PHYSICAL REVIEW C, VOLUME 63, 044004

Chiral scalar form factor and central nucleon-nucleon potential
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The central two-pion exchandéN potential at large distances is studied in the framework of relativistic
chiral symmetry and related directly to the nucleon scalar form factor, which describes the mass density of its
pion cloud. This relationship is well supported by phenomenology and allows the dependence of the
asymptotic potential on the nucleon mass to be assessed. Results in the heavy baryon limit are shown to be
about 25% larger than those corresponding to the empirical nucleon mass in the region of physical interest.
This indicates that it is very important to keep this mass finite in precise descriptions Nf\irsystem and
supports the efficacy of the relativistic chiral framework. One also estimates the contribution of subleading
effects and presents a simple discussion of the role of the quark condensate in this problem.
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[. INTRODUCTION [4], the interest in applications was renewed and several au-
thors have tackled the problem of constructing the TPEP.
QCD is nowadays the main theoretical framework for un-Initially, nonlinear Lagrangians containing only pions and
derstanding hadronic processes, but its non-Abelian charagucleons were employd8]. However, these Lagrangians do
ter makes low-energy calculations unfeasible. The usudhot suffice to describe experimentaN data[10] and the
strategy for overcoming this difficulty consists in working corresponding potential misses even the scalar-isoscalar me-
with effective theories, constructed in such a way as to indium rangeNN attraction. In a later stage, other degrees of
clude, as much as possible, the main features of QCD. As iffeedom were introduced and coherence witN informa-
nuclear physics most processes involve only the quaeksd tion was restored11-13. This allowed predictions to be
d, one requires these theories to be Poindavariant and to  derived from the tail of the potential, which were compatible
possess approximate SU(2BU(2) chiral symmetry. The Wwith peripheral phase shifts and mixing parameférs 13—
breaking of the latter, due to the quark masses, is paramit7]- As far as the inner part of the interaction is concerned,
etrized by the small pion masg at the effective level. reasonable descriptions were produced with the help of free
In the last 20 years, effective theories incorporating chiraparameters and cutoffd1,17,.
symmetry have been successfully applied to hadronic inter- It is possible to distinguish two partially overlapping the-
actions, including or not electro-weak probes. As far as th@retical frameworks in these chiral calculations. One of
hadronic sector is concerned it is useful to distinguish twathem, adopted in Ref§11,13,15-17, is based on HBChPT.
classes of processes, involving only mesons or both meson8 this theory, a rule exists for counting powers of the typical
and baryons. In the case of purely pionic systems, effectivéhree-momenta exchanged between nucleons, assumed to be
Lagrangians are treated relativistically and yield well-definedof the order of the pion mass. This allows the construction of
power counting procedures, in both pion mass and momentaon-relativistic effective Lagrangians, that include unknown
[1,2]. This gives meaning to the idea of chiral perturbationcounterterms and are used to derive amplitudes in which
theory. When nucleons are present, things become morontributions from loops and these counterterms add up co-
complicated[3] and many calculations were performed in herently. A rather puzzling aspect of these counting schemes,
the simplified framework of the so-called heavy baryon chi-in the case oNN interactions, is that they predict a leading
ral perturbation theoryfHBChPT), in which nucleons are contribution in the Ith expansion with the following spin-
treated nonrelativisticallj4,5]. Only recently a well-defined isospin structurg13,17:
power counting scheme was proposed for the relativistic ap-
proach[6]. Vieading= Vso?: 0@+ VS p+ We D). #42),
In the case of two-nucleon systems, interactions involve
processes with a marked spatial hierarchy, whose dynamicalhere , o, and S, are the usual isospin, spin, and tensor
complexity increases rapidly when one moves inward. In theperators. This means that, in HBChPT, the scalar-isoscalar
best semiphenomenological potentials existing at presententral potential, which is by far the most important phenom-
that can reproduce low-energy observables accurately, thenological component of the TPEP, corresponds to a sub-
interaction is determined by the undisputed one-pion exieading effect.
change, supplemented by a theoretical two-pion exchange The other approach to the TPEP is based on relafit#y

