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Chiral scalar form factor and central nucleon-nucleon potential
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The central two-pion exchangeNN potential at large distances is studied in the framework of relativistic
chiral symmetry and related directly to the nucleon scalar form factor, which describes the mass density of its
pion cloud. This relationship is well supported by phenomenology and allows the dependence of the
asymptotic potential on the nucleon mass to be assessed. Results in the heavy baryon limit are shown to be
about 25% larger than those corresponding to the empirical nucleon mass in the region of physical interest.
This indicates that it is very important to keep this mass finite in precise descriptions of theNN system and
supports the efficacy of the relativistic chiral framework. One also estimates the contribution of subleading
effects and presents a simple discussion of the role of the quark condensate in this problem.
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I. INTRODUCTION

QCD is nowadays the main theoretical framework for u
derstanding hadronic processes, but its non-Abelian cha
ter makes low-energy calculations unfeasible. The us
strategy for overcoming this difficulty consists in workin
with effective theories, constructed in such a way as to
clude, as much as possible, the main features of QCD. A
nuclear physics most processes involve only the quarksu and
d, one requires these theories to be Poincare´ invariant and to
possess approximate SU(2)3SU(2) chiral symmetry. The
breaking of the latter, due to the quark masses, is par
etrized by the small pion mass (m) at the effective level.

In the last 20 years, effective theories incorporating ch
symmetry have been successfully applied to hadronic in
actions, including or not electro-weak probes. As far as
hadronic sector is concerned it is useful to distinguish t
classes of processes, involving only mesons or both me
and baryons. In the case of purely pionic systems, effec
Lagrangians are treated relativistically and yield well-defin
power counting procedures, in both pion mass and mom
@1,2#. This gives meaning to the idea of chiral perturbati
theory. When nucleons are present, things become m
complicated@3# and many calculations were performed
the simplified framework of the so-called heavy baryon c
ral perturbation theory~HBChPT!, in which nucleons are
treated nonrelativistically@4,5#. Only recently a well-defined
power counting scheme was proposed for the relativistic
proach@6#.

In the case of two-nucleon systems, interactions invo
processes with a marked spatial hierarchy, whose dynam
complexity increases rapidly when one moves inward. In
best semiphenomenological potentials existing at pres
that can reproduce low-energy observables accurately,
interaction is determined by the undisputed one-pion
change, supplemented by a theoretical two-pion excha
potential~TPEP!, and parametrized at short distances@7,8#.

The TPEP is the locus of chiral symmetry in this proble
since it is closely related to the pion-nucleon (pN) ampli-
tude @7#. After the works of Weinberg in the early 1990
restating the role of chiral symmetry in nuclear interactio
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@4#, the interest in applications was renewed and several
thors have tackled the problem of constructing the TPE
Initially, nonlinear Lagrangians containing only pions an
nucleons were employed@9#. However, these Lagrangians d
not suffice to describe experimentalpN data @10# and the
corresponding potential misses even the scalar-isoscalar
dium rangeNN attraction. In a later stage, other degrees
freedom were introduced and coherence withpN informa-
tion was restored@11–13#. This allowed predictions to be
derived from the tail of the potential, which were compatib
with peripheral phase shifts and mixing parameters@11,13–
17#. As far as the inner part of the interaction is concern
reasonable descriptions were produced with the help of
parameters and cutoffs@11,17#.

It is possible to distinguish two partially overlapping th
oretical frameworks in these chiral calculations. One
them, adopted in Refs.@11,13,15–17#, is based on HBChPT
In this theory, a rule exists for counting powers of the typic
three-momenta exchanged between nucleons, assumed
of the order of the pion mass. This allows the construction
non-relativistic effective Lagrangians, that include unknow
counterterms and are used to derive amplitudes in wh
contributions from loops and these counterterms add up
herently. A rather puzzling aspect of these counting schem
in the case ofNN interactions, is that they predict a leadin
contribution in the 1/m expansion with the following spin-
isospin structure@13,17#:

Vleading5VSs(1)
•s(2)1VTS121WCt(1)

•t(2),

wheret, s, andS12 are the usual isospin, spin, and tens
operators. This means that, in HBChPT, the scalar-isosc
central potential, which is by far the most important pheno
enological component of the TPEP, corresponds to a s
leading effect.

