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Nucleon-nucleon interaction in the Skyrme model
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We consider the interaction of two Skyrmions in the framework of the sudden approximation. The widely
used producAnsatzis investigated. Its failure in reproducing an attractive central potential is associated with
terms that violateS parity. We discuss the construction of alternathesazeand identify a plausible solution
to the problem.

DOI: 10.1103/PhysRevC.63.044008 PACS nuni®erl3.75.Cs, 12.39.Dc, 12.39.Fe

[. INTRODUCTION able model for the nucleon, developed in the 19@&jsand
revived in the 1980$7], describes baryons as topological
Nucleon-nucleon NIN) interactions are relatively simple solitons, objects extended in space that rotate according to
at large distances and become rapidly more complex as ortee laws of quantum mechanics. The quark condensate ap-
moves inward. In the best phenomenological models existingears as an intrinsic feature, corresponding to a nonvanishing
at present, which reproduce low-energy observables accassical content of the vacuum, whose intensity is given by
rately, they are described by the consensual one-pion exhe pion decay constafit,. Skyrmions correspond to distor-
change potentialOPEB, supplemented by theoretical two- tions of this condensate that carry topological charges. One
pion exchange potential¥PER), and parametrized at short then works with pion fields which are unusually strong, in
distanceq1,2]. The OPEP is responsible for a strong tensofihe sense that their amplitudes may be comparablg. to
component, which is mostly important in few-body systems,—rhus, in spite of its well-known limitationgg], the Skyrme

such as the deuteron. Two-pion exchange, on the other hanﬁirodel remains a unique laboratory for studying chiral sym-

gives rise to the central potential, that survives to all aver-metry in the nonperturbative regime.

ages and Is responsible for most properties of Iarge systems the early 1990s Weinberg restated the role of perturba-
and nuclear matter. Quantum chromodynant@&D) is the ive chiral symmetry in nuclear interactiofi] and moti-
basic framework for the study of strong processes and shoultt'j : yn Y o

vated interest in the TPEP. Initially, several authors explored

have, in principle, an important role in the description of ) . .
b P P P the pion-nucleon sector of nonlinear Lagrangigh6], but

nuclear forces. However, at present, the non-Abelian chara : :
ter of this theory prevents low energy calculations and ondhe corresponding potentials could not reproduce even the

has to resort to effective theories, which must reflect thenedium range attraction in the scalar channel. This happened
main features of QCD. Thus, in nuclear physics applicationsPecause the TPEP is based on an intermediatamplitude,
besides the usual space-time invariances, one requires the@t can only be well described with the help of other degrees
theories to have approximate chiral symmetry. The latter i®f freedom[11]. Accordingly, in a later stage, agreement
usually restricted to the SU(X)SU(2) sector, for most pro- with empirical 7N information was enforced and descrip-
cesses involve only the quarksand d. This symmetry is tions could reproduc&N scattering dat@12—14.
explicitly broken by the small quark masses and, at the ef- In the case of perturbative calculations, the delta is by far
fective level, by the pion mass. the most important non-nucleonic degree of freedom and is
Chiral symmetry has no influence over the OPEP, but idargely responsible for the intermediate range scalar attrac-
crucial to the TPEP, which depends on an intermediate piontion. As the Skyrme model incorporates the delta from the
nucleon rN) amplitude[1]. In the case oNN interactions, very beginning, one expects that it should yield a good quali-
the importance of this symmetry was stressed already in thiative NN potential. However, it fails to do so.
early 1970s, by Brown and Durs8] and by Chemtob, Skyrme himself consideretllN interactions, already in
Durso, and Riskd4], who used it to constrain the form of the 1960s, using the so-called prodéctsatz(PA) [6]. The
the TPEP. In that decade it also became popular to descriligasic idea underlying the PA is that solutions corresponding
nuclear processes by means of the lineamodel[5], con-  to baryon numbeB=1 can be used as building blocks to
taining a fictitious particle calledr that, to some extent, construct approximate solutions with an arbitrary valu®.of
simulates the TPE. The elimination of this unobserved deThe great advantage of this approach is that the baryon num-
gree of freedom gave rise to nonlinear theories, which unber of the composite system is automatically equal to the
derlie modern descriptions of the interaction. The first theonumber of individuaB=1 Skyrmions, irrespectively of their
retical framework to incorporate nonlinear chiral dynamicsrelative positions. In the PA, the Skyrmions that constitute a
into theNN problem was proposed by Skyrme. This remark-larger system are assumed to retain their shape all the time,
what is known as sudden approximation. In this framework,
the construction of th& N potential is rather simple and the
*Present address: Instituto déesiem, Universidade do Estado do fact that each nucleon has a profile function which falls off
Rio de Janeiro, Rio de Janeiro, RJ, Brazil. Electronic addressrapidly with the distance allows one to assume that, for me-
ipca@uerj.br dium and large distances, tiB=2 system is not consider-
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TABLE |. Empirical values for the subthreshold coefficieat§, ag; and the constark, which deter-
mines the intensity of the central potential.

