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Quark-antiquark bound states in the relativistic spectator formalism
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~Received 11 November 1999; revised manuscript received 16 October 2000; published 22 February 2001!

The original model ofqq̄-bound states, developed by Gross and Milana, which uses the relativistic spectator
~Gross! equations to give a manifestly covariant description of confinement in Minkowski space that is con-
sistent with chiral symmetry, is improved and extended. These improvements include~i! derivation of the
normalization condition for the relativistic wave functions,~ii ! proof that confinement automatically prohibits
decays by implying the vanishing of the vertex function when both quarks are on shell,~iii ! extension of the
model to the strange quark sector and to sectors with unequal quark masses,~iv! removal of unphysical
singularities associated with the confining interaction, and~v! inclusion of a realistic one-gluon-exchange
interaction. We use phenomenological quark mass functions to build chiral symmetry into the theory and to
explain the connection between the current quark and constituent quark masses. We obtain reasonable results
for pions and kaons, establishing that the formalism, designed to work well in the heavy quark sectors, can also
be extended to the light quark sector.

DOI: 10.1103/PhysRevC.63.035208 PACS number~s!: 11.10.St, 12.38.Lg, 12.38.Aw, 14.40.2n
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I. INTRODUCTION

Description of simple hadrons in terms of quark-glu
degrees of freedom has long been an active area in phy
With the advent of Jefferson Laboratory, which operates
intermediate energies and therefore probes the structur
hadrons, there are new opportunities to test simple theo
cal descriptions of quark interactions. The first natural ste
this direction is to obtain a thorough understanding of how
treat the relativistic quark-antiquark bound state problem
this context, Nambu–Jona-Lasinio~NJL! inspired models
have gained popularity in recent years@1–3#. The common
goal of these works is to bridge the gap between nonrela
istic quark models and more rigorous approaches, suc
lattice gauge theory or Feynman-Schwinger calculatio
While the Euclidean metric based calculations avoid
complicated singularities present in Minkowski space,
required extrapolations limit their applicability to light boun
states such as the pion and the kaon. Therefore, it is im
tant to develop Minkowski metric based models that can
used over a wider scale of energies. One such work using
spectator formalism was developed in Refs.@1,2#. In those
works a relativistic generalization of the linear potential w
developed and the pion was shown to be massless in
chiral limit. However, the calculations involved some a
proximations and related conceptual problems. In this w
we improve and simplify the model presented in those wo
and address in detail some of the conceptual issues relat
confinement.

If a quark-antiquark pair~referred to collectively as
‘‘quarks’’ ! is confined to a meson bound state with massm,
then the bound state cannot decay into two free quarks, e
if the sum of the quark masses is less than the bound s
mass. This trivial statement can be realized by two poss
mechanisms: either~a! the quark propagators are free
timelike mass poles,@3,4# or ~b! the vertex function of the
bound statevanisheswhen both quarks are on-shell. In th
work we prove that the Gross equation supports the seco
mechanism of confinement. The first mechanism, which
0556-2813/2001/63~3!/035208~16!/$15.00 63 0352
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commonly used in Euclidean metric based calculations,
stronger constraint since it forbids any free quark states.
the other hand, it has been recently shown@5,6# that the lack
of physical mass poles may be a consequence of a poor
proximation to the physics, and not a consequence of c
finement.We emphasize that the second mechanism us
the Gross equation allows one of the two quarks in a me
to be on-shell, but insures that, in the presence of a confin
interaction, the matrix element that couples the bound s
to two free quarks vanishes automatically. The spectator
malism facilitates the use of the Minkowski metric, and t
confinement mechanism of this approach has a closer res
blance to nonrelativistic models.

