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Nuclear multifragmentation as a branching cascade
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Analytic branching cascade is considered as a model of nuclear multifragmentation and corresponding
stretched lognormal distribution of fragments size is compared with experimental data obtained in nuclear
emulsion. Branching dimension of the cascade corresponding to these data is found to be equal to 3. It is also
shown that the same branching dimension can be extracted from the data on the branching cascades in
turbulence, while for multiparticle production at high energy heavy ion collisions the branching dimension
turned out to be equal to 2.
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In the nuclear collisions at lower bombarding energies 1 (Inm—Inm,)%
(~1 GeV/nucleohparticle production is strongly suppressed P(m)~ exp—| —— 27— — 2

and fragmentation processes dominate. An analogy with

critical phenomena was the first and very productive apsince we are interested in the analytic case fiieee in the

proach to theoretical description of nuclear multifragmenta—Integer values of the branching dimensiahs 1, 2, 3,..) we
tion. In Ref.[1] the best data on nuclear multifragmentation should not use absolute value in the exponent.

(the breakup of 1.04 GeV gold nuclei incident on a carbon " 14 make our approach more reliable we have compared
tagest was examined from this point of view, and it was

than those for three dimension@D) percolation. This de- interesting analogy: both of them can be described by the

scription implies utilization of thelower order moments, gy atched lognormal distribution, although with different val-
yvh|le gnother approach W|dgly used. at investigations of th§ies of the branching dimensiah(d=3 for nuclear multi-
intermittency phenomenon in multiparticle production atf.,qmentation at lower bombarding energies ahd2 for
high energy heavy ion CO||ISIOI’IS., IS rglated figher order multiparticle production at heavy ion collisions at higher en-
moments(see[2] for a recent review Since the authors of ergies

R’?f- [1] did not use thei_r expellent data to explore the inter- Two methods are used to compare theoretical predictions
mittency phenomenon in higher order moments we ShOUI(ilor probability distribution with experimental data. They are

compare our theoretical apprqach With more earlier data "®Bhe direct comparison and the moments method. Therefore,
resented in Ref[S], wherg the |nterm|tFenqy phenom_enon aljet us calculate moments corresponding to the stretched log-
nuclear multifragmentation was studied just for thigher normal distribution Eq(2)

order moments. . The moments corresponding to the stretched lognormal
Cascades are natural models for the fragmentation Pr%istribution can be estimated as

cesses and it is shown [d] that there is a deep connection

between cascades and critical processes. The cascade pro- w (Inm—Inm.)2 [ 1

cesses, however, imply lognormal distribution of the frag- <mp)~f mP exp— —2(—dm). ©)]
ments size, which is generally not observed in the real 0 20 m

nuclear multifragmentation processes. It is shown in R&f. ) )

that the Central Limit Theorertwhich results in the lognor- L€t Us introduce a new variable

mal distribution for the ordinary cascade modelpplied to X=Inm—Inm,. @

fractals leads to a generalization of the normal distribution:
stretched normal distribution and, consequently, to the
stretched lognormal distribution for the branching Cascade-sl—hen
on fractals (at least for the analytic case of the integer . 2d
branching dimensions considered in the present rgport <mp>~eapJ exp< px— X—z)dx. (5)
Namely, the stretched normal distribution for integer values 0 20
of the branching dimension has following form:

Let us denote

, (1) 2
f(x)=px— 552 (6)

