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Momentum space integral equations for three charged particles. II. Diagonal kernels
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It has been a long-standing question whether momentum space integral equations of the Faddeev-type are
applicable to reactions of three charged particles, in particular above the three-body threshold. The presence of
long-range Coulomb forces has been thought to give rise to such severe singularities in their kernels that the
latter may lack the compactness property known to exist in the case of purely short-range interactions. Em-
ploying the rigorously equivalent formulation in terms of an effective-two-body theory, we have proved in a
preceding paper@Phys. Rev. C61, 064006~2000!# that, for all energies, the nondiagonal kernels occurring in
the integral equations that determine the transition amplitudes for all binary collision processes, possess on and
off the energy shell only integrable singularities, provided all three particles have charges of the same sign, i.e.,
all Coulomb interactions are repulsive. In the present paper we prove that, for particles with charges of equal
sign, the diagonal kernels, in contrast, possess one, but only one, nonintegrable singularity. The latter can,
however, be isolated explicitly and dealt with in a well-defined manner. Taken together these results imply that
modified integral equations can be formulated, with kernels that become compact after a few iterations. This
concludes the proof that standard solution methods can be used for the calculation of all binary@i.e., ~in!elastic
and rearrangement# amplitudes by means of momentum space integral equations of the effective-two-body-
type.

DOI: 10.1103/PhysRevC.63.044005 PACS number~s!: 21.45.1v, 03.65.Nk
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I. INTRODUCTION

The question of compactness of the Faddeev@1# or the
equivalent Alt-Grassberger-Sandhas~AGS! @2# momentum
space integral equations for three charged particles is rel
to the analytical properties of their kernels. In the preced
paper@3#, henceforth called I, we have investigated the a
lytical behavior of the nondiagonal kernels of the equatio
for three particles interacting via Coulomb-like pair pote
tials, rewritten in the form of effective-two-body AGS equ
tions pertaining to all binary~so-called 2→2) reaction am-
plitudes @2#. Under the assumption that the charges of
three particles are of the same sign, i.e., that all Coulo
potentials are repulsive, their nondiagonal kernels w
found to possess only integrable singularities.

In this second part we investigate the singularity struct
of the corresponding diagonal kernels, again restricting o
selves to purely repulsive Coulomb interactions. It will
shown that the only nonintegrable singularity~i! occurs on
the energy shell, and~ii ! coincides with the singularity found
by Veselova~@4#, see also@5#! below the breakup threshol
and by Alt and Sandhas~@6# and references therein! for all
energies. As is well known, this singularity can be sing
out and inverted explicitly@7#. All other singularities of the
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diagonal kernels, including all off-the-energy-shell singula
ties, turn out to be integrable. Consequently, these equat
can be recast in a form such that the kernels of the resu
equations become compact after a few iterations, for all
ergies.

This completes the investigation of the analytical prop
ties of effective-two-body AGS equations for 2→2 reactions
of three particles with charges of equal sign above the th
body threshold.

It is worth mentioning that from the proofs also follow
that, as soon as charges with opposite sign are involved
kernels do, indeed, develop severe singularities that prec
application of standard methods of integral equations the
This agrees with the findings in the integrodifferential a
proach@8#.

The paper is organized as follows. In order to accomm
date the reader who is not interested in mathematical de
we have collected all relevant definitions and final results
Sec. II. In particular, in Sec. II A we briefly recall the gener
form of the diagonal kernels of the effective-two-body equ
tions as already outlined in@3# and discuss some of the
pertinent properties. The main finding concerning the lead
singularities of the diagonal effective potentials occurri
therein is formulated as a theorem in Sec. II B. The result
singular behavior of the diagonal kernels and its treatmen
described in Sec. II C. And in Sec. II D we sketch the tw
established solution strategies that eventually lead to the
sired physical binary reaction amplitudes of two charg
fragments. All proofs of the assertions are deferred to S
©2001 The American Physical Society05-1
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III. Finally, Sec. IV contains concluding remarks.
As this paper is the continuation of Part I, all quantiti

that are not defined here are given there. And equation
Part I will be referred to as Eq.~I.* !.

As usual we choose units such that\5c51. Moreover,
unit vectors are denoted by a hat, i.e.,v̂5v/v.

II. LEADING SINGULARITIES OF THE DIAGONAL
KERNELS Kaa : RESUMÉ

A. General remarks

The diagonal kernels occurring in the integral equatio
that determine simultaneously the transition amplitudes
all binary processes@2#,

Tba~qb8 ,qa ;z!5Vba~qb8 ,qa ;z!1 (
n51

3 E dqn9

~2p!3

3Kbn~qb8 ,qn9 ;z!Tna~qn9 ,qa ;z! ~1!

are given as@see Eq.~I.10!, with b5a]

Kaa~qa8 ,qa ;z!ªVaa~qa8 ,qa ;z!G0;a~qa ;z!. ~2!

Here,z5E1 i0 with E being the total energy in the three
body center-of-mass system.

The diagonal effective potential is defined as@Eq. ~I.11a!
with b5a#

Vaa~qa8 ,qa ;z!5^qa8 ,xauGC~z!2Ga
C~z!uxa ,qa&. ~3!

Note that as a result of assumption~I.7!, namely, that the
short-range interactions are described by separable poten
of rank one~which does not limit the generality of our resul
as explained in I!, it contains only purely Coulombic quan
tities, viz., the resolventsGC(z), Eq. ~I.12!, of the three-
particle Coulomb Hamiltonian, andGa

C(z), Eq. ~I.13!, of the
Coulomb channel Hamiltonian. They are related through
resolvent identities

GC~z!5Ga
C~z!1Ga

C~z!V̄a
CGC~z! ~4a!

5Ga
C~z!1GC~z!V̄a

CGa
C~z!. ~4b!

Here, V̄a
C5(nÞaVn

C is the Coulomb part of the channel in
teraction~I.5!. Assumption~I.7! implies in addition that in
each channel there exists at most one bound state; wit
loss of generality we can assume the existence of exactly
bound state~of nonzero binding energy!. Consequently, de
noting by q̄a (q̄a8 ) the incoming~outgoing! on-shell relative
momentum between the two fragments in channela, and by
2Ba,0 the binding energy of the bound pair (bg), energy
conservation requires

E5q̄a
2/2Ma2Ba , q̄a85q̄a . ~5!

As has already been discussed in I, the only singularity
the effective free Green’s functionG0;a(qa ;z) is a pole at
the on-shell point~5!. Hence, it remains to investigate th
04400
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analytical properties of the diagonal effective potenti
Vaa(qa8 ,qa ;z). Use of Eqs.~4! leads to the following repre-
sentation:

Vaa~qa8 ,qa ;z!5^qa8 ,xauGa
C@V̄a

C1V̄a
CGCV̄a

C#Ga
Cuxa ,qa&,

~6!

where the channel Coulomb resolventsGa
C have been singled

out explicitly. The latter describe the propagation of the th
particlesa, b, and g, with allowance for Coulomb rescat
tering to all orders between particlesb andg after the virtual
decay (bg)→b1g of the initial bound state (bg), and be-
fore the virtual recombinationb1g→(bg) leading to the
formation of the final bound state (bg). The advantage of
doing so arises from the special role played by the Coulo
interactions in the initial and final three-ray vertices. Intr
ducing the Coulomb-modified form factor ufa&
ªG0

21Ga
Cuxa& ~see Part I!, Vaa(qa8 ,qa ;z) can be rewritten

as

Vaa~qa8 ,qa ;z!5V aa
(a)~qa8 ,qa ;z!1Ṽaa~qa8 ,qa ;z!, ~7!

with

V aa
(a)~qa8 ,qa ;z!5^qa8 ,fa~ ẑa8 * !uG0~z!V̄a

CG0~z!ufa~ ẑa!,qa&,
~8!

Ṽaa~qa8 ,qa ;z!

5^qa8 ,fa~ ẑa8 * !uG0~z!V̄a
CGC~z!V̄a

CG0~z!ufa~ ẑa!,qa&.

~9!

