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Nucleon-nucleon interaction in the Skyrme model
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We consider the interaction of two Skyrmions in the framework of the sudden approximation. The widely
used productAnsatzis investigated. Its failure in reproducing an attractive central potential is associated with
terms that violateG parity. We discuss the construction of alternativeAnsätzeand identify a plausible solution
to the problem.
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I. INTRODUCTION

Nucleon-nucleon (NN) interactions are relatively simpl
at large distances and become rapidly more complex as
moves inward. In the best phenomenological models exis
at present, which reproduce low-energy observables a
rately, they are described by the consensual one-pion
change potential~OPEP!, supplemented by theoretical two
pion exchange potentials~TPEP!, and parametrized at sho
distances@1,2#. The OPEP is responsible for a strong tens
component, which is mostly important in few-body system
such as the deuteron. Two-pion exchange, on the other h
gives rise to the central potential, that survives to all av
ages and is responsible for most properties of large syst
and nuclear matter. Quantum chromodynamics~QCD! is the
basic framework for the study of strong processes and sh
have, in principle, an important role in the description
nuclear forces. However, at present, the non-Abelian cha
ter of this theory prevents low energy calculations and o
has to resort to effective theories, which must reflect
main features of QCD. Thus, in nuclear physics applicatio
besides the usual space-time invariances, one requires
theories to have approximate chiral symmetry. The latte
usually restricted to the SU(2)3SU(2) sector, for most pro
cesses involve only the quarksu and d. This symmetry is
explicitly broken by the small quark masses and, at the
fective level, by the pion mass.

Chiral symmetry has no influence over the OPEP, bu
crucial to the TPEP, which depends on an intermediate p
nucleon (pN) amplitude@1#. In the case ofNN interactions,
the importance of this symmetry was stressed already in
early 1970s, by Brown and Durso@3# and by Chemtob,
Durso, and Riska@4#, who used it to constrain the form o
the TPEP. In that decade it also became popular to desc
nuclear processes by means of the linears model @5#, con-
taining a fictitious particle calleds that, to some extent
simulates the TPE. The elimination of this unobserved
gree of freedom gave rise to nonlinear theories, which
derlie modern descriptions of the interaction. The first th
retical framework to incorporate nonlinear chiral dynam
into theNN problem was proposed by Skyrme. This rema
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able model for the nucleon, developed in the 1960s@6# and
revived in the 1980s@7#, describes baryons as topologic
solitons, objects extended in space that rotate accordin
the laws of quantum mechanics. The quark condensate
pears as an intrinsic feature, corresponding to a nonvanis
classical content of the vacuum, whose intensity is given
the pion decay constantf p . Skyrmions correspond to distor
tions of this condensate that carry topological charges. O
then works with pion fields which are unusually strong,
the sense that their amplitudes may be comparable tof p .
Thus, in spite of its well-known limitations@8#, the Skyrme
model remains a unique laboratory for studying chiral sy
metry in the nonperturbative regime.

In the early 1990s Weinberg restated the role of pertur
tive chiral symmetry in nuclear interactions@9# and moti-
vated interest in the TPEP. Initially, several authors explo
the pion-nucleon sector of nonlinear Lagrangians@10#, but
the corresponding potentials could not reproduce even
medium range attraction in the scalar channel. This happe
because the TPEP is based on an intermediatepN amplitude,
that can only be well described with the help of other degr
of freedom @11#. Accordingly, in a later stage, agreeme
with empirical pN information was enforced and descrip
tions could reproduceNN scattering data@12–14#.

In the case of perturbative calculations, the delta is by
the most important non-nucleonic degree of freedom an
largely responsible for the intermediate range scalar att
tion. As the Skyrme model incorporates the delta from
very beginning, one expects that it should yield a good qu
tative NN potential. However, it fails to do so.

Skyrme himself consideredNN interactions, already in
the 1960s, using the so-called productAnsatz~PA! @6#. The
basic idea underlying the PA is that solutions correspond
to baryon numberB51 can be used as building blocks
construct approximate solutions with an arbitrary value ofB.
The great advantage of this approach is that the baryon n
ber of the composite system is automatically equal to
number of individualB51 Skyrmions, irrespectively of thei
relative positions. In the PA, the Skyrmions that constitut
larger system are assumed to retain their shape all the t
what is known as sudden approximation. In this framewo
the construction of theNN potential is rather simple and th
fact that each nucleon has a profile function which falls
rapidly with the distance allows one to assume that, for m
dium and large distances, theB52 system is not consider

s:
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TABLE I. Empirical values for the subthreshold coefficientsa00
1 , a01

1 and the constantK, which deter-
mines the intensity of the central potential.