The organization of the paper is as follows. In Sec. II w
review the formalism for nonrelativistic confinement in m
mentum space. This discussion is carried out in momen
space in order to prepare for the relativistic generalizati
which can only be done in momentum space. Two differ
methods of defining the momentum space confining inter
tion are introduced, discussed, and compared. Both
needed for Sec. III, where we outline the general philosop
of the spectator treatment of confined systems, examine
implications of confinement for the scattering amplitude, a
prove that the relativistic linear potential used in earl
works automatically ensures thatm→q1q̄ vanishes at the
momentum where decay of the state into two physical qua
would otherwise be kinematically possible. The treatmen
first presented for scalar particles, and then generalize
fermions. The development extends the initial work of Gro
and Milana@1,2# and permits us to find the covariant norma
ization condition for the first time. We then introduce a ne
form for the linear confining kernel in momentum space, E
~3.21!, which allows us to remove the unphysical singula
ties present in the work of Ref.@1# and extend the calcula
tions to the strange quark sector. Use of the kernel~3.21!
requires a different treatment of quark self energies th
originally published@1,2#, and in Sec. IV we construct quar
mass functions with the correct chiral limit. These ma
functions are consistent with asymptotic freedom, and all
us to choose parameters that give good numerical results
©2001 The American Physical Society08-1
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ÇETIN ŞAVKLI AND FRANZ GROSS PHYSICAL REVIEW C63 035208
pseudoscalar bound states. The results are presented in
V, and some conclusions are given in Sec. VI.

II. NONRELATIVISTIC CONFINEMENT IN MOMENTUM
SPACE

A. Alternative approximations for the nonrelativistic linear
potential

We start by reviewing the discussion of confineme
within the context of the nonrelativistic Schro¨dinger equation
given in Ref. @1#. We will denote potentials in coordinat
space byṼ and in momentum space byV. The nonrelativis-
tic linear potential is

Ṽ~r !5sr . ~2.1!

This potential can be constructed from familiar Yukawa-li
potentials in two different ways:

~2.2a!

Ṽ~r !5 lim
e→0

3H ṼS~r ![sre2er

ṼL~r ![2
s

e
~e2er21!5ṼA~r !1

s

e
.

~2.2b!

These various potentials are shown in Fig. 1 for the illust
tive case ofe50.1As ands50.2. Note that the two poten
tials ṼS(r ) and ṼL(r ) both approximate the linear potenti
Ṽ(r ) whenr !1/e, but these two approximate potentials b
have very differently at larger.

The potentialṼS(r )→0 at larger, so that, strictly speak
ing, it does not confine particles at all. This potential alwa
permits scattering, and we will therefore refer to this as

FIG. 1. The linear potential in coordinate space fore50.1As

ands50.2. The solid line isṼS(r ), the dashed line isṼL(r ), the

dotted line isṼA(r ), and the dot-dashed line isṼ(r ). For ‘‘small’’

r ,0.3/e ~the region inside the small box! ṼL(r ) andṼS(r ) are both
approximately equal tosr .
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scattering formof the linear potential. Ife is small the scat-
tering is strongly resonant, and the wave function is sign
cant at smallr only for energies near one of the allowe
resonances. The width of these resonance states bec
narrower, and their wave function approaches that of a bo
state, ase→0.

In contrast, the potentialṼL(r )→1/e as r→` and there-
fore binds particles with energiesE,1/e. We will refer to
this as thebound state formpotential. Ase→0 this potential
does not permit scattering at any energy; it has a spectrum
bound states only.

These two approximate forms of the linear confining p
tential are very different, yet for sufficiently smalle it should
be possible to move freely from one of these potentials to
other, and the results obtained with either form should
equivalent.The ability to move freely from one form to th
other is very helpful to the discussion of normalization a
scattering, and will be assumed without formal proof.We
will return to this later in this section.

B. Two equivalent forms of the Schrödinger equation
with confinement

Next we write a Schro¨dinger equation appropriate fo
each of the potentials~2.2!. Following Ref.@1#, the momen-
tum space form ofṼL given in Eq.~2.2b! can be written as

VL~q!5 lim
e→0

FVA~q!2d3~q!E d3q8 VA~q8!G , ~2.3!

where

VA~q!52
8ps

~q21e2!2
. ~2.4!

