotted
as a function ofQ? in Ge\2.

thatappears in Eq(12).> But to determine the asymptotic
behavior, we must perform the integral owerwhich di-
verges. The end-point region is too peaked for the integral to
converge, as illustrated by Fig. 5. with f(x,k?) given by Eq.(12). The leading-order contribu-
The end-point region appears to dominate the form factofion to the above integral in asymptopia is found by expand-

in asymptopigas suggested in Reff21]). Perhaps the actual ing the integrand about=1 and integrating. The result is
asymptotic behavior can be extracted by placing the end-

point region under scrutiny. Above, we merely assumed the
validity of the Drell-Yan-West relation; now we will rigor-
ously investigate it for our model.

In ascertaining the dominant contributions to the form

F(QZ)EP=fl FOGAm?)dx, @

1-N(m/Q)

F(Q?)®=8mN(b*—a%)?
Xx6+ 204 —8N2—2N(A2+1)\\%+ 4

: . Q*(\%2+1)3
factor in asymptopia, we have neglected the casd. The
form factor includes contributions from the end point, but W2+ 4—)

this is where the scheme set up in E83) breaks down. X (28
Thus the above approximati&g. (24)] is really only valid

for x<1—N\(m/Q), where\ is some dimensionless cutoff ) . ) ]
less than 1. For £ A\(m/Q)<x<1, we must return to the Which agrees with the Drell-Yan-West relation. To consider

full expression for the form factor to obtain the end-point the contribution from the end-point region quantitatively, we
contribution. To leading order, however, {k)q have plotted the percent contribution to the form factor from

~\mq‘/Q in the end-pointEP) region, and the contribu- 0=x=<1-\(m/Q). We have chosen the value ifto be
tion to the form factor reads

n H
AN3+3N+(N2+1) N+ 4

500 r T r T T T T T

2ep_ [* dx f 1
F(Q%) fl)\m/QX(l_X) dp

X (,ptHamah) p(x,pt),  (26)

g(x) (Gevh

whereq-=q'/Q is the direction ofg". Since this contribu-
tion to the form factor depends only @7, we can rotate our
coordinates about the axis to makeq" parallel tox. The
resulting functional form is entirely similar to the full form
factor, enabling a swift evaluation,

X

We obtained the same result by a brute force Taylor expansion of
Eq. (12) aboutQ==. Since the integral over diverges, the series
expansion off (x,Q?) lacks uniform convergence i

FIG. 5. Plot ofg(x) appearing in Eq(24). The singularity at
x=1 is too severe to bound a finite area under the curve.
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smaller than one. Figure 6 shows that the bulk of the form 102

factor does not come from the end-point region.

C. Divide and conquer
In the process of trying to deduce the asymptotic behav-

point region. From the exact Hulthéorm factor[Eq. (11)],
however, we know that the end-point region does not over-
whelmingly contribute(as Fig. 6 confirms Our dilemma
sounds familiaf22], and our approach, not surprisingly, is a

regularization cutoff.

To start, let us just toss away the troublesome divergent

part of EQ.(24) by introducing the cutoff into the x inte-
gral:

1-\(M/Q)
F(Qz)—>2f
0

deplt//(x,pi).

dx

10V ea-0a]

(29

The cutoff integral above can be computed analytically. Us

ing the integrand of Eq.25), the result reads

327N(b%—a?)?
Q4

x(a,b,m)—Inx+ Ina ,
(30)

lim F(Q?)~
Q*}OC

wherey(a,b,m) is a rather complicated, page-long function

independent oik. For our parametera, b, andm, we have

x=1.3635. Nonetheless, we have discovered behavior via

regularization which differs from ©Q* in a model which
knows nothing about ultraviolet divergences, renormaliza:

tion, etc.
One would think that, with Eq(30), we have determined

N

ior, our model has become infinitely sensitive to the end-ﬁl'
B
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1.02

015

1.01

1.005

1 I
50 100

z=Q/m

FIG. 7. Asymptotic behavior oF (Q?) given by Eq.(11): W
=(z*F(z%)— a)/BInzis plotted as a function of=Q/m for the
parametergy=0.039472 ang=0.044930, which were graphically

determined forz around 400.

pression, we know precisely its contribution for a given
cf. Eq. (28). The question remains: have we found all con-

tributions toO[ 1/Q*]?
There are order ©Q° corrections to the integrand of Eq.