The other approach to the TPEP is based on relativity@12#
and emphasis is given to the tail of the interaction, which
determined by the well-knownpN amplitude. No attention
is paid to counterterms in the effective Lagrangian, that c
respond to zero-range interactions and represent proce
such as multimeson or quark exchanges. Tail and coun
©2001 The American Physical Society04-1
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term contributions do not overlap in space and can be tre
separately inNN potentials. It is worth pointing out that
irrespective of the approach adopted, potentials need to
regularized in order to be used in dynamical equations.

For systems containing just a single nucleon, relativis
and HBChPT calculations were compared and found to
consistent, provided that the dimensional regularization s
is set equal to the nucleon mass@18#. In this work we repeat
this kind of comparison, for the leading contribution to t
two-pion exchangeNN potential, and show that relativisti
and HBChPT predictions fail to agree by 25%. The reas
for this important discrepancy may be traced back to
properties of the scalar form factor, as discussed recentl
Becher and Leutwyler@6#.

II. TPEP

The construction of the TPEP was discussed in detai
Ref. @12# and here we just sketch the main steps. The po
tial is based on the on-shellNN scattering amplitude contain
ing two intermediate pions, from which one subtracts
iterated one-pion exchange potential~OPEP!, in order to
avoid double counting. The isoscalar component, represe
by T S, is given by

T S52
i

2!E d4Q

~2p!4

3@T1# (1)@T1# (2)

@k22m2#@k822m2#
2~OPEP!2, ~1!

whereT1 is the isospin symmetricpN scattering amplitude
for pions with momentak and k8, Q5(k81k)/2, and the
factor 1/2! accounts for the symmetry under the exchang
the intermediate pions. In the sequence we represent in
and final nucleon momenta byp andp8, their mass bym and
also use the variablesq5(k82k), t5q2, V5(p81p)/2m,
andn5V•Q.

In general, the amplitudeT1 can depend on four indepen
dent variables,n, t, k2, andk82. As the exchanged pions ar
off shell, one should, in principle, keepk2 and k82 uncon-
strained everywhere. However, when these factors appe
the numerator of amplitudes, we may writek25m21(k2

2m2) or k825m21(k822m2) and use the terms within pa
rentheses to cancel pion propagators in Eq.~1!. This kind of
cancellation is associated with short-range terms that do
contribute to the asymptotic potential. Therefore, whene
possible, we neglect them and replacek2 and k82 by m2 in
the numerators of our expressions. Concerning the varia
n andt, the conditions of integration in Eq.~1! are such that
the main contributions come from the unphysical regionn
'0, t>4m2 @7#. In particular, the vicinity of the pointt
54m2 determines the potential at very large distances.

In order to exhibit the structure of the TPEP, it is conv
nient to isolate inT1 a termTN

1 , involving only chiral pion-
nucleon interactions at tree level and written as

TN
15

g2

m
ūH 12F m

~p1k!22m2
2

m

~p2k8!22m2GQ” J u,

~2!
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whereg is thepN coupling constant. The remainder is re
resented byTR

1 and encompasses other degrees of freed
either in the form of low-energy constants or by means
specific models, that may include theD and other states. On
writes symbolically @T1#5@TN

1#1@TR
1# for each nucleon

and the potential is then proportional to

@T1# (1)@T1# (2)5@TN
1# (1)@TN

1# (2)1$@TN
1# (1)@TR

1# (2)

1@TR
1# (1)@TN

1# (2)%1@TR
1# (1)@TR

1# (2).