Ref.[11] Ref. [28] Ref. [29] Ref.[29]
ag(m: Y —1.46+0.10 —1.30+0.02 —1.27+0.03 —1.15+0.03
ag(m;?) 1.14+0.02 1.35-0.14 1.27-0.03 1.23-0.03
K(MeV) 7.19 9.51 8.84 8.74
ably different from the superposition of two wit=1. wheref . is the pion decay constant, thg are subthreshold

In the 1980s, the produddnsatzwas used by Jackson coefficients[11], and o(m;t) is the intermediate nucleon
et al. [15] and Vinh Mauet al. [16] to calculate theNN  contribution to the scalar form factor, that depends on both
potential, who found out a fully repulsive central componentthe momentum transférand the baryon mass. In general,
in disagreement with very well established phenomenologythe scalar form factor is defined in terms of the symmetry
This result was carefully investigated in Rdfl7]. This  breaking Lagrangian as
puzzle motivated several attempts to construct improved ver-
sions of those early works. Among them, one notes the SymeN(p')|— LgN(p)) =(N(p")|mag|N(p)) = () u(p’ u(p),
metrized productAnsatzby Nyman and Riskd18], which 2)
could produce an intermediate range scalar attraction. How-
ever, as pointed out by Sternheim andltiéamann[19],  wherem is the average of the masseswéandd quarks.
there is a violation of baryon number conservation in this |n configuration space, Eql) becomes
Ansatz Exact numerical calculations were also used, which

allowed one to evaluate the reliability of the sudden approxi- 2
mation at short distancdg0]. Lattice calculations, using a Ve(d)=— ——[fi(agtag V) ]oy(md),  (3)
method developed by Manton and collaborators, gave rise to famz

a torus-like baryon density, believed to correspond to the

true B=2 ground state and having almost twice the nucleonVN€red is the internucleon distance aodm;d) is the Fou-

mass[21]. The scalar potential associated with this configu—rier transform ofo(m;1). In ordgr to allqw this resuilt to be
ration does show some medium to long range attra¢@ah compared with the corresponding one in the Skyrme model,

However, it is worth recalling that lattice results depend onV€ Note that, in the largll, limit, the nucleon and the delta

the definitions adopted for collective coordinates and, as tha"® degenerate and very heavy. In this case, on¢2524
full treatment is rather difficult, one usually resorts to ap-

proximations[23,24. 0(Ne—20;d) = on(Ne—20;d) + 05 (Ne—:d)

In this work we consider the scalar interaction between =30H8(d)
Skyrmions, in order to explore the possibility of obtaining
the central attraction at large distances by relaxing some of 9me ga\? d e ]2
the constraints present in usual calculations. We employ the :128772 <f—) ax x| (4)

sudden approximation because it gives rise to a constructive
interaction, in which nondeformed nucleons are the main . _— .
building blocks, as in perturbative calculations. Our presenWherex=myd, o, is theB contribution from the delta inter-
tation is divided as follows. In Sec. Il we study the Mediate §tate,.wherea:{} is the heavy baryon limit ofry .
asymptotic behavior of the scalar potential in the standard "€ relationship between nucleon and delta contributions to
productAnsatzapproximation, in order to understand why it @ in the largeN, limit was discussed in Ref27].