Ref. @11# Ref. @28# Ref. @29# Ref. @29#

a00
1 (mp

21) 21.4660.10 21.3060.02 21.2760.03 21.1560.03
a01

1 (mp
23) 1.1460.02 1.3560.14 1.2760.03 1.2360.03

K~MeV! 7.19 9.51 8.84 8.74
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ably different from the superposition of two withB51.
In the 1980s, the productAnsatzwas used by Jackso

et al. @15# and Vinh Mau et al. @16# to calculate theNN
potential, who found out a fully repulsive central compone
in disagreement with very well established phenomenolo
This result was carefully investigated in Ref.@17#. This
puzzle motivated several attempts to construct improved
sions of those early works. Among them, one notes the s
metrized productAnsatzby Nyman and Riska@18#, which
could produce an intermediate range scalar attraction. H
ever, as pointed out by Sternheim and Ka¨lbermann @19#,
there is a violation of baryon number conservation in t
Ansatz. Exact numerical calculations were also used, wh
allowed one to evaluate the reliability of the sudden appro
mation at short distances@20#. Lattice calculations, using a
method developed by Manton and collaborators, gave ris
a torus-like baryon density, believed to correspond to
true B52 ground state and having almost twice the nucle
mass@21#. The scalar potential associated with this config
ration does show some medium to long range attraction@22#.
However, it is worth recalling that lattice results depend
the definitions adopted for collective coordinates and, as
full treatment is rather difficult, one usually resorts to a
proximations@23,24#.

In this work we consider the scalar interaction betwe
Skyrmions, in order to explore the possibility of obtainin
the central attraction at large distances by relaxing som
the constraints present in usual calculations. We employ
sudden approximation because it gives rise to a construc
interaction, in which nondeformed nucleons are the m
building blocks, as in perturbative calculations. Our pres
tation is divided as follows. In Sec. II we study th
asymptotic behavior of the scalar potential in the stand
productAnsatzapproximation, in order to understand why
does not yield attraction. In Sec. III we discuss the constr
tion of alternative solutions, which must be constrained
have the correct baryon number. Finally, in Sec. IV we a
lyze a possible solution to the problem, and present conc
ing remarks.

II. CENTRAL POTENTIAL

The structure of the central potential has been stud
recently, in the framework of chiral perturbation theo
@14,25,26#. In momentum space, the leading contribution h
the generic form

VC~ t !52
2

f p
2 mp

2 @ f p
2 ~a00

1 1a01
1 t !#sN~m;t !, ~1!
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wheref p is the pion decay constant, thea0i
1 are subthreshold

coefficients@11#, and sN(m;t) is the intermediate nucleon
contribution to the scalar form factor, that depends on b
the momentum transfert and the baryon massm. In general,
the scalar form factor is defined in terms of the symme
breaking Lagrangian as

^N~p8!u2LsbuN~p!&5^N~p8!um̂q̄quN~p!&5s~ t !ū~p8!u~p!,
~2!

wherem̂ is the average of the masses ofu andd quarks.
In configuration space, Eq.~1! becomes

VC~d!52
2

f p
2 mp

2 @ f p
2 ~a00

1 1a01
1
“

2!#sN~m;d!, ~3!

whered is the internucleon distance ands(m;d) is the Fou-
rier transform ofs(m;t). In order to allow this result to be
compared with the corresponding one in the Skyrme mo
we note that, in the largeNc limit, the nucleon and the delta
are degenerate and very heavy. In this case, one has@25,26#

s~Nc→`;d!5sN~Nc→`;d!1sD~Nc→`;d!

53sN
HB~d!

5
9mp

6

128p2 S gA

f p
D 2F d

dx

e2x

x G2

, ~4!

wherex5mpd, sD is the contribution from the delta inter
mediate state, whereassN

HB is the heavy baryon limit ofsN .
The relationship between nucleon and delta contribution
s in the largeNc limit was discussed in Ref.@27#.