potential(TPEPR, and parametrized at short distan¢@s]. and emphasis is given to the tail of the interaction, which is
The TPEP is the locus of chiral symmetry in this problem,determined by the well-knowmrN amplitude. No attention
since it is closely related to the pion-nucleonN) ampli-  is paid to counterterms in the effective Lagrangian, that cor-

tude [7]. After the works of Weinberg in the early 1990s respond to zero-range interactions and represent processes
restating the role of chiral symmetry in nuclear interactionssuch as multimeson or quark exchanges. Tail and counter-
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term contributions do not overlap in space and can be treate@hereg is the #N coupling constant. The remainder is rep-
separately inNN potentials. It is worth pointing out that, resented byT; and encompasses other degrees of freedom,
irrespective of the approach adopted, potentials need to bsther in the form of low-energy constants or by means of
regularized in order to be used in dynamical equations.  specific models, that may include theand other states. One
For systems containing just a single nucleon, relativistioyrites symbolically[T*]=[T,§]+[TF§] for each nucleon
and HBChPT calculations were compared and found to b@nd the potential is then proportional to
consistent, provided that the dimensional regularization scale
is set equal to the nucleon mgds]. In this work we repeat [THOTH@=[T 1O TP+ {[ TV TL @
this kind of comparison, for the leading contribution to the
two-pion exchang&N potential, and show that relativistic HTR V[T +[TEID[TEP.
and HBChPT predictions fail to agree by 25%. The reason
for this important discrepancy may be traced back to theThis product involves box, crossed box, triangle, and bubble
properties of the scalar form factor, as discussed recently byliagrams, that should be taken into account in a complete
Becher and Leutwylef6]. calculation. As pointed out by Grod49] long ago, the
[T 1V[T51® contribution is very small, due to chiral can-
Il. TPEP cellations. The detailed numerical study of this structure per-
formed in Ref[12] has confirmed this conclusion and shown
The construction of the TPEP was discussed in detail inhat the crossed term, within curly brackets, is largely domi-

Ref.[12] and here we just sketch the main steps. The potennant. It is due to &, that may be expressed as
tial is based on the on-shélIN scattering amplitude contain-

ing two intermediate pions, from which one subtracts the
iterated one-pion exchange potenti@PEB, in order to

avoid double counting. The isoscalar component, represented . .
by 75, is given by 9 P P where theag; are subthreshold coefficierts0]. In this mul-

tipolar expansiorlag1 represents the fact that a nucleon can
i od'Q 3[THW[TH@ be deformed when interacting with pions and is associated
__ —(OPER?, (1) with the so called axial polarizability parameter, given by
2 (2m)* [k = p?[k %= u?] ’ ap=2ag;.
This allows the asymptotic central potential to be written
whereT™ is the isospin symmetrieN scattering amplitude as[20]
for pions with momenték and k', Q= (k' +k)/2, and the
factor 1/2! accounts for the symmetry under the exchange of 75 N ) on(t) —
the intermediate pions. In the sequence we represent initial 2 a(t) =[(8got tag)uu] 2 uu
and final nucleon momenta lpyandp’, their mass byn and K
also use the variableg= (k' —k), t=q?, V=(p'+p)/2m,
andv=V-Q.

