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It has been a long-standing question whether momentum space integral equations of the Faddeev-type are
applicable to reactions of three charged particles, in particular above the three-body threshold. The presence of
long-range Coulomb forces has been thought to give rise to such severe singularities in their kernels that the
latter may lack the compactness property known to exist in the case of purely short-range interactions. Em-
ploying the rigorously equivalent formulation in terms of an effective-two-body theory, we have proved in a
preceding papgiPhys. Rev. 61, 064006(2000] that, for all energies, the nondiagonal kernels occurring in
the integral equations that determine the transition amplitudes for all binary collision processes, possess on and
off the energy shell only integrable singularities, provided all three particles have charges of the same sign, i.e.,
all Coulomb interactions are repulsive. In the present paper we prove that, for particles with charges of equal
sign, the diagonal kernels, in contrast, possess one, but only one, nonintegrable singularity. The latter can,
however, be isolated explicitly and dealt with in a well-defined manner. Taken together these results imply that
modified integral equations can be formulated, with kernels that become compact after a few iterations. This
concludes the proof that standard solution methods can be used for the calculation of alliendimy)elastic
and rearrangemehamplitudes by means of momentum space integral equations of the effective-two-body-
type.

DOI: 10.1103/PhysRevC.63.044005 PACS nun®er21.45+v, 03.65.Nk

I. INTRODUCTION diagonal kernels, including all off-the-energy-shell singulari-
ties, turn out to be integrable. Consequently, these equations

The question of compactness of the FaddfEEvor the  can be recast in a form such that the kernels of the resultant
equivalent Alt-Grassberger-Sandh@sGS) [2] momentum  equations become compact after a few iterations, for all en-
space integral equations for three charged particles is relateztgies.
to the analytical properties of their kernels. In the preceding This completes the investigation of the analytical proper-
paper[3], henceforth called I, we have investigated the anaties of effective-two-body AGS equations for-22 reactions
lytical behavior of the nondiagonal kernels of the equationsf three particles with charges of equal sign above the three-
for three particles interacting via Coulomb-like pair poten-body threshold.
tials, rewritten in the form of effective-two-body AGS equa- It is worth mentioning that from the proofs also follows
tions pertaining to all binaryso-called 2-2) reaction am- that, as soon as charges with opposite sign are involved, the
plitudes[2]. Under the assumption that the charges of allkernels do, indeed, develop severe singularities that preclude
three particles are of the same sign, i.e., that all Coulomlapplication of standard methods of integral equations theory.
potentials are repulsive, their nondiagonal kernels werd&his agrees with the findings in the integrodifferential ap-
found to possess only integrable singularities. proach[8].

In this second part we investigate the singularity structure The paper is organized as follows. In order to accommo-
of the corresponding diagonal kernels, again restricting ourelate the reader who is not interested in mathematical details
selves to purely repulsive Coulomb interactions. It will be we have collected all relevant definitions and final results in
shown that the only nonintegrable singularity occurs on  Sec. Il. In particular, in Sec. Il A we briefly recall the general
the energy shell, an@i) coincides with the singularity found form of the diagonal kernels of the effective-two-body equa-
by Veselova([4], see alsd5]) below the breakup threshold tions as already outlined if8] and discuss some of their
and by Alt and Sandha§6] and references thergifior all  pertinent properties. The main finding concerning the leading
energies. As is well known, this singularity can be singledsingularities of the diagonal effective potentials occurring
out and inverted explicitly7]. All other singularities of the therein is formulated as a theorem in Sec. Il B. The resulting

singular behavior of the diagonal kernels and its treatment is
described in Sec. Il C. And in Sec. Il D we sketch the two

*Electronic address: akram@comp.tamu.edu established solution strategies that eventually lead to the de-
"Electronic address: Erwin.Alt@uni-mainz.de sired physical binary reaction amplitudes of two charged
*Deceased. fragments. All proofs of the assertions are deferred to Sec.
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[ll. Finally, Sec. IV contains concluding remarks. analytical properties of the diagonal effective potentials
As this paper is the continuation of Part I, all quantitiesV,.(q.,,q,;z). Use of Eqs(4) leads to the following repre-
that are not defined here are given there. And equations Gfentation:
Part | will be referred to as Eql.*). o
As usual we choose units such thiat c=1. Moreover,  V,.(q.,,9.:2)=(q, . Xa|GS[VE+VEGOVEIGE X0, 0.,

unit vectors are denoted by a hat, i¥=Vv/v.

where the channel Coulomb resolveS have been singled
out explicitly. The latter describe the propagation of the three
particlesa, B, and y, with allowance for Coulomb rescat-
A. General remarks tering to all orders between particl@sand y after the virtual

The diagonal kernels occurring in the integral equation€€@y B)— B+ y of the initial bound state£y), and be-

that determine simultaneously the transition amplitudes fofor® the virtual recombinatiog+ y—(Sy) leading to the
all binary processef?], formation of the final bound state3(y). The advantage of

doing so arises from the special role played by the Coulomb

[I. LEADING SINGULARITIES OF THE DIAGONAL
KERNELS KC,.: RESUME

3 dq” interactions in the initial and final three-ray vertices. Intro-
Te( 01 0032) = Vol U Qa1 2) + 2, f = ducing the Coulomb-modified form factor |¢,)
v=1J (2m) =Gy 'GS|x.) (see Part), V,.(q..q.;2z) can be rewritten
XKp0p.0,:20Ta(d) 00520 (1) 3
are given agsee EqJ(1.10), with B=a] Vool 0,002 = VN, 0032+ Vo0l 0i2), (1)

K:aa(qzlwqa;z) :=Vaa(q£y!qa;z)go;a(qa;z)- (2) Wlth
Here,z=E+i0 with E being the total energy in the three- VA, ,00:2)=(0} . ba(Z,*)|Go(2)VSGo(2)| ha(Zs) . Ua).

body center-of-mass system. (8)
The diagonal effective potential is defined[&%). (1.118  _
with B=a] Vaa(Uy,00:2)
Va0l 0ai2) = (0} Xel G2 = GE(D) | Xu Q). (3) =(0l . $a(2,)Go(2) VG2V Go(2)| Bl Za) G-
Note that as a result of assumptiéin7), namely, that the ©)

short-range interactions are described by separable potentiq_lﬁere,
of rank one(which does not limit the generality of our results

as explained in)l it contains only purely Coulombic quan- 7

tities, viz., the resolvent§&©(z), Eq. (1.12), of the three- “
particle Coulomb Hamiltonian, an@%(z), Eq. (1.13), of the

E,+i0 with E :==E—q?/2M,,, (103

S H F._E_(~'2
Coulomb channel Hamiltonian. They are related through the 2,=Ba+10 with E,=E-q,772M, (100
resolvent identities are the kinetic energies of subsyste@+y) in the initial
Cron O C)TeC and final state, respectively.
GCH(2)=G,(2)+ G (2)V,G™(2) (48) The first termV‘®(q.,,q,;z) describes elastic scattering
c T _of the projectile particlex off the_ bound statefy), taking
=G, (2)+G*(2)V,G,(2). (4b)  into account Coulomb rescattering to all orders between par-

— . ~ ticles g and y in the initial vertex (3y)— B+ y and in the
Here,V,=Z%,.,V; is the Coulomb part of the channel in- final vertex 8+ y—(B7) and the single intermediate-state
teraction(1.5). Assumption(l.7) implies in addition that in =4, 1omb interactior?\76=vg+vc between particlex and

a Y

each channel there exists at most one bound state; Witho@'éch of the target particle and y. The second term
loss of generality we can assume the existence of exactly onﬁ , ) . o .
(0., .9, ;2) differs from that by allowing in the interme-

bound statgof nonzero binding energyConsequently, de- ¢ )
& g 9y d y diate state for Coulomb rescatterings to all orders and be-

noting byq, (q,) the incoming(outgoing.on-shell relative tween all three particles as represented by the three-body
momentum between the two fragments in channednd by =4, 10mb resolvent.