Using Eq.~4! into Eq. ~3!, the central potential become

VC
HB~d!52

2

f p
2 mp

2 F3mp
6 gA

2

128p2 GFa00
1 S 11

2

x
1

1

x2D
14mp

2 a01
1 S 11

3

x
1

11

2x2
1

6

x3
1

3

x4D Ge22x

x2
~5!

and, at very large distances, it behaves as

VC
HB~d!→2KS e2x

x D 2

. ~6!

The sign of the constantK is determined by the values of th
subthreshold coefficients in the combination (a00

1 14mp
2 a01

1 ).
8-2
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In Table I we display empirical values for thea0i
1 and it is

possible to note that the correct sign ofVC comes mainly
from a01

1 , sincea00
1 in isolation would give rise to a repulsiv

interaction.
In order to study the central potential in the Skyrm

model, we recall that the standard soliton Lagrangian den
is written as@6,8#

L5Ls1L4 , ~7!

where

Ls5
f p

2

4
Tr~]mU]mU†!1mp

2
f p

2

4
Tr~U1U†22! ~8!

corresponds to the nonlinears model and

L45
1

32e2
Tr@]mUU†,]nUU†#2 ~9!

is the stabilizing term. In these expressions,e is a free pa-
rameter, called Skyrme constant, whereas the dynam
variableU is a 232 unitary matrix, given by

U5ei t•p̂F5cosF1 i t•p̂ sinF, ~10!

where t are the isospin Pauli matrices andF is the chiral
angle, whose boundary conditions determine the bar
number of a particular configuration. The functionF and the
isospin directionp̂ are related to the pion fieldp of the
nonlinears model @5# by p5 f p sinFp̂.

In the B51 case, a static solution is obtained using t
conditionp̂5 r̂, the so-called hedgehogAnsatz, with bound-
ary conditionsF(r 50)5p andF(r→`)50 @8#. The quan-
tization of this baryon is achieved by rotating the static
lution with the help of collective coordinates, as a rigid bod
This procedure endows the Skyrmion with spin and isos
and corresponds to multiplying the pion field by the rig
body rotation matrixD,

p i→pa
q5Da ip i . ~11!

The matricesD satisfy the completeness relationsDa iDa j
5d i j , Da iDb i5dab and, in the case of nucleons, the corr
spondence with the ordinary formalism is achieved by us

^NuDa i uN&52 1
3 ^Nutas i uN&, ~12!

s i being the spin Pauli matrices.
The scalar form factor in the Skyrme model can be o

tained directly from Eqs.~8! and ~10! and reads

sSk~d!5^Nu2Lsb~d!uN&52mp
2 f p

2 @ cosF~d!21#.
~13!

On the other hand, the asymptotic form of the chiral an
is determined byLs as @30#
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F`~d!52S 3gAmp
2

8p f p
2 D S d

dx

e2x

x D ~14!

and hence, for large distances, the leading term in Eq.~13!
yields s`

Sk(d)5s(Nc→`;d). In order to test this relation-
ship further, we write

s`
Sk~d!5mp

2 f p^NuAf p
2 2pq

•pq2 f puN&.
mp

2

2
p2

5
mp

2

2
@^Nupa

q uN&^Nupa
q uN&1^Nupa

q uD&^Dupa
q uN&#.

~15!

Using Eqs.~11! and~12! in the last expression, one finds th
N andD intermediate states determine, respectively, 1/3
2/3 of the total value ofs`

Sk(d), in agreement with Ref.@27#.
This relative proportion is identical to that found recently
the framework of perturbation theory@26#.

For systems withB52, the standard point of departur
for constructing approximate solutions is the productAnsatz
~PA!. It uses two undistortedB51 hedgehog solutions
whose centers are located at two fixed points equidis
from origin along thez axis, so that the hedgehog spa
coordinates are given byy5r1dẑ/2 andw5r2dẑ/2. Denot-
ing the composite field byU(y,w), one writes

U~y,w!5U~y!U~w!. ~16!

In this configuration, theB52 condition is automatically
fulfilled, for any distance between their centers@31#. As the
PA keeps the identities of constituent Skyrmions, it allo
the direct incorporation of spin and isospin, through colle
tive rotations of individual hedgehogs.