does not yield attraction. In Sec. Il we discuss the construc- USing Eq.(4) into Eq.(3), the central potential becomes
tion of alternative solutions, which must be constrained to

have the correct baryon number. Finally, in Sec. IV we ana- VHE ) 2 |3mioi|| . 1
!yze a possible solution to the problem, and present conclud- c (d)=- fETmET 12872 || €00 +-+ ?
ing remarks.
vamiag| 1+ o4 22 0,3 e 5
Il. CENTRAL POTENTIAL MrBod| 27575 27 37 4 | 2 ®
The structure of the central potential has been studied . .
recently, in the framework of chiral perturbation theory @nd, at very large distances, it behaves as
[14,25,2§. In momentum space, the leading contribution has X\ 2
the generic form VEB(d)— — K(T (6)
Ve(t) = — S—[f2(agetagt) lon(m;t), (1)  The sign of the constarit is determined by the values of the
Mo subthreshold coefficients in the combinati@g+ 4m2ag,).
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In Ta}ble | we display empirical valyes for theg; and it_ is 39Ami d e X
possible to note that the correct sign 6§ comes mainly F.(d)=— 2 |l dx x (14
from ag;, sinceag, in isolation would give rise to a repulsive 8wz

interaction.
In order to study the central potential in the Skyrme . i )
model, we recall that the standard soliton Lagrangian densit§"d hence, for large distances, the leading term in(E8).

is written as[6,8] yields aﬁk(d)=a(NF—>oo;d). In order to test this relation-
ship further, we write
L=L,+ Ly, (7)
where m?
oMd)y=mAf (N|f2— a9 79— f_|N)= 7”112
f2 f2
Lo=—Tr(d,UoUT) +m2—Tr(U+UT=2)  (8) m2,
4 4 = = [(N[mgN)(N[ 73N} +(N| 3| A)(A| 3 N) ).
corresponds to the nonlinear model and (15)
_ 1 t 12
£4_32e2 Trld,UU",0,UU"] 9 Using Eqgs(11) and(12) in the last expression, one finds that

N andA intermediate states determine, respectively, 1/3 and
2/3 of the total value ofrik(d), in agreement with Ref27].

his relative proportion is identical to that found recently in
the framework of perturbation theofg6].

For systems withB=2, the standard point of departure
for constructing approximate solutions is the prodfinsatz
(PA). It uses two undistorte3=1 hedgehog solutions,
whose centers are located at two fixed points equidistant

where 7 are the isospin Pauli matrices afdis the chiral ¢, origin along thez axis, so that the hedgehog space
angle, whose boundary conditions determine the baryon dinat . +d32 andw=r—d¥2. Denot
number of a particular configuration. The functibrand the = coordinates are given by=r andw=r - benot-

isospin directionsr are related to the pion fieldr of the Ing the composite field by (yw), one writes
nonlinears model[5] by =T, sinF.

In the B=1 case, a static solution is obtained using the U(y,w)=U(y)U(w). (16)
condition w=r, the so-called hedgehofnsatz with bound-
ary conditionsF(r=0)= 7 andF(r—=)=0 [8]. The quan-
tization of this baryon is achieved by rotating the static so- In this configuration, thé=2 condition is automatically
lution with the help of collective coordinates, as a rigid body.fulfilled, for any distance between their centggd]. As the
This procedure endows the Skyrmion with spin and isospirPA keeps the identities of constituent Skyrmions, it allows
and corresponds to multiplying the pion field by the rigid the direct incorporation of spin and isospin, through collec-
body rotation matrixD, tive rotations of individual hedgehogs.

The potential is a function of the distandeand given by

is the stabilizing term. In these expressioass a free pa-
rameter, called Skyrme constant, whereas the dynamic
variableU is a 2X 2 unitary matrix, given by

U=e ™" =cosF+ir wsinF, (10)

mi—mo=D 4. (11
The matricesD satisfy the completeness relatiobs,D ,; V(d :_j d3r 2 dz 1
=3, D4iDgi= 8,5 and, in the case of nucleons, the corre- (d) r Lin(r,dz), 17

spondence with the ordinary formalism is achieved by using

(N|D 4i|N)=—3(N|7,0i|N), (120  where £;,; is obtained by using the field(y,w) in the
Skyrme Lagrangian, Eq$7)—(9), and subtracting the self-
o being the spin Pauli matrices. energiesC[U(y)] and £[U(w)]. This potential works well
The scalar form factor in the Skyrme model can be ob-n the isospin-dependent channels, since the OPEP is repro-
tained directly from Eqs(8) and (10) and reads duced for distances larger than 2 fm and it is also possible to
identify the roles ofp and A1 mesong32]. On the other
O'Sk(d)=<N| — Lgp(d)|N)= _miffr[ cosF(d)—1]. hand, problems occur in the scalar-isoscalar channel, where

(13)  the interaction is repulsive at all distances, in sharp contra-
diction with phenomenology.
On the other hand, the asymptotic form of the chiral angle Using the definitionsF;=dF(r)/dr, s,=sinF(r), and
is determined byZ, as[30] ¢, = cosF(r), the central potential is given by
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TABLE Il. Coefficients of the multipole expansion f; for the
productAnsatzand the Argonne potential, as defined in E2p).