This product involves box, crossed box, triangle, and bub
diagrams, that should be taken into account in a comp
calculation. As pointed out by Gross@19# long ago, the
@TN

1# (1)@TN
1# (2) contribution is very small, due to chiral can

cellations. The detailed numerical study of this structure p
formed in Ref.@12# has confirmed this conclusion and show
that the crossed term, within curly brackets, is largely dom
nant. It is due to aTR

1 that may be expressed as

TR
15~a00

1 1ta01
1 !ūu, ~3!

where thea0i
1 are subthreshold coefficients@10#. In this mul-

tipolar expansion,a01
1 represents the fact that a nucleon c

be deformed when interacting with pions and is associa
with the so called axial polarizability parameter, given
aA52a01

1 .
This allows the asymptotic central potential to be writt

as @20#

T a
S~ t !5@~a00

1 1ta01
1 !ūu# (1)FsN~ t !

m2
ūuG (2)

1~1↔2!, ~4!

wheresN(t) is the nucleon contribution to the scalar for
factor.1 Quite generally, this form factor is defined in term
of the symmetry-breaking LagrangianLsb as ^p8u2Lsbup&
5s(t)ūu. As discussed by Gasser, Sainio, and Sˇvarc @3#,
sN(t) is associated with the diagram of Fig. 1~a! and given
by

sN~ t !5
3

2

g2m2

m

1

~4p!2
@Jc,c~ t !2Jc,sN

(1) ~ t !#, ~5!

where the loop integralsJ(t) are written as

Jc,c~ t !5
~4p!2

i E d4Q

~2p!4

3
1

@~Q2q/2!22m2#@~Q1q/2!22m2#
, ~6!

1In Ref. @20# a similar expression was used, based on the par
eter a00

1 [@m(a00
1 14m2a01)#, which tends to the present one fo

very long distances.
4-2
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Jc,sN
(1) ~ t !5

~4p!2

i

1

V2E d4Q

~2p!4

2mV•Q

@~Q2q/2!22m2#@~Q1q/2!22m2#@Q212mV•Q2q2/4#
. ~7!
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The integral given by Eq.~6! is divergent and has to b
regularized. However, this procedure affects only the ze
range features of the potential and is irrelevant for
present discussion, which concentrates on asymptotic p
erties. Therefore, in the sequence, we consider only dif
ences between functions calculated at generic values oft and
at t50, denoted by a caret.

The nonrelativistic potential is obtained by going to t
center-of-mass frame, wheret52q2, and making@ ūu#→1
in Eq. ~4!. One then has

V̂a
S~m;q!522~a00

1 2q2a01
1 !H F 3m

32p S g

mD 2G m

pm

3@ Ĵc,c~m;q!2 Ĵc,sN
(1) ~m;q!#J , ~8!

where we now indicate explicitly the dependence of the
tential on the nucleon mass. The minus sign in front of t
expression was introduced in order to account for our c
vention of the relativisticT matrix. It is worth noting that this
contribution was already included in the general formulat
of Ref. @12#.

We define the ‘‘small’’ dimensionless quantitiesa
5m/m, k5uqu/m, and use the standard techniques for lo
integration in order to write

Ĵc,c~m;q!52E
0

1

da ln@11a~12a!k2/a2#

522A114a2/k2 lnFA114a2/k211

A114a2/k221
G , ~9!

Ĵc,sN
(1) ~m;q!52E

0

1

da~12a!2E
0

1

db~12b!$@a~12a!bk2

1~a1b2ab!a21~12a!2~12b!2#21

2@~a1b2ab!a21~12a!2~12b!2#21%

5 Ĵc,c~m;q!2S pm

m D Î N~m;q!, ~10!

where the integralÎ N(m;q) is given by

Î N~m;q!

52S m

pm D E
0

1

daH ~a21ak2!

Aa21a~12a!k22~a21ak2!2/4

3F tan21S ~12a!2~a21ak2!/2

Aa21a~12a!k22~a21ak2!2/4
D

04400
-
e
p-
r-

-
s
-

n

p

1tan21S ~a21ak2!/2

Aa21a~12a!k22~a21ak2!2/4
D G

2
a2

Aa22a4/4
F tan21S ~12a!2a2/2

Aa22a4/4
D

1tan21S a2/2

Aa22a4/4
D G J . ~11!

The functionsN(t) and the asymptotic central potential ca
then be written simply as

V̂a
S~m;q!52

2

f p
2 m2

@ f p
2 ~a00

1 1ta01
1 !#ŝN~m;t !