(25). Adding these gives a correction term:

—167m?N(b%?—a?) (1-MmQ) dx X
[2x(1—x)(a’+b?)

Q° 0 (1=x)*

4x(1—x)b%+ (2x—1)’m?

. 31
4x(1—x)a%+(2x—1)’m? (31

+(2x—1)?m?]In

Evaluating this correction term to leading order gives
[ —327N(b?—a?)?]/Q*\2. Thus terms in the integrand of
order 1Q°% give a contribution of order @* to the

asymptotic form factor. We have not exhausted all of the

the asymptotic behavior of the form factor. Although we
1/Q8 corrections, however—we originally took only the first

threw away the end-point region to arrive at the above ex

100

9

% Contribution

term in the Taylor expansion of Eq9) about p'=(1
—X)g*, and the next nonvanishing term gives contributions
of order 1Q°®. Even if we were to collect all th®©[1/Q°]
corrections to the integrand, we would have only just be-
gun. One can easily find terms in the integrand of ord€®1/
which emerge from the regularizedintegral 1Q%. In fact,

the integrand’s correction terms of any order contribute to
leading order in asymptopia.

Certainly we cannot hope to evaluate infinitely many

leading-order terms. At least we have stumbled onto a pre-
diction for the functional form in the asymptotic limit. That

is, we have seen

limz*F(z%>)=a+BInz, (32

Z—®

98 L - >
Q(GeV)

FIG. 6. Percent contribution to the form factdtq. (11)] from
the region G=x<1-—\(M/Q) as a function ofQ in GeV for differ-
ent \'s. As indicated, the end-point region i®t dominant for

asymptoticQ.

with z=Q/m. We can test this prediction against the actual
form factor’'s asymptotic limit calculated from E¢L1). In
Fig. 7, we test this hypothesis for empirically determined

coefficientsa=0.039472 ang3 = 0.044930(calculated forz
around 400. As the figure shows, this is indeed the form
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Eqg. 30 3\/—
m>yN
0.04505 lp(x,pi)z 2 2\2
16(k“+p°)
200 B m3YNX?(1—x)? 34
0.04495 [4X(1—X)K2+pJ‘2+(2X—1)2m2]2’
0.0449 where we have used E€p) to reexpres? in the light-front
center of mass. To find the asymptotic behavior of this mod-

el's form factor, we use Eq24). Performing the integration

FIG. 8. Simple numerical determination gf [via Eq. (33)] leaves us with a logarithmically divergextintegral

plotted as a functiore=Q/m. The numerical integration clearly

becomes imprecise past 600. lim F(Qz)
Q—oe
factor's behavior in asymptopia. It is quite curious to note
the following: Using Eg. (30, we would predict 8 meN7 (1 dx x®
=0.045020, a difference of only 0.20% when compared ~ o* 0(1—x)[4x(1—x)K2+(2x—1)2m2]' (35

with the empirical value. We believe this discrepancy results
from approximating asymptotirto be around 400, not from Restrictingx to the range egxgl—)\(m/Q), and perform-
ignoring infinitely many leading-order corrections. Indeed,ing the integral, yields

we never found corrections of order #z* above, only a

myriad of 1£* terms. It is our belief that the coefficieyt m# Q

can be ascertained from the regularization intedizd. lim F(Q%)=——, x(e,m)=Ink+in—i. (36)
(30)].The leading correctidnto B determined graphically is Qe Q

O[ 1/z°]—which gives a relative correction of 0.25% far

~400. Takingz larger in order to reduce this term only B. Why regularization?

results in an appreciable error in the numerical integration.
To verify our conjecture, we have attempted to find the COpe
efficient 8 by varyingz . Figure 8 shows a plot of the graphi-
cally found value of8 as a function of (the midpoint of our
interval). Specifically we use a simple linear fit in the plot:

As we have seen above, determining the exact asymptotic
havior of light-front form factors is no trivial task. The
Drell-Yan-West relation is still apt at describing the contri-
bution from the end-point region; however, this region does
not dominate our form factors for asymptoti@. Further-
more, techniques to determine the asymptotic behavior
] (brute force Taylor expansion, finding contributions from re-
z+50 gions of minimal wave-function suppressjdad to logarith-