Here,

ẑa[Êa1 i0 with ÊaªE2qa
2/2Ma , ~10a!

ẑa8[Êa81 i0 with Êa8ªE2qa8
2/2Ma ~10b!

are the kinetic energies of subsystem (b1g) in the initial
and final state, respectively.

The first termV aa
(a)(qa8 ,qa ;z) describes elastic scatterin

of the projectile particlea off the bound state (bg), taking
into account Coulomb rescattering to all orders between p
ticles b andg in the initial vertex (bg)→b1g and in the
final vertex b1g→(bg) and the single intermediate-sta
Coulomb interactionV̄a

C5Vb
C1Vg

C between particlea and
each of the target particlesb and g. The second term
Ṽaa(qa8 ,qa ;z) differs from that by allowing in the interme
diate state for Coulomb rescatterings to all orders and
tween all three particles as represented by the three-b
Coulomb resolvent.

An important simplification of the potential part~8! oc-
curs at the on-shell point~5!. To see this we write down
V aa

(a)(qa8 ,qa ;z) in explicit notation:

V aa
(a)~qa8 ,qa ;z!5

4pea

~qa82qa!2 (
n5b,g

enI (n)~qa8 ,qa ;z!,

~11!
5-2
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with, e.g.,

I (g)~qa8 ,qa ;z!5^qa8 ,fa~ ẑa8 * !uG0~z!G0~z!ufa~ ẑa!,qa&

54ma
2E dk

~2p!3

fa* ~ka8 ; ẑa8 * !fa~ka ; ẑa!

@ka8
222maẑa8 #@ka

222maẑa#
.

~12!

Here, ka5eab(k1lbgqa) and ka85eab(k1lbgqa8 ), with
lmnªmm /(mm1mn), mÞn, and eab being a sign factor
~see Part I!. The corresponding expression forI (b)(qa8 ,qa ;z)
follows from that ofI (g)(qa8 ,qa ;z) by interchanging the in-
dicesb andg in the definition of the momentaka andka8 .

The physical interpretation of(n5b,g en I (n)(qa8 ,qa ;z) is
that of an off-shell extension of the body form factor of t
bound state (bg). Indeed, taking into account that on th
energy shell the Coulomb-modified form factorufa( ẑa)& is
related to the bound state wave functionuca& via @recall Eqs.
~I.22! and ~I.54!#

G0~ q̄a
2/2Ma2Ba1 i0!ufa~2Ba!,q̄a&5uca ,q̄a&, ~13!

expression~12! simplifies to@with D̃a5eablbg(q̄a82q̄a)]

I (g)~ q̄a8 ,q̄a ;E1 i0!5E dk

~2p!3
ca* ~k1D̃a!ca~k!

5E drei D̃a•ruc̃a~r !u2. ~14!

Thus, assuming the bound state wave function to be norm
ized to unity, one has on the energy shell in the forwa
scattering direction~i.e., for q̄a5q̄a8 )

I (n)~ q̄a ,q̄a ;E1 i0!51, n5b,g. ~15!

B. Leading singularity of Vaa„qa8 ,qa ;z…

Let us state the assertion in the following form:
Theorem: The leading~dynamic! singularity of the diag-

onal effective potential contribution~8! with respect to the
momentum transfer is the pole at the border of the phys
region, namely, at

Daªqa82qa50, ~16!

already displayed in the representation~11!. Writing

V aa
(a)~qa8 ,qa ;z!5:

Ĩ ~qa8 ,qa ;z!

Da
2

, ~17!

the leading singularity ofĨ (qa8 ,qa ;z) is generally located in
the unphysical region and, hence, is harmless. The only
ception occurs forẑa8.0 andẑa.0 when it lies in the physi-
cal region and is of the type (a is a positive definite constan
depending on the particle masses only!
04400
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Ĩ ~qa8 ,qa ;z!;@aDa
22~A2maẑa81A2maẑa!2#L,

ẑa8.0, ẑa.0, ~18!

with

L5ebegma /~A2maẑa1A2maẑa8 !. ~19!

For particles with charges of equal sign, as they are con
ered exclusively in the present investigation, such a singu
ity is, however, not dangerous~but it would give rise to
severe problems forebeg,0).

The leading~dynamic! singularity of the effective poten
tial part ~9! is, for all values of energy, of the form

Ṽaa~qa8 ,qa ;z! ;

Da→0 1

Da
. ~20!

C. Leading singularity of the kernel Kaa„qa8 ,qa ;E¿ i0…
and its treatment

Given the leading singularity ofVaa(qa8 ,qa ;E1 i0), the
singularity structure of the kernelKaa(qa8 ,qa ;E1 i0), Eq.
~2!, follows in a straightforward manner. Integration over t
right-hand variable, presently denoted byqa , is implied in
Eq. ~1!; qa8 is a vector-valued parameter. The leading sing
larities of the kernel are the pole that originates fro
Vaa(qa8 ,qa ;E1 i0) and is located as described in Sec. II
and the pole of the effective propagator

G0;a~qa ;z!5
Sa~z2qa

2/2Ma!

z2qa
2/2Ma1Ba

, ~21!

which occurs for z5E1 i0 at the ‘‘on-shell point’’ qa

5q̄a . @The numerator functionSa(z2qa
2/2Ma) is nonsingu-

lar, cf., I, Appendix B.# It is the possibility of the coinci-
dence of these two singularities that renders the diago
kernel noncompact.

However, this noncompact singularity can be extrac
and inverted explicitly, as has been proposed by Vesel
@4# for energies below the breakup threshold and by Alt a
Sandhas@6,9# for all energies~within the screening and
renormalization approach!. This procedure will now be
briefly sketched.

First we recall that on the energy shell~5! one has for
normalized bound state wave functions@cf. Eq. ~I.23!#

Sa~2Ba!51, for a51,2,3. ~22!

Using this property it proves convenient to redefine the tr
sition amplitudes as

T ba8 ~qb8 ,qa ;z!ªSb
1/2~z2qb8

2/2Mb!Tba~qb8 ,qa ;z!

3Sa
1/2~z2qa

2/2Ma!, ~23!

and similarly forVba8 (qb8 ,qa ;z) etc. On account of Eq.~22!
they coincide on the energy shell with the original quantiti
i.e., T ba8 (q̄b8 ,q̄a ;E1 i0)[Tba(q̄b8 ,q̄a ;E1 i0), etc.
5-3
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Furthermore, define the operators

g0;a~ ẑ!ª~ ẑ2Qa
2/2Ma!21, ~24!

ga
C~ ẑ!ª~ ẑ2Qa

2/2Ma2va
C!21, ~25!

ta
C~ ẑ!5va

C1va
Cg0;a~ ẑ!ta

C~ ẑ!5va
C1ta

C~ ẑ!g0;a~ ẑ!va
C .

~26!

They all act nontrivially only in the space spanned by t
plane wavesuqa&, which are eigenstates of the relative m
mentum operatorQa between particlea and the center of
mass of the subsystem (b1g) ~cf. Part I!. For instance, the
momentum space representation ofva

C is

va
C~qa8 ,qa!ª^qa8 uva

Cuqa&5
4pea~eb1eg!

~qa82qa!2
. ~27!

The physical interpretation of these quantities is evide
va

C(qa8 ,qa), which in coordinate space reads asva
C(ra)

5ea(eb1eg)/ra (ra is the coordinate canonically conju
gate toqa), describes the Coulomb interaction of particlea
with a fictitious point-particle of charge (eb1eg) and mass
(mb1mg), and is conventionally called center-of-mass Co
lomb potential.g0;a( ẑ) is the free propagator of particlea
and this fictitious particle,ga

C( ẑ) the corresponding propaga
tor with allowance for Coulomb scattering between the
two bodies and, finally,ta

C( ẑ) the appropriate two-body Cou
lomb transition operator.

We can now apply, e.g., the procedure detailed in@6#. We
first rewrite Eq.~1! in terms of the ‘‘primed’’ quantities us-
ing an operator notation as

T ba8 ~z!5Vba8 ~z!1 (
n51

3

Kbn8 ~z!T na8 ~z!, ~28!

with

Kba8 ~z!ªVba8 ~z!g0,a~z1Ba!. ~29!