(X—X¢)%

P(x)~exp— 552

where o andx; are some parameters adds the so-called
branching dimensiof6]. Corresponding stretched lognormal and let us find the value of, where this function has its
distribution is maximum using the following equation:
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d h>1, 18
f'(x)=p— —x29"1=0. (7) (18
7 the integral on the right-hand side of Ed.6) is dominated
Equation(7) has a solution by minfg(y);. i.e.,
( azp) « o (mP)~ x,e?P* X0 g~ h min{g(y)}, (19
Xo=|——1|
0 d The saddle-point method used above has exponential conver-
h gence and, for example, far’=3, p=2, andd=3 the er-
where rors of the calculations can be estimated to be aboutz886
1 see below Since for 21—-1>0 the real functionf(x) has
=597 (9) generally one maximum at poing only, this is the absolute

maximum of this function and, thereforg(y)=0. Hence,

(let us recall that we consider only positive integer values O]miny{g(y)}zo and we obtain from Eq19)

d here. (mP)~xoe2P* X0, (20)
The nth derivative off(x) at pointxg is

It is easy to show using Eqg&l4) and (18) that for
d(2d—1)...(2d—n+1) ,, y g Eqél4) and(18)
f(n)(XO) T o2 Xo . (10) 2d 2d
2 —
7 >((2d—1)2e) (21

Then Taylor series for functiof(x) at pointx, can be writ-
ten as follows: we can neglect by the multipliety in comparison with the
exponent on the right-hand side of representat2® and
(02p)?4* [x=xg we obtain from Eq(20)
f(x)=1F(X0) — 2 Xo |’

(11)
(mPy~exp[ap+p(1—1/2d)(o?p/d)“]. (22)

For d=3, for instance, conditiorf21) gives restrictiono?
NI >4.7x107, i.e., the restriction imposed by the condition
0 .
) i (21) is very weak.
Xo Using EQq.(22) we then obtain a generalized scaling rela-
12 tionship based on the stretched lognormal distribution

>

n=2 n!

(2d—1)...(2d—n+1)

x—xo) o a7

a(q*—z%/p(p*-2z%)

The moments can now be estimated as (md) ( (mP) 23

<mz>q/z ~ <mz>p/z

(mP)~gaP*f(xo) f exil —hg((x—Xo)/Xo)1dx, (13)
‘°° Since analytic branching cascades the branching dimension

d=1,2,3,..., then the corresponding values of the exponent
a=1,1/3,1/5,....

1 If sis the charge of the nuclear fragments, then for a
h= — (o?p)?9«. (14)  particular partition of the region of intereats in M bins of

7 the size §s=As/M the multiplicity moments can exhibit
self-similar propertiegscaling [3]

where

Let us introduce a new variable

As)\ ¢
X_Xo. (15) (mq)~(5—ss) q. (24
Xo

y:

Substituting Eq.(24) into Eq. (23) we obtain a functional
equation for{,, which for a particular case=1 has the
following form:

Then we can rewrite the representatid3) as

(MP) ~xoe?* 1) f " ex-hgy)ldy. (19
. lqla—¢ go-1

Now the function olp=& P 1 29
© The general solution of this equation is
9(y)=r§2 ——(2d=1)..(2d-n+1)y" (17 ‘,
F=(§1—a)+ap“, (26)
is independent o&r and onp, i.e., this function is indepen-
dent of parametehn. For largeh, i.e., for wherea is some constant.
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p FIG. 2. {,/p vs p**for the datd 3] (circles obtained in nuclear

emulsion in which%g7Au18 nuclei of energyE=1 GeV/nucleon

break up into fragments. The straight lifiine best fit indicates
agreement between the data and &4) with a«=1/5 (which cor-
responds to the analytic branching cascade with branching dimen-
sion d=3). Crosses correspond to analogous calculations per-

It should be noted that the branching cascades also takfgrmEd for a bond percolation modg].

place at some other physical processes. Cascade decay of the
admixture spots in turbulent fluifi5,6] is the most well
known. In this casen is the absolute value of the admixture
concentration increment

FIG. 1. {,/p vs p** for the turbulent mixing data obtained in
the atmospherg7]. The straight lingthe best fit indicates agree-
ment between the data and Eg6) with a«=1/5 (that corresponds
to the analytic branching cascade with branching dimendie3).