L, Ly Lot Ly Argonne
K(MeV) 7.29 —8.52 -1.23 4.80
aq 0.93 431 24.4 1.0
as 1.78 12.9 79.1 6.0

vpad—Zf"Mde Jw d 3m?2 . .
C()_??o z| pdp szi( cy)(1—-cy)

2 2

S, S

’2 y ’2 w
Fy +F)(FW +—2)

w

J’_

28282 . . ( s

y 2 12 y 12
+ —(yw | F, == || Fy—
yZWZ (y ) y y2 w

3

(18
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FIG. 1. Ratios between the multipole expansion and the exact

numerical result for the scalar potenti{ablid) and separate contri-
butions of,, (dashegland £, (dotted.

Inspecting this table, one notes that the part of the poten-

In order to study its asymptotic structure, we note that thdial due to L, is attractive, but is superseded by a repulsive
pion fields exist effectively only in the neighborhood of the contribution coming from the stabilizing term. The net sign

hedgehog centers. When the distadds large the Skyrmion

of the potential is, then, the outcome of a large cancellation.

located at (0,@/2) is in the presence of the asymptotic re- On the other hand, the dependence of @) ond is similar

gion of U(y), we expand-,, F;, andy-w around the point
w=0 and write

Py aem 14 1 2] 87 19
y_ae X XZ X ! ( )
Frm— e 14 91,928 (20
y X %2/ x'’
. w m,p?2 3mZp?
YW= —= . 5| 1+ P | (21
\/p +w; WX 2Xx

where f;, g; are dimensionless polynomials of,=(z

—d/2) andp, which are not displayed here. These expres-

sions were tested order by order, by using them in (E§)

to those of both the perturbative chiral calculation, E,

and of the phenomenological Argonne potential. We stress
that this correct geometry is a general feature of the model,
because it depends only on the form of e 1 solution,
and not on the specifidtnsatzused to obtain th8=2 result.

In Fig. 1 we display the ratios between the full and
asymptotic PA potentials, as given by Eq$8) and (22),

with the purpose of illustrating their convergence. The inter-
play between the attractive contribution frof), and the
repulsive one from, can also be seen in Fig. 2, where we
present the functiod VR%(d)/dz, corresponding to the inte-
grand inz of expression(18), for several values ofl. One
notes that the contributions in the neighborhood of the Skyr-
mion centers are large and positive but, on the other hand, a
negative region develops as the distaddacreases.

These features of the central potential allow us to identify
clearly the stabilizing term as the responsible for its repulsive

and checking that the potential did have the asymptotic struccharacter. Therefore, mechanisms which can reduce the im-

ture, as in Eq.(6). We found out that it was necessary to Portance of£, may hglp in prqducing an attractive interac-
expandF(y) up to orderd 2, in order to have accurate re- tion. In the next section we discuss a class of such mecha-

sults.
Replacing Egs.(19—(21) into Eqg. (18), we obtain an
asymptotic contribution of the form

—2X
Ay e
VE(d)— —K ——, (22
X X

o
1+ —+
X

nisms, associated with deformations of the QCD vacuum.

Ill. CONSTRUCTING B=2 SOLUTIONS

We consider herd8=2 solutions, constructed by using

the hedgehodB=1 Skyrmions as building blocks, in the
framework of the sudden approximation. In general Aam

satzis a prescription of the form

for both £, and£,, separately. The values of the parameters

K and «; are displayed in Table Il, based on the numerical

constantan_=139 MeV, f .=93 MeV, ande=4.0. For the

U(y,w)=f[U(y),U(w)], (23

sake of comparison, we also present the values of those paeref is a function, chosen according to physical criteria.
rameters in the case of the phenomenological Argonne pdFhe construction of such a function should follow some

tential[33].