—B,<0 the binding energy of the bound pajg{), energy An important simplification of the potential paf8) oc-

conservation requires curs at the on-shell point5). To see this we write down
V@(q! ,0,;2) in explicit notation:

E=02/2M,—B,, 0.=q,. (5) @
As has already been discussed in |, the only singularity of Vv@(q! ,q.:2) = ﬂ 2 e,1(q’,q,:2),
the effective free Green’s functiof..(q,;2) is a pole at aanae (q,,—0,)% v=By “
the on-shell point5). Hence, it remains to investigate the (11

044005-2



MOMENTUM SPACE INTEGRAL... . Il. ... PHYSICAL REVIEW C 63 044005

with, .9 T(d) Q0 i2)~[8A2 ~ (V2p2a2 V2,201,
19(0},,043:2)=(d},, Ba(2:*)|Go(2) Go(2) | ha(Za) A 2/>0, 2,>0, (18)
_ ZJ dk qsfy(k(,y;i:y*)(ba(ka;%a) W|th
“Jm)3 K- 2m,2 K- 2002, - -
12 A=ege o /(V2p 2o+ \2pm.2)). (19

, , . For particles with charges of equal sign, as they are consid-
Here, k= e.p(k+Np,0.) and k,=e,p(k+Ng,d,), With  ared exclusively in the present investigation, such a singular-
Nppi=m,/(m,+m,), mFEv, and €, bc_—:qng a sign factor ity is, however, not dangerougut it would give rise to
(see Part)l. The corresponding expression ié?)(q; Ua:2) severe problems fogze,<0).

follows from that ofl("(q/,,q,;2) by interchanging the in- The leading(dynamig singularity of the effective poten-
dicesB andy in the definition of the momentk,, andk/, . tial part (9) is, for all values of energy, of the form

The physical interpretation of,_, , e, 11)(q),,0,;2) is -
that of an off-shell extension of the body form factor of the V.(d..0,:2) L (20
bound state 8y). Indeed, taking into account that on the catHarHar A,
energy shell the Coulomb-modified form facia,(z,)) is
related to the bound state wave functign,) via [recall Egs. C. Leading singularity of the kernel 1C,,(q., ,0; E+i0)
(1.22) and (1.54)] and its treatment

Given the leading singularity of,.(q,,,q,;E+i0), the
singularity structure of the kerné(,.(q.,,9,;E+i0), Eq.
(2), follows in a straightforward manner. Integration over the
right-hand variable, presently denoted gy, is implied in
Eq. (1); q,, is a vector-valued parameter. The leading singu-
I(V)(q_; ,@;EHO):f dk 3¢§(k+3a)¢a(k) larities of the.kernel are the pole that' orig!nates from

V,o(d,,d.;E+i0) and is located as described in Sec. Il B,
and the pole of the effective propagator

Go(A2/2M ,— B, +10)|do( —B,),d0) =14 ,0u), (13)

expression(12) simplifies to[with A, = €,\ 5,(d.,— 0,)]

_ i1a~r i 2

f dre'®e Ty, ()% (14) Su(z—a2/2M )
gO;a(qa 2)= 2 ! (21
Thus, assuming the bound state wave function to be normal- z—Q3/2M ,+ B,

ized to. umty, orlle has onihe E/nergy shell in the forward-Which occurs forz=E-+i0 at the “on-shell point” q,
scattering directiorti.e., forq,=q,,)

=q, - [The numerator functio,(z— qi/ZM ») IS nonsingu-

lar, cf., I, Appendix B] It is the possibility of the coinci-
dence of these two singularities that renders the diagonal
kernel noncompact.

B. Leading singularity of V,,(q.,,0u;2) However, this noncompact singularity can be extracted
and inverted explicitly, as has been proposed by Veselova

: : N . . [4] for energies below the breakup threshold and by Alt and
Theorem: The leading(dynamig singularity of the diag Sandhag[6,9] for all energies(within the screening and

onal effective potential contributiof8) with respect to the renormalization roach This procedure will now b
momentum transfer is the pole at the border of the physicakl)e. ormalization -approa S procedure 0 €
riefly sketched.

region, namely, at First we recall that on the energy shéll) one has for
A,=0q,,—0,=0, (16) normalized bound state wave functidms. Eq. (1.23)]

1(q,,q,;E+i0)=1, v»=48,7. (15)

Let us state the assertion in the following form:

already displayed in the representatidrl). Writing Se(=Bo)=1, for @=123. (22)

Using this property it proves convenient to redefine the tran-

~T1(0;.,94:2) sition amplitudes as

Vi Gai2) = 17
. T (51 0a:2) =S5 (2= 07 12M ) Tpo(0fy 0 12)

the leading singularity of(q/,,q,;2) is generally located in X SHHz—qg?12M ), (23

the unphysical region and, hence, is harmless. The only ex-

ception occurs foe,>0 andz,>0 when it lies in the physi- and similarly forVg,(qs,9,:2) etc. On account of E¢22)

cal region and is of the typea(is a positive definite constant they coincide on the energy shell with the original quantities,

depending on the particle masses gnly i.e., Tp,(0p,94;:E+10)=T5,(q5.9,,E+i0), etc.
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Furthermore, define the operators

90:0(2)=(2—Q2/2M ) 7%, (24)
05(2):=(z—Q2/2M ,—v$) %, (25)

£(2) =05+ 0%00.(2)5(2) = 05+ 5(2) go.4(2) 05 .
(26)

PHYSICAL REVIEW C 63 044005

Note that, on account of Eq.(15, each term
[1'™ (q),,d4;2)—1], v=8,y, vanishes in the forward-
scattering on-shell Iimiqﬁl:qa:q_a [where the pole of the
propagatogg ,(d,;E+i0+ Ba)=2Ma/(E§—qi+i0) is lo-
cated. In coordinate space this entails tha>“(p., ,p.;2)
decays asymptotically faster thaﬁ(pa).