(33 mically divergentx integrals, suggesting the noncommutativ-

. ity of the limits Q—« andx—1. Here we show how the

Ihe ot o our e okl ~0064550 s 00 T s o e o poculrioor

Th ’numerical intearation. however. becomes unre- Starting with the expression for the light-front form factor
creases. Oe 9 o ' g. (9)], we were led to the dominant contribution in as-
liable t9~1 /o past 600. Nevc_arth_eles_s, it appears that we ca mptopia via a process of isolating the regions of minimal
determinep from the regularlzathn integrdEq. (39)]. We | ave-function suppression, namely,
are at a loss, however, to prediat there are simply an
infinite number of correction terms ©[ 1/Q*] to evaluate. dx

lim F<Q2>~2fx(1_x) w[x,(l—xmi]fdpiwx,pi).

VI. SIMILAR PROBLEMS Qo (37)

B(z)=[(z+50*F(z+50)— (z—50*F (z—50) ]In

The problems encountered above are not unique to th
Hulthen model. In this section, we begin by exploring an-
other model with similar behavior in asymptopia.

Rlow let us utilize the Weinberg equati¢th3], which is the
momentum-space version of our E¢),

A. Coulomb potential pXp)=——a—
. . . p-+m
Let us suppose our particles interact via a Coulomb po- M?— Y
tential V(r)~ 1/r, for which we takey(r)=e*". Then our X(1=x)
momentum-space solution to E@) is given by dy dk* | | |
f y(i=y) Py k)V(x,p-iy.k7), (38)

2Expanding the integrand of the form factor in powerspfthere ~ With V as the Fourier transform of the potential. We can use
are only even terms. Once we exit the cutoff integral, however, wéhis information in the asymptotic limit of the form factor,
can now have any power @ in the expansion. namely, for
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X (1=X)G ] X J' dy dk* k) i VML 00 127(a+b) 48w (a+b)x
X,(1—X ~— , Im X)) |=— = .
T a0 vap ™Y o 1 ax)? (1-xQ?
44
XVIX,(1-X)q5y K- ] 39) 44
Of course, in asymptopia the integral containvigan be As illustrated aboveFigs. 1-4, the form factor itself is
simplified. The potentials considered above are of the fornf10t singular at asymptotiQ, just our means of obtaining it.
V=V(|p—kl|), where This is made obvious by commuting the limits. Above we
looked atQ— oo first, and found a problematic behavior for
pt +m? x—1 stemming from the potential. On the other hand, let us

(p—k)?=(p" —k")?+| (x—1/2) now consider taking to be near 1 first. We already did this
for the Hulthe form factor; see Eq(26). Now we are in a

L2+m2)2 position to generalize this result. Since we know our wave

X(1—X)

(40) functionsy(x,p*)~(1—x)? asx— 1, the contribution from
the end point becomes

~ VAN YAy

which makes explicit use of having two equally massive par-

ticles in the center-of-mass franjef. Eq. (5)]. As a result _—
of the above equation,V[x,(1—x)q";y,k*]1=V[x,(1 F(Q?) NL_Mm@
—x)qgt;1/2,0] to leading order. Henceforth we shall abbre-

viate V[x,(1—x)q*";1/2,0]=V[|q(x)|], where

1
(1—x)3dx—>a. (45)

This is just the Drell-Yan-West relation, which, as we have

— — Q [1-X seen, does not account for the majority of the form factor in
la(0)[=V(1-%)Q*+(a®)*~ ;\/——— (4D  asymptopia. A clearly different behavior is seen when look-
2 X
ing at asymptotic expressions near the end point, versus the
Revising the expression for the asymptotic form factor, weend-point region for asymptotiQ.

find (neglecting overall constants Logarithmically divergent form factors in asymptopia
need not plague us any longer. The culprit has been un-
_ dx ¢(x) masked: potentials in thauxiliary coordinate space, such as
lim F(Qz)wj ———=V[[a0l1, (42) 1/ of the Coulomb model or Ed7) for the Hulthen, which
Qe (1-x)°Q are~ 1/r for smallr, will lead to logarithmic divergences in

the expression for the asymptotic form factor. Of course, the

_ s .l H
where ¢(x) =fdp~4(x,p"), and they dependence has inte- asymptotic form factoitself is not singular. The logarithmic

grated itself away. Equatiofl2) contains the answer to our divergence of our asymptotic expression is a thornlike warn-