Note that the second term~the ‘‘subtraction term’’! ensures
that

E d3q VL~q!50, ~2.5!

which is the momentum space form of the statement t
Ṽ(r 50)50. This subtraction has been previously used
Refs. @1,2#, and also by Adler and Davis@7# to regularize
their treatment of confinement in the coulomb gauge. T
Fourier transform ofVA , for finite e, is

ṼA~r !5E d3q

~2p!3
e2 iq•r VA~q! ~2.6!

52s
e2er

e
. lim

e→0
sS r 2

1

e D , ~2.7!

and the subtraction term cancels the singular 1/e term insur-
ing that the linear part of the potential has the correct beh
ior in the limit ase→0 and that it vanishes at the origin (r
50).

Adding a potentialVC , constant in coordinate space
8-2
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QUARK-ANTIQUARK BOUND STATES IN THE . . . PHYSICAL REVIEW C 63 035208
VC~r !52C,

VC~q!52~2p!3d3~q!C, ~2.8!

to the potential~2.2b!, and inserting the total potential int
the momentum space Schro¨dinger equation gives

F p2

2mR
2EGCA~p,p0!

52E d3k

~2p!3
VA~p2k! @CB~k,p0!2CA~p,p0!#

1C CA~p,p0!, ~2.9!

or, alternatively,

F p2

2mR
2E2ṼA~0!GCA~p,p0!

52E d3k

~2p!3
VA~p2k! CA~k,p0!. ~2.10!

HeremR is the reduced mass,E is the energy,

p0
252mRE, ~2.11!

and, for the linear potential introduced above,

ṼA~0!52
s

e
. ~2.12!

The constant potential is used to adjust the energy sc
These equations will be referred to as thebound stateform
of the equation. The name comes from the fact that the s
trum of Eq. ~2.9! consists of bound states and scatter
states, where

E,
s

e
1C5Ecrit bound states,

E.
s

e
1C5Ecrit scattering states.

This shows clearly how, in the limite→0, the equations
confine quarks of any energy.

While Eq.~2.10! has no scattering states forE,Ecrit , it is
clear that the equation obtained by replacingṼL(r ) by its
counterpart,ṼS(r ) defined in Eq.~2.2a!, has scattering state
for all E.0. This potential has no subtraction, so its m
mentum space Schro¨dinger equation is simply

F p2

2mR
2EGCS~p,p0!52E d3k

~2p!3
VS~p2k! CS~k,p0!.

~2.13!
03520
le.
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This will be referred to as thescatteringform of the equa-
tion. As stated above, we will assume that the two equati
~2.10! and ~2.13! give equivalent results whene is very
small.

It is important to our relativistic discussion in the ne
section to be very clear in what sense the two equati
~2.10! and ~2.13! are equivalent. To develop this idea mo
precisely, introduce wave functions suggested by the bo
~2.10! and scattering~2.13! forms of the Schro¨dinger equa-
tion. These wave functions are

CA~p,p0!52
2mR g~p,p0!

p22p0
2

, ~2.14!

CS~p,p0!5PH ~2p!3 h d3~p2p8!2
2mR MS~p,p8!

p22p0
2 J ,

~2.15!

where g is the nonrelativisticvertex function ~defined in
analogy with the relativistic vertex function! and MS is the
half off-shell scattering amplitude,p825p0

2, and P is the
operator that projects out the quantum numbers of the in
state~the same spin, angular momentum, and internal sy
metries as the bound described byCA). The wave function
~2.15! has the form of the usual scattering wave functio
with the d function describing the asymptotic plane-wa
part. We have chosen to multiply this plane-wave part b
~small! parameterh. This parameter can be removed by d
viding the wave function and the half off-shell scatterin
amplitude byh, so it is, strictly speaking, an arbitrary sca
factor.