Introducing this splitting into Eq(28) and applying the
two-potential procedure leads to the following representa-

They all act nontrivially only in the space spanned by thetion:

plane wavesq,), which are eigenstates of the relative mo-

mentum operatoR, between particlex and the center of
mass of the subsystenB{ y) (cf. Part ). For instance, the
momentum space representationnﬁfis

4me,(egte,)

050, A =(a,/05]a,) = (27)

T po(2)= 8p,t5(2+B,) + 0h(Z* +Bp) T o (2) w,(2+B,).
(33

Here,

0$(z+B,)=[1+g0..(z+B,)tS(z+B,)] (34

r_ 2
(da~9a) is the (stationary off-shell center-of-mass Coulomb Nier

The physical interpretation of these quantities is evidentoperator, and T};ic(z) is solution of the Lippmann-
v5(q.,,0,), which in coordinate space reads a§(p,) Schwinger-type equation
=e.(ezte,)/p, (p, is the coordinate canonically conju- 3

gate toq,), describes the Coulomb interaction of partiele T'5C 2)=1"5C%2) + K 'SS(2)T'SC 2 35
with a fictitious point-particle of chargeeg+e,) and mass pa (2)=V e (2) 1/21 pr (DT (2). (39
(mg+m,), and is conventionally called center-of-mass Cou-

lomb potential.go..(2) is the free propagator of particlke with kernel

and this fictitious particleg,;(z) the corresponding propaga- ’C,éic(z) ==Vbic(2)g§(z+ B,). (36)

tor with allowance for Coulomb scattering between these

two bodies and, finallyt$(z) the appropriate two-body Cou-
lomb transition operator.

We can now apply, e.g., the procedure detailefbinWe
first rewrite Eq.(1) in terms of the “primed” quantities us-
ing an operator notation as

As has already been pointed out, f@+# « we have
Vlgic(q;s,qa;Z)EV%a(qb,qa;z), which has been shown in
Part | to possess no nonintegrable singularities. Its diagonal
part V'3%q/,,q.;2), on the other hand, differs from the

original effective potentiaV’,,(qd,,,d.;z) by the absence in
3 the former of the compactness destroying center-of-mass

Coulomb potentiabg(q;,qa); thus, its leading singular be-

T, (2)=V}, (2)+ K (2)T! (2), 28 S . . .
pal2)=Val2) 2’1 (DT 0al2) 28 havior is of the typg20). The result is that the leading sin-
_ gularities of the kernelk ;59aj,0,:;2) of the modified
with equation (35 are integrable, with the consequence that
K13%qy,q,:2) becomes compact after a suitable number of
’ = ’ Ba ﬂy @
Kpa(2)1=Vpo(2)80.4(2FBo). (29 iterations. This result verifies the assertion madggin

Making use of the theorem, the total effective potential can_ ONce EQ. (35 has been solved for the amplitudes
: T:3%qy,0,;2z) by standard solution methodsee below,
be decomposed into a long-ranged) and a shorter-ranged Ap:Gas2) DY '

Ba el
part as the physical on-shell arrangement amplitud@;@,(q'ﬁ,qa)
are easily obtained. For, sandwiching the operator relation
(33) between plane \./v.avemg and|q,) and applying the
- ) standard on-shell limiting procedures for two-body Coulom-
The so-called Coulomb-modified short-range effective poign quantitiegsee, e.g., Ref§10,11)), yields the following

tential V;>~(z) is given as representation:

Va(2) = 85,05+ Vi (2).

a

(30

VieG(2) =05,V 302) + 03 Va(2).

aa

3D Tpa(U.00) = 35,t5(0, .0,

Its nondiagonal part coincides with the original effective po- +<@C(*)|T%§C(E+i0)|a§(+)>. (37)

tential V,ga(z), B# «, while the diagonal part is defined as

The quantitytg(q_; ,q_a) is the two-body Rutherford ampli-
tude, describing Coulomb scattering of partieleoff the
total charge of particleg andy concentrated in their center
of mass, andq*)) are the corresponding center-of-mass
Coulomb scattering states, both of which are explicitly

47e, ,
VoA, . 0,:2) = 12 > e [1'"(q,0,;2)-1]
Y

v=p,

o

+ V(0L 0y 5 2). (32)
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known. Practical evaluation of the second term, calledas the kernels
Coulomb-modified short-range transition operator in the
“Coulomb representation,” which comprises all effects
coming from the shorter-ranged Coulomb effective potential
parts and from the genuine short-range interactions, is

. . - - become compact after a suitable number of iterations.
straightforwardsee be'lov)/..Th'e full amphtude?jga(qﬁ',qa), It remains to recover the desired unscreened amplitudes
however, as the notation indicates cannot be obtained as 5&-7) by a well-defined limiting procedurB—os. Indeed, it
lution of some compact-kernel mtegralgql@tlon but only Viag o< been proven ifi7,6] that after multiplicétion of 'the
Eq. (37) [the same holds true also foﬁ(q; a1 '

- i (. q -
For completeness we mention that the definit{8) of screened on-shell arrangement amplltudé%gqﬁ,qa,E

the physical charged-composite particle amplitudes agree$i0) With suitable renormalization facto®;z7(dp) and
with that following from the time-dependent scattering Z;}{z(qa), which for largeR are fully determined by the
theory[12] and from the stationary screening and renormal-choice of the screening functiagf(r), the following limits

ization approacli6]. exist:

KR(a5.0,:2)=V0(05,0,:2680(A0:2) (42

D. Practical approaches lim Zﬁ,gz(ak)%?(q_ﬁ ,q_a:E+i0)Z;,1R’2(aa)=T,3a(E;;,q_a),

As described above, the full, on-shell, charged-particleR—>
reaction amplitudeg};a(qg,qa), Eqg. (37), cannot be ob-

tained as solutions of some integral equations by standard ) ) ) o

methodgdue to the noncompactness of the kerrigjg. The ~ and yield the desired unscreened amplitu@®s. This is the

same situation, in fact, arises for the on-shell center—of—masI%plor?acfh used in tgel‘d’fa”o#s nurlneri(r:]alfalrlJplicqti(flns a f
Coulomb amplitudag(q;,qa). Instead, one first has to cal- ist of references sef9, 14], where also the full particulars o

culate the(on-shel) Coulomb-modified short-range transi- how to proceed in practice can be found
tion amplitudes in the Coulomb representation,

(a7 Te(E+i0)[q5™), and then to add according to _ _ : _
Eq. (37) the analytically known center-of-mass Coulomb An alternative strategy6] that aims at directly calculating
amplitude. To reach this goal two strategies have been ddbe Coulomb-modified short-range amplitude in the “Cou-

(43

2. Direct solution of Eq. (35)

veloped so far. lomb representationt{q),~ )| T E+i0)[q5 "), is based
on Eq.(35). Indeed, sandwiching this equation between Cou-
1. Screening and renormalization approach lomb scattering Statdﬂéc(7)| and|q§(*)), and using in the

Development of this approach followed the analogous dekernel (36) the spectral representation of the resolvent
velopment in stationary two-charged particle scattefitj. gS(Z,,) in the form (recall that all Coulomb potentials are
The basic idea is to use screened Coulomb potentials assumed repulsiye

VR(r)=VS(rgRr), (39) G- ) n ()