troubled journey thr_ough asymptopia. At f!rst glancg, _the In'ing: the series expansion inQ/does not converge uniformly
tegrand appears singular at the end point, containing ong~

factor of 1—x from the measure, and another from the (1
—x)gt contained in the form factor. These factors are quite

general, and contain nothing specific about the interaction. C. Reallistic models on the light front
While Eq. (22) spells out the criteria for good wave func-
tions, it is necessary to be further restrictive by requiring
Y(x,pt)~(1—x)? asx—1 if we wish to cancel the poten-
tially singular denominator in Eq42). This is not much of
an imposition; both the Hulfmewave functior{ Eq. (10)] and
the Coulomb wave functiofEq. (34)] go like (1—x)? asx

—1. . . showed similar logarithms appearing in asymptd@a] for
Only one x-dependent piece of Ed42) remains to be he npycleon electric form factor, and thus a failure of
considered—the potential. It is now immediately obvious enormalization-group techniques. Quite soon thereafter, it
that the Co_ulomblc form factor should suffer logarithmic di- 45 realized24] that these logarithms were just manifesta-
vergences in asymptopia: tions of neglected higher-order corrections. Apparent end-
point singularities are removed when the evolution of the
C — 1 __ 4x longitudinal momentum amplitude is properly included,
VEa(x)[] = : (43 I
q(x)? (1—x)Q? and consequently factorization is sajed].
Obviously our models do not have such higher-order cor-
The potential brings along the anticipated factoilQ¥, but,  rections, and thus the logarithm remains. We must then won-
on the light front, an unwanted 1x) tags along. Given the der whether factorization breaks down for more realistic
behavior of the light-front wave function, this extra factor is models on the light front. Let us then consider a more so-
just enough to make the integral in E@2), diverge. The phisticated model of the deuteron arising from meson-
same is true for the Hulfmepotential[Eq. (7)], since we theoretic(MT) potentials[26]. The general parametrization
have of the swave deuteron wave function is

Above we have seen that rather simplistic models lead to
electromagnetic form factors with nonstandard asymptotic
behavior. It is not likely, however, that this behavior is
physical—though certainly it is the true asymptotic behavior
for the models considered.

Early work on factorization in quantum chromodynamics
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1 N where the constant ensures the potential vanishes-as. It
Y(r)= T > Cje ™M, (46) s then straightforward to find the behavior near the origin
i=1
. |ivaT(r)=—1 2(a—my)+m IN) (51)
m=a+(j—1)m,. (47 r—0 r ° °k(N) |’
The usual boundary conditiotfinite wave function at the
origin) leads to the constraint wherel (N)==jC; andk(N) == j2C;. Thus, based on these
N analytical observations, E@¢42) shows that even a realistic
> C;=0. (48  deuteron model will be troublesome in asymptopia.
i=1
To plape this realistic deuteron model on thel Iight front, VIIl. CONQUERING ASYMPTOPIA
we work in momentum space and use the longitudinal mo-
mentum prescription abov&g. (5)]. The resulting form fac- As we have seen, E@42) is a rather naive way to deter-

tor is completely similar to that of the HulthdEq. (11)] mine a form factor's asymptotic behavior. This equation and
except there are noN? terms instead of four. At this point, the analysis leading to it were extrapolated from our knowl-
the similarity leads us to suspect th@f behavior is modi- edge of nonrelativistic wave functions. Indeed one may
fied by a logarithm in asymptopia. Based on our aboveverify that Eq.(24) (derived by an analysis parallel to the

analysis, verification of the logarithm’s presence requiresionrelativistic ong¢11]) gives exactly the same results as Eq.
that we checky(x,p-)~(1—x)? asx—1, and that the po- (42). The breakdown of factorization for the above models is

tential inr space behaves asr Iitear the origin. clearly arelativistic problem further verified by Eq.(41)].
The momentum-space wave function has the end-poinEquation (42) may not be useful in determining the
behavior asymptotic behavior. Without it, however, we would not be

aware of the cause of our problems at high-momentum trans-
fer. Now knowing when to expect trouble in asymptopia, let

‘/’(X’pl)wjzl Cimi (m2+pl2)2 +0[(1-x)°%], (49 us proceed to deduce the asymptotic behavior correctly.