guidelines:(1) the baryon number of the composite configu-
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:Jél : —-—d=20fm -
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0.0 === P e [
-3.0 =20 -1.0 00 10 20 00 .
z (fm) p (fm)

dV/dz (arbitrary unit)

. . . . ‘ ‘ , FIG. 3. Profile functior for the productAnsatz in units of 7,
80 60 40 -20 00 20 40 60 80 along thez (left) and p (right) axes, for various values af

which is both even undgg-parity and antisymmetric under
hedgehog exchange. Hence it does not have good pion quan-

= 05
%0-4 r tum numbers, violating requirement®) and (3) stated
% 03| above.

il This motivated us to try to understand whether this prob-
3™ lem could be responsible for the absence of attraction found
0.0 . . . .

: : : : : : : in the central potential. We considered several alternative
0.06 - - - - - - - possibilities, inspired in the PA. The basic idea is to propose
g 00 ] a composite fieldP, use it to define a functiof by
> 0.04
% 0.08 | P=12-p? (26)
Zo02|
S ooty construct the unitary field as
0.00 ——~-----Ngo--oo-oooooooooo ool
80 60 40 20 00 20 40 60 80 U=[S+irPJ/f,, (27)
z (fm)

FIG. 2. Integrand irz of the scalar potentiaV/(d), for (a) d andbfeedb IT[ If?to the Skyrme La?rflnﬁlan. :Ne begdln l?{y de-
—1 fm, (b) d=3 m, (c) d=5 fm, (d) d=10 fm: vertical axis;  SC'iPing briefly some unsuccessful attempts, in order to pre-
vent readers from repeating them.

arbitrary unit. .
The simplest exchange-symmetdmsatzwould be the

ration must be two for all distances (2) the composite pion  averageP=(a,+ m,)/2. However, wherd=0, one has,
field must have the correct quantum numbers, being pseuds=Fy=F, and henceP=f_sinF r corresponds to 8=1
scalar, isovector and odd undérparity; (3) the composite field, which must be disregarded.
Lagrangian must be chiral symmetric, even un@eparity This suggests that, in order to obtd 2, it is manda-
and invariant under the exchange of the two constituentory to mix = ando. In the case of the PA, which yield®
Skyrmions. =2 at all distances, we note that the chiral constraint be-
The standard constructive approximate solution toBhe tweenPy, andS;, allows one to write
=2 system is based on the PA, as discussed in the preceding B . I
section. In this approach, the composite pion field, obtained Upa=[SpatimPpall/f.=e P4, (28)
from Egs.(10) and(16), is given by whereu is a unit vector, taken as pointing always away from
the origin of the coordinate system, alg, is a profile func-
tion. In Fig. 3 we display the behavior of this angle along the
axesz andp, for various values of the internucleon distance
. o ) , d. The solid lines correspond to the cade-0, which is
wherer, is the pion field of the hedgehog with coordinate spherically symmetric and it is possible to see that, along

Ppa:E(("yﬂw"’ oWy — WX TTy,), (24

and o, =f cosF(r). The function both directions, the chiral angle varies smoothly from &t
the origin to O at infinity. In the caséd=0.5 fm, shown in
Spa:fi(o'yo'w_ - ) (25) dotted lines, one npteg that_ a.dis.continuity h_as gppeared
- along thep axis. This discontinuity increases with distance
and, atd.;;=0.86 fm, the chiral angle is such th&t,(p
is the composite analogous ef and satisfiesS;,+P;,  =0z—0)=2% andF,,(p—0,2=0)=0. Therefore, at this
=f2. critical point, it is more natural to sef,,(0,0)=0 and to

The fieldP,, has a rather serious drawback as a candidateork with two separate solutions, such as illustrated by the
for the pion field, namely that it contains an azimuthal termdashed and dot-dashed lines, corresponding to 0.9 and
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FIG. 4. Baryon number as a function of distartcém), for the

FIG. 5. Baryon number as a function of the separation distance
Ansatzgiven by Eqgs.(29) and(26). y P

(fm) for the symmetrized\nsatz(solid); separate contribution;
(dashed andB,, (dotted, as defined in EqAl).