. d®q;, (g ) (e,
R L
(2m)° z,—q)2M,,

14

where gR(r) is some fairly arbitrary but smooth screening
function with

limgR(=1 (r fixed), (39 ~ Wweend upwith
R—®
(a7 N7 92)105)

limgR(r)=0 (R fixed). (40) ,

— 00 34"

| (VI 3, [ S
A numerically convenient form igR(r) =exp{—r/R}. Con- =1 (2m)3
sequently, all three-body quantities will depend on the 1C(=)[y,’SC, nC(=)\ / "C(=)| 7 SC c(+)
screening radiuR. Since, for finiteR, the potential$38) are ><<q3 |V'BV (@)]d, " Xd, " 1T, (2|4 >_
of short range, standard methods of integral equations theory z— q’V’Z/ZM ,1+B,
are applicable to the equation for the screened arrangement (45)
amplitudes

3 dq” As input one has to provide the effective potentials in the
T8(A5.90:2=VE(0},0,:2)+ 2 -~ Coulomb representationig;~ | V;242)|q5™), the caleu-
v=1J (2m) lation of which, however, appears feasible at best in coordi-
R - Ry . nate spacéalthough for two-particle scattering a momentum
X ) .
ICB,,(qB,q,,,z)TS,a(q,,,qa,z), space calculation along these lines has been performed suc-
(42 cessfully in[15]).
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IIl. PROOFS OF THE ASSERTIONS
A. Leading singularity of V®(q’,,q,;2)

From the explicit representatiqdl) it is seen that in the
A2 planeV®(q!,,q,;2) has the familiar Coulomb forward-
scattering singularity aAi 0 originating from the Fourier

transform of the Coulomb channel interactigfj. However,
additional singularities arise from the integral
1¥(a,,,9.;2) and1)(q;,.0,;2), cf. Eq.(12).

(1) We begin our investigation of the singular behavior of
1(q.,,0,;2) in the momentum transfer plane, for momenta

Oa 0o 0ai=2M E, (46)
which is equivalent tdcf. Eq. (10)]
E,#0 and E/#0. (47)

In that case the singular behavior of the off-shell Coulomb-— qa

modified form factors is as explicated in E(.62a [this

terms

PHYSICAL REVIEW C 63 044005

I(Y)(Q(’Jz’qcv;Z)'_\'4'/~'L§v‘$5 (Vzlua ;*’ a
X (V210201 2)T(A), 0, 32),
(52
where

1
(2)3 [(K+ N g, 02— 2o 2L~ 7

19(q;,,da:2)= f

1
X = -
[(k+)\ﬂyqa)2_21u‘aza]l_lna

(53

To find the singular behavior df” we make use of the
method described ifL6]. It employs the intimate and unique
connection between the singularity of a function, which is
nearest to the physical region in the plane, wherey
0. is the cosine of the scattering angle, and the behav-
ior of its partial wave projections fdr—co [17]. If the sin-

implies, of course, certain analyticity requirements for the9ularity lies outside the physical region defined byt <y

nuclear form factorsy,(k,), cf. I, Appendix 4. Thus, ex-
pression(12) can be rewritten as

dk
(2m)*

% ¢ (ka; o )¢a(ka!z )
(k2= 20,201 17 k2= 202, ]Y 7
(49)

I”)(q;,qa:2)=4uif

The Coulomb parameters are defined as

~ eﬁe'ylu‘a ~, eﬁeylu‘a
— 7=

" Nawi " Nz,

The leading singularity of”(q!,,q,;2) is generated by
the coincidence of the zeros of the denominator at

(49

K2 —2p1,2,=0 (50)

and

k/2—2u,z.,=0. (51)

To simplify the derivation we assume without loss of gen-
erality that the orbital angular momentum of the relative mo-
tion of particlesg andy in the initial and final bound states
(By) is zero. As a consequence the reduced Coulomb?

modified form factorsg* (k! ;z/*) and ¢,(k,;z,), which

a’a

are regular functions a1) and (50), respectively, can be

taken out from under the integral sign at these pojotker-
wise only their radial parts could be taken puthus, in the
leading order we end up with

<+1, as it happens in the present case, application of this
method proceeds in a straightforward manner.

For illustration consider the functiora*)(y)=1/({
—y)¥17 with ¢¢[—1,1]. The partial wave expansion
[18,16

1 - .
=> (21+1)P(y)a(),

=y yel[—11],

(54)
defines the partial wave projectioa§™)(¢) as

. 1+ Pi(y)
(£ )= = R
a‘| (g)_zf—ldy(é‘—y)liln

=—(1 eI (Fin) (L%~ 1) 7 72Qf ().

(59

Here, P,(y) are the Legendre polynomials a@f‘(g) the
associated Legendre functions of the second kind.

For the following we require the asymptotic formulas
[19]:

| -0

QM) ~ €m™1MQi(0), (56)
| >0 T =lIn7 1
Qi(¢) = \/|:\/;—?1+0 ﬁ), (57)
with
TET(§)=§+\/ZZ—_1. (58

Note that our assumptiofie [ —1,1] implies 7# 1.
The behavior ofal(i)(g) for | - now follows immedi-

ately as
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|—o 2_ 1)Finl2zig-12 g-lin () —2+i(7+ 74)
I'(1xin) 2-1 @ 2
1=1+ip, —1+in,
where use has been made of @ a,

X _ it a1
F(1—iny)T(1-in,)

F21mT
ETN1 _ Q¥ 2T 4+ - S N “ ~
e*"(1—-e 2™ (+in) Tisin) (60 XJ Ak Ko 1) ( 12— 1702
0
Thus, we have the result that partial wave amplitudes A o7
al™)(¢), which behave asymptoticallj.e., for|—) as in X ({2~ 1)17al2 , (64)
Eq. (59), generate a singularity~1/(;—y)**'7 [cf. Eq. V(r'2=1)(r*-1)

(54)]. The location{ of the singularity can, for instance, be B
read off from 7(¢) as {=(r+ 7 1)/2, and the singularity with 7:=7' 7.

strength factory from the corresponding exponent lof The remaining integral in Eq64) is evaluated by means
Let us apply this result t8(”(q_,,q,;2), Eq. (53). We  Of the saddle point method. As the wholéependence of the
introduce the notation integrand resides in the exponential, fer % the main con-

tribution to the integral comes from the region around the

9. 12 .2 - saddle point. The latter can be found by solving the equation
k +)\Byqa_21u’uzza

{=ik)=

2\ 5.KQ ’ dIn7(k)
By*Ha - =
k2+)\2 q;2—2,ua2; . . - L~
'=t'(k)= 4 - , (61)  which determines the minimum of the function ).
2\ g,KQ,, Straightforward algebra yields for the location of the saddle
point
and consider first the case,=E,<0, z,=E!<0, which - -
yields {>1 and{’>1. When performing a partial wave ex- K= _ 7\27(%2 V=2, +95\~2,)
pansion off (q],,d.;2), L
o0 1/2
T")(q;,qa:z)=|20 +DPWT,  y=0,-0a, +2Ma\/—2a\/—2;] . (66)
(62)