Making use of the theorem, the total effective potential c
be decomposed into a long-ranged (va

C) and a shorter-range
part as

Vba8 ~z!5dbava
C1Vba8SC~z!. ~30!

The so-called Coulomb-modified short-range effective
tential Vba8SC(z) is given as

Vba8SC~z!ªdbaVaa8SC~z!1 d̄baVba8 ~z!. ~31!

Its nondiagonal part coincides with the original effective p
tential Vba8 (z), bÞa, while the diagonal part is defined as

Vaa8SC~qa8 ,qa ;z!ª
4pea

Da
2 (

n5b,g
en @ I 8(n)~qa8 ,qa ;z!21#

1Ṽaa8 ~qa8 ,qa ;z!. ~32!
04400
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Note that, on account of Eq. ~15!, each term
@ I 8(n) (qa8 ,qa ;z)21#, n5b,g, vanishes in the forward-

scattering on-shell limitqa85qa5q̄a @where the pole of the

propagatorg0,a(qa ;E1 i01Ba)52Ma /(q̄a
22qa

21 i0) is lo-
cated#. In coordinate space this entails thatVaa8SC(ra8 ,ra ;z)
decays asymptotically faster thanva

C(ra).
Introducing this splitting into Eq.~28! and applying the

two-potential procedure leads to the following represen
tion:

T ba8 ~z!5dbata
C~z1Ba!1vb

†~z* 1Bb!T ba8SC~z!va~z1Ba!.
~33!

Here,

va
C~z1Ba!ª@11g0;a~z1Ba!ta

C~z1Ba!# ~34!

is the ~stationary! off-shell center-of-mass Coulomb Mo” ller
operator, and T ba8SC(z) is solution of the Lippmann-
Schwinger-type equation

T ba8SC~z!5V ba8SC~z!1 (
n51

3

K bn8SC~z!T na8
SC~z!, ~35!

with kernel

K ba8SC~z!ªV ba8SC~z!ga
C~z1Ba!. ~36!

As has already been pointed out, forbÞa we have
V ba8SC(qb8 ,qa ;z)[Vba8 (qb8 ,qa ;z), which has been shown in
Part I to possess no nonintegrable singularities. Its diago
part V aa8SC(qa8 ,qa ;z), on the other hand, differs from th
original effective potentialVaa8 (qa8 ,qa ;z) by the absence in
the former of the compactness destroying center-of-m
Coulomb potentialva

C(qa8 ,qa); thus, its leading singular be
havior is of the type~20!. The result is that the leading sin
gularities of the kernelK ba8SC(qb8 ,qa ;z) of the modified
equation ~35! are integrable, with the consequence th
K ba8SC(qb8 ,qa ;z) becomes compact after a suitable number
iterations. This result verifies the assertion made in@6#.

Once Eq. ~35! has been solved for the amplitude
T ba8SC(qb8 ,qa ;z) by standard solution methods~see below!,

the physical on-shell arrangement amplitudesTba(q̄b8 ,q̄a)
are easily obtained. For, sandwiching the operator rela
~33! between plane waveŝqb8 u and uqa& and applying the
standard on-shell limiting procedures for two-body Coulo
bian quantities~see, e.g., Refs.@10,11#!, yields the following
representation:

Tba~ q̄b8 ,q̄a!ªdbata
C~ q̄a8 ,q̄a!

1^q̄b8
C(2)uT ba8SC~E1 i0!uq̄a

C(1)&. ~37!

The quantityta
C(q̄a8 ,q̄a) is the two-body Rutherford ampli

tude, describing Coulomb scattering of particlea off the
total charge of particlesb andg concentrated in their cente
of mass, anduq̄a

C(6)& are the corresponding center-of-ma
Coulomb scattering states, both of which are explici
5-4
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known. Practical evaluation of the second term, cal
Coulomb-modified short-range transition operator in
‘‘Coulomb representation,’’ which comprises all effec
coming from the shorter-ranged Coulomb effective poten
parts and from the genuine short-range interactions
straightforward~see below!. The full amplitudeTba(q̄b8 ,q̄a),
however, as the notation indicates cannot be obtained a
lution of some compact-kernel integral equation but only
Eq. ~37! @the same holds true also forta

C(q̄a8 ,q̄a)].
For completeness we mention that the definition~37! of

the physical charged-composite particle amplitudes ag
with that following from the time-dependent scatterin
theory @12# and from the stationary screening and renorm
ization approach@6#.

D. Practical approaches

As described above, the full, on-shell, charged-parti
reaction amplitudesTba(q̄b8 ,q̄a), Eq. ~37!, cannot be ob-
tained as solutions of some integral equations by stand
methods@due to the noncompactness of the kernels~2!#. The
same situation, in fact, arises for the on-shell center-of-m
Coulomb amplitudeta

C(q̄a8 ,q̄a). Instead, one first has to ca
culate the~on-shell! Coulomb-modified short-range trans
tion amplitudes in the Coulomb representatio

^q̄b8
C(2)uT ba8SC(E1 i0)uq̄a

C(1)&, and then to add according t
Eq. ~37! the analytically known center-of-mass Coulom
amplitude. To reach this goal two strategies have been
veloped so far.

1. Screening and renormalization approach

Development of this approach followed the analogous
velopment in stationary two-charged particle scattering@13#.
The basic idea is to use screened Coulomb potentials

Va
R~r !5Va

C~r !gR~r !, ~38!

where gR(r ) is some fairly arbitrary but smooth screenin
function with

lim
R→`

gR~r !51 ~r fixed!, ~39!

lim
r→`

gR~r !50 ~R fixed!. ~40!

A numerically convenient form isgR(r )5exp$2r/R%. Con-
sequently, all three-body quantities will depend on t
screening radiusR. Since, for finiteR, the potentials~38! are
of short range, standard methods of integral equations th
are applicable to the equation for the screened arrangem
amplitudes

T ba
(R)~qb8 ,qa ;z!5V ba

(R)~qb8 ,qa ;z!1 (
n51

3 E dqn9

~2p!3

3K bn
(R)~qb8 ,qn9 ;z!T na

(R)~qn9 ,qa ;z!,

~41!
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as the kernels

K ba
(R)~qb8 ,qa ;z!ªV ba

(R)~qb8 ,qa ;z!G0;a
(R) ~qa ;z! ~42!

become compact after a suitable number of iterations.
It remains to recover the desired unscreened amplitu

~37! by a well-defined limiting procedureR→`. Indeed, it
has been proven in@7,6# that after multiplication of the
screened on-shell arrangement amplitudesT ba

(R)(q̄b8 ,q̄a ;E

1 i0) with suitable renormalization factorsZb,R
21/2(q̄b8 ) and

Za,R
21/2(q̄a), which for largeR are fully determined by the

choice of the screening functiongR(r ), the following limits
exist:

lim
R→`

Zb,R
21/2~ q̄b8 !T ba

(R)~ q̄b8 ,q̄a ;E1 i0!Za,R
21/2~ q̄a!5Tba~ q̄b8 ,q̄a!,

~43!

and yield the desired unscreened amplitudes~37!. This is the
approach used in the various numerical applications~for a
list of references see@9,14#, where also the full particulars o
how to proceed in practice can be found!.

2. Direct solution of Eq. (35)

An alternative strategy@6# that aims at directly calculating
the Coulomb-modified short-range amplitude in the ‘‘Co
lomb representation’’̂ q̄b8

C(2)uT ba8SC(E1 i0)uq̄a
C(1)&, is based

on Eq.~35!. Indeed, sandwiching this equation between Co
lomb scattering stateŝqb8

C(2)u anduqa
C(1)&, and using in the

kernel ~36! the spectral representation of the resolve
gn

C( ẑn) in the form ~recall that all Coulomb potentials ar
assumed repulsive!

gn
C~ ẑn!5E d3qn9

~2p!3

uqn9
C(2)&^qn9

C(2)u

ẑn2qn9
2/2M n

, ~44!

we end up with

^qb8
C(2)uT ba8SC~z!uqa

C(1)&

5^qb8
C(2)uV ba8SC~z!uqa

C(1)&1 (
n51

3 E d3qn9

~2p!3

3
^qb8

C(2)uV bn8SC~z!uqn9
C(2)&^qn9

C(2)uT na8
SC~z!uqa

C(1)&

z2qn9
2/2M n1Bn

.