52
2

f p
2 m2

@ f p
2 ~a00

1 2q2a01
1 !#F3m3

32p S g

mD 2

Î N~m;q!G .
~12!

The first result is very general and independent of spec
models or approximation schemes used to calculate the
lar form factor. It has a rather transparent physical interp
tation: the factor proportional toŝN(t) represents, as we wil
show, the pion cloud of one of the nucleons, which is e
tended in space; the term involving the subthreshold coe
cients in the square bracket represents the other nucl
acting as a scalar source expanded in multipoles; the fact
arises because the potential is due to the crossed term
(N1R)2 and the scale (2 f p

2 m2) corresponds to the energ
density of the quark condensate.

Empirical values of the subthreshold coefficients can
obtained by means of dispersion relations and some res
available in the literature are given in Table I. As w
pointed out long ago@23#, they may be well represented by
model including the delta and supplemented by informat
about the scalar form factor. In order to use this informati

FIG. 1. Leading contributions to the two-pion exchange pot
tial; the black dot indicates that one of the nucleons acts as a s
source, that disturbs the pion cloud of the other.
4-3
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TABLE I. Values for the subthreshold coefficientsa00
1 , a01

1 , and the scalar form factor at the Chen
Dashen point,s(t52m2). Labels ~emp!, (s), and (D l) denote, respectively, empirical results, theoreti
scalar form factor, and leading delta contributions.

empa empb empc s D l s1D l

a00
1 (m21) 21.4660.10 21.3060.02 21.2760.03 0.72 21.89 21.20

a01
1 (m23) 1.1460.02 1.3560.14 1.2760.03 0.12 0.94 1.12

s(2m2) ~MeV! 6468 88615 9068

aReference@10#.
bReference@21#.
cReference@22#.
e
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one writess(t)>s1ts8, wheres[s(t50) is thepN s
term. The parameters8, the slope at the origin, may also b
obtained by means of dispersion relations. For instanc
recent analysis@24#, based ons(2m2)560 MeV, has pro-
duced s545 MeV, which corresponds tos850.054m21.
The scalar form factor is then related to the subthresh
coefficients bya00

1 )s5s/ f p
2 and a01

1 )s5s8/ f p
2 , where f p is

the pion decay constant.
As far as the delta is concerned, one uses the result

Ref. @25# and obtains

a00
1 )D52gD

2 S 8

9D m2~m1MD!

MD
2 2m22m2 S 12

m2

MD
2 D , ~13!

a01
1 )D5gD

2 S 4

9D ~m1MD!

MD
2 2m22m2 H S 12

m2

MD
2 D

1
m2

2MD
2 ~MD

2 2m22m2!

3FMD~3MD2m!2m2
~3MD12m!

~MD1m! G J , ~14!

whereMD is the delta mass,gD is the pion-nucleon delta
coupling constant, and we have takenZ521/2. The con-
stantgD can be related tog by means of the largeNc result
2mgD53g/A2 @26# and the leading delta contributions ma
be written as

a00
1 )D52S g

mD 2 m2

MD2m
, ~15!

a01
1 )D5

1

2 S g

mD 2 1

MD2m
. ~16!

Adopting g513.40 andf p593 MeV, one has the value
displayed in Table I.

Most of the dependence of the potential on the mom
tum transferred is embodied in the dimensionless func
Î N(m;q), which is also influenced by the value of th
nucleon mass. In the heavy-baryon limit defined asm→`,
this function can be evaluated analytically and one has@13#
04400
a

ld

of

-
n

Î N~m→`;q![ Î HB~q!

52S m

pm D p

2E0

1

daF u21aq2

Au21a~12a!q2
2uG

52Fm21q2/2

muqu
tan21

uqu
2m

2
1

2G . ~17!

The expression for the heavy-baryon potential in mom
tum space is then

V̂HB~q!5
3m

16p S gA

f p
D 2

~a00
1 2q2a01

1 !