pzd

where the term linear in 2 x has vanished due to the con-
straint[Eq. (48)]. Appealing to Eq(6), we can determine the
potential which generates this deuteron wave function, Before returning to the asymptotics of the Hulhtorm
factor, let us take a worthwhile look at the Wick-Cutkosky
(WC) model. Consider two equally massive scalar particles
which interact by exchanging a massless scalar particle. The

A. Wick-Cutkosky model

N
> Ci[2(a—my)m,j+mZj2le M)
j=1

VMT(r)= N +const, potential for such a process has been found, and conse-
> e mo! quently the ground-state wave function can be deduced using
=i the momentum-space version of ). The wave function

(500 s [27]
|
l/,( L) 8\/;K5/2 27\/;K5/2X2(1_X)2 (52)
x’ = = s
P (02?14 p’ ) [4x(1—x) K2+ p" +(2x—1)2m?J2(1+]2x—1|)
E(p)

where we have used the energy E(p) namics, see Ref§28] or [29]. The wave function in Eq.52)
=1(p~*+m?)/x(1—x) in the two-particle center of mass, IS quite similar to our Coulomb wave function in Sec. VI A.
and p° is given by Eq.(5). Here k=%ima and a=g% The extra term in the denominator originates from retarda-
167m?, with g as the coupling constant present in the inter-tion effects contained in the relativistic potenti@ffects
action term. The invariant mass of the systemMs=2m  Which our nave models clearly ladk The behavior of the

— 2ma?. To write this wave function, we have converted thewave function at the end point is not modifi¢w leading
explicitly covariant form cited in Ref[27] into our own  order in 1—x) by retardation. Furthermore, the retarded po-
z-axis-dependent form. The difference between these agential is[27]

proaches does not concern us for the ground state of scalar

particles. For a review of explicitly covariant light-front dy- V(x,pty, kHWe= —4aralK?, (53
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with tion in asymptopia via regularization. This result will be dif-
5 5 5 ferent from the Coulomb resuliEq. (36)] due to the
Ke=(p—k) = (2x=1)(2y—1D)[E(p) —E(K)] retardation factor. First we note that in the near end-point
M2 region x(1—x)a?~0. Now take<x,<1—-A(m/Q), and
+2|x—y|| E(p)?+E(k)?— - (54)  hence the contribution which interests us reads
where p—k)? is given by Eq.(40). Using this potential for ) 64m*a® [1-\Mm/Q) x dx
asymptoticQ, we note that lim F = f
ymptoticQ am Q=" ), 4(1—x)(2x—1)2
16max
VIx,(1—x)q";1/2,0]WC~ — il 16m‘a® Q
(1—x)Q%(1+2x—1|) = 7 g(xo,a,m)—lm\ﬂnE
(55 mQ
which is singular atx=1. Given this and the wave func- «|1+0 i}) (57)
tion’s end-point behavior, we once again appeal to (&g), Q)

and a logarithmically divergent integral confronts us in
deducing the asymptotic behavior of the form factor. OurCombining these two resultsising only the logarithmic part

experience above leads us to believe the true asymptotic bgz o lattey, we arrive at the asymptotic behavigo leading
havior isQ 4 modified by a logarithm. This asymptotic be- order ina)

havior for the Wick-Cutkosky model was previously found
by Karmanov and Smirnoj@] by considering regions which

dominate thex andp* integrals of the form factor. The same ) ) 16m*a®/ Q
asymptotic behavior of the Wick-Cutkosky model was also lim F(Q%)~ 9 I+ 2/ (58)
found [9] by using the Bethe-Salpeter approach. Karmanov Q= &