~45!

As input one has to provide the effective potentials in t
Coulomb representation,^qb8

C(2)uVba8SC(z)uqa
C(6)&, the calcu-

lation of which, however, appears feasible at best in coo
nate space~although for two-particle scattering a momentu
space calculation along these lines has been performed
cessfully in@15#!.
5-5
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III. PROOFS OF THE ASSERTIONS

A. Leading singularity of V aa
„a…

„qa8 ,qa ;z…

From the explicit representation~11! it is seen that in the
Da

2 planeV aa
(a)(qa8 ,qa ;z) has the familiar Coulomb forward

scattering singularity atDa
250 originating from the Fourier

transform of the Coulomb channel interactionV̄a
C . However,

additional singularities arise from the integral term
I (b)(qa8 ,qa ;z) and I (g)(qa8 ,qa ;z), cf. Eq. ~12!.

~1! We begin our investigation of the singular behavior
I (g)(qa8 ,qa ;z) in the momentum transfer plane, for momen

qa ,qa85” q̃aªA2MaE, ~46!

which is equivalent to@cf. Eq. ~10!#

Êa5” 0 and Êa85” 0. ~47!

In that case the singular behavior of the off-shell Coulom
modified form factors is as explicated in Eq.~I.62a! @this
implies, of course, certain analyticity requirements for t
nuclear form factorsxa(ka), cf. I, Appendix C#. Thus, ex-
pression~12! can be rewritten as

I (g)~qa8 ,qa ;z!54ma
2E dk

~2p!3

3
f̃a* ~ka8 ; ẑa8* !f̃a~ka ; ẑa!

@ka8
222maẑa8 #12 i ĥa8 @ka

222maẑa#12 i ĥa
.

~48!

The Coulomb parameters are defined as

ĥa5
ebegma

A2maẑa

, ĥa85
ebegma

A2maẑa8
. ~49!

The leading singularity ofI (g)(qa8 ,qa ;z) is generated by
the coincidence of the zeros of the denominator at

ka
222maẑa50 ~50!

and

ka8
222maẑa850. ~51!

To simplify the derivation we assume without loss of ge
erality that the orbital angular momentum of the relative m
tion of particlesb andg in the initial and final bound state
(bg) is zero. As a consequence, the reduced Coulo
modified form factorsf̃a* (ka8 ; ẑa8* ) and f̃a(ka ; ẑa), which
are regular functions at~51! and ~50!, respectively, can be
taken out from under the integral sign at these points~other-
wise only their radial parts could be taken out!. Thus, in the
leading order we end up with
04400
f

-

-
-

b-

I (g)~qa8 ,qa ;z!;4ma
2f̃a* ~A2maẑa8* ; ẑa8 * !

3f̃a~A2maẑa; ẑa! Ĩ (g)~qa8 ,qa ;z!,

~52!

where

Ĩ (g)~qa8 ,qa ;z!5E dk

~2p!3

1

@~k1lbgqa8 !222maẑa8 #12 i ĥa8

3
1

@~k1lbgqa!222maẑa#12 i ĥa
. ~53!

To find the singular behavior ofĨ (g) we make use of the
method described in@16#. It employs the intimate and uniqu
connection between the singularity of a function, which
nearest to the physical region in they plane, wherey

5q̂a8•q̂a is the cosine of the scattering angle, and the beh
ior of its partial wave projections forl→` @17#. If the sin-
gularity lies outside the physical region defined by21<y
<11, as it happens in the present case, application of
method proceeds in a straightforward manner.

For illustration consider the functiona(6)(y)51/(z
2y)16 ih, with z¹@21,1#. The partial wave expansion
@18,16#

1

~z2y!16 ih
5(

l 50

`

~2l 11!Pl~y!al
(6)~z!, yP@21,1#,

~54!

defines the partial wave projectionsal
(6)(z) as

al
(6)~z!5

1

2E21

11

dy
Pl~y!

~z2y!16 ih

5
i

2p
~12e62ph!G~7 ih!~z221!7 ih/2Ql

6 ih~z!.

~55!

Here, Pl(y) are the Legendre polynomials andQl
l(z) the

associated Legendre functions of the second kind.
For the following we require the asymptotic formula

@19#:

Ql
l~z! '

l→`

eipll lQl~z!, ~56!

Ql~z! 5
l→`Ap

l

e2 l lnt

At221
1oS 1

Al
D , ~57!

with

t[t~z!5z1Az221. ~58!

Note that our assumptionz¹@21,1# implies tÞ1.
The behavior ofal

(6)(z) for l→` now follows immedi-
ately as
5-6
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al
(6)~z! '

l→`

6
Ap~z221!7 ih/2l 6 ih21/2

G~16 ih!

e2 l lnt

At221
, ~59!

where use has been made of

e6ph~12e72ph!G~6 ih!5
72ip

G~17 ih!
. ~60!

Thus, we have the result that partial wave amplitud
al

(6)(z), which behave asymptotically~i.e., for l→`) as in
Eq. ~59!, generate a singularity;1/(z2y)16 ih @cf. Eq.
~54!#. The locationz of the singularity can, for instance, b
read off from t(z) as z5(t1t21)/2, and the singularity
strength factorh from the corresponding exponent ofl.

Let us apply this result toĨ (g)(qa8 ,qa ;z), Eq. ~53!. We
introduce the notation

z5z~k!5
k21lbg

2 qa
222maẑa

2lbgkqa
,

z85z8~k!5
k21lbg

2 qa8
222maẑa8

2lbgkqa8
, ~61!

and consider first the caseẑa[Êa,0, ẑa8[Êa8,0, which
yields z.1 andz8.1. When performing a partial wave ex
pansion ofĨ (g)(qa8 ,qa ;z),

Ĩ (g)~qa8 ,qa ;z!5(
l 50

`

~2l 11!Pl~y! Ĩ l
(g) , y5q̂a8•q̂a ,

~62!

the following expression for the expansion coefficients
obtained:

Ĩ l
(g)~qa8 ,qa ;z!52

~2lbg!221 i (ĥa81ĥa)

8p4
~12e22pĥa8 !

3~12e22pĥa!G~ i ĥa8 !

3G~ i ĥa!qa
8211 i ĥa8qa

211 i ĥa

3E
0

`

dk ki (ĥa81ĥa)

3~z82 21! i ĥa8 /2~z221! i ĥa/2

3Q
l

2 i ĥa8~z8!Ql
2 i ĥa~z!. ~63!

Define t5t(z) as in Eq.~58!, and similarlyt8 with z
replaced byz8. Note thattÞ1 (t8Þ1) as zÞ1 (z8Þ1).
Use of Eqs.~56! and ~57! gives for the large-l behavior
04400
s

s

Ĩ l
(g)~qa8 ,qa ;z! '

l→`~2lbg!221 i (ĥa81ĥa)

2p

3
q

a
8211 i ĥa8qa

211 i ĥa

G~12 i ĥa8 !G~12 i ĥa!
l 2 i (ĥa81ĥa)21

3E
0

`

dk ki (ĥa81ĥa)~z8221! i ĥa8 /2

3~z221! i ĥa/2
e2 l lnt̃

A~t8221!~t221!
, ~64!

with t̃ªt8t.
The remaining integral in Eq.~64! is evaluated by mean

of the saddle point method. As the wholel dependence of the
integrand resides in the exponential, forl→` the main con-
tribution to the integral comes from the region around t
saddle point. The latter can be found by solving the equa

d ln t̃~k!

dk
50, ~65!

which determines the minimum of the function lnt̃(k).
Straightforward algebra yields for the location of the sad
point

k5k(sp)ªF lbg
2 ~qa8

2A2 ẑa1qa
2A2 ẑa8 !