3F S m21q2/2

muqu D tan21S uqu
2m D2

1

2G , ~18!

where we have used the Goldberger-Treiman relationg/m
5gA / f p . This result reproduces, up to irrelevant polynom
terms, the potential derived in Ref.@13# using HBChPT,
when one identifies the subthreshold coefficients and the
energy constantsci as follows: a00

1 52m2(4c122c3)/ f p
2

anda01
1 52c3 / f p

2 . It is worth pointing out that the numerica

FIG. 2. Dependence of the functionÎ N(m;q), Eq. ~11!, on the
nucleon mass, form5mN ~continuous line!, m510mN ~dot-dashed
line!, m5100mN ~dashed line!, m51000mN ~dotted line!, where
mN is the empirical nucleon mass.
4-4
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values recommended in that work yielda00
1 522.19m21,

a01
1 51.66m23, and deviate from those quoted in Table

This happens because the constantsci include both leading
terms and first-order corrections@26#, which are taken into
the potential, giving rise to fourth-order corrections to oth
wise third-order expressions. When only third-order ter
v

le
ar
u
it

ex
rm

04400
-
s

are kept, one recovers standard values. The recent re
presented in Refs.@16,17# rely on Eq.~18! as well.

Heavy baryon chiral perturbation theory was also used
other calculations@11#, based on time-ordered perturbatio
theory. In order to allow comparison with our results, w
perform Cauchy integrations in Eqs.~6! and ~7! and obtain
Î N~m;q!5
m

pm
~ Ĵc,c2 Ĵc,sN

(1) !

5
4pm

m E d3Q

~2p!3 H 1

v1v2~v11v2!
2

2m

V2 F ~mV01EQ!V01V•Q

EQ@~mV01EQ!22v1
2 #@~mV01EQ!22v2

2 #

1
1

~v1
2 2v2

2 !
S v1V01V•Q

v1@~mV02v1!22EQ
2 #

2
v2V01V•Q

v2@~mV02v2!22EQ
2 #

D G
2~v1→Am21Q2,v2→Am21Q2!J , ~19!
is
on

in
where

v65Am21~Q26q2/4!

and

EQ5Am21~Q1mV!2.

Going to the limitm→`, one has

Î HB~q!5
4p

m E d3Q

~2p!3 FQ22q2/4

v1
2 v2

2
2

Q2

~m21Q2!2G ~20!

and a potential given by

V̂HB~q!52
3

4 S g

mD 2

~a00
1 2q2a01

1 !E d3Q

~2p!3

3FQ22q2/4

v1
2 v2

2
2

Q2

~m21Q2!2G . ~21!

In order to check the consistency of this result, we ha
integrated analytically Eq.~20! and recovered Eq.~17! ex-
actly.

In Fig. 2, we display the behavior ofÎ N(m;q) for m
5mN ,10mN ,100mN , and 1000mN , wheremN5938.28 MeV
is the empirical nucleon mass. The ratiosÎ N(m;q)/ Î HB(q) for
the same values ofm are shown in Fig. 3, where it is possib
to see that typical deviations from the heavy baryon limit
respectively about 30%, 10%, 2%, and less than 1%. Th
one learns that, in the present case, the heavy baryon lim
about 30% far from the real world. As we discuss in the n
section, this is related to the properties of the scalar fo
factor @6#.
e

e
s,
is
t

The potential in coordinate space is given by

V̂a
S~m;r!52

2

f p
2 m2

@ f p
2 ~a00

1 1“

2a01
1 !#sN~m;r!, ~22!

wheresN(m;r) is the form factor in configuration space. It
convenient to write it in terms of a dimensionless functi
F̂N(m;r) as

sN~m;r!5
3m6

128p2 S g

mD 2

F̂N~m;r!, ~23!

with

FIG. 3. Dependence of the ratios of the functionsÎ N(m;q), Eq.

~11!, and Î HB(q), Eq. ~17!, on the nucleon mass; conventions as
Fig. 2.
4-5
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F̂N~m;r!5
4p

m3E d3q

~2p!3
e2 iq•rÎ N~m;q!. ~24!

In the heavy-baryon limit this expression can be evalua
explicitly @13# and, usingx5mr , one obtains

F̂N~m→`;r![F̂HB~r!

5S 11
2

x
1

1

x2D e22x

x2
5F S 11

1

xD e2x

x G2

,

~25!