However, the size ofh is fixed by physical consider
ations. Whene is very small and the energyE!Ecrit , the
wave functionCS is, in general, very small at short distanc
r. The exception occurs at specialresonantenergies near the
bound state energies of Eq.~2.10!. At these energies the
boundary conditions can be satisfied by a scattering solu
large at smallr, with a small oscillatory tail escaping to
infinity ~as shown in Fig. 2!. If we require that the scattering
solution~2.15! and the bound state solution~2.14! be ofcom-
parable size at short distances, it is necessary to chooseh
small, as illustrated in Fig. 2. This complicated limiting pr
cess will be summarized by the equation

CS~p,p0!↔CA~p,p0!, ~2.16!

where the↔ symbol means that the spectrum of resonan
scattering states obtained from Eq.~2.13! converges to the
spectrum of bound states obtained from Eq.~2.10!, and that,
in the region of confinement~i.e., wherer<E/s), the reso-
nant wave functions~2.15! are comparable to the bound sta
wave functions~2.14!, and the nonresonant solutions to E
~2.13! are very small.

The equivalence~2.16! can also be stated in terms of th
scattering amplitude and the vertex function

PMS~p,p8!↔g~p,p0!. ~2.17!

These amplitudes satisfy the following equations:
8-3



t

ex
n

n-

sin-
e-

l-

to
ed

the
an

-
ali-

it

be
te-

y

-

ÇETIN ŞAVKLI AND FRANZ GROSS PHYSICAL REVIEW C63 035208
MS~p,p8!5h VS~p2p8!22mRE d3k

~2p!3
VS~p2k!

3
MS~k,p8!

k22p0
2

1
2mRC MS~p,p8!

p22p0
2

, ~2.18!

g~p,p0!522mRE d3k

~2p!3
VA~p2k!

3Fg~k,p0!

k22p0
2

2
g~p,p0!

p22p0
2 G1

2mRC g~p,p0!

p22p0
2

,

~2.19!

where, in the limite→0 ~and h→0), the two amplitudes
MS andg are equivalent@in the sense of Eq.~2.17!#.

In the next section we will use the generalization ofMS
when e is very small but nonzero, andg when we want to
discuss exact confinement (e50). Only Eq. ~2.19! has a
well defined mathematical limit whene→0. It will always
be assumed that eitherMS or g may be used with equivalen
results.

C. Implications of confinement in nonrelativistic theory

We now derive an interesting restriction on the vert
functiong that will have an important physical interpretatio
in the next section. To obtain this result, look at Eq.~2.19!
when p2→p0

2. Expandg around p0
2 using the fact thatg

depends only onp2,

g~p,p0!5g~p0 ,p0!1~p22p0
2! R~p,p0!, ~2.20!

FIG. 2. Comparison of possible wave functionsCA(r ) ~falling
dotted line! andCS(r ) ~heavy solid line!. @For reference, the poten

tials ṼS(r ) ~thin solid line! and ṼL(r ) ~rising dotted line! are also
shown.# The normalization is chosen so thatCA↔CS , making the
plane-wave tail ofCS ~shown in the box! small. In this example
h.0.05.
03520
and then substitute this into Eq.~2.19! @with C50 for the
moment#, giving

g~p,p0!522mR g~p0 ,p0!E d3k

~2p!3
VA~p2k!

3F 1

k22p0
2

2
1

p22p0
2G22mRE d3k

~2p!3

3VA~p2k! @R~k,p0!2R~p,p0!#. ~2.21!

All terms on the~right-hand side! of this equation should be
regular asp2→p0

2. Because of the subtraction, the term i
volving R is finite, and, because of our choice ofp0, only
oneof the two remaining terms is zero ife is finite,

lim
p2→p0

2
E d3k

~2p!3

VA~p2k!

k22p0
2

52
s

e2 S e62ip0

4p0
21e2D→finite,

lim
p2→p0

2
E d3k

~2p!3

VA~p2k!

p22p0
2

52
s

e
lim

p2→p0
2
S 1

p22p0
2D→`.

~2.22!

Hence the subtraction term will be singular unless

g~p0 ,p0!50. ~2.23!

This condition also ensures that the constant term is not
gular. We will discuss the physical interpretation of this r
sult in the next section.

III. CONFINEMENT IN THE SPECTATOR FORMALISM

A. Introduction

At this point it is very tempting to generalize the nonre
ativistic linear potential~2.3! by simply replacing the three
vectorq by a four vectorq

V~q!→
?

lim
e→0

FVA~q!2d4~q!E d4q8VA~q8!G1~2p!3d4~q!C.