A2 ẑa1A2 ẑa8

12ma
A2 ẑaA2 ẑa8 G 1/2

. ~66!

When calculating the contribution from the saddle po
to the integral in Eq.~64!, all factors of the integrand that ar
nonsingular atk5k(sp) and slowly varying in the neighbor
hood ofk(sp) , can be taken out from under the integral si
at k5k(sp) . Then we immediately arrive at

Ĩ l
(g)~qa8 ,qa ;z! '

l→` 1

A2p

~2lbg!221 i (ĥa81ĥa)

G~12 i ĥa8 !G~12 i ĥa!

3
q

a
8211 i ĥa8 qa

211 i ĥa

A~ ln t̃ !9uk5k(sp)

3k
(sp)
i (ĥa1ĥa8 )

~z (sp)82 21! i ĥa8 /2~z (sp)
2 21! i ĥa/2

3 l 2 i (ĥa81ĥa)23/2

3
e2 l lnt̃(k(sp))

A~t82~z (sp)8 !21!~t2~z (sp)!21!
, ~67!

where we have introduced the notation
5-7
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z (sp)ªz~k(sp)!, z (sp)8 ªz8~k(sp)!. ~68!

Double prime means second derivative.
Let us definez̃ in terms oft̃ as in Eq.~58!, or explicitly

z̃5~ t̃1 t̃21!/2. ~69!

It then follows from Eqs.~69! and ~66! that

z̃ (sp)ª z̃~k(sp)!5
qa

21qa8
21~A22maẑa81A22maẑa!2/lbg

2

2qaqa8
.

~70!

Given this asymptotic behavior ~for l→`) of
Ĩ l

(g)(qa8 ,qa ;z), by comparison with Eqs.~59! and ~54! we
immediately recover the leading singularity
Ĩ (g)(qa8 ,qa ;z) as

Ĩ (g)~qa8 ,qa ;z!;
1

~ z̃sp2y!2 i (ĥa81ĥa)
~71!

;@lbg
2 ~qa82qa!21~A22maẑa8

1A22maẑa!2# i (ĥa81ĥa). ~72!

It is not difficult to see that the derivation goes throu
unaltered ifz8 and/orz have a nonvanishing imaginary pa
as it happens ifÊa8.0 and/orÊa.0.

From Eq. ~72! it follows that the leading singularity o
Ĩ (g)(qa8 ,qa ;z) never coincides with the Coulomb forward
scattering singularityDa

250 ~recall that presently we assum

ẑa85” 0 and ẑa5” 0). In fact, if both ẑa,0 and ẑa8,0, it lies
farther away from the physical region than the forward Co
lomb singularity and hence is not dangerous. A similar s
ation arises ifẑa8 or ẑa is positive, since then the singularit

of Ĩ (g)(qa8 ,qa ;z) is located in the complexDa
2 plane. How-

ever, if bothẑa8 and ẑa are positive,Ĩ (g)(qa8 ,qa ;z) becomes
singular in the physical region.

Indeed, forz5E1 i0 we haveA2 ẑa51 iAẑa, and simi-

larly for A2 ẑa8 . Consequently,

Ĩ (g)~qa8 ,qa ;z!;@lbg
2 Da

22~A2maẑa81A2maẑa!2#L,

ẑa8.0, ẑa.0, ~73!

with L given in Eq.~19!. This singularity is, however, no
dangerous if particlesb andg have charges of the same sig
i.e., if ebeg.0.

It is obvious that the leading singularity ofĨ (b)(qa8 ,qa ;z),
which is closest to the physical region, coincides with th
shown in Eq.~72!, except for the replacementlbg→lgb .
Hence, the above discussion of its location holds with
change also for the present case.

~2! It remains to consider the casesẑa50 or/andẑa850.

To start with assumeẑa50, i.e.,qa5q̃a , but ẑa8Þ0. Taking
04400
-
-

t

t

into account the behavior offa(ka ;0) in the limit ka→0, as
described in Eq.~I.62b!, we have instead of expression~48!,

I (g)~qa8 ,q̃a ;z!54ma
2E dk

~2p!3

f̃a* ~ka8 ; ẑa8* !f̃a~ka ;0!

@ka8
222maẑa8 #12 i ĥa8

.

~74!

Here,ka8 andka are defined as before but withqa replaced

by q̃aªq̂aq̃a . The leading singular behavior of the integr
in theDa

2 plane is generated by the coincidence of the zero
the denominator of the integrand with the closest singula
of f̃a(ka ;0). Thelocation of the latter depends on the larg
distance properties of the short-range~nuclear! potential be-
tween particlesb and g. For instance, for a Yukawa-typ
form factorxa(r );r 21exp(2nar), where 1/na measures the
range of the nuclear interaction, the closest singularity
f̃a(ka ;0) lies at

ka
21na

250 ~75!

@cf. Eq. ~I.C.15!#. Hence, the singularity ofI (g)(qa8 ,q̃a ;z),
which is generated by the coincidence of singularities at~51!
and ~75!, is located at

lbg
2 Da

252~A22maẑa81na!2. ~76!

A similar situation occurs forẑa850, but ẑaÞ0. Finally, for

ẑa85 ẑa50 simultaneously, the expression fo

I (g)(q̃a8 ,q̃a ;z) (q̃a8ªq̂a8 q̃a) reads as

I (g)~ q̃a8 ,q̃a ;z!54ma
2E dk

~2p!3
f̃a* ~ka8 ;0!f̃a~ka ;0!,

~77!

with ka expressed byq̃a and ka8 by q̃a8 . In this case the
leading singularity of the integral in theDa

2 plane is gener-

ated by the coincidence of the singularities off̃a* (ka8 ;0) and

f̃a(ka ;0) and is, for Yukawa-type form factors, located a

lbg
2 Da

252~2na!2. ~78!

The singularities at~76! and ~78! always lie outside the
physical region, and hence are not dangerous.

The behavior ofI (b)(qa8 ,qa ;z) follows again from the
above by the substitutionlbg→lgb .

~3! Taken together we have thus shown that in the lead
order the singular behavior ofV aa

(a)(qa8 ,qa ;z) is of the as-
serted form, namely,
5-8
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V aa
(a)~qa8 ,qa ;z! ;

Da→0 1

Da
2 (

rÞa
Fma

mr
Da

21ua
2 G i (ĥa81ĥa)

1oS 1

Da
2 D

~79!

where, assuming a Yukawa-type behavior for the nucl
form factors with inverse rangena.0,

ua5H A22maẑa81A22maẑa for ẑa8Þ0, ẑaÞ0

A22maẑa81na for ẑa8Þ0, ẑa50,

2na for ẑa8505 ẑa .
~80!

This proves the first part of the theorem.

B. Leading singularity of Ṽaa„qa8 ,qa ;z…

1. Introductory remarks

Consider now the contribution~9! to the effective poten-
tial, which is abbreviated as Ṽaa(qa8 ,qa ;z)

5^qa8 ,fauOufa ,qa&. The operatorOªG0V̄a
CGCV̄a

CG0 con-
tains all possible intermediate-state Coulomb interaction
begins with the incoming-channel Coulomb interactionV̄a

C ,

ends up with the outgoing-channel Coulomb interactionV̄a
C ,

while the three-body Coulomb resolventGC takes into ac-
count all possible Coulomb rescatterings of particlesa, b,
and g, in between. If, inO, GC is replaced by the free
resolventG0, which is the first term in a Neumann serie
expansion ofGC, the lowest-order contribution

Ṽ aa
(2)~qa8 ,qa ;z!5^qa8 ,fauG0V̄a

CG0V̄a
CG0ufa ,qa& ~81!

results. Below it is shown that the leading singularities
Ṽaa(qa8 ,qa ;z) andṼ aa

(2)(qa8 ,qa ;z) coincide. In other words
near the leading singularity the three-body Coulomb res
vent GC may effectively be replaced by the free resolve
G0. Note the similarity of this assertion to that encounter
for the nondiagonal effective potential in I.