When calculating the contribution from the saddle point
the following expression for the expansion coefficients isto the integral in Eq(64), all factors of the integrand that are

obtained: nonsingular ak=ksp and slowly varying in the neighbor-
hood ofks), can be taken out from under the integral sign
T (2N p,) 2+t 70) b atk=kp). Then we immediately arrive at
117(0g,00:2)= — (1—e *77a) -
17 (g9 8t e 1 (2h,) 2H I )

R T(?’) ’, ol ~ ~ ~
X(1—e~271a) (i 1) e e ) = e i T (=i )

ca L =1+igl —1+ip, 1=1+in,  —1+in,
xI'(in.)4, a, a, a,
X

X fwdk K7+ 7a) V(in T)Hl":k(sp)
0

~, . in(;za+;7;)(§r2 _1)i;,;/2(§2 _1)i;;a/2
X (ng _ 1)| 7]LY/2( 52_ 1)| N2 (Sp)h ) (sp) (sp)
|~ (7t ma) =312

xQ, "a(¢)Q " (0). (63 _
e—l Inr(k(sp))
, . - : X , (67
Define 7=7({) as in Eq.(58), and similarly 7' with ¢ \/(7’2(§(’Sp))—1)(72(5(3,)))—1)
replaced byl’. Note thatr#1 (7' #1) as{#1({'#1).
Use of Egs.(56) and(57) gives for the largd-behavior where we have introduced the notation
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Lsp=L(Kespy)s  L(spy=¢" (Kispy)- (68  into account the behavior @f,(k,;0) in the limitk,—0, as
described in Eq(l.62b), we have instead of expressiti),
Double prime means second derivative.

Let us defineZ in terms ofr as in Eq.(58), or explicitly - o~
- e - 1O G 2) =4 2f dk @7 (Kei2e") ha(Kq:0)
i=(r+7 2. (69) QoG = 8 | e k22 g e

It then follows from Eqs(69) and (66) that (74)

q+ q;2+(\/— 2u,2)+ \/—2#@%0)2/)\%y Here,k/, andk, are defined as before but witl, replaced
2q,49., " byQ,:=0,0,. The leading singular behavior of the integral
(700 in the A2 plane is generated by the coincidence of the zero of
_ _ _ _ the denominator of the integrand with the closest singularity
_ Given this asymptotic behavior(for 1—) of % (.0} Thelocation of the latter depends on the large-
1(”(q),.0.:2), by comparison with Eqs(59) and (54) we distance properties of the short-rangeicleay potential be-
immediately recover the leading singularity of tween particles3 and y. For instance, for a Yukawa-type

z(sp):Z( K(sp) =

170 i) as form factor x ,(r)~r~exp(—v,r), where 1/, measures the
range of the nuclear interaction, the closest singularity of
~ 1 ~ . }
1(q),,0,:2)~ = (7 Palke;0) lies at

(Zop— y)*i(;?ﬁﬁ a)

~[N5 (L= 0%+ (N 21,2,

= 2u,2,)2] et 1), (72)  [cf. Eq. (1.C.19)]. Hence, the singularity of”(q_,,q,;2),

) o o which is generated by the coincidence of singularitie&at
It is not difficult to see that the derivation goes through ang(75), is located at

unaltered if¢’ and/or{ have a nonvanishing imaginary part
as it happens i€/ >0 and/orE,>0. B
From Eq.(72) it follows that the leading singularity of NG AL= — (N =2p,2l+ v,)2. (76)
T(q.,,q,;2) never coincides with the Coulomb forward-
scattering singularith2=0 (recall that presently we assume - o - A .
g3ing Aa=0( P y A similar situation occurs foe,,=0, butz,#0. Finally, for

z/,#0 andz,#0). In fact, if bothz,<0 andz.,<O0, it lies -,

farther away from the physical region than the forward Cou—za:za:0 simultaneously, the expression for

lomb singularity and hence is not dangerous. A similar situl ”’(d,.d.:2) (d;:=0.d,) reads as
ation arises ifi; or Ea is positive, since then the singularity
of 11(q,,q,;2) is located in the compleA? plane. How- o
ever, if bothz!, andz, are positive] (”(q.,,q,;z) becomes RUCTCR ?Z):‘Wij
singular in the physical region.

Indeed, forz=E+i0 we havey—2,= +i+/z,, and simi-

larly for \/—Zz... Consequently, ~ -
Y “ g Y with k, expressed by, and k/, by q.,. In this case the
Tm(q;:qa?z)’V[?\%yAi—(\/Z,u,ﬁ;ﬁ \/ZMQEQ)Z]A, leading singularity of the integral in th&? Elane is gener-
ated by the coincidence of the singularitiesggf(k_, ;0) and
z/>0, z,>0, (73)  a(k,;0) and is, for Yukawa-type form factors, located at

ki + Vi =0 (75

dk L k' 0)~ Kk O)
P, 00k, 0),

(77

with A given in Eq.(19). This singularity is, however, not s 2 5
dangerous if particleg andy have charges of the same sign, N5, AL=—(2v,)". (78)
i.e., if ege,>0.

Itis obvious that the leading singularity b“_ﬁ)(qé,qa??), The singularities at76) and (78) always lie outside the
which is closest to the physical region, coincides with thatphysical region, and hence are not dangerous.

shown in Eq.(72), except for the replacements,—\ 4. The behavior ofl¥)(q!,,q,:2) follows again from the
Hence, the above discussion of its location holds W'thomabove by the substitutionz,—\ 5
Y b

change also for the present case. ., (3) Taken together we have thus shown that in the leading
(2) It remains to consider the caseg=0 or/andz,=0.  order the singular behavior a7'%(q.,,q,;2) is of the as-
To start with assume,=0, i.e.,q,=q,, butz, #0. Taking  serted form, namely,
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A,—0

VO, .02 ~ — 2

A, p#a

Consider, for example, the term with= 8 andv= 3, to be
denoted as

(7 + 7a) ( 1

n
—A2+u2
mp

o

(79 - ,
. . VEPP(d, ,00i2)=(dy, $al GoV G0V Gol b Ua)
where, assuming a Yukawa-type behavior for the nuclear (83

form factors with inverse range,>0,

\/_2Ma2;+ \/_ zﬂaia for 2;;& 0, Ea;eo and represented in diagrammatic form in Fig. 1.
_ =, -, - (1) For z,#+0 andz,+0, the singular behavior of the
ta™ " 2MaZatva fOr 2,70, 2,=0, Coulomb-modified form factos,,(k, ;z,) is as given in Eq.
2v, for z,=0=2,. (1.623. Inserting the momentum space representation of the

(80) spectral resolution of the free resolvent in the fdir84) and
the explicit expression for the Fourier transform of the Cou-
This proves the first part of the theorem. lomb potentiaIVC, we end up with