Th = (agyttag)uu, 3

2
+(1<2), (4

where o (t) is the nucleon contribution to the scalar form
In general, the amplitud&* can depend on four indepen- fe;ctr?r.l Quite generall;ll(,l this form fa_ctor is defi,ned in terms
dent variablesy, t, k?, andk’2. As the exchanged pions are oft e_symmetry-brea ing Lagrangiaty, .a_s(p v|_£Sb|p>
off shell, one should, in principle, kee andk’2 uncon- = o(t)uu. As discussed by Gasser, Sainio, anear$ 3],
strained everywhere. However, when these factors appear fin(t) is associated with the diagram of Figaland given
the numerator of amplitudes, we may wrik8=pu2+ (k2 Py
—u?) ork'?=u?+ (k'?>— u?) and use the terms within pa-
rentheses to cancel pion propagators in @g. This kind of 39%u? 1 1)
cancellation is associated with short-range terms that do not on=75 7, (4W)2[JC’C(t)_‘Jc,sN(t)]v 5
contribute to the asymptotic potential. Therefore, whenever
possible, we neglect them and repldceandk’? by u? in
the numerators of our expressions. Concerning the variabl
v andt, the conditions of integration in Eql) are such that
the main contributions come from the unphysical region _(4m)? [ d'Q
~0, t=4u? [7]. In particular, the vicinity of the point Jeo(O)= i (2m)*
=442 determines the potential at very large distances.
In order to exhibit the structure of the TPEP, it is conve- 1 ©)
nient to isolate inT* a termT,; , involving only chiral pion- X > 5 > o1
nucleon interactions at tree level and written as [(Q=a/2)"~ pI(Q+a/2)"~ p7]

2
ng%ﬁl—

é/ghere the loop integrald(t) are written as

m m
(pFk)?—m? (p—k')?—m?

Qtu lin Ref.[20] a similar expression was used, based on the param-
eter ag=[ u(agyt+ 4u2ae) ], which tends to the present one for
2 very long distances.
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The integral given by Eq(6) is divergent and has to be
regularized. However, this procedure affects only the zero-
range features of the potential and is irrelevant for the
present discussion, which concentrates on asymptotic prop-

ences between functions calculated at generic valuearnd
att=0, denoted by a caret.

The nonrelativistic potential is obtained by going to the

(4m)? 1 [ d*Q 2mV-Q @
bove) 2m)* [(Q-a/2)* - w?I[(Q+0a/2)®~ n?][Q*+2mV-Q—q?/4]
|
» (a?+ax?)/2 )
+tan
Ja?+a(l—a)k’—(a’+ak?)?/4
2 2
erties. Therefore, in the sequence, we consider only differ- _ @ tan 1 (1-a)—a’/2
a’—a’l4 a’—a’l4
. a2
+tan ———; . (11

center-of-mass frame, whete= —g?, and making uu]—1

in Eg. (4). One then has
3 [g)?] m
327 m/ |7p

X[Je.o(m;0) —ﬁé,ls)N(m;q)]} : ®)

Vi(m;q)=—2(ag— qza&)r

where we now indicate explicitly the dependence of the po-
tential on the nucleon mass. The minus sign in front of this =—
expression was introduced in order to account for our con-

vention of the relativistid@ matrix. It is worth noting that this

contribution was already included in the general formulation

of Ref.[12].
We define the “small” dimensionless quantitiea

=u/m, k=|g|/m, and use the standard techniques for loop

integration in order to write
~ 1
Jc,c(m;q)z—f daln[1+a(1—a)x? a?]
0

J1+4ad?k?+1

=2— 1+ 4a?% K2 In| ——/———
V1+4a? k?—1

C)

~ 1 1
nggN(m;q)=2f da(1—a)2f db(1—b){[a(1—a)bk?
0 0

+(a+b—ab)a?+(1-a)?(1—b)?]*
—[(a+b—ab)a®+(1-a)%(1-b)?] "4}

In(m;q),

:jc,c(m;Q)_ (10

where the integraiN(m;q) is given by

__( m )fld (a®+ak?)
A\l o 2 Ja?+a(l—a)x’—(a’+ax?)’l4

- (1—a)—(a?’+ax?)/2
an
Ja?+a(l—a)k?’— (a’+ax?)?/4

The functionoy(t) and the asymptotic central potential can
then be written simply as

Vi(m;q)=— [f2(agy*+tagy) Jon(m;t)

2 2
f’JT

3M3 g 2A .
E(E) |N(m,Q)}-

(12

fzﬂz[fﬂa&)— *agy)]

The first result is very general and independent of specific
models or approximation schemes used to calculate the sca-
lar form factor. It has a rather transparent physical interpre-

tation: the factor proportional to(t) represents, as we will
show, the pion cloud of one of the nucleons, which is ex-
tended in space; the term involving the subthreshold coeffi-
cients in the square bracket represents the other nucleon,
acting as a scalar source expanded in multipoles; the factor 2
arises because the potential is due to the crossed term in
(N+R)? and the scale € f2u?) corresponds to the energy
density of the quark condensate.

