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Nuclear multifragmentation as a branching cascade

Alexander Bershadskii
ICAR, P.O. Box 31155, Jerusalem 91000, Israel

~Received 4 October 2000; published 14 February 2001!

Analytic branching cascade is considered as a model of nuclear multifragmentation and corresponding
stretched lognormal distribution of fragments size is compared with experimental data obtained in nuclear
emulsion. Branching dimension of the cascade corresponding to these data is found to be equal to 3. It is also
shown that the same branching dimension can be extracted from the data on the branching cascades in
turbulence, while for multiparticle production at high energy heavy ion collisions the branching dimension
turned out to be equal to 2.
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In the nuclear collisions at lower bombarding energ
~;1 GeV/nucleon! particle production is strongly suppress
and fragmentation processes dominate. An analogy w
critical phenomena was the first and very productive
proach to theoretical description of nuclear multifragmen
tion. In Ref. @1# the best data on nuclear multifragmentati
~the breakup of 1.04 GeV gold nuclei incident on a carb
tagest! was examined from this point of view, and it wa
shown that corresponding values of the critical exponents
close to those for liquid-gas systems and clearly differ
than those for three dimensional~3D! percolation. This de-
scription implies utilization of thelower order moments,
while another approach widely used at investigations of
intermittency phenomenon in multiparticle production
high energy heavy ion collisions, is related tohigher order
moments~see@2# for a recent review!. Since the authors o
Ref. @1# did not use their excellent data to explore the int
mittency phenomenon in higher order moments we sho
compare our theoretical approach with more earlier data
resented in Ref.@3#, where the intermittency phenomenon
nuclear multifragmentation was studied just for thehigher
order moments.

Cascades are natural models for the fragmentation
cesses and it is shown in@4# that there is a deep connectio
between cascades and critical processes. The cascade
cesses, however, imply lognormal distribution of the fra
ments size, which is generally not observed in the r
nuclear multifragmentation processes. It is shown in Ref.@5#
that the Central Limit Theorem~which results in the lognor-
mal distribution for the ordinary cascade models! applied to
fractals leads to a generalization of the normal distributi
stretched normal distribution and, consequently, to th
stretched lognormal distribution for the branching casca
on fractals ~at least for the analytic case of the integ
branching dimensions considered in the present rep!.
Namely, the stretched normal distribution for integer valu
of the branching dimension has following form:

P~x!;exp2S ~x2xc!
2d

2s2 D , ~1!

wheres and xc are some parameters andd is the so-called
branching dimension@5#. Corresponding stretched lognorm
distribution is
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P~m!;
1

m
exp2S ~ ln m2 ln mc!

2d

2s2 D . ~2!

Since we are interested in the analytic case here~i.e., in the
integer values of the branching dimensionsd51, 2, 3,...! we
should not use absolute value in the exponent.

To make our approach more reliable we have compa
the results obtained at lower bombarding energies~nuclear
multifragmentation! with those obtained at higher bombar
ing energies~multiparticle production! and have found an
interesting analogy: both of them can be described by
stretched lognormal distribution, although with different va
ues of the branching dimensiond ~d53 for nuclear multi-
fragmentation at lower bombarding energies andd52 for
multiparticle production at heavy ion collisions at higher e
ergies!.

Two methods are used to compare theoretical predicti
for probability distribution with experimental data. They a
the direct comparison and the moments method. Theref
let us calculate moments corresponding to the stretched
normal distribution Eq.~2!.

The moments corresponding to the stretched lognor
distribution can be estimated as

^mp&;E
0

`

mp exp2
~ ln m2 ln mc!

2d

2s2 S 1

m
dmD . ~3!

Let us introduce a new variable

x5 ln m2 ln mc . ~4!

Then

^mp&;eapE
0

`

expS px2
x2d

2s2Ddx. ~5!

Let us denote

f ~x!5px2
x2d

2s2 ~6!

and let us find the value ofx, where this function has its
maximum using the following equation:
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f 8~x!5p2
d

s2 x2d2150. ~7!

Equation~7! has a solution

x05S s2p

d D a

, ~8!

where

a5
1

2d21
~9!