“x
2F̂HB~r!54S 11

3

x
1

11

2x2
1

6

x3
1

3

x4D e22x

x2
. ~26!

For generic values ofm, it is more convenient to perform
the Fourier transform using directly Eqs.~9! and ~10! and
one has@20#

S t

m2D p

F̂N~m;r!5
m

pmE0

1

daE
0

1

dbFl2p12

b

e2lx

x

2
2m2

m2
h2p

~12a!~12b!

ab

e2hx

x G ,

~27!

where

l251/@a~12a!b#, ~28!

h25@a1b2ab1~12a!2~12b!2m2/m2#l2. ~29!

The behavior of the ratioF̂N(m;r)/F̂HB(r) as function of
m is displayed in Fig. 4, where one finds the same qualita
pattern as in Figs. 2 and 3. In configuration space, howe
the gap between the heavy-baryon limit and results with
empirical value of the nucleon mass varies with distance

FIG. 4. Dependence of the ratios of the functionsF̂N(m;r), Eq.

~27!, andF̂HB(r), Eq. ~25!, on the nucleon mass; conventions as
Fig. 2.
04400
d

e
r,
e
d

is about 25% asymptotically. The difference between
sizes of the gaps in momentum and configuration spaces
be understood by noting that the former may contain p
polynomials, which correspond to zero-range functions a
hence are not present in the latter.

III. CHIRAL SYMMETRY

The behavior of the triangle integral that determines
scalar form factor has been extensively discussed in a re
work by Becher and Leutwyler@6#. The leading term in their
chiral expansion ofs(t) can be obtained by neglecting term
proportional tot/4m2 in Eq. ~27! and one has

F̂ l~m;r!52
m

pmE0

1

daE
0

1

db
~12h2/2!

ab

e2hx

x
. ~30!

This result is equivalent to the dispersive representation
Ref. @6#, given by

F̂ l~m;r!52
1

pm3E4m2

`

dt
~m22t/2!

At
Gl~m;t,m!

e2Atx/m

x
.

~31!

with

Gl~m;t,m!5tan21F2mAt24m2

t22m2 G . ~32!

In order to study the structure of this integral, we rewr
it as

F̂ l~m;r!52
1

pm3

e22x

x E
4m2

`

dt
~m22t/2!

At
Gl~m;t,m!

3e2(At22m)x/m. ~33!

For large values ofx, the exponential in the integrand fall
off very rapidly as a function ofAt and the integral tends to
be dominated by a small region aroundt54m2. On the other
hand, the functionGl vanishes at this point and hence the n
result is due to a compromise between these two effects
the work of Becher and Leutwyler one learns that it is po
sible to write accurately

Gl~m;t,m!>Fp2 G
HB

2Fa~ t22m2!

2At24m2 G
HB

c

1F aAt

2At24m2
2

At

2m
tan21

am

At24m2G
th

,

~34!

wherea5m/m. The first two terms in this expression corr
spond to the standard leading heavy-baryon contribu
(HB) and first-order correction (HB,c), whereas the last one
(th) implements the correct analytic behavior around
4-6
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thresholdt54m2. In particular, theHB term gives rise to
Eq. ~25! and has been used in HBChPT calculations of
NN potential.

In Fig. 5, we display the ratios of the functionsF̂HB ,
F̂HB1F̂HB

c , and F̂HB1F̂HB
c 1F̂ th , obtained by using Eq

~34! into Eq. ~31!, by F̂ l . The first thing to be noted is tha
there is a gap betweenF̂HB and F̂ l , which is about 20% in
the region of physical interest and can be as large as 4
asymptotically. The inclusion ofF̂HB

c brings the approximate
result much closer to the exact one, indicating that the
term in Eq.~34! is important mainly at rather large distance
Thus, in principle, HBChPT could allow a precise numeric
description of theNN potential, but this would require th
extension of existing calculations to higher orders. This
lustrates the advantage of the relativistic framework p
posed recently by Becher and Leutwyler, namely, tha
gives rise automatically to leading contributions that are
ready rather accurate.