Empirical values of the subthreshold coefficients can be
obtained by means of dispersion relations and some results
available in the literature are given in Table I. As was
pointed out long agp23], they may be well represented by a
model including the delta and supplemented by information
about the scalar form factor. In order to use this information,

- ~ , - ~ .
7 ~ ; "\

/ A / \
! \ [ \
| |
: —

N A
(a) (b)

FIG. 1. Leading contributions to the two-pion exchange poten-
tial; the black dot indicates that one of the nucleons acts as a scalar
source, that disturbs the pion cloud of the other.
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TABLE |. Values for the subthreshold coefficierds,, ag;, and the scalar form factor at the Cheng-
Dashen pointg(t=2u2). Labels(emp, (s), and (A|) denote, respectively, empirical results, theoretical
scalar form factor, and leading delta contributions.

emp? emp® emp® s A, S+A,
ago(,u,’l) —1.46+0.10 —1.30=0.02 —1.27+0.03 0.72 —-1.89 —-1.20
ag(un™%) 1.14+0.02 1.35-0.14 1.270.03 0.12 0.94 1.12
a(21?) (MeV) 64+8 88+ 15 90+8
8Referencd 10].
PReference 21].
‘Referencd22].
I =~ ! = — H ~ ~
one erteSU(t)_othIo , Whereo=o(t O_) is thewN o Ty(m—:q)=1ns(9)
term. The parameter’, the slope at the origin, may also be
obtained by means of dispersion relations. For instance, a ( m)\ (1 u’+aq?
recent analysi$24], based onr(2u?)=60 MeV, has pro- =—\— —f dal
Y $ ] ( /“L) p g 2 0 U2+a(1_a)q2

duced =45 MeV, which corresponds to’ =0.054u 1.
The scalar form factor is then related to the subthreshold
coefficients byagy)s=o/f2 andag,)s=o'/f2, wheref . is =-—
the pion decay constant.

As far as the delta is concerned, one uses the results of ) o
Ref. [25] and obtains The expression for the heavy-baryon potential in momen-

tum space is then

2+ P12 1
wi+ail2 } a7

tan “—— =|.
wld 2u 2

8\ w*(m+My) u?
a+o)A=—92(—)— — . 13 9a
0 A 9 Mz_mz_ﬂz Mi VHB(Q) 16 f_ (ago_qzagl)
aips-i[ )M (12 e L T
WaTIM g 2 T 2 M2 Jas| 2u) 2
wu? where we have used the Goldberger-Treiman relagitm

=ga/f . This result reproduces, up to irrelevant polynomial
terms, the potential derived in Ref13] using HBChPT,
(3M +2m)H when one identifies the subthreshold coefficients and the low
, (19

2ME(ME—m?—pu?)

energy constantg; as follows: agy=— u?(4c,—2c3)/f2

X| M4 (BMy—m) — u?

(My+m) andag;= —c5/f2 . Itis worth pointing out that the numerical
where M, is the delta masgj, is the pion-nucleon delta- 00

coupling constant, and we have takés- —1/2. The con- L
stantg, can be related tg by means of the larghl, result 01 |
2mg, =39/ 2 [26] and the leading delta contributions may i
be written as 02
2 2 ~ 03F
o [9 2 o |
SN (m My—m’ (19 f— 04
1 g 2 1 05
+y T2 !
aOl)A_Z(m) Ma—m’ (18 -06 -

Adopting g=13.40 andf ,=93 MeV, one has the values o7l—— e

0.0 05 1.0 15 20

displayed in Table I.
play q/p

Most of the dependence of the potential on the momen-
tum transferred is embodied in the dimensionless function FIG. 2. Dependence of the functidg(m:q), Eq. (11), on the