The potential is a function of the distanced and given by

V~d!52E d3rLint~r,dẑ!, ~17!

where Lint is obtained by using the fieldU(y,w) in the
Skyrme Lagrangian, Eqs.~7!–~9!, and subtracting the self
energiesL@U(y)# and L@U(w)#. This potential works well
in the isospin-dependent channels, since the OPEP is re
duced for distances larger than 2 fm and it is also possibl
identify the roles ofr and A1 mesons@32#. On the other
hand, problems occur in the scalar-isoscalar channel, w
the interaction is repulsive at all distances, in sharp con
diction with phenomenology.

Using the definitionsFr85dF(r )/dr, sr5sinF(r), and
cr5cosF(r), the central potential is given by
8-3
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VC
pa~d!5

2 f p

e

4p

3 E
0

`

dzE
0

`

rdrH 2
3mp

2

16e2f p
2 ~12cy!~12cw!

1F S Fy8
21

sy
2

y2D S Fw8
21

sw
2

w2D
1

2sy
2sw

2

y2w2
2~ ŷ•ŵ!2S Fy8

22
sy

2

y2D S Fw8
22

sw
2

w2D G J .

~18!

In order to study its asymptotic structure, we note that
pion fields exist effectively only in the neighborhood of th
hedgehog centers. When the distanced is large the Skyrmion
located at (0,0,d/2) is in the presence of the asymptotic r
gion of U(y), we expandFy , Fy8, andŷ•ŵ around the point
w50 and write

Fy.ae2mpwzS 11
f 1

x
1

f 2

x2D e2x

x
, ~19!

Fy8.2ae2mpwzS 11
g1

x
1

g2

x2D e2x

x
, ~20!

ŷ•ŵ.
wz

Ar21wz
2 S 11

mpr2

wzx
2

3mp
2 r2

2x2 D , ~21!

where f i , gi are dimensionless polynomials ofwz[(z
2d/2) andr, which are not displayed here. These expr
sions were tested order by order, by using them in Eq.~18!
and checking that the potential did have the asymptotic st
ture, as in Eq.~6!. We found out that it was necessary
expandF(y) up to orderd22, in order to have accurate re
sults.

Replacing Eqs.~19!–~21! into Eq. ~18!, we obtain an
asymptotic contribution of the form

VC
pa~d!→2KF11

a1

x
1

a2

x2 Ge22x

x2
, ~22!

for bothLs andL4, separately. The values of the paramet
K and a i are displayed in Table II, based on the numeri
constantsmp5139 MeV, f p593 MeV, ande54.0. For the
sake of comparison, we also present the values of those
rameters in the case of the phenomenological Argonne
tential @33#.

TABLE II. Coefficients of the multipole expansion ofVC for the
productAnsatzand the Argonne potential, as defined in Eq.~22!.

Ls L4 Ls1L4 Argonne

K~MeV! 7.29 28.52 21.23 4.80
a1 0.93 4.31 24.4 1.0
a2 1.78 12.9 79.1 6.0
04400
e

-

c-

s
l

a-
o-

Inspecting this table, one notes that the part of the pot
tial due toLs is attractive, but is superseded by a repuls
contribution coming from the stabilizing term. The net sig
of the potential is, then, the outcome of a large cancellati
On the other hand, the dependence of Eq.~22! on d is similar
to those of both the perturbative chiral calculation, Eq.~6!,
and of the phenomenological Argonne potential. We str
that this correct geometry is a general feature of the mo
because it depends only on the form of theB51 solution,
and not on the specificAnsatzused to obtain theB52 result.
In Fig. 1 we display the ratios between the full an
asymptotic PA potentials, as given by Eqs.~18! and ~22!,
with the purpose of illustrating their convergence. The int
play between the attractive contribution fromLs and the
repulsive one fromL4 can also be seen in Fig. 2, where w
present the functiondVC

pa(d)/dz, corresponding to the inte
grand inz of expression~18!, for several values ofd. One
notes that the contributions in the neighborhood of the Sk
mion centers are large and positive but, on the other han
negative region develops as the distanced increases.