~let us recall that we consider only positive integer values
d here!.

The nth derivative off (x) at pointx0 is

f ~n!~x0!52
d~2d21!...~2d2n11!

s2 x0
2d2n . ~10!

Then Taylor series for functionf (x) at pointx0 can be writ-
ten as follows:

f ~x!5 f ~x0!2
~s2p!2da

s2 gS x2x0

x0
D , ~11!

where

gS x2x0

x0
D5 (

n52

`
d2a

n!
~2d21!...~2d2n11!S x2x0

x0
D n

.

~12!

The moments can now be estimated as

^mp&;eap1 f ~x0!E
2`

`

exp@2hg~~x2x0!/x0!#dx, ~13!

where

h5
1

s2 ~s2p!2da. ~14!

Let us introduce a new variable

y5
x2x0

x0
. ~15!

Then we can rewrite the representation~13! as

^mp&;x0eap1 f ~x0!E
2`

`

exp@2hg~y!#dy. ~16!

Now the function

g~y!5 (
n52

`
d2a

n!
~2d21!...~2d2n11!yn ~17!

is independent ofs and onp, i.e., this function is indepen
dent of parameterh. For largeh, i.e., for
03760
f

h@1, ~18!

the integral on the right-hand side of Eq.~16! is dominated
by miny$g(y)%, i.e.,

^mp&;x0eap1 f ~x0!e2h miny$g~y!%. ~19!

The saddle-point method used above has exponential con
gence and, for example, fors253, p52, andd53 the er-
rors of the calculations can be estimated to be about 3%~also
see below!. Since for 2d21.0 the real functionf (x) has
generally one maximum at pointx0 only, this is the absolute
maximum of this function and, therefore,g(y)>0. Hence,
miny$g(y)%50 and we obtain from Eq.~19!

^mp&;x0eap1 f ~x0!. ~20!

It is easy to show using Eqs.~14! and ~18! that for

s2.S 2d

~2d21!2eD 2d

~21!

we can neglect by the multiplierx0 in comparison with the
exponent on the right-hand side of representation~20! and
we obtain from Eq.~20!

^mp&;exp@ap1p~121/2d!~s2p/d!a#. ~22!

For d53, for instance, condition~21! gives restrictions2

.4.731027, i.e., the restriction imposed by the conditio
~21! is very weak.

Using Eq.~22! we then obtain a generalized scaling re
tionship based on the stretched lognormal distribution

^mq&

^mz&q/z ;S ^mp&

^mz&p/zD q~qa2za!/p~pa2za!

. ~23!

Since analytic branching cascades the branching dimen
d51,2,3,..., then the corresponding values of the expon
a51,1/3,1/5,... .

If s is the charge of the nuclear fragments, then fo
particular partition of the region of interestDs in M bins of
the sizeds5Ds/M the multiplicity moments can exhibi
self-similar properties~scaling! @3#

^mq&;S Ds

dsD zq

. ~24!

Substituting Eq.~24! into Eq. ~23! we obtain a functional
equation forzq , which for a particular casez51 has the
following form:

zq /q2z1

zq /p2z1
5

qa21

pa21
. ~25!

The general solution of this equation is

zp

p
5~z12a!1apa, ~26!

wherea is some constant.
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It should be noted that the branching cascades also
place at some other physical processes. Cascade decay
admixture spots in turbulent fluid@5,6# is the most well
known. In this casem is the absolute value of the admixtu
concentration increment

m5uc~x1r !2c~x!u, ~27!

wherer is the distance between two space points under c
sideration. The scaling for the concentration increment is

^mp&;r zp. ~28!

If the scaling is formed as a result of a branching casc
then one can use representation~26!. Figure 1 shows corre
sponding data obtained in turbulent atmosphere@7#. The axes
in this figure are chosen for comparison with the represe
tion ~26! with a51/5 @which correspond to the analyti
branching cascade withd53; see Eq.~9!#. The straight line
~the best fit! is drawn to indicate agreement between the d
and this representation.