In(m;0), which is also influenced by the value of the nucleon mass, fom=my (continuous ling m=10m, (dot-dashed
nucleon mass. In the heavy-baryon limit definednas:«, line), m=100my (dashed ling m=1000m (dotted ling, where
this function can be evaluated analytically and one [i&$ my, is the empirical nucleon mass.
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values recommended in that work yielghy=—2.19."1,  are kept, one recovers standard values. The recent results
ag;=1.66u"3, and deviate from those quoted in Table I. presented in Ref§16,17 rely on Eq.(18) as well.

This happens because the constanticlude both leading Heavy baryon chiral perturbation theory was also used in
terms and first-order correctiofg6], which are taken into other calculationg11], based on time-ordered perturbation
the potential, giving rise to fourth-order corrections to other-theory. In order to allow comparison with our results, we
wise third-order expressions. When only third-order termsperform Cauchy integrations in Eq&) and(7) and obtain

(m Q)— _(JC C_Jc sN

_47ij d*Q 1 2m (MVP+EQ)VO+V-Q
poJ@2a)p|ero(orto) V2] E[(MVP+Eg)?—w? [(MVP+Eg)?—w?]
1 0. VO+V.Q w_VO+V.Q )
(0F—0?) | 0. [(MVP-0,)?~E}] o [(MVP—w )2- ol
(04— M2+Q2.w_HVM2+Q2)], (19)
|
where The potential in coordinate space is given by
0=+ (Q= 1) .
va(m;r)=— ag)lon(mir), (22
and kb
Eq=Vm?+(Q+mV)2. whereay(m;r) is the form factor in configuration space. It is
. - convenient to write it in terms of a dimensionless function
Going to the limitm—«, one has -
Fn(m;r) as
- 47 [ d°Q | QP-4 Q
Ihe(a)=— 2m?| wo? - (12+QP)2 (20) N 3u8 (g ZIA: ) 23
+ % — M O-N(m!r)_lzan-z m N(mlr)l ( )
and a potential given by
with
R 3
VHB(q):_ 4 (aOO q )f 2 )3 v T T T T T
10 |
Q2_ 2/4 Q2 |
|7 qz 2. 22 (2D 08| i
W w_ (u+Q%)
G
In order to check the consistency of this result, we have & os |- g
integrated analytically Eq20) and recovered Eq17) ex- 3
actly. g 04k -
In Fig. 2, we display the behavior dfy(m;q) for m o=
=my,10my,100my, and 1000y, wheremy=938.28 MeV ozl |
is the empirical nucleon mass. The ratiggm;a)/1 s(q) for '
the same values ofi are shown in Fig. 3, where it is possible . . .
to see that typical deviations from the heavy baryon limitare %% ’ 05 ! 0 ! pys : 2.0
respectively about 30%, 10%, 2%, and less than 1%. Thus q/p

one learns that, in the present case, the heavy baryon limit is

about 30% far from the real world. As we discuss in the next FIG. 3. Dependence of the ratios of the functidyém;q), Eq.
section, this is related to the properties of the scalar forni11), andi,g(q), Eq. (17), on the nucleon mass; conventions as in
factor[6]. Fig. 2.
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T ) T T " is about 25% asymptotically. The difference between the

10 g sizes of the gaps in momentum and configuration spaces can
e g : be understood by noting that the former may contain pure
' polynomials, which correspond to zero-range functions and

hence are not present in the latter.