These features of the central potential allow us to iden
clearly the stabilizing term as the responsible for its repuls
character. Therefore, mechanisms which can reduce the
portance ofL4 may help in producing an attractive intera
tion. In the next section we discuss a class of such mec
nisms, associated with deformations of the QCD vacuum

III. CONSTRUCTING BÄ2 SOLUTIONS

We consider hereB52 solutions, constructed by usin
the hedgehogB51 Skyrmions as building blocks, in th
framework of the sudden approximation. In general, anAn-
satzis a prescription of the form

U~y,w!5 f @U~y!,U~w!#, ~23!

wheref is a function, chosen according to physical criter
The construction of such a function should follow som
guidelines:~1! the baryon number of the composite config

FIG. 1. Ratios between the multipole expansion and the ex
numerical result for the scalar potential~solid! and separate contri
butions ofLs ~dashed! andL4 ~dotted!.
8-4
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ration must be two for all distancesd; ~2! the composite pion
field must have the correct quantum numbers, being pse
scalar, isovector and odd underG-parity; ~3! the composite
Lagrangian must be chiral symmetric, even underG-parity
and invariant under the exchange of the two constitu
Skyrmions.

The standard constructive approximate solution to theB
52 system is based on the PA, as discussed in the prece
section. In this approach, the composite pion field, obtai
from Eqs.~10! and ~16!, is given by

Ppa5
1

f p
~sypw1swpy2py3pw!, ~24!

wherepr is the pion field of the hedgehog with coordinater
ands r[ f p cosF(r). The function

Spa5
1

f p
~sysw2py•pw! ~25!

is the composite analogous ofs and satisfiesSpa
2 1Ppa

2

5 f p
2 .
The fieldPpa has a rather serious drawback as a candid

for the pion field, namely that it contains an azimuthal te

FIG. 2. Integrand inz of the scalar potentialVC(d), for ~a! d
51 fm, ~b! d53 fm, ~c! d55 fm, ~d! d510 fm; vertical axis:
arbitrary unit.
04400
o-
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which is both even underG-parity and antisymmetric unde
hedgehog exchange. Hence it does not have good pion q
tum numbers, violating requirements~2! and ~3! stated
above.

This motivated us to try to understand whether this pro
lem could be responsible for the absence of attraction fo
in the central potential. We considered several alterna
possibilities, inspired in the PA. The basic idea is to propo
a composite fieldP, use it to define a functionS by

S25 f p
2 2P2, ~26!

construct the unitary field as

U5@S1 i t•P#/ f p , ~27!

and feed it into the Skyrme Lagrangian. We begin by d
scribing briefly some unsuccessful attempts, in order to p
vent readers from repeating them.

The simplest exchange-symmetricAnsatzwould be the
averageP5(py1pw)/2. However, whend50, one hasFy

5Fw5Fr and henceP5 f p sinFr r̂ corresponds to aB51
field, which must be disregarded.

This suggests that, in order to obtainB52, it is manda-
tory to mix p ands. In the case of the PA, which yieldsB
52 at all distances, we note that the chiral constraint
tweenPpa andSpa allows one to write

Upa5@Spa1 i t•Ppa#/ f p[e2 i t•uFpa, ~28!

whereu is a unit vector, taken as pointing always away fro
the origin of the coordinate system, andFpa is a profile func-
tion. In Fig. 3 we display the behavior of this angle along t
axesz andr, for various values of the internucleon distan
d. The solid lines correspond to the cased50, which is
spherically symmetric and it is possible to see that, alo
both directions, the chiral angle varies smoothly from 2p at
the origin to 0 at infinity. In the cased50.5 fm, shown in
dotted lines, one notes that a discontinuity has appea
along ther axis. This discontinuity increases with distan
and, atdcrit50.86 fm, the chiral angle is such thatFpa(r
50,z→0)52p and Fpa(r→0,z50)50. Therefore, at this
critical point, it is more natural to setFpa(0,0)50 and to
work with two separate solutions, such as illustrated by
dashed and dot-dashed lines, corresponding to 0.9

FIG. 3. Profile functionF for the productAnsatz, in units ofp,
along thez ~left! andr ~right! axes, for various values ofd.
8-5
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2.0 fm, respectively. This suggests that, fromdcrit onwards,
each of the interacting Skyrmions acquires a considera
individuality.