The leading chiral contribution to the central potential
obtained by using Eqs.~31! and~32! in Eqs.~23! and~22!. In
order to assess the phenomenological implications of
result, one could evaluate phase shifts and compare t
with experiment. However, one should bear in mind that,
contributing to phase shifts, the central TPEP is super
posed on both isospin-dependent components and a
OPEP background. Its effects are completely blurred in
1S0 wave, but may be identified in the waves1D2 and 1G4.
In the case of the TPEP, reproducing asymptotic phase s
is not too difficult and different chiral models can accomm
date existing experimental data@11,13–17#. Therefore, in
this work we assess the predictions of the asympt
V̂a

S(m;r) by comparing it with the Argonne phenomenolog
cal potential@27#, which is rather accurate and constrain
by a large database that also includes information about
1S0 channel. In Fig. 6, we plot the ratio of the leading chir
potential by the corresponding Argonne component, in
range 1 fm<r<4 fm, for the sets of subthreshold coeffi

FIG. 5. Ratios of the functionsF̂HB ~dashed line!, F̂HB1F̂HB
c

~dotted line!, and F̂HB1F̂HB
c 1F̂ th ~continuous line!, obtained by

using Eq.~34! in Eq. ~31!, by F̂ l , Eqs.~30!–~32!.
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cients considered in Table I. Typical discrepancies are of
order of 20%, indicating that the very simple mechanis
described in the previous section is indeed responsible
the leading contribution to the central potential. The gap c
responding to the coefficients of Ref.@10# has the order of
magnitude expected from chiral corrections whereas
other two are probably too small.

It is worth pointing out that, in the case ofNN interac-
tions, nonleading contributions are embodied not only in
scalar form factor, but also in more complex amplitudes.
particular, in the evaluation of the delta contributions, o
has also to include box and crossed-box diagrams@15#. A
comprehensive discussion of this problem will therefore
postponed.

IV. OTHER RESULTS

We begin by considering first-order corrections to t
leading result forŝ(t), which come from two different
sources. One of them corresponds to the terms negle
when passing from Eq.~27! to Eq. ~30!, whereas the othe
one is implemented by subthreshold coefficients, repres
ing the remainderR discussed in Sec. II. Thus, the scal
form factor, including both leading and first-order corre
tions, is given by

ŝ~m;r!5ŝN~m;r!1ŝR~m;r!, ~35!

whereŝN is the result of Ref.@3#, given by Eq.~29! andŝR

is written in terms of the subthreshold coefficientsdi j
1 as@6#

ŝR~m;r!5
3m4

128p2 H m2

m F ~d00
1 1td01

1 !1
1

3
~m22t/4!d10

1 G J
3F̂cc~r!, ~36!

with

FIG. 6. Ratio of the leading asymptotic relativistic chiral pred

tion V̂s(r), Eqs. ~22! and ~23! and Eqs.~30!–~32!, by the central
medium-range Argonne potential@27#, for the values of the sub-
threshold coefficients of Refs.@10# ~continuous line!, @21# ~dashed
line!, and@22# ~dotted line!.
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F̂cc~r!5
4m

m4 E d3q

~2p!3
e2 iq•rĴcc~q!. ~37!

The main contributions to the coefficients entering t
result come from thes term and theD and one may also
write

ŝR~m;r!'ss1D~m;r!5
3m4

128p2

m2s

m fp
2
F̂cc~r!1ŝD~m;r!.

~38!

The termsD is given by the diagram of Fig. 1~b!. Using the
results of Ref.@25# one finds, after neglecting the term
O(t/m2),

ŝD~m;r!5
3m6

128p2 S g

mD 2~m1MD!

m
F̂D~m;r!, ~39!

whereF̂D is obtained from theF̂N of Eq. ~30! by replacing
h2 with

u25h21@~12a!~12b!~MD
2 2m2!/m2#l2. ~40!