(Fp)~(As/5s)%p, (30)

where{,, is some function op. Analogously to the previous
sections it can be shown that in the case of the stretched
m=|c(x+r)—c(x)|, (27) lognormal distribution

wherer is the distance between two space points under con- {p~p(p“—1), (3D

sideration. The scaling for the concentration increment is wherea is given by the same equatid@).

(mP)y~r . (28) Figure 2 shows the da{a&] (circles obtained in nuclear
emulsion in which 33’Au;s nuclei of energy E
If the scaling is formed as a result of a branching cascade
then one can use representati{@6). Figure 1 shows corre- 04r
sponding data obtained in turbulent atmosph&teThe axes
in this figure are chosen for comparison with the representa-
tion (26) with «=1/5 [which correspond to the analytic 03}
branching cascade witth=3; see Eq(9)]. The straight line
(the best fit is drawn to indicate agreement between the data o
and this representation. ~~_ o2}
In Ref. [3] the scaled factorial moments were used to S
analyze experimental data on the fragment mass distributions
produced by interactions in nuclear emulsion, in which

. . 01F
18'Auy1g nuclei of energyE=1 GeV/nucleon break up into
fragments. Definition of the scaled factorial moments is
M ong(ng—1)--+(ny—q+1) 0 ' ' ' ' ' '
(F=Ma1 > P qu (29 12 13 14 15 16 17 18
= N 13
where(N) is the mean fragments multiplicity in the interval p
As (sis the charge of the fragmensvith a particular par- FIG.3.{,/pvs p*? for the datg 10] obtained at ultrarelativistic

tition of the region of interesis in M bins of size§s  peayy jon collisiongfor secondary particles produced#0-AgBr
=As/M, n, is the number of fragments in theth bin, and  jnteractions at 60 GeV/nucleanFilled circles correspond to the
the brackets....) denote the average over many eveftt®  pseudorapidity and open circles correspond to the azimuthal phase
authors of[3] also used some smoothing opera}iolt is  spaces. The straight linéthe best fit indicate agreement between
shown in[3] that thesé¢smoothedi factorial moments exhibit the data and Eq(26) with «= 1/3 (which corresponds to the ana-
scaling lytic branching cascade with branching dimensiba2).
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=1 GeV/nucleon break up into fragments. The axes in thigiltrarelativistic heavy ion collisions. In the last case nuclear
figure are chosen for comparison with the representd8@n  breakup into fragments is suppressed and the multiparticle
with a=1/5 (that corresponds to the analytic branching casproduction dominates. In a recent papé0] the intermit-
cade withd=3, as for the turbulent branching cascade contency phenomenon for the distribution of secondary particles
sidered previously The straight lindthe best fitis drawn to  produced in*®0O-AgBr interactions at 60 GeV/nucleon was
indicate agreement between the data and the model with th@ydied using the scaled factorial moments. In Fig. 3 we
branching dimensiod= 3. The universality of the branching show the data represented in Réfo] for the pseudorapidity
dimensiond=3 is significant in light of the discussion on (fijled circles and for the azimuthalopen circles phase
the finite size effects in the nuclear reactidisee, for in-  gpaces in the case of largest bin regions. As in the previous
stance[8,9] and references thergin figures the axes are chosen for comparison with the stretched
In Ref.[3] the intermittency exponerd, was also calcu-  |ognormal distribution(26) (straight lines, the best fit, are
lated for a bond percolation model, and in Fig. 2 we showgrawn to indicate this correspondeicélowever, now the
these data(crossep calculated with randomly distributed pqrizontal axis is scaled ast®, which corresponds to the
bond parameter. One can see tlggt for the percolation parameter=1/3 (or to the ranching dimensioti=2).
model is close td,, obtained for the nuclear multifragmen-
tation for small values op only (see alsd1]). The author is grateful to T. Nakano for discussions, to the
It is also interesting to compare the results obtained foMachanaim CentefJerusaleryy and to the Graduate School
nuclear multifragmentation at low bombarding energies withof Science and Engineering of the Chuo Univergifpkyo)
the intermittency data on multiparticle production obtained afor support.
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