~3.1!

This, seemingly obvious, generalization will not reduce
the correct nonrelativistic limit because of the unconstrain
behavior of the*dq08 VA(q8) integral. Lacking a four dimen-
sional expression for the linear interaction that reduces to
correct nonrelativistic limit, we rephrase our question: C
one find a covariant equation that reduces to the Schro¨dinger
equation~2.19! with a linear interaction? The confining rela
tivistic bound state equation should be a relativistic gener
zation of Eq.~2.19!.

A covariant equation with the correct nonrelativistic lim
is the Gross equation@8,9#. If two quarks with massesm1
>m2 are not identical, the one-channel equation may
used. It has the feature that the four-dimensional loop in
grals are constrained so that the heavier constituent~with
massm1 in this example! is restricted to its positive-energ
8-4
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QUARK-ANTIQUARK BOUND STATES IN THE . . . PHYSICAL REVIEW C 63 035208
mass shell~provided MB.0; see Ref.@10#!. It has been
shown by Zeng, Van Orden, and Roberts@11# that the one-
channel spectator equations can be used to give a good
count of heavy measons.

If the particles are identical and the massMB of the bound
state is comparable tom, a symmetrized two-channel equ
tion should be used. This is illustrated in Fig. 3. In this ca
an average of the contributions in which either particle
~channel 1! or particle 2~channel 2! are on their positive-
energy mass shell are included, and this leads to a se
equations in which the two channels are coupled. The s
metrized two-channel equation has been used previous
describe low-energyNN scattering@12#.

However, as is well known@13#, both the one-channe
equation and the symmetrized two-channel equations
velop pathological behavior when the mass of the bou
state approaches zero. The reasons for this, and the wa
fix it were first discussed in Ref.@1#. Briefly, as the mass o
the bound statem→0, distant singularities that may be no
mally neglected move into close range and give very la
contributions. If these singularities are included from t
start, the equation has a smooth behavior asm→0 and is
consistent with chiral symmetry@1#. To include these extra
contributions more channels are needed, and if the parti
are identical, one needs to use a four-channel equation.
four channel equation is a symmetrized version of the
symmetrized two channel equation used in Refs.@1,2#. One
of the purposes of this paper is to present calculations u
the four-channel equation, and to improve on the work
Ref. @1#.

We emphasize that once we know how to handle
‘‘hard’’ problem of treating light quarks in nearly massle
bound states, we will be in a position to combine it with t
successes already achieved in the heavy meson-meson s
@11# and build a comprehensive model of mesons. In view
the complexity of the light quark sector, our purpose here
to see if this promising approach can be used to desc
light mesons.

In this section we will first review the one-channel equ
tions, and using a relativistic generalization of the two for
of confinement given in Eq.~2.2! we will show that the
relativistic normalization condition for a confined wave fun
tion is the same as for a conventional bound state wave fu
tion. We will then obtain a relativistic generalization of th
condition ~2.23!, and discuss its interpretation. Finally, w
will show how to discuss scattering in the presence of c
finement. This last discussion indicates how the recent w

FIG. 3. One of the two-channel Gross equations for the bo
state vertex functionG. In this figure the3 means that the particle
is on the mass shell.
03520
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of Isgur, Jeschonnek, Melnitchouk, and Van Orden on qu
hadron duality might be extended to this formalism@14#.

B. One channel scattering equations for scalar quarks

We will begin with the one-channel equation. The m
mentum and mass of the quark arep1 andm1, the momen-
tum and mass of the antiquark arep2 andm2, the total mo-
mentum isP, and the relative momentum isp, where

P5p11p2 ,

p5
1

2
~p12p2!. ~3.2!

Since the equations aremanifestlycovariant@1,2#, they may
be solved in any frame, and it is convenient to solve them
the rest frame where

P5p11p25$MB ,0%. ~3.3!