B. Leading singularity of V,,(q,,,ds;2) DGR _
awo (qa ’qa’ YZ)
1. Introductory remarks

Consider now the contributio(®) to the effective poten- —a,? f d_ﬂ%
tial, which is abbreviated as V,.(q.,0,;2) “) (2m)3
=(q’,,$,|O|d.,0,). The operato:=G,V GVEG, con- o - o ,
tains all possible intermediate-state Coulomb interactions: it Xj da, ¢a(eaﬁ(qﬁ+>\ﬁyqa)) _
begins with the incoming-channel Coulomb interacti¢, (2m)° [(a)+ )\Byq;)z—zuaig)]l“”;
ends up with the outgoing-channel Coulomb interacu'_(‘jq

while the three-body Coulomb resolveBf takes into ac- % Ameqy L

count all possible Coulomb rescatterings of particess, (99—a.)? [z—(q%+ N, 02220, — % 12M ]
and vy, in between. If, in®, G® is replaced by the free 3

resolventG,, which is the first term in a Neumann series 4me.e, (f)a(faﬁ(q%'F Ngyq))

expansion ofG®, the lowest-order contribution (84)

X = .,
(qg_qa)z [(q%+ )\ﬁ'yqa)z_zluaza]lilna
’Dgzzcz(q:y 0o !Z) :<q(,1' ’¢a|GOVgGOVgGO| ¢a 1qa> (81)

Here and in the following the argumer&g in the reduced

results. Below it is shown that the leading singularities ofC lomb dified f fact §/> ( - ) q q
Y / ) = (2)) ! . o oulomb-modified form factors (- ;z,) are dropped un-
V4e(d,,04:2) and V(9. ,9,;2) coincide. In other words, less required for clarity.

near the leading singularity the three-body Coulomb resol- i ) = (2)(BB) )
vent G may effectively be replaced by the free resolvent 1he leading singularity ob ;™ (d, .q.;2) is generated

G,. Note the similarity of this assertion to that encountered?Y the coincidence of the singularities at
for the nondiagonal effective potential in I.
Auxiliary theorem Even an arbitrary number of Coulomb

0._0_~ _
rescatterings in the intermediate state of the diagonal effec- Ani=0,~ 0.0, (89
tive potential contributioﬁ)aa(q;,qa;z), as represented by
the three-body Coulomb resolve@, does change neither gng at
position nor character of the leadifdynamig singularity in
the momentum transfer variable as compared to its lowest-
order contribution’?)(q’,,q, ;2), but does alter the strength A%:=q°—q/=0. (86)
of the residue.
2. Leading singularity of V{2 (q.,,q, ;2) The solution of these two equations gives for the location of
) ) o ~ (2 the singularity
We start with the investigation oP(?)(q’,,q,;2). Ac-
cording to its definition(81), it can be written as a sum of
four terms, A,=q,—q,=0. (87
$9(2)/ ~! “ ) — ’ C C . . . .
Vialle 0as2) V,%a (G4 b/ GoV, GoV s Gol ba G- Let us introduce as new integration variabla$ and k°
(82 =e,5(a%+Ng,0%). Then Eq.(84) takes the form
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'(}’)Z(k(c)v_ eaﬁ)\ﬁy[A?y_ Aa])

0
Y@EA(q! ,0,:2)=(214)° f e f
(2m)3

4me.e, 1
X

(2m)° {(kg— ealg)\ﬁy[Ag—Aa])Z_ZMaia_MaAa, (Zq;—Aa)/Ma}l‘i%

4me.e, ?J)a( kg— eaﬁ)\ﬁyAg)

Here, we have expressezti;o according to Eqs(85) and

(87, and have taken into account tha}=z—q.%/2M,
=ia+Aa-(2q;—Aa)/2Ma. Application of the scaling
transformation

AP=A v, (89)
yields
A,—0 2
~ , a7 (4reye,) -
V&ZJ(BB)(qa,qa;z) = A—YJSB)(ZQ), (90)
where
dv 1
IP(Z,)=—(2u4)° f - .
' (2m)%2 (V,—A,)?
><f dk? [ $a(k9)|?
(2m)° (K92~ 2p2,2,]% 27
dkp |a(K2)|?
_ 3
__Iu’af 3 02 ~ 3_2.A . (91)
(277) [ka _Zluaza] e

Because we presently restrict ourselves to the @gse0,
the integral inJ{¥)(z,) is nonsingular as, for finite three-

body energies, the singularity of the integrand cannot coin-

cide with the integration limits.

Let us add two commentsi) In order to prove that the
leading singularity of?2)®8)(q! q,:2) is due to the coin-
cidence of the singularities of the integrand &%) and (86),
it was necessary to take into account the singular behavior
the Coulomb-modified form factoré,(k,;z,) as given in
Eq. (1.629).

(8,7) (8,7)

FIG. 1. Lowest-order contributio(83) to the diagonal effective

(A0 4,02 [270,2,—KS — 1, A% (A%+20,)M ] (A2)? [(KS— e0ph 5,407~ 21,2, 7

(88)

(i) We point out that a behavior 1/A , is typical for a
second-order Coulombic contributidof. the analogous re-
sult for the second-order term in the iteration of the
Lippmann-Schwinger equation for the two-body Coulomb
matrix derived in[16]).

(2) Next assumej,=q,, i.e.,z,=0, in which case rela-
tion (1.62b) applies for¢,(k;0). Since we are looking for
the behavior o 2#A)(q’ q, :2) near the singularity at Eq.
(87), A,=0 implies alsoz,=0 or equivalentlyq’,=q,.
Hence, taking into account the scaling substitutigg) we
find

A,—0
€aphpy(AQ—A,);Z,*) = $E(KD;0)

=KkIPx(K2;0).
(92

¢* (K2~

Thus, the leading singular term ap{2®¥A(q’ q,;2) is
given by

A_,—0 2
~ , a(4e,e,)
VAR q,:2) = ——2=3P(0), (93
with
dk® | .(k%;0)|2
IP0)=~u f PR (94)

dteing nonsingular.

(3) An analogous argumentation shows that any effective

potential contribution)?)“")(q’ ,q,;2) with o, v# «, has
the same leading singularity given by Eq80) and (93),

(8,7) (8,7)

potential. The dashed semicircles represent Coulomb-modified form FIG. 2. Contribution(97) to the exact diagonal effective poten-

factors.

tial.
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respectively. Summarizing, we have shown that ) ccuC
V) q. ,q.;2z) behaves, for all values af/, andq,, in the VaalOg 10a:2) MEa (A2, ¢aGoV, GV Gol ba Ga)
limit A,—0 as

= 2 Vi(A;.00:2). (96)
Aa_>o A I V,.U' o -
(2) - S an example we Investigate
VR ~ 5 (95)
. VEP(A,,,043:2)=(0], , b4l GoVEGVGol b4 .0
3. Leading singularity ofV,,(d., ,da;2) (97)

Proof of the auxiliary theoremWe are now ready to which is represented in diagrammatic form in Fig. 2.
prove that the contributioﬁiaa(q; .0, ;2) to the full effec- (1) We first consider the caééﬁéo andi #0, or equiva-
tive potential, in spite of containing an infinite number of lently qa,qagé q,. Since the charges of all three particles are
Coulombic rescatterings between all three particles in theissumed to be of equal sign, i.e., all Coulomb potentials are
intermediate state as represented by the three-body Coulorgpulsive, the three-body Coulomb resolvent has the spectral
resolvent, possesses the same leading singularity at the samepresentations given in Eq$.82) and(1.83) in terms of the
position (87) as the lowest-order contribution scattering wave functlor{'ko( )o(P) for three charged par-

9(2)( ! .