Auxiliary theorem: Even an arbitrary number of Coulom
rescatterings in the intermediate state of the diagonal ef
tive potential contributionṼaa(qa8 ,qa ;z), as represented b
the three-body Coulomb resolventGC, does change neithe
position nor character of the leading~dynamic! singularity in
the momentum transfer variable as compared to its low
order contributionṼ aa

(2)(qa8 ,qa ;z), but does alter the strengt
of the residue.

2. Leading singularity ofṼaa
„2…

„qa8 ,qa ;z…

We start with the investigation ofṼ aa
(2)(qa8 ,qa ;z). Ac-

cording to its definition~81!, it can be written as a sum o
four terms,

Ṽ aa
(2)~qa8 ,qa ;z!5 (

n,s5” a
^qa8 ,fauG0Vn

CG0Vs
CG0ufa ,qa&.

~82!
04400
r
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Consider, for example, the term withs5b andn5b, to be
denoted as

Ṽ aa
(2)(bb)~qa8 ,qa ;z!ª^qa8 ,fauG0Vb

CG0Vb
CG0ufa ,qa&

~83!

and represented in diagrammatic form in Fig. 1.
~1! For ẑa85” 0 and ẑa5” 0, the singular behavior of the

Coulomb-modified form factorfa(ka ; ẑa) is as given in Eq.
~I.62a!. Inserting the momentum space representation of
spectral resolution of the free resolvent in the form~I.84! and
the explicit expression for the Fourier transform of the Co
lomb potentialVb

C , we end up with

Ṽaa
(2)(bb)~qa8 ,qa ;z!

54ma
2E dqb

0

~2p!3

3E dqa
0

~2p!3

f̃a* „eab~qb
01lbgqa8 !…

@~qb
01lbgqa8 !222maẑa8 !] 12 i ĥa8

3
4peaeg

~qa
02qa8 !2

1

@z2~qb
01lbgqa

0 !2/2ma2qa
02

/2Ma#

3
4peaeg

~qa
02qa!2

f̃a~eab~qb
01lbgqa!!

@~qb
01lbgqa!222maẑa#12 i ĥa

. ~84!

Here and in the following the argumentsẑa in the reduced
Coulomb-modified form factorsf̃a(• ; ẑa) are dropped un-
less required for clarity.

The leading singularity ofṼ aa
(2)(bb)(qa8 ,qa ;z) is generated

by the coincidence of the singularities at

Da
0
ªqa

02qa50, ~85!

and at

Da8
0
ªqa

02qa850. ~86!

The solution of these two equations gives for the location
the singularity

Da5qa82qa50. ~87!

Let us introduce as new integration variablesDa
0 and ka

0

5eab(qb
01lbgqa

0). Then Eq.~84! takes the form
5-9
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Ṽ aa
(2)(bb)~qa8 ,qa ;z!5~2ma!3E dka

0

~2p!3
E dDa

0

~2p!3

f̃a* ~ka
02eablbg@Da

02Da#!

$~ka
02eablbg@Da

02Da#!222maẑa2maDa•~2qa82Da!/Ma%12 i ĥa8

3
4peaeg

~Da
02Da!2

1

@2maẑa2ka
02

2maDa
0
•~Da

012qa!/Ma#

4peaeg

~Da
0 !2

f̃a~ka
02eablbgDa

0 !

@~ka
02eablbgDa

0 !222maẑa#12 i ĥa
.

~88!
-
in

r

he

.

ive

or -
Here, we have expressedDa8
0 according to Eqs.~85! and

~87!, and have taken into account thatẑa85z2qa8
2/2Ma

5 ẑa1Da•(2qa82Da)/2Ma . Application of the scaling
transformation

Da
05Dava ~89!

yields

Ṽ aa
(2)(bb)~qa8 ,qa ;z! 5

Da→0
~4peaeg!2

Da
J1

(b)~ ẑa!, ~90!

where

J1
(b)~ ẑa!52~2ma!3E dva

~2p!3va
2

1

~va2D̂a!2

3E dka
0

~2p!3

uf̃a~ka
0 !u2

@ka
0222maẑa#322i ĥa

52ma
3E dka

0

~2p!3

uf̃a~ka
0 !u2

@ka
02

22maẑa#322i ĥa
. ~91!

Because we presently restrict ourselves to the caseẑa5” 0,
the integral inJ1

(b)( ẑa) is nonsingular as, for finite three
body energies, the singularity of the integrand cannot co
cide with the integration limits.

Let us add two comments.~i! In order to prove that the
leading singularity ofṼ aa

(2)(bb)(qa8 ,qa ;z) is due to the coin-
cidence of the singularities of the integrand at~85! and~86!,
it was necessary to take into account the singular behavio
the Coulomb-modified form factorsfa(ka ; ẑa) as given in
Eq. ~I.62a!.

FIG. 1. Lowest-order contribution~83! to the diagonal effective
potential. The dashed semicircles represent Coulomb-modified f
factors.
04400
-

of

~ii ! We point out that a behavior;1/Da is typical for a
second-order Coulombic contribution~cf. the analogous re-
sult for the second-order term in the iteration of t
Lippmann-Schwinger equation for the two-body CoulombT
matrix derived in@16#!.

~2! Next assumeqa5q̃a , i.e., ẑa50, in which case rela-
tion ~I.62b! applies forfa(k;0). Since we are looking for
the behavior ofṼ aa

(2)(bb)(qa8 ,qa ;z) near the singularity at Eq

~87!, Da50 implies also ẑa850 or equivalentlyqa85q̃a .
Hence, taking into account the scaling substitution~89! we
find

fa* „ka
02eablbg~Da

02Da!; ẑa8 * … 5

Da→0

fa* ~ka
0 ;0!

5ka
02

f̃a* ~ka
0 ;0!.

~92!

Thus, the leading singular term ofṼ aa
(2)(bb)(qa8 ,qa ;z) is

given by

Ṽ aa
(2)(bb)~qa8 ,qa ;z! 5

Da→0
~4peaeg!2

Da
J2

(b)~0!, ~93!

with

J2
(b)~0!52ma

3E dka
0

~2p!3

uf̃a~ka
0 ;0!u2

ka
02 , ~94!

being nonsingular.
~3! An analogous argumentation shows that any effect

potential contributionṼ aa
(2)(sn)(qa8 ,qa ;z) with s, n5” a, has

the same leading singularity given by Eqs.~90! and ~93!,

m FIG. 2. Contribution~97! to the exact diagonal effective poten
tial.
5-10
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respectively. Summarizing, we have shown th

Ṽ aa
(2)(qa8 ,qa ;z) behaves, for all values ofqa8 andqa , in the

limit Da→0 as

Ṽ aa
(2)~qa8 ,qa ;z! ;

Da→0 1

Da
. ~95!

3. Leading singularity ofṼaa„qa8 ,qa ;z…

Proof of the auxiliary theorem: We are now ready to
prove that the contributionṼaa(qa8 ,qa ;z) to the full effec-
tive potential, in spite of containing an infinite number
Coulombic rescatterings between all three particles in
intermediate state as represented by the three-body Cou
resolvent, possesses the same leading singularity at the
position ~87! as the lowest-order contributio
Ṽ aa

(2)(qa8 ,qa ;z), cf. Eq. ~95!.

According to its definition~9!, also Ṽaa(qa8 ,qa ;z) is a
sum of four terms,
04400
t

e
mb
me

Ṽaa~qa8 ,qa ;z!5 (
n,s5” a

^qa8 ,fauG0Vn
CGCVs

CG0ufa ,qa&

5: (
n,s5” a

Ṽ aa
(ns)~qa8 ,qa ;z!. ~96!