In Ref. @3# the scaled factorial moments were used
analyze experimental data on the fragment mass distribut
produced by interactions in nuclear emulsion, in whi

79
197Au118 nuclei of energyE51 GeV/nucleon break up into
fragments. Definition of the scaled factorial moments is

^Fq&5Mq21K (
p51

M
np~np21!¯~np2q11!

^N&q L , ~29!

where^N& is the mean fragments multiplicity in the interv
Ds ~s is the charge of the fragments!, with a particular par-
tition of the region of interestDs in M bins of sizeds
5Ds/M , np is the number of fragments in thepth bin, and
the bracketŝ ...& denote the average over many events~the
authors of@3# also used some smoothing operation!. It is
shown in@3# that these~smoothed! factorial moments exhibit
scaling

FIG. 1. zp /p vs p1/5 for the turbulent mixing data obtained i
the atmosphere@7#. The straight line~the best fit! indicates agree-
ment between the data and Eq.~26! with a51/5 ~that corresponds
to the analytic branching cascade with branching dimensiond53!.
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^Fp&;~Ds/ds!zp, ~30!

wherezp is some function onp. Analogously to the previous
sections it can be shown that in the case of the stretc
lognormal distribution

zp;p~pa21!, ~31!

wherea is given by the same equation~9!.
Figure 2 shows the data@3# ~circles! obtained in nuclear

emulsion in which 79
197Au18 nuclei of energy E

FIG. 2. zp /p vs p1/5 for the data@3# ~circles! obtained in nuclear
emulsion in which79

197Au18 nuclei of energyE51 GeV/nucleon
break up into fragments. The straight line~the best fit! indicates
agreement between the data and Eq.~31! with a51/5 ~which cor-
responds to the analytic branching cascade with branching dim
sion d53!. Crosses correspond to analogous calculations p
formed for a bond percolation model@3#.

FIG. 3. zp /p vs p1/3 for the data@10# obtained at ultrarelativistic
heavy ion collisions~for secondary particles produced in16O-AgBr
interactions at 60 GeV/nucleon!. Filled circles correspond to the
pseudorapidity and open circles correspond to the azimuthal p
spaces. The straight lines~the best fit! indicate agreement betwee
the data and Eq.~26! with a51/3 ~which corresponds to the ana
lytic branching cascade with branching dimensiond52!.
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51 GeV/nucleon break up into fragments. The axes in t
figure are chosen for comparison with the representation~31!
with a51/5 ~that corresponds to the analytic branching c
cade withd53, as for the turbulent branching cascade co
sidered previously!. The straight line~the best fit! is drawn to
indicate agreement between the data and the model with
branching dimensiond53. The universality of the branchin
dimensiond53 is significant in light of the discussion o
the finite size effects in the nuclear reactions~see, for in-
stance@8,9# and references therein!.

In Ref. @3# the intermittency exponentzp was also calcu-
lated for a bond percolation model, and in Fig. 2 we sh
these data~crosses! calculated with randomly distribute
bond parameter. One can see thatzp for the percolation
model is close tozp obtained for the nuclear multifragmen
tation for small values ofp only ~see also@1#!.

It is also interesting to compare the results obtained
nuclear multifragmentation at low bombarding energies w
the intermittency data on multiparticle production obtained
03760
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ultrarelativistic heavy ion collisions. In the last case nucle
breakup into fragments is suppressed and the multipar
production dominates. In a recent paper@10# the intermit-
tency phenomenon for the distribution of secondary partic
produced in16O-AgBr interactions at 60 GeV/nucleon wa
studied using the scaled factorial moments. In Fig. 3
show the data represented in Ref.@10# for the pseudorapidity
~filled circles! and for the azimuthal~open circles! phase
spaces in the case of largest bin regions. As in the prev
figures the axes are chosen for comparison with the stretc
lognormal distribution~26! ~straight lines, the best fit, ar
drawn to indicate this correspondence!. However, now the
horizontal axis is scaled asp1/3, which corresponds to the
parametera51/3 ~or to the ranching dimensiond52!.

The author is grateful to T. Nakano for discussions, to
Machanaim Center~Jerusalem!, and to the Graduate Schoo
of Science and Engineering of the Chuo University~Tokyo!
for support.
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