The quark will be on mass-shell, and the symbolp1
1 will be

used to denote the particle on itspositiveenergy mass-shel
@i.e., p1

1 25m1
2 and in the rest frame (p1

1)05E1(p)
5Am1

21p2]. The scattering amplitudeM(p1
1 ,p2 ,p81

1 ,p28) is denotedM11(p,p8,P), or in the one-channel cas
where there can be no confusion, simply byM(p,p8,P).
Then, introducing a relativistic generalization of the potent
VS and writing the equation in the rest frame~this will be the
convention from now on!, the one-channel equation for th
scattering of scalar ‘‘quarks’’ (m1>m2) can be written

MS~p,p8,P!5hVS~p,p8,P!2
2m1m2

~2p!3

3E d3k

E1~k!

VS~p,k,P! MS~k,p8,P!

m2
22~P2k1

1!2

1
2m2C MS~p,p8,p!

m2
22~P2p1

1!2
. ~3.4!

This equation is the relativistic generalization of Eq.~2.18!.
Alternatively, the bound state form of the scattering equ

tion is

MA~p,p8,P!52
2m1m2

~2p!3 E d3k

E1~k!
VA~p,k,P!

3F MA~k,p8,P!

m2
22~P2k1

1!2
2

MA~p,p8,P!

m2
22~P2p1

1!2G
1

2m2C MA~p,p8,P!

m2
22~P2p1

1!2
. ~3.5!

This is the analog of Eq.~2.19! and has a smooth limit a
e→0. The kernelsVS and VA will be specified later@see
Eqs.~3.20! and~3.21! below#. Equations~3.4! and~3.5! will
be our starting points for this section.

d

8-5
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ÇETIN ŞAVKLI AND FRANZ GROSS PHYSICAL REVIEW C63 035208
C. One channel bound state equation for scalar quarks

In the vicinity of a bound state of massMB , or a very
narrow resonance with mass and widthMB5MR1 iM I , the
scattering amplitude has the form

MX~p,p8,P!52
GX~p,MB! GX~p8,MB!

MB
22P2

1RX~p,MB!,

~3.6!

whereX5A or S, depending on which of the two forms~3.4!
or ~3.5! we are using. Ife is finite and we are using Eq.~3.4!,
the widthMIÞ0. If we use Eq.~3.4! the width is zero for all
states with mass below some critical massM e→` as e
→0.

Substituting the form~3.6! into either Eq.~3.4! or Eq.
~3.5!, and equating residues at the pole~real or complex!
gives the bound state equations for the vertex functionsGX

GS~p,MB!522m1m2E d3kVS~p,k,MB!

~2p!3 E1~k!

GS~k,MB!

m2
22~MB2k1

1!2

1
2m2 C GS~p,MB!

m2
22~MB2p1

1!2
, ~3.7!

GA~p,MB!522m1m2E d3kVA~p,k,MB!

~2p!3 E1~k!

3F GA~k,MB!

m2
22~MB2k1

1!2
2

GA~p,MB!

m2
22~MB2p1

1!2G
1

2m2 C GA~p,MB!

m2
22~MB2p1

1!2
, ~3.8!

where we use a mixed notation withMB denoting both the
mass and the four vector$MB,0%, the difference being clea
from the context.

As with the scattering amplitudes, the two vertex fun
tions are equivalent in the limite→0

GS~p,MB!↔GA~p,MB!, ~3.9!

but the vertex functionGA is more convenient to calculate i
the limit e→0.

D. Normalization condition and charge conservation

The bound state equation and the normalization condi
for the bound state wave function can be derived from
nonlinear form of Eq.~3.4! @15#. In this paper the derivative
]VS /]Pm50 in the rest frame, so the result is~for equal
mass particles!

2Pm5
]

]Pm
E d3k

~2p!3 2E1~k!
H GS~k,MB! GS~k,MB!

m1
22~P2k1

1!2 J .

~3.10!

In view of the relation~3.9! this relation can also be writte
03520
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2Pm5
]

]Pm
E d3k

~2p!3 2E1~k!
H GA~k,MB! GA~k,MB!

m1
22~P2k1

1!2 J
5E d3k

~2p!3 E1~k!

GA~k,MB! ~P2k1
1!m GA~k,MB!

~m1
22~P2k1

1!2!2
.