As an example we investigate

Ṽ aa
(bb)~qa8 ,qa ;z!ª^qa8 ,fauG0Vb

CGCVb
CG0ufa ,qa&

~97!

which is represented in diagrammatic form in Fig. 2.
~1! We first consider the caseẑa85” 0 andẑa5” 0, or equiva-

lently qa ,qa85” q̃a . Since the charges of all three particles a
assumed to be of equal sign, i.e., all Coulomb potentials
repulsive, the three-body Coulomb resolvent has the spe
representations given in Eqs.~I.82! and~I.83! in terms of the
scattering wave functionCk

a
0 ,q

a
0

C(1)
(P) for three charged par

ticles in the continuum (P5$kn ,qn%, n51,2,3, is the six-
dimensional momentum vector!. Using the latter we can re
peat all the steps performed in Part I, thereby arriving at@20#
lt
rward-
Ṽ aa
(bb)~qa8 ,qa ;z!54ma

2E dkb-

~2p!3
E dqb-

~2p!3
E dkb9

~2p!3
E dqb9

~2p!3
E dka

0

~2p!3
E dqa

0

~2p!3

f̃a* ~eab~qb-1lbgqa8 !!

@~qb-1lbgqa8 !222maẑa8 #12 i ĥa8

3
4peaeg

@kb-2eba~qa81lagqb-!#2

Ck
a
0 ,q

a
0

C(1)
~kb- ,qb-!Ck

a
0 ,q

a
0

C(1)*
~kb9 ,qb9 !

@z2ka
02

/2ma2qa
02

/2Ma#

3
4peaeg

@kb92eba~qa1lagqb9 !#2

f̃a„eab~qb91lbgqa!…

@~qb91lbgqa!222maẑa#12 i ĥa
. ~98!

In contrast to the simpler case considered in Sec. III B 2, the leading singularity ofṼ aa
(bb)(qa8 ,qa ;z) emerges as the resu

of the coincidence not only of the singularities of the Fourier transforms of the Coulomb potentials but also of the fo
scattering singularities of the three-body Coulomb scattering wave functions. As was shown in Part I~see Appendix I.D!, in

the region of integration, which is relevant for generating the leading singularity, only the leading termCk
a
0 ,q

a
0

C,as(1)8*
(rb ,rb) in

the asymptotic expansion of the three-body coordinate-space Coulomb scattering wave functionCk
a
0 ,q

a
0

C(1)*
(rb ,rb) enters, which

is known in analytic form and is given in Eq.~I.113!. When substituting its momentum space representation~I.117! into Eq.
~98! one encounters an expression of the following type:

JaªE dkb9

~2p!3E dqb9

~2p!3
Ck

a
0 ,q

a
0

C,as(1)8*
~kb9 ,qb9 !

4peaeg

@kb92eba~qa1lagqb9 !#2

f̃a~eab~qb91lbgqa!!

@~qb91lbgqa!222maẑa#12 i ĥa

5E dqa9

~2p!3E dqb9

~2p!3E dk

~2p!3
ck

b
0

C(1)*
~k!ck

g
0

C(1)*
„k1kg

02kb
01eab~qa92qa

0 !…ck
a
0

C(1)*
„k1ka

02kb
02eba~qa91qb91qg

0!…

3
4peaeg

~qa92qa!2

f̃a~eab~qb91lbgqa!!

@~qb91lbgqa!222maẑa#12 i ĥa
, ~99!
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where to arrive at the second equality a change of the i
gration variable has been performed.

We are looking for the behavior ofJa, when the singu-
larities of the integrand at

qa92qa50 ~100!

and at

~qb91lbgqa!222maẑa50 ~101!

collide with the forward-scattering singularities of the wa
d

s
s.

r
-

m

04400
e-function Ck
a
0 ,q

a
0

C,as(1)8*
(kb9 ,qb9 ) that occur at

qn92qn
050, n51,2,3. ~102!

This will generate the leading singularity ofJa in the (Da
0)2

plane whereDa
0 has been defined in Eq.~85!. And the latter

will eventually give rise to the leading singularity o
Ṽ aa

(bb)(qa8 ,qa ;z) in Da
2 plane.

According the Appendix I.E, near the leading singular
Ja can be written, forqa5” q̃a , as
Ja54peaeg exp@2p~ha
01hb

01hg
0!/2#

G„12 i ~ ĥa1ha
0 !…G„12 i ~hb

01hg
0!…

G~12 i ĥa!

3@lbg
2 ~Da

0 !22~ka
02 iA22maẑa* !2#2 iha

0
@2eabDa

0
•kb

0 #2 ihb
0
@22eabDa

0
•kg

0#2 ihg
0

3
1

@22eablbgDa
0
•ka

01sa
0~qa ;z!#12 i (ĥa1ha

0)

J̃a

@~Da
0 !2#12 i (ha

0
1hg

0)
, ~103!
on
whereJ̃a remains finite atDa
050. Here, we have introduce

the abbreviation

sa
0~qa ;z!5ka

02
22maẑa . ~104!

Moreover, terms;O„(Da
0)2

… have already been omitted a
compared toO(Da

0). The only difference between Eq
~I.E32! and Eq.~103! concerns the identity

eabDb
01ka5ka

02eablbgDa
0 ~105!

which follows from the standard relations between the va
ous momenta~cf. Appendix I.A! and has been used in deriv
ing Eq. ~103!. The Coulomb parametershn

0 , n51,2,3, are
defined in Eq.~I.123!, andG(z) is the Gamma function.

Similarly, for qa85” q̃a , the leading singularity of

Ja8*ªE dqa-

~2p!3E dqb-

~2p!3E dk

~2p!3
ck

b
0

C(1)
~k!

3ck
g
0

C(1)
@k1kg

02kb
01eab~qa-2qa

0 !#

3ck
a
0

C(1)
@k1ka

02kb
02eba~qa-1qb-1qg

0!#

3
4peaeg

~qa-2qa8 !2

f̃a* „eab~qb-1lbgqa8 !…

@~qb-1lbgqa8 !222maẑa8 #12 i ĥa8

~106!

is generated by the coincidence of the zeros of the deno
nators that occur at
i-

i-

qa-2qa8505~qb-1lagqa8 !222maẑa8 , ~107!

with the forward-scattering singularities of the wave functi

Ck
a
0 ,q

a
0

C,as(1)8(kb- ,qb-) at

qn-2qn
050, n51,2,3. ~108!

In its vicinity the leading singular term is of the form

Ja8 * 54peaeg exp@2p~ha
01hb

01hg
0!/2#

3
G„12 i ~ ĥa82ha

0 !…G„11 i ~hb
01hg

0!…

G~12 i ĥa8 !

3@lbg
2 ~Da8

0!22~ka
02 iA22maẑa8 * !2# iha

0

3@2eabDa8
0
•kb

0 # ihb
0
@22eabDa8

0
•kg

0# ihg
0

3
1

@22eablbgDa8
0
•ka

01sa
0~qa8 ;z!#12 i (ĥa82ha

0)

3
1

@~Da8
0!2#11 i (ha

0
1hg

0)
J̃a8* , ~109!

where J̃a8* remains finite at Da8
050. Here, sa

0(qa8 ;z)

5ka
02

22maẑa8 .
Taking into account Eqs.~103! and~109!, and expressing

Da8
0 according to Eqs.~85!–~87!, we derive from Eq.~98! for

the leading singular part in the limitDa→0 of
Ṽ aa

(bb)(qa8 ,qa ;z):
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Ṽaa
(bb)(s)~qa8 ,qa ;z!54ma

2E dka
0

~2p!3E dqa
0

~2p!3

Ja8 * Ja

@z2ka
02

/2ma2qa
02

/2Ma#
~110!

5
64p2ea

2eg
2ma

2

G~12 i ĥa8 !G~12 i ĥa!
E dka

0

~2p!3
E dDa

0

~2p!3
e2p(ha

0
1hb

0
1hg

0)G„12 i ~ ĥa82ha
0 !…

3G„12 i ~ ĥa1ha
0 !…uG„12 i ~hb

01hg
0!)u2 F lbg

2 ~Da
02Da!22~ka

02 iA22maẑa8 * !2

lbg
2 ~Da

0 !22~ka
02 iA22maẑa* !2

G iha
0

3@12Da•kb
0/~Da

0
•kb

0 !# ihb
0
@12Da•kg

0 /~Da
0
•kg

0!# ihg
0

3
1

@22eablbg~Da
02Da!•ka

01sa
0~qa8 ;z!#12 i (ĥa82ha

0)

3
1

@~Da
02Da!2#11 i (ha

0
1hg

0)

J̃a8 * J̃a

@ ẑa2Da
0
•~Da

012qa!/2Ma2ka
02

/2ma#

3
1

@22eablbgDa
0
•ka

01sa
0~qa ;z!#12 i (ĥa1ha

0)

1

@~Da
0 !2#12 i (ha

0
1hg

0)
. ~111!