As the functionu determines the effective mass of th
two-pion system exchanged between the nucleon and
scalar source, this result indicates thatsD has shorter range
than sN . In Fig. 7, we display the ratios ofsR , sD , and
ss1D by the leading chiral contributions l and one notes tha
these corrections remain visible at relatively large distanc

The Fourier transform of the scalar form factor corr
sponds to a mass density, that surrounds the nucleon a
due, in part, to the pion cloud. As the density of the qua
condensate is negative, the sign of the scalar density i
cates that the pions, as Goldstone bosons, destroy the
densate in order to exist. In this picture, the energy densit
the scalar cloud cannot exceed that of the condensate. In
8, we plot the functions(r )/ f p

2 m2 as function of the dis-
tance, and it is possible to see that this critical situation

FIG. 7. Ratios ofsR @Eq. ~36!-continuous line#, sD @Eq. ~39!-
dashed line#, andss1D @Eq. ~38!-dotted line#, by the leading chiral
contributions l Eqs.~30!–~32! and ~23!.
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curs close to 0.6 fm. On the other hand, the value 1/100,
which the pion field may be considered as weak, occ
around 1.5 fm, suggesting that this is the order of magnit
of the distances beyond which perturbative calculations m
be considered as reliable.

In order to explore this picture further, we recall that t
nucleons term is related tos(r ) by

s54pE
0

`

drr 2s~r !. ~41!

The evaluation of this integral, usings(r )5sN(r )1sD(r )
and replacing this function byf p

2 m2 whenevers(r )/ f p
2 m2

.1, yieldss546 MeV, quite close to the value quoted
Ref. @24#. This somewhat surprising result is associated w
the factor r 2 in Eq. ~34!, that suppresses the integrand
small distances, and seems to indicate that other mechan
contribute little to scalar dynamics.

Another interesting aspect of expression~39! is that it
allows one to study the behavior of the scalar form factor
the largeNc limit, where the nucleon and the delta becom
both heavy and degenerate. In that limit one hassD52sN
@28# and hence,

s~r !5sN~r !1sD~r !5
9m6

128p2 S g

mD 2F“x

e2x

x G2

. ~42!

This expression is identical with that obtained in t
framework of the Skyrme model, whereLSB(x)
5 f p

2 m2 cosF(x) and, for large distances, one has@29#

F~x!→S 3gm2

8pm fp
D d

dx

e2x

x
. ~43!

This result, when combined with the fact that the model
counts well for the OPEP, shows that Skyrmions do ha
asymptotic properties consistent with precise perturba
calculations in the largeNc limit. On the other hand, in the
perturbative approach, the departure from this limit is ve

FIG. 8. Spatial dependence of the scalar form factor, normali
by the quark-condensate density:sN @Eq. ~23!-dashed line#, sD

@Eq. ~39!-dotted line#, andsN1D ~continuous line!.
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important, suggesting that some of the quantitative lim
tions of the Skyrme model may be associated with the int
sic N-D degeneracy.

V. SUMMARY

In this work we studied the centralNN potential at large
distances and have emphasized the special role played b
nucleon scalar form factor, which describes the mass den
of its pion cloud. The effect of this cloud over the oth
nucleon, represented as a multipole expansion, dominate
asymptotic interaction. This rather simple picture accou
for about 75% of the potential, as given by the precise p
nomenological fit by the Argonne group.

We have evaluated this leading contribution, due to
exchange of two pions, and determined its dependence
the nucleon mass, using a covariant formalism. Our res
coincide with those of heavy baryon chiral perturbati
theory when the nucleon mass is taken to infinity, but
come about 20% smaller when the empirical mass is u
This shows that it is important to keep the nucleon m
finite in precise descriptions of theNN system.

In a recent work, Becher and Leutwyler have shown t
the scalar form factor is determined by the values of an
.
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termediatepN amplitude close to the threshold att54m2.
As this threshold lies almost on top of a branch point, t
heavy baryon expansion for the scalar form factor fails
converge in its vicinity. We have investigated the implic
tions of this result for theNN interaction and found out tha
threshold effects can be seen at very large distances o
Therefore, in principle, HBChPT could account numerica
for the discrepancy, in the central potential, between
heavy-baryon limit and reality. However, this would requi
the extension of existing calculations to higher orders. T
stresses the advantage of the relativistic framework, nam
that it does not deal with truncated expressions and he
gives rise automatically to leading contributions that are
ready rather accurate. A fully covariant description of t
NN interaction, including other degrees of freedom, will
presented elsewhere.
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