The combination

P5
1

f p
~sypw1swpy! ~29!

is interesting, for it has an explicit physical meaning. As t
function s(r) is associated with the quark condensate t
surrounds the baryon labeled byr, this field P represents
each Skyrmion immersed in the vacuum distorted by
other one. The condition~26! allows one to determineS up
to a sign. In the caseB51 the fields changes sign when on
goes from infinity to the origin and the same happens w
B52. The sign ofS is also important and, in order to fix it
we note that the behaviors of Eqs.~24! and ~29! along thez
axis are identical, since the azimuthal component vanis
We then forced the conditionS5Spa along this axis. How-
ever, thisAnsatz, based on Eq.~29!, gives rise to a baryon
number which varies withd, as shown in Fig. 4, and had t
be abandoned.

This discussion illustrates the fact that it is not trivial
build an Ansatzwith a good topology. We thus decided
adopt simultaneously the pion field as given by Eq.~29! and
the function Spa of the PA, Eq. ~25!, for its topology is
automatically correct. With this option, the unitarity co
straint reads

S21P25 f p
2 h2, ~30!

where

h5A11@~py•pw!22py
2pw

2 #/ f p
4 ~31!

and the pion field becomes in factP/h. This form for the
dynamical variable is the same as that proposed by Nym
and Riska, in their symmetrized productAnsatz@18#. This
Ansatzhas a topology similar to the PA, as illustrated in F
3. The corresponding baryon number density is given in

FIG. 4. Baryon number as a function of distanced ~fm!, for the
Ansatzgiven by Eqs.~29! and ~26!.
04400
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Appendix and, in the classical case, yieldsB52 for all dis-
tances when integrated over space, as shown in Fig. 5.

IV. RESULTS AND CONCLUSIONS

In order to derive the potential, we use the quantiz
fields of Eq.~11!, obtained by rotating the constituent Sky
mions. This idea of rotating individual hedgehogs cor
sponds to an approximation and deserves some atten
The quantization of a hedgehog, as discussed in Sec
amounts to multiplying the classical field by the matrixD,
which depends on three free parameters. In the caseB51,
this procedure does not change the baryon current. This
be seen by writing the baryon density for quantized fields

B052
1

12p2
eabceabg

1

s
]aDa ip i]bDb jp j]cDgkpk

~32!

and using the result

DaaDbb5 1
3 dabdab1 1

2 eabgDgcecab1 isotensors ~33!

in order to obtain

B052
1

12p2
e i jkeabc

1

s
]ap i]bp j]cpk . ~34!

This shows that the baryon density is the same for both qu
tized and classical fields.

Analogously, in the caseB52, quantization would re-
quire a matrixD̄, depending on six collective coordinate
However, the determination of this general matrix may pro
to be very difficult and, in the spirit of the the sudden a
proximation, one normally usesD̄'D (y)I (w)1I (y)D (w),
where I is an identity matrix andD (y),D (w) are operators
over the Skyrmions labeled byy and w, respectively. The
price one pays for this approximation is that it leads to

FIG. 5. Baryon number as a function of the separation dista
~fm! for the symmetrizedAnsatz~solid!; separate contributionsB1

~dashed! andB2 ~dotted!, as defined in Eq.~A1!.
8-6
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quantized baryon number which depends onD (y) andD (w).
This happens because the relation equivalent to Eq.~33! does

not hold for the approximate matrixD̄ and hence does no
represent a major shortcoming for the symmetrizedAnsatz
~SA!. Indeed, as pointed out by Sternheim and Ka¨lbermann
@19#, this poses problems for short distances only.

A collective rotation of the pion fieldP, as in theB51
case, would leaveS/h unmodified, as a classical function
However, this would also mean to treat the scalar prod
py•pw as a classical quantity and would lead to serious c
tradictions, for the OPEP content of the isospin depend
channels relies on the quantum character of such a sc
product in Eq.~25!.