Ill. CHIRAL SYMMETRY

F(m; 1) / Ey (1)

The behavior of the triangle integral that determines the
scalar form factor has been extensively discussed in a recent
work by Becher and Leutwyldi6]. The leading term in their
chiral expansion oé-(t) can be obtained by neglecting terms
proportional tot/4m? in Eq. (27) and one has

04 E

02 -

0.0 . L . L

0 1 2 3 4 . m 1 1 (1_ 772/2) e~ X
r (fm) F|(m;r)=—EJ daJ de . (30
0 0

FIG. 4. Dependence of the ratios of the functicﬁr};{m;r), Eq.
(27), andF,,5(r), Eq. (25), on the nucleon mass; conventions as in ~ This result is equivalent to the dispersive representation of

Fig. 2. Ref.[6], given by
. A &g . . 1 f (H2—t12) e
)= — —ig-r . F(m;r)=— dt G(mt,u)———
Fn(m;r) e (27r)3e In(m;Q). (24) ((m;r) ] N i(m;t,u)
(32)
In the heavy-baryon limit this expression can be evaluated
explicitly [13] and, usingx= ur, one obtains with
Fr(m—oo;r)=Fyp(r) omyt—4u?
N "e G(m;t,u)=tan ! —z'u . (32
2 1 —2X 1 e—x 2 t_2,LL
=1+t 5| —= 1+—)— ,
X x%) x X/ X In order to study the structure of this integral, we rewrite
(25) it as
3 11 6 3le . 1 e &= (u’=t2)
2F = I T Fi(mjr)=—— dt————G,(m;t,
ViFue(r) 4( 1+ -+ 2x2+ x3+ x“) 2 (26) ((m;r) ot X N (m;t, w)
x e~ (T=2min, (33

For generic values ah, it is more convenient to perform

the Fourier transform using directly Eq®) and (10) and o .
For large values ok, the exponential in the integrand falls

one haq20]
off very rapidly as a function of/t and the integral tends to
P m (1 1 [ A2PF2 g7hx be dominated by a small region arouryd4 2. On the other
—| Fn(mir)= Efo dafo dbl—— hand, the functioi&, vanishes at this point and hence the net
K result is due to a compromise between these two effects. In
2m? ,.(1-a)(1-b) e~ X the work o_f Becher and Leutwyler one learns that it is pos-
- 7P , sible to write accurately
w? ab X
T a(t—2u?)|°
@ emtw=g - 2(— T“Z)
where HB t=4p” g
\2=1/[a(1—a)b], (28) .\ aVt jtan,l au
2\t—4u? 2p Vi—au?|
n’=[a+b—ab+(1—a)?(1—b)’m?/ u?]\2. (29 H H-din

(34)
The behavior of the ratié y(m;r)/Fyg(r) as function of
mis displayed in Fig. 4, where one finds the same qualitativavherea= u/m. The first two terms in this expression corre-
pattern as in Figs. 2 and 3. In configuration space, howevegpond to the standard leading heavy-baryon contribution
the gap between the heavy-baryon limit and results with th€ HB) and first-order correctiorHB,c), whereas the last one
empirical value of the nucleon mass varies with distance an¢ith) implements the correct analytic behavior around the
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e — 12 . . . .

12k e ]

ratio
V(N / V1

04 -

10

PUR U SR SR N S S ST SUN N S S S S R S S S 1 0.0 I 1 n 1

r(fm) r(fm)

FIG. 5. Ratios of the function§ 5 (dashed ling |3HB+|§£|B FIAG. 6. Ratio of the leading asymptotic relativistic chiral predic-
(dotted lind, and Fg+FES+Fy (continuous ling obtained by 10N V,(r), Es.(22) and (23) and Eqs.(30)—(32), by the central
using Eq.(34) in Eq. (31), by F,, Egs.(30)—(32). medium-range .A.rgonne potentig®7], f(?r the vglues of the sub-

' ’ threshold coefficients of Ref§10] (continuous ling [21] (dashed
line), and[22] (dotted line.
thresholdt=4u2. In particular, theHB term gives rise to
Eq. (25) and has been used in HBChPT calculations of thesjents considered in Table I. Typical discrepancies are of the
NN potential. order of 20%, indicating that the very simple mechanism

In Fig. 5, we display the ratios of the functios,g, described in the previous section is indeed responsible for
Fug+FCs, and Fug+FSg+F,,, obtained by using Eq. the leading contribution to the central potential. The gap cor-