Vaa(qa,q?,z), Cf_' Eq.(.95').' ~ _ ticles in the continuum R=1k,,q,}, »=1,2,3, is the six-
According to its definition(9), alsoV,,(d,.qd,:;2) is @  dimensional momentum vectoiUsing the Iatter we can re-

sum of four terms, peat all the steps performed in Part |, thereby arriving2at

" " " ” 0 0 S x "
PR g .qa;2)=4u2f dkﬁf dagg f dkﬁJ dqﬁf dkaJ' dq, b (€ap(Ui T Ng,00))
aa a a (

2m?*) @em3) 2m?3) 2m®) @m¥) @mI(yrg,ali-2m2i 1t
477-6 e (k:cgﬂo(km,q"’)‘l’(k:cgﬂo(k'/; q )

X

(K — €pa(Ahthayd) ] [2-KS 12— q%12M ]

47e,e Zsa(ea (q”—’_)\ Qa))
x Y B\MB By _ (98)

[k;_ Eﬁa(qa+ )\ayq,[,%)]z [(q%—i_ )\B'yqa)z_ Zluaia]lii K

In contrast to the simpler case considered in Sec. Il B 2, the leading singulaﬁt%ﬁ’f(q; ,0,;Z) emerges as the result
of the coincidence not only of the singularities of the Fourier transforms of the Coulomb potentials but also of the forward-
scattering singularities of the three-body Coulomb scattering wave functions. As was shown irisearfppendix 1.), in

the region of integration, which is relevant for generating the leading singularity, only the Ieadingffe?ﬁﬁﬂr*(rﬁ Pp) IN
the asymptotic expansion of the three-body coordinate-space Coulomb scattering wave ﬁuﬁéngmr g.Pp) enters, which

is known in analytic form and is given in E€.113). When substituting its momentum space representatitt?) into Eq.
(98) one encounters an expression of the following type:

dk" dq C,as(+)'* K" 47Teae-y (r{)a(eaﬁ(q +)\,3yqa))
at (277_)3 (2 )3 k0 q0 ( B qﬁ)[k// ( )\ "2 ) 1-i7,
,Ba o ayq,B)] [(qﬁ+)\ﬂyqa) luaza]

:f dq’, daj dk

] pwe] e RN OL Gt g P E ol Ol Gl RUNCAE AL

% 47Teaey aa( Eaﬁ( qg_'— )\Byqa))
(o= 0e)® (A5 + N gy ) = 2010217

(99
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where to arrive at the second equality a change of the '”teruncuon\lfc as(+)
gration variable has been performed.

We are looking for the behavior af,, when the singu- y 0
larities of the integrand at q,-4,=0, »=123. (102

(kB qB) that occur at

q,—q,=0 (100  This will generate the leading singularity af, in the (Ag)2
plane whereﬁg has been defined in E€B5). And the latter
will eventually give rise to the leading singularity of
. YA’ ,0,:2) in A2 plane.
—+ — aa a'Ha a
(a5 )\ﬁyq“) " 2Ka?a=0 (103 According the Appendix I.E, near the leading singularity
collide with the forward-scattering singularities of the waveJ, can be written, fon,#4q,, as

and at

T(1=i(7,+ 2T A=i(n3+ 1)
I'(1-i7,)

KNG (A2 (KO —i = 210, 7%)2] V[ 2€,5A0- K] V78] — 2¢,5A0- K] 717
X ! . 103
[~ 2€0ph sy A0+ KO+ 000 52) [P0 ) [(AD) 210 7)) 1o

J.=4me.e, exd —m(no+ 0yt 15)/2]

0 m ’ "m ’ Zr
WhereJ remains finite al\ ,=0. Here, we have introduced qr— qazoz(qﬁ+)\ayq )2_2,“&2&, (107
the abbreV|at|on
" with the forward-scattering singularities of the wave function
To(a;2) =K 2442, - 104wy 2560 (ko) at

Moreover, terms~O((A%)?) have already been omitted as
compared toO(Ag). The only difference between Egs.
(I.E32) and Eq.(103) concerns the identity

q,/-q%=0, »=12;3. (108

In its vicinity the leading singular term is of the form

0 _ 1,0 0
€apptKa=Ka €aph gyl (109 3x =ame e exd — w(nl+ 7%+ n)12]
which follows from the standard relations between the vari- F(l—l(n PNT (@ +i( 7%+ 7%)
ous momentdcf. Appendix I.A) and has been used in deriv- £ - R
ing Eq. (103. The Coulomb parameters?, »=1,2,3, are L(1-in,)
defined in Eq(l.123), andI'(z) is the Gamma function. 0)2 0 ST
T X ! _ _ /* |77
Similarly, for q.,#4q,, the leading singularity of [)\BV(A ~ (ki 2haa" )]

X[2€,pA0-KGJ 78 — 2€,5A.0- KOT 75

dq/II dq/// dk
f ( wk(”( ) 1

J'* =
2m)3) (2m)3) (2m)3 X

a

] 0
[— 26,50 p,AL0 KO+ 02(q,;2) ] (a7

X kK =K+ €ap(ay =)
1 ~
n n X '*
ka(+)[k+k0 k% eﬁa(qa+qﬁ+q3)] [(A;(O)Z]1+|(772+7]3) Ja 1 (109)
> AmEqE,y Da(€ap(Af+05,90)) _ where J'* remains finite atA/°=0. Here, ¢°(q/,;2)
(qm a, )2 [(qm+)\ﬁyqa)2_21uaz(/1]1—l77a =k22—2,ua2;

(106) Taking into account Eq$103) and(109), and expressing
A’O according to Eq985)—(87), we derive from Eq(98) for
is generated by the coincidence of the zeros of the denoml-he leading singular part in the limitA,—0 of
nators that occur at VBA(Q! ,0u:2):
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- dk® [ dq® Ji*J,
]}(QBCYB)(S)(qLKIqQIZ)=4ILLiJ’ aJ qa?’ 2 “ 02 (110)
(2m)*) (2m)® [2-K3 1211, — 0, 12M ]
64m’elelu’ dk) [ dAJ
= 73' €81, _ f @ J @ e—77(7]3+7]%+7]3)1—‘(1_i(;7;_ 772))
F(1-in,)T(1-iny)’ (2m)?3*J (2m)3
L—i(5a+ 72T 0 1 0|2 N A —A)2 = (Ko =iV —2u,z.*)? K
XTQA=i(n,+ g )T QA=i(ng+ 7)) -
L BP0 -2u, 22
.0 . 0
X[1— A, KY (AS-KHT7R[1— A, K /(AS-k9]'7y
1
X L0y 0
[—2€apN 5y (A2 —A,) - Ko+ 00(q,;2) ] (e 7)
1 31+,
X ., 0 0 ~ 2
[(A—A)ZM 17t 1) [7,— AL (AQ+20,)/2M o — K 12,]
1 1
X (112

[~ 2€uM 5, A% KO+ 0%(0,2) 121 e ) [(AQ)2]1i(rat 75)

It is instructive to compare the integrals O\th in Egs.(88) and(111). Inspection reveals that differences arise from the
presence of extra factorsAa/Ag, and from the Coulomb distortion of the poles in E§8) at A2=O andAg—Aazo into
branch points. This latter effect is due to the presenc® %) (q.,,q.;z) of the three-body Coulomb Green’s function
describing the propagation of the three charged partieleg, and y, in the intermediate state.