Therefore, the individual rotation of each pion field
more consistent with a constructive approach, although
free of problems. In principle, every pion fieldp in the com-
posite Skyrme Lagrangian should be quantized. When ap
ing this prescription to the dynamical variable of the SA, o
has to deal with the functionsh22 andh24, which depend
on pion fields, coupled to operatorsD. The meaning of the
quantizedh22 is that of a power series inD, which involves
products of arbitrary numbers of these matrices and he
can only be handled by resorting to truncation. With th

FIG. 6. Comparison among Skyrme modelG-parity odd ~a!
spin-spin and~b! tensor potentials from symmetrizedAnsatz, with
classical~dotted! and quantized~dashed! versions ofh, from prod-
uct Ansatz~long dashed! and OPEP~solid!.
04400
ct
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limitation in mind, we treath22 as a polynomial inp and
thus its expectation value between two-nucleon states ca
evaluated without ambiguities.

In order to test the implications of this assumption, in t
sequence we present results with two versions ofh, namely,
a classical one,

hc
225$12@12~ ŷ•ŵ!2#sy

2sw
2 %21, ~35!

and a quantized one, truncated at the first order in theD
expansion, given by

^NNuhq
22uNN&5^NNu$12sy

2sw
2 1Da i

(y)Da j
(w)Dbk

(y)Dbl
(w)

3~py! i~pw! j~py!k~pw! l / f p
4 %21uNN&

'$12 2
3 sy

2sw
2 %21. ~36!

Replacing the pion field of the symmetrizedAnsatzinto
the interaction Lagrangian used to calculate the poten
one has

Lint5L S1Dam
(y) Dan

(w)L mn
V , ~37!

FIG. 7. G-parity even~a! spin-spin and~b! tensor potentials
from symmetrizedAnsatz, with classical ~dotted! and quantized
~dashed! versions ofh, and from productAnsatz~long dashed!.
8-7
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where the labelsSandV stand, respectively, for isoscalar an
isospin dependent parts ofLint . Using this result in Eq.~17!,
one gets

V~d!5VC1t(y)
•t(w)@s(y)

•s(w)VSS1S12VT#, ~38!

whereVC , VSS, andVT are the usual central, spin-spin an
tensor components. All terms receive bothG-parity odd and
even contributions.

The G-parity odd components of spin-spin and tens
terms of the potential are shown in Fig. 6, for the two po
sible choices ofh, compared to the PA and pure OPEP r
sults. One sees that all curves coincide for distances la
than 2 fm, indicating that allAnsätze reproduce asymptoti
cally the OPEP. The results for theG-parity even terms are
of minor importance here, as we are interested in the l
range behavior of the potential, but they are included
completeness in Fig. 7. One should note that in the cas
hc , the potentials present a singularity atd;0.6 fm, due to
a zero ofhc .

Results for the scalar componentVC are presented in Figs
8 and 9. In the former we display the behavior of the PA a
the predictions from the SA withh51, which is nonunitary
and considered just for pedagogical purposes. Inspectin

FIG. 8. Scalar potential in the Skyrme model: total result a
components. ProductAnsatz~a! and symmetrizedAnsatzwith h
51 ~b!.
04400
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one learns that the SA includes a contribution fromL2, that
was not present in the PA. Moreover the contribution fro
L4 is negative, and so is the net result forVC .

The two valid options for the SA considered here, bas
on hc andhq , are given in Fig. 9. In both cases we obser
that the unitarity constraint restores the repulsion due toL4,
but in such a way that the net result is asymptotically attr
tive. On the other hand, the amount of overall attract
found in the SA depends on the specific quantization p
scription adopted. At very large distances, the curves co
sponding tohc and hq have the same geometry and yiel
respectively, the following approximate values for the inte
sity of the potential:Kc514 MeV andKq557 MeV. Com-
paring them with the empirical values in Table I, it is po
sible to see that predictions from the SA are qualitativ
reasonable.

In summary, we have shown that the SA provides
correct baryon number for the two-nucleon system in
Skyrme model, as well as attractive centralNN potentials.
The correct quantitative feature is somewhere between
values obtained for the two versions of the normalizat
function h.

d
FIG. 9. Scalar potential in the Skyrme model with the symm

trized Ansatz: total result and components;~a! hc and ~b! hq .
8-8
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We conclude that it is indeed relevant to the central
tential to eliminate the term with a wrongG parity fromPpa .
We expect that a deeper and more careful study of the q
tization procedure will lead to a more accurate evaluation
the amount of attraction coming from the SA.
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APPENDIX: THE BARYON NUMBER

The explicit calculation of the zero component of t
baryon current yields

B05B1
01B2

0 , ~A1!

where

B1
0~r;d!52

1

2p2h2 S cy

sw

w
1cw

sy

y D 2

~Fy81Fw8 !,
.