(34) into Eq.(31), by E,. The first thing to be noted is that responding to the coefficients of R¢L0] has the order of

) N . A ) magnitude expected from chiral corrections whereas the
there is a gap betwedf,g andF;, which is about 20% in  Giner two are probably too small.

the region of physical interestAand can be as large as 40% i is worth pointing out that, in the case dfN interac-
asymptotically. The inclusion d¥{,g brings the approximate tions, nonleading contributions are embodied not only in the
result much closer to the exact one, indicating that the lastcalar form factor, but also in more complex amplitudes. In
term in Eq.(34) is important mainly at rather large distances. particular, in the evaluation of the delta contributions, one
Thus, in principle, HBChPT could allow a precise numericalhas also to include box and crossed-box diagrfibig. A
description of theNN potential, but this would require the comprehensive discussion of this problem will therefore be
extension of existing calculations to higher orders. This il-postponed.

lustrates the advantage of the relativistic framework pro-

posed recently by Becher and Leutwyler, namely, that it IV. OTHER RESULTS
gives rise automatically to leading contributions that are al- _ o _ )
ready rather accurate. We begin by considering first-order corrections to the

The leading chiral contribution to the central potential isleading result fora(t), which come from two different
obtained by using Eq$31) and(32) in Egs.(23) and(22). In sources. One of them corresponds to the terms neglected
order to assess the phenomenological implications of thisvhen passing from Eq27) to Eq. (30), whereas the other
result, one could evaluate phase shifts and compare theome is implemented by subthreshold coefficients, represent-
with experiment. However, one should bear in mind that, ining the remaindeR discussed in Sec. Il. Thus, the scalar
contributing to phase shifts, the central TPEP is superimform factor, including both leading and first-order correc-
posed on both isospin-dependent components and a largiens, is given by
OPEP background. Its effects are completely blurred in the . A R
s, wave, but may be identified in the wavéb, and 'G,. a(m;r)=on(m;r) + or(m;r), (35)

In the case of the TPEP, reproducing asymptotic phase shifts

2

m

1
(dgo+ tdgy) + 5 (u?~ t/4)d 1,

is not too difficult and different chiral models can accommo-wherea, is the result of Ref[3], given by Eq.(29) and o
date existing experimental dafd1,13—-17. Therefore, in s written in terms of the subthreshold coefficiedf$ as[6]
this work we assess the predictions of the asymptotic

\72(m;r) by comparing it with the Argonne phenomenologi- - ) 3ut [u

cal potential[27], which is rather accurate and constrained or(mir) = 12872

by a large database that also includes information about the

15, channel. In Fig. 6, we plot the ratio of the leading chiral X Fee(r), (36)
potential by the corresponding Argonne component, in the

range 1 fr=r<4 fm, for the sets of subthreshold coeffi- with
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FIG. 7. Ratios ofog [Eq. (36)-continuous ling o, [Eq. (39)- FIG. 8. Spatial dependence of the scalar form factor, normalized
dashed ling ando-, , [Eq. (38)-dotted lind, by the leading chiral PY the quark-condensate densityy, [Eq. (23)-dashed ling o
contributiono; Egs.(30)—(32) and (23). [Eqg. (39)-dotted ling, and oy, » (continuous ling

3 curs close to 0.6 fm. On the other hand, the value 1/100, for
E(r :4_mJ d’q e 1913 _(q) (37)  Which the pion field may be considered as weak, occurs
ce utl (2m)3 e around 1.5 fm, suggesting that this is the order of magnitude

of the distances beyond which perturbative calculations may
The main contributions to the coefficients entering thisbe considered as reliable.

result come from ther term and theA and one may also In order to explore this picture further, we recall that the
write nucleono term is related tar(r) by
. 3u* plo, . " 2
or(Mr) =g, A(Mr)= ——Feo(n)+o(mr). o=4m | drro(r). (41)
R +A 128772 mffr cc A 0

38
(38 The evaluation of this integral, using(r)=on(r)+ o(r)

The termo, is given by the diagram of Fig.(h). Using the  and replacing this function bﬁ,u,2 whenevera(r)/ff,,u2
results of Ref.[25] one finds, after neglecting the terms >1, yieldsoc=46 MeV, quite close to the value quoted in
O(t/m?), Ref.[24]. This somewhat surprising result is associated with

the factorr? in Eq. (34), that suppresses the integrand at
3u® [g\2(M+My). small distances, and seems to indicate that other mechanisms
128772(5) m Fa(mr), (39  contribute little to scalar dynamics.