2.0 fm, respectively. This suggests that, froigy, onwards,

each of the interacting Skyrmions acquires a considerabl@ppendix and, in the classical case, yieBls 2 for all dis-

individuality. tances when integrated over space, as shown in Fig. 5.
The combination

IV. RESULTS AND CONCLUSIONS

1
P:E(‘Ty“w+gwﬂy) (29 In order to derive the potential, we use the quantized

fields of Eq.(11), obtained by rotating the constituent Skyr-

is interesting, for it has an explicit physical meaning. As theMions. This idea of rotating individual hedgehogs corre-
function o(r) is associated with the quark condensate thatsﬁonds to_an_appr?xmk?non ﬁmd deserves some attention.
surrounds the baryon labeled by this field P represents The quantlzatlon of a edge g, as discussed in Sec. I,
each Skyrmion immersed in the vacuum distorted by theam.ounts to multiplying the classical field by the matix
other one. The conditiof26) allows one to determin& up Wh'Ch depends on three free parameters. In the Basé g’

to a sign. In the casB=1 the fieldo changes sign when one this procedure does not change the baryon current. This can

goes from infinity to the origin and the same happens Whell?e seen by writing the baryon density for quantized fields as
B=2. The sign ofSis also important and, in order to fix it,

we note that the behaviors of Eq24) and(29) along thez 0 1

- - . . . . B"=— ——¢€apc€as,— 9aD i Ti9pD g7 9D 7T
axis are identical, since the azimuthal component vanishes. 1052 abcraBy ; Tatal T A1 T Te vk Tk
We then forced the conditioB=S,, along this axis. How- (32)

ever, thisAnsatz based on Eq(29), gives rise to a baryon
number which varies witld, as shown in Fig. 4, and had to 4, using the result
be abandoned.

This discussion illustrates the fact that it is not trivial to
build an Ansatzwith a good topology. We thus decided to
adopt simultaneously the pion field as given by E29) and
the functionS,, of the PA, Eq.(25), for its topology is
automatically correct. With this option, the unitarity con-

D 4aD b= 5 0apSabt 5 €apyD ycEcantisotensors (33)

in order to obtain

straint reads 0 1
B"=— Fﬂ_zéijkéabc;aaﬂ'iabﬂ'j&cﬂ'k- (34)
S+ P2=12297, (30)
This shows that the baryon density is the same for both quan-
where tized and classical fields.
Analogously, in the cas®=2, quantization would re-
n=N1+[(my my)?— )/ (31)  quire a matrixD, depending on six collective coordinates.

However, the determination of this general matrix may prove
and the pion field becomes in faBf ». This form for the to be very difficult and, in the spirit of the the sudden ap-
dynamical variable is the same as that proposed by Nymaproximation, one normally useD~DM|W+|VpDMW),
and Riska, in their symmetrized produihsatz[18]. This  wherel is an identity matrix and>®,D™ are operators
Ansatzhas a topology similar to the PA, as illustrated in Fig. over the Skyrmions labeled by and w, respectively. The
3. The corresponding baryon number density is given in therice one pays for this approximation is that it leads to a
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limitation in mind, we treat” 2 as a polynomial in and

quantized baryon number which depends® andD™.  thus its expectation value between two-nucleon states can be
This happens because the relation equivalent tq¥).does  evaluated without ambiguities.
not hold for the approximate matri® and hence does not In order to test the implications of this assumption, in the
represent a major shortcoming for the symmetrizesatz ~ Sequence we present results with two versiong,afiamely,
(SA). Indeed, as pointed out by Sternheim andb¢amann  a classical one,
[19], this poses problems for short distances only.

A collective rotation of the pion fiel®, as in theB=1 ,,52:{1_[1_(9.@)2]5333}*1, (35)
case, would leavé&/ » unmodified, as a classical function.
However, this WQUId also mean o treat the scalar producgmd a quantized one, truncated at the first order inDhe
m,- m, as a classical quantity and would lead to serious con- xpansion. given b
tradictions, for the OPEP content of the isospin dependen? P ' 9 y
channels relies on the quantum character of such a scalar

product in Eq.(25). (NN| 74 ?[NN)y=(NN|{1-s}s3,+ DD DYDY
Therefore, the individual rotation of each pion field is 41

more consistent with a constructive approach, although not X(my)i(ma)j(my)(m) 1121 HINN)

free of problems. In principle, every pion fietdin the com- ~{1- §s§sﬁ,}‘1. (36)

posite Skyrme Lagrangian should be quantized. When apply-
ing this prescription to the dynamical variable of the SA, one

has to deal with the functiong™2? and 5~ *, which depend
on pion fields, coupled to operatoBs The meaning of the
quantizeds 2 is that of a power series iB, which involves

products of arbitrary numbers of these matrices and hence Sy () (W) oV

can only be handled by resorting to truncation. With this Ling=L>+DgnDar £ mny (37)

Replacing the pion field of the symmetrizédhsatzinto
the interaction Lagrangian used to calculate the potential,
one has
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FIG. 8. Scalar potential in the Skyrme model: total result and
components. Produdinsatz(a) and symmetrizedAnsatzwith 7
=1 (b).