. C

in

04400
-

n-
f

B2
0~r;d!52

1

2p2

1

~cycw2~ ŷ•ŵ!sysw!h2 S cy

sw

w
1cw

sy

y D
3H ~12~ ŷ•ŵ!2!FcycwS cyFy82

sy

y D S cwFw8 2
sw

w D
2sy

2sw
2 Fy8Fw8 G2Fsysw

h2
JyS S cy

sw

w
1cw

sy

y D
3~cwsy1~ ŷ•ŵ!cysw!1~12~ ŷ•ŵ!2!sycy

3S Fw8 2cw

sw

w D D1~y↔w!G J ,

with

Jy5„~ ŷ•ŵ!221)cyFy8sw1~ ŷ•ŵ!~sysw /w

2~ ŷ•ŵ!swsy /y….

The numerical integration ofB2
0 is tricky due to the pres-

ence of the functionS in the denominator. Results are show
in Fig. 5, as functions of separation distanced. It shows that
the SA presents the correct topology for theNN system.
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@12# C. Ordóñez, L. Ray, and U. van Kolck, Phys. Rev. Lett.72,
1982 ~1994!; Phys. Rev. C53, 2086~1996!.
@13# M. R. Robilotta and C. A. da Rocha, Nucl. Phys.A615, 391

~1997!; J.-L. Ballot, C. A. da Rocha, and M. R. Robilotta
Phys. Rev. C57, 1574~1998!.

@14# N. Kaiser, R. Brockman, and W. Weise, Nucl. Phys.A625,
758 ~1997!; N. Kaiser, S. Gerstendo¨rfer, and W. Weise,ibid.
A637, 395 ~1998!.

@15# A. Jackson, A. D. Jackson, and V. Pasquier, Nucl. Phys.A432,
567 ~1985!.

@16# R. Vinh Mau, M. Lacombe, B. Loiseau, W. N. Cottingham
and P. Lisboa, Phys. Lett.150B, 259 ~1985!.

@17# G. Kälbermann, J. M. Eisenberg, R. R. Silbar, and M. M
Sternheim, Phys. Lett. B179, 4 ~1986!.

@18# M. Nyman and D. O. Riska, Phys. Lett. B203, 13 ~1988!.
@19# M. Sternheim and G. Ka¨lbermann, Phys. Lett. B225, 27

~1989!.
@20# T. S. Walhout and J. Wambach, Int. J. Mod. Phys. E1, 665

~1992!.
@21# J. J. M. Verbaarschot, T. S. Walhout, J. Wambach, and H.

Wyld, Nucl. Phys.A461, 603 ~1986!; V. B. Kopeliovich and
B. E. Shtern, JETP Lett.45, 203 ~1987!.

@22# T. S. Walhout and J. Wambach, Phys. Rev. Lett.67, 314
~1991!.

@23# J. M. Eisenberg and G. Ka¨lbermann, Int. J. Mod. Phys. E5,
423 ~1996!.

@24# T. Gisiger and M. B. Paranjape, Phys. Rep.306, 109 ~1998!.
@25# C. M. Maekawa, J. C. Pupin, and M. R. Robilotta, Phys. R

C 61, 064002~2000!.
@26# M. R. Robilotta, nucl-th/0009001.
@27# T. D. Cohen and W. Broniowski, Phys. Lett. B292, 5 ~1992!.
8-9



-
C

ISABELA P. CAVALCANTE AND MANOEL R. ROBILOTTA PHYSICAL REVIEW C 63 044008
@28# W. B. Kaufmann and G. E. Hite, Phys. Rev. C60, 055204
~1999!.

@29# M. M. Pavan, R. A. Arndt, I. I. Strakovsky, and R. L. Work
man,pN Newsletter15, 118 ~1999!.

@30# G. S. Adkins, inChiral Solitons, edited by F. Liu~World Sci-
04400
entific, Singapore, 1987!, p. 99.
@31# I. Zahed and G. E. Brown, Phys. Rep.142, 1 ~1986!.
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