~3.11!

This is a familiar result, which will be generalized to th
spin-1/2 case later.1

This normalization condition also follows from the con
servation of charge~or, alternatively, can be used to prov
that charge is conserved!. For the scalar case being discuss
in this section we assume that the two particles 1 and 2 h
equal masses but~possibly! unequal chargese1 and e2. If
there are also no interaction currents the full current oper
will be given by the relativistic impulse approximation~RIA!
discussed in Refs.@16,17#. The electromagnetic current o
the bound state in the RIA consists of the two terms result
from the coupling of the photon to particle 1 and 2. T
current is related to the form factor by

eB F~q2!~P1P8!m

5e1E d3k

~2p!3 2E2~k!

3H G2A~k,MB! ~P1P822k1!m G2A~k,MB!

~m1
22~P82k1!2!~m1

22~P2k1!2!
J

1e2E d3k

~2p!3 2E2~k!

3H G1A~k,MB! ~P1P822k1!m G1A~k,MB!

~m2
22~P82k1!2!~m2

22~P2k1!2!
J

5~e11e2!E d3k

~2p!3 2E1~k!

3H GA~k,MB!~P1P822k1!m GA~k,MB!

~m1
22~P82k1!2!~m1

22~P2k1!2!
J ,

~3.12!

where the second line follows if we usem15m2 and the fact
that, for equal mass particles, the vertex functionG1 ~particle
1 on-shell! 5 G2 ~particle 2 on-shell! 5 G. At q50, this
expression becomes

1In the nonrelativistic limit the normalization condition reduces
the normalization condition of the Schro¨dinger wave function. This
indicates that although the relativistic wave function does not h
a probability interpretation it is a relativistic generalization of t
nonrelativistic Schro¨dinger wave function.
8-6



o

m
w
n

fo
an

d

h
g

is

ly

d

ify

r or

e
ra-

is

-
y

n
ch

d
ect
ed

is
t
s

l
el

are
s a

QUARK-ANTIQUARK BOUND STATES IN THE . . . PHYSICAL REVIEW C 63 035208
eB F~0! 2Pm5~e11e2!E d3k

~2p!2 E1~k!

3
GA~k,MB! ~P2k1!m GA~k,MB!

@m1
22~P2k1!2#2

5~e11e2! 2Pm. ~3.13!

Hence, the normalization condition guarantees charge c
servation

eB F~0!5eB5e11e2 . ~3.14!

E. Symmetrized two channel equation for equal mass scalar
quarks

If the quarks have equal mass (m15m25m), and the
bound state mass is positive and not too small, a sym
trized two channel equation is needed. The two channels
be labeled 1 and 2 depending on whether the quark or a
quark is on mass-shell, and the symbolp1

1 denotes that the
particle is on itspositiveenergy mass-shell@i.e., p1

1 25m2

and p0
15E(p)5Am21p2]. Starting from Eq. ~3.8!, and

suppressing the subscriptA, the vertex functions for the two
channels are denoted

G1~p,MB!5G~p1
1 ,p2!, G2~p,MB![G~p1 ,p2

1!.
~3.15!

With this notation, the symmetrized two channel equation
equal mass scalar ‘‘quarks’’ with a confining interaction c
be written

G i~p,MB!52m2(
j
E d3kVi j ~p,k!

~2p!3 Ej~k!

3F G j~k,MB!

m22~P2kj
1!2

2
G i~p,MB!

m22~P2pi
1!2G

1
2mCG i~p,MB!

m22~P2pi
1!2

, ~3.16!

wherei and j label which of the two quarks is on-shell, an

kj
15$E~k!,~2 ! j 11 k% ~3.17!

is the momentum of the on-shell quark. Note that t
strength of theVi j term has been multiplied by 1/2, reflectin
the fact that the interaction is anaverageof the strengths in
two channels that are equal in the nonrelativistic limit. Th
equation uses the same subtraction for both thei 5 j and the
iÞ j terms. This prescription differs from that previous
used in Ref.@1#. In this work the kernel below will not, in
general, be singular wheniÞ j , and the