FIG. 9. Scalar potential in the Skyrme model with the symme-
trized Ansatz total result and component&) 7. and(b) 7.

where the labelSandV stand, respectively, for isoscalar and
isospin dependent parts 6f,;. Using this result in Eq(17),
one gets

one learns that the SA includes a contribution frdm that
was not present in the PA. Moreover the contribution from
L, is negative, and so is the net result fo¢ .
The two valid options for the SA considered here, based
. . on 7. and 5, are given in Fig. 9. In both cases we observe
whereVc, Vss, andVy are the usual central, spin-spin and y,,; the ynitarity constraint restores the repulsion dug o
tensor compor_]ents. All terms receive b@parity odd and but in such a way that the net result is asymptotically attrac-
ev?_r;] cogtrlbqponsa d ts of spi . dt tive. On the other hand, the amount of overall attraction
€ *>-parity odd components ot Spin-spin and tensorg, i e sa depends on the specific quantization pre-

terms of the potential are shown in Fig. 6, for the two pOS_scri tion adopted. At very large distances, the curves corre-
sible choices ofyp, compared to the PA and pure OPEP re- P pted. ylarg '

sults. One sees that all curves coincide for distances |arg(§pond|n_g toz and 7 have the same geometry and y|eld,
than 2 fm, indicating that alAnsaze reproduce asymptoti- rgspectwely, the followmg approximate values for the inten-
cally the OPEP. The results for ti@parity even terms are Sity Of the potentialK =14 MeV andK,=57 MeV. Com-

of minor importance here, as we are interested in the lon@@"ng them with the empirical values in Table I, it is pos-
range behavior of the potential, but they are included forsible to see that predictions from the SA are qualitatively
completeness in Fig. 7. One should note that in the case dgasonable.

7., the potentials present a singularitycat 0.6 fm, due to In summary, we have shown that the SA provides the
a zero ofz,. correct baryon number for the two-nucleon system in the
Results for the scalar componary are presented in Figs. Skyrme model, as well as attractive centhiN potentials.

8 and 9. In the former we display the behavior of the PA andThe correct quantitative feature is somewhere between the
the predictions from the SA witly=1, which is nonunitary values obtained for the two versions of the normalization

and considered just for pedagogical purposes. Inspecting ftinction 7.

V(d)=Vc+ Y. 79[ oW 6WVsst SV, (39

044008-8
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We conclude that it is indeed relevant to the central po- 1 1 Sw S
tential to eliminate the term with a wror parity fromPp,. Bg(r;d) === —= 5 ( cy—+ cW—y)
We expect that a deeper and more careful study of the quan- 27" (CyCy— (Y- W)SySy) 77 w y

tization procedure will lead to a more accurate evaluation of

the amount of attraction coming from the SA.
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APPENDIX: THE BARYON NUMBER

The explicit calculation of the zero component of the

baryon current yields
B°=B%+B9, (A1)

where

Sw

2
B%rm:——iL—c-—+c§¥(P+Fq
n wepp\ w My ey e

! S ! SVV
cycw( cyFy— Vy) ( CWFW—W)

x[u—@-mz)

] s ([ ose, s
—Sis\vayijl_|:#‘]y<(cyW+CW7y)

X (CySy+ (Y- W)CySy) + (1= (y-W)?)s,C,

|

Jy=((y- W)= 1), FySyy+ (Y- W) (5,5, /W

X F\:v_CWWW +(ye=w)

with

- (gl \7V)S\Nsy/Y)-

The numerical integration cBg is tricky due to the pres-
ence of the functiors in the denominator. Results are shown
in Fig. 5, as functions of separation distarttdt shows that
the SA presents the correct topology for thé&l system.
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