and Smirnov stated that the logarithmicQAQ* behavior
was also found earlier in Reff30l—a paper which admitted which agrees with the result found by Karmanov and
the possibility of such logarithms only by announcing that it Smirnov[9]. Furthermore one can use the Wick-Cutkosky
did not consider such cases. The presence of logarithmigave function above to numerically calculate the form fac-
modifications to relativistic form factors was discussed intor, and test Eq(58) to predict its asymptotic behavior. This
Ref.[17], where the authors interpreted the Drell-Yan-Westform factor is less complicated than the Huithmodel’s.
relation as valid modulo logarithms. Nonetheless, the correaConsequently, the numerical integration is precise to larger
asymptotic behavior of the Wick-Cutkosky form factor was Q. As before, we have graphically determined the coeffi-
deduced in Refl9], as we shall now demonstrate using tech-cients « and 8 in Eq. (32), and observed the asymptotic
niques considered above. behavior to tend towarda(+ 3 In2)/Z*, with z=Q/m. The
Considering the analytical form of wave functi®®), we  coefficientg agrees well with Eq(58), differing by <0.1%
can see a region which dominates the form factor forfor a=0.08 and 0.007. The error of the coefficientepends
asymptoticQ: x nears;. In this case, we can surely say that on how rapidly the series ia converges. Foa=0.08, our
(1-x)Q~(Q/2)>m and consequently the analysis leadinggraphically determinedr differs from Eq.(58) by ~12%.
to Eq.(24) is certainly valid. Moreover, the Wick-Cutkosky \While for a=0.007, the error is~2%. Indeed, we have
wave function is identical to our Coulomb wave function for deduced the form factor's asymptotic behavior.

X~ 1. Thus, appealing to Eq24), we find (to leading order

aboutx=3) B. Back to the Hulthén model
16m%a® r1 dx Our analysis above has been quite general, and we shall
lim F(Q%)= 2 22 now apply it to the Hulthe form factor. To finish our quest
Qe 7Q" Jod +(2x—1)2 through asymptopia, it remains to determine the coeffiaient
4 in Eq. (32 for the Hulthen model. As we learned above,
16mtad considering the contribution fox~3 gives us a for
= (1+0[a)]), (56)  asymptoticQ. So we return to E¢(25) and expand to leading
4 order abouix= 3,
where we have assumed<1, so thatx(1—x)a’~a?/4. In _ , 4mm®N(b?—a?) (1 [b?+(2x—1)2m?
order to compare with Ref9], we have been careful toadopt  lim F(Q)~ 2 f In| — EPIY T
their normalizationfwe have multiplied our expressid®) Qe Q 0 la*+(2x=1)"m
by (m/2)(2) 3] (59)

The other dominant contribution in asymptopia comes
from nearthe end-point regiog <(1—x)<1—-\(m/Q), as
we have seen above, by producing logarithms from regular- A more precise statement is this: expanding abost; in Eq.
ized x integrals. We can thus deduce the remaining contribu¢24) gives the coefficientr up to a possible factor of 2.
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having used&/m,b/m<1. At first glance, it appears we have model of deuteron. For small momentum transfer, the two
dropped a factor of 2 from the asymptotic expresdiBg.  versions differ by about 1% and the root-mean-square radii
25]. However, careful consideration of regiai) [in Eq.  differ by even less. The behavior for lar@g however, led us
(23)], shows that its contribution vanishé® leading order on an unexpected journey.
in 1/Q). Evaluating the above integral and combining with  Qur expedition through asymptopia helped us learn the
the logarithmic part of our previous res{iq. (30)], we find  Hulthen form factor’s true behavior-In Q¥Q* for large Q.

The path was circuitous, because conventional means

327N(b2—a?)2[ Q 1 mw (asymptotic expressions, Taylor series expangiteed di-
lim F(Q?) = |t ol } rectly to logarithmic divergences. These difficulties are
Qe Q m 8\b+a manifestations of the noncommutativity of the lim@— «
(600 andx—1, and hence indicative of the breakdown of factor-
ization.
From which we deducer=0.046493(and 8=0.045020 as Indeed, we find that this behavior is not particular to the

discussed previouslyComparing with the graphically deter- Hulthen model. Equatior{42) tracks down the root of these
mined result of Sec. V C, we see that there is a 17.8% difdifficulties. Generating our light-front wave functions from
ference. Again this difference is due to the series expansiononrelativistic potentials singular at the origin will lead to

in small parameters/m=0.048943 andb/m=0.29007. For  problematic relativistic form factors in the asymptotic limit.
smaller values of the parameters, we expect better resultSuch problems do not plague calculations in fundamental
However, with smaller parameters one needs higbisrto  theories, because higher-order corrections necessarily cancel
graphically determinex and 8, and the numerical integra- the divergences. For realistic models, however, the break-
tion becomes imprecise. Nonetheless, within our constraintdown of factorization persists, and is an obstruction to
we have verified Eq(60) as the asymptotic behavior of the straightforward asymptotic calculations.

Hulthen form factor.
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