Another interesting aspect of expressi@9) is that it
allows one to study the behavior of the scalar form factor in
the largeN. limit, where the nucleon and the delta become
both heavy and degenerate. In that limit one has=20

62= 2+ [(1-a)(1-b)(M3—m?)/u?]\2 (a0 28] and hence,

oa(m;n=

whereF, is obtained from thé~y of Eq. (30) by replacing
7? with

—X72

X

6 2
As the functiond determines the effective mass of the O (9> 42)
X

two-pion system exchanged between the nucleon and the o(N=on(r)+osr)= 12872\ M
scalar source, this result indicates that has shorter range
than oy . In Fig. 7, we display the ratios afg, o,, and This expression is identical with that obtained in the
o4 o by the leading chiral contributiosr; and one notes that framework of the Skyrme model, wherelgg(X)
these corrections remain visible at relatively large distances= f2 42 cosF(x) and, for large distances, one H&9]

The Fourier transform of the scalar form factor corre-
sponds to a mass density, that surrounds the nucleon and is 3gu? | d e*
due, in part, to the pion cloud. As the density of the quark F(x)— 8mmf,_/dx x
condensate is negative, the sign of the scalar density indi-
cates that the pions, as Goldstone bosons, destroy the comhis result, when combined with the fact that the model ac-
densate in order to exist. In this picture, the energy density ofounts well for the OPEP, shows that Skyrmions do have
the scalar cloud cannot exceed that of the condensate. In Figsymptotic properties consistent with precise perturbative
8, we plot the functiona(r)/ffr,u2 as function of the dis- calculations in the largél; limit. On the other hand, in the
tance, and it is possible to see that this critical situation ocperturbative approach, the departure from this limit is very

(43

044004-8
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important, suggesting that some of the quantitative limitatermediaterN amplitude close to the threshold &t 4 u?.
tions of the Skyrme model may be associated with the intrinAs this threshold lies almost on top of a branch point, the
sic N-A degeneracy. heavy baryon expansion for the scalar form factor fails to
converge in its vicinity. We have investigated the implica-
V. SUMMARY tions of this result for thédN interaction and found out that
. i ) threshold effects can be seen at very large distances only.
_In this work we studied the centralN potential at large  Therefore, in principle, HBChPT could account numerically
distances and have emphasized the special role played by th§ the discrepancy, in the central potential, between the
nucleon scalar form factor, which describes the mass de”SiTPJ{eavy-baryon limit and reality. However, this would require
of its pion cloud. The effect of this cloud over the other e extension of existing calculations to higher orders. This
nucleon, represented as a multipole expansion, dominates tRgesses the advantage of the relativistic framework, namely
asymptotic interaction. This rather simple picture accountshat it does not deal with truncated expressions and hence
for about 75% of the potential, as given by the precise pheg;yes rise automatically to leading contributions that are al-
nomenological fit by the Argonne group. ready rather accurate. A fully covariant description of the

We have evaluated this leading contribution, due to they interaction, including other degrees of freedom, will be
exchange of two pions, and determined its dependence Qftesented elsewhere.

the nucleon mass, using a covariant formalism. Our results

coincide with those of heavy baryon chiral perturbation

theory when the nucleon mass is taken't_o infinity, but be- ACKNOWLEDGMENTS

come about 20% smaller when the empirical mass is used.

This shows that it is important to keep the nucleon mass We would like to thank Dr. T. Becher and Professor H.

finite in precise descriptions of tHéN system. Leutwyler for discussions about the scalar form factor and
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