It is instructive to compare the integrals overDa
0 in Eqs.~88! and~111!. Inspection reveals that differences arise from t

presence of extra factors;Da /Da
0 , and from the Coulomb distortion of the poles in Eq.~88! at Da

050 andDa
02Da50 into

branch points. This latter effect is due to the presence inṼ aa
(bb)(qa8 ,qa ;z) of the three-body Coulomb Green’s functio

describing the propagation of the three charged particlesa, b, andg, in the intermediate state.
Now, making the scaling transformation~89! we immediately arrive at the final result

Ṽ aa
(bb)(s)~qa8 ,qa ;z! 5

Da→0 1

Da
Jaa

(bb) , ~112!

with

Jaa
(bb)52

128p2ma
3ea

2eg
2

G2~12 i ĥa!
E dka

0

~2p!3
E dva

~2p!3
e2p(ha

0
1hb

0
1hg

0)

3G„12 i ~ ĥa2ha
0 !…G„12 i ~ ĥa1ha

0 !…uG„12 i ~hb
01hg

0!…u2@12D̂a•kb
0 /~va•kb

0 !# ihb
0
@12D̂a•kg

0 /~va•kg
0!# ihg

0

3
1

~va2D̂a!212i (ha
0

1hg
0)

1

va

222i (ha
0

1hg
0)

J̃a8 * J̃a

@ka
02

22maẑa#322i ĥa
. ~113!
on
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Here, we have taken into account that limDa→0ẑa85 ẑa .

Let us comment on this result. In our previous work
two-charged particle scattering@16#, the influence of the two-
body Coulomb Green’s function on the analytic behavior
the two-particle Coulomb scattering amplitude defined
TC5VC1VCGCVC had been investigated, by using th
spectral representation ofGC. There we had come up with
the following fundamental result: due to the mutual canc
lation of the Coulomb distortion factors in the pair of com
plex conjugate Coulomb scattering wave functions, the p
ence of the two-body Coulomb Green’s function in t
04400
f
a

l-

s-

intermediate state did not affect the leading singular beha
of the Coulomb scattering amplitude at small moment
transfer as compared to the lowest-order contribution i
Born series expansion of the latter~i.e., if GC is replaced by
G0 in the second term on the right-hand side!.

Now we have encountered the analogous situation in
three-body case which, of course, is more complicat
When looking for the leading singular term o

Ṽ aa
(bb)(qa8 ,qa ;z) @see Eq.~98!#, in the spectral representatio

of the Coulomb Green’s function, the exact three-body C
lomb wave functions could be approximated by their lead
5-13



s

s
e
in
a
-
i

f

s
l
e-
ve

ith
e

te

f all
tion
n-
(2

s
ess

e
ng
l

s is
eat
the

es
oofs

f of

of
the

d
Cou-
u-
n-

2
o-
the

the
nse-
gu-
s
the
the

A. M. MUKHAMEDZHANOV, E. O. ALT, AND G. V. AVAKOV PHYSICAL REVIEW C 63 044005
asymptotic parts. Since the~asymptotic! Coulomb wave
functions appear there as a pair of complex conjugate
each other, the phase factors inJa and Ja8* containing the
Coulomb parametershn

0 , n5a,b,g, are complex conjugate
as well. This fact eventually led to the same result: the pr
ence of the three-body Coulomb Green’s function in the
termediate state of the exact effective potential p
Ṽ aa

(bb)(qa8 ,qa ;z), Eq. ~97!, does not affect the singular be
havior at small momentum transfer, as compared to
lowest-order contributionṼ aa

(2)(bb)(qa8 ,qa ;z) given in Eq.
~83!.

~2! Next assumeqa5q̃a . The leading singular term ofJa

is given by Eq.~I.E.33!, and analogously that ofJa8* by

Ja8* 54peaeg exp@2p~ha
01hb

01hg
0!/2#G~11 iha

0 !

3G„11 i ~hb
01hg

0!…@2eabDa8
0
•kb

0 # ihb
0

3@22eabDa8
0
•kg

0# ihg
0 L̃18*

@~Da8
0!2#11 i (hb

0
1hg

0)
. ~114!

Correspondingly, taking into account that forDa50 and
qa5q̃a one hasẑa85 ẑa50, the leading singular term o

Ṽ aa
(bb)(qa8 ,qa ;z) is found to be

Ṽaa
(bb)(s)~ q̃a8 ,q̃a ;z! 5

Da→0 1

Da
Jaa

(bb) , ~115!

with

Jaa
(bb)52128p2ma

3ea
2eg

2E dka
0

~2p!3E dva
0

~2p!3

3e2p(ha
0

1hb
0

1hg
0)uG~12 iha

0 !u2uG„12 i ~hb
01hg

0!…u2

3@12D̂a•kb
0/~va•kb

0 !# ihb
0
@12D̂a•kg

0 /~va•kg
0!# ihg

0

3
1

~va2D̂a!212i (ha
0

1hg
0)

1

va

222i (ha
0

1hg
0)

L̃18* L̃1

ka
02 . ~116!

~3! It is not difficult to see that all other contribution
Ṽ aa

(ns)(qa8 ,qa ;z), with n,s5b,g, to the effective potentia
~96! behave in the limitDa→0 as described above. Cons
quently, the leading singular behavior of the full effecti
potential part~9! is given as
e

04400
of

s-
-
rt

ts

Ṽaa~qa8 ,qa ;z! ;

Da→0 1

Da
. ~117!

This concludes the proof of the theorem.

IV. CONCLUDING REMARKS

The results of the present investigation, together w
those of paper I@3#, provide the proof that momentum spac
three-body integral equationsin the form of effective two-
body AGS equationscan be used with confidence to calcula
all possible arrangement~i.e., 2→2) amplitudes below and
above the three-body threshold, provided the charges o
three particles are of the same sign. However, as informa
concerning the singularity properties of the effective pote
tials occurring in the analogous equations for breakup
→3) or even 3→3 amplitudes is still lacking, the result
obtained so far do not yet constitute a proof of compactn
of the kernels of thegenuine three-bodyintegral equations of
the Faddeev@1# or AGS @2# type. One obvious consequenc
is that application of methods that aim at directly solvi
these latter equations would~as yet! be without mathematica
justification. While reactions of the 3→3 type are of less
practical interest, experimental study of breakup processe
vigorously pursued in many laboratories. Hence, it is of gr
importance to continue these investigations, at least for
effective potentials occurring in the~integral! equations for
2→3 amplitudes. Note that, if only two of the three particl
are charged, with charges being of the same sign, the pr
provided by Alt, Sandhas, and Ziegelmann@7,9# within the
screening and renormalization approach constitute a proo
compactness of the kernels of the correspondingthree-body
integral equations~cf. the validation of this assertion in@8#!.

A further comment concerns the practical applicability
the momentum space approach. Indeed, evaluation of
exact effective potentialVba(qb8 ,qa ;z)5^qb8 ,xbuGC(z)
2dbaGa

C(z)uxa ,qa&, Eq. ~I.11a!, appears to be beyon
present means, due to the presence of the three-body
lomb resolventGC. On the other hand, a perturbative calc
lation of Vba(qb8 ,qa ;z) based on the Neumann series expa

sion of GC may also be unsatisfactory. For, as Theorem
~cf. Part I! states for its nondiagonal and the auxiliary the
rem of the present paper for its diagonal part, even
lowest-order contributionV ba

(2)(qb8 ,qa ;z) and, thus, also all
the higher-order terms of the perturbation series have
same leading singularity as the exact expression and co
quently contribute to the strength of the residue at the sin
larity. Therefore, in principle no term of this infinite serie
should be omitted unless, of course, their contribution to
residue strength turns out to become rapidly smaller as
order of iteration increases.
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