Now, making the scaling transformatig89) we immediately arrive at the final result

A —0
T’i@ﬁ)(s)(%,qaz) = A—Jfff). (112
with
12872436262 ¢ dkO
I =~ Ma?aeyf ; f e o= (10t 1yt 7))
r3(1-ip, 7 2#)3) (27)3
S Lo~ i " o . o
XT(A=i(70= 7)T (L=i(a+ m)T =i Crft p)TL= By Kp /(v kYT 1= A K /(v KT
1 1 j;*ja (
. A i i - in 113
(v,— A, )2+ 2o 7)) Ui—zl(vg+ ) [kgz—Z,LLaZa]3_2' e
|
Here, we have taken into account that {im,oz,,=z,, . intermediate state did not affect the leading singular behavior

of the Coulomb scattering amplitude at small momentum

two-charged particle scatterif6], the influence of the two- téansfer as compargd t?c tr?ellovyest—grd%r. contr;bungr;) in-a
body Coulomb Green's function on the analytic behavior ofSC™n Series expansion of the latiée., if G is replaced by

the two-particle Coulomb scattering amplitude defined via®o in the second term on the right-hand side L
TC=VC+VCGCVC had been investigated, by using the Now we have encountered the analogous situation in the

spectral representation @C. There we had come up with thrée-body case which, of course, is more complicated.
the following fundamental result: due to the mutual cancelWhen looking for the leading singular term of
lation of the Coulomb distortion factors in the pair of com- T/‘ff)(q; ,0.:;2) [see Eq(98)], in the spectral representation
plex conjugate Coulomb scattering wave functions, the pressf the Coulomb Green’s function, the exact three-body Cou-
ence of the two-body Coulomb Green's function in thelomb wave functions could be approximated by their leading

Let us comment on this result. In our previous work on
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asymptotic parts. Since théasymptoti¢ Coulomb wave 5 A0

functions appear there as a pair of complex conjugates of VealUhAai2Z) ~ e (117
each other, the phase factorsdp andJ.* containing the “«

Coulomb parameters®, v=a, 3,7, are complex conjugates This concludes the proof of the theorem.

as well. This fact eventually led to the same result: the pres-

ence of the three-body Coulomb Green’s function in the in- IV. CONCLUDING REMARKS

tNermediate state of the exact effective potential part The results of the present investigation, together with
V¥A(q!,,q.:2), Eq. (97), does not affect the singular be- those of paper [3], provide the proof that momentum space
havior at small momentum transfer, as compared to itshree-body integral equatioria the form of effective two-
lowest-order contribution)(2¥#)(q’ q,;2) given in Eq. body AGS equationzan be used with confidence to calculate
(83). all possible arrangemefie., 2—2) amplitudes below and
(@) Next assume, =, . The leading singular term f, - £100° 218 10 22 Ctb 1 O ever, a5 nformation
H B ! % . ’
's given by Eq/(1.E.33, and analogously that of," by concerning the singularity properties of the effective poten-
tials occurring in the analogous equations for breakup (2
—3) or even 3-3 amplitudes is still lacking, the results

£3 0 0 0 0
= - + 9o+ + : )
Ja" =4me.®y expl = m( 7, gt ) 210 (1+17,) obtained so far do not yet constitute a proof of compactness

YT (1+i(72+ 72 2e A0 KO in2 of the kernels of thgenuine three—bod’mtegral equations of
(A+i(ng+ 7)) 2€.84, - Kgl' 76 the Faddeey1] or AGS[2] type. One obvious consequence
T is that application of methods that aim at directly solving

1
[(A;o)z]ui(n%m‘;)'

(114  these latter equations woulds yej be without mathematical
justification. While reactions of the-33 type are of less
practical interest, experimental study of breakup processes is

Correspondingly, taking into account that far,=0 and Vigorously pursued in many laboratories. Hence, it is of great

q :a one has? =% =0. the leading singular term of |mpor_tance to c_ontlnue th_ese_lnve_stlgatlons, at I_east for the

'“LEBB) . e e effective potentials occurring in th@ntegra) equations for

Viaa (Ga,da:2) is found to be 2—3 amplitudes. Note that, if only two of the three particles

are charged, with charges being of the same sign, the proofs

provided by Alt, Sandhas, and Ziegelma9] within the

X[~ 2€,5A10-KO] 7>

S 7 ;Z)AZO_J(BB) , (115 screening and renormalization approach constitute a proof of
ac arta A, e compactness of the kernels of the correspondimge-body
integral equationscf. the validation of this assertion [18]).
with A further comment concerns the practical applicability of
the momentum space approach. Indeed, evaluation of the
10— 1952 3e2e2J dk® f dv® exact gffective potential Vs, (03,9 ;z)=<q;;,XB|GC(z)
aa M a€a€y —(277)3 (2m)° —65.G4(2)|xa+9), Eq. (1.11a), appears to be beyond
present means, due to the presence of the three-body Cou-
Xe~ w0+ 77%+ n3)|1~(1_i 7;0)|2|F(1—i(77°+ 7]o))|z lomb resolveniGC. On the other hand, a perturbative calcu-
“ A lation of Vﬁa(qg .0, ;2Z) based on the Neumann series expan-
x[l—&a-k%/(vo,k%)]i”%[l—&,,kgl(va-kg)]"ig sion of G¢ may also be unsatisfactory. For, as Theorem 2
o (cf. Part ) states for its nondiagonal and the auxiliary theo-
1 1 Li*L rem of the present paper for its diagonal part, even the

X

1
(v.—A )2+2i(,73+ 7) vzfzi(yl2+ D KZ (116 Iowes_t-order contribution}ﬁ(i)(q;;,qa;z) apd, thug, also all

“ e a “ the higher-order terms of the perturbation series have the
_ . o same leading singularity as the exact expression and conse-
_ (3 Itiis not difficult to see that all other contributions qently contribute to the strength of the residue at the singu-
V(9)(q! ,q,:2), with »,0=8,y, to the effective potential larity. Therefore, in principle no term of this infinite series
(96) behave in the limitA ,—0 as described above. Conse- should be omitted unless, of course, their contribution to the
quently, the leading singular behavior of the full effective residue strength turns out to become rapidly smaller as the

potential part(9) is given as order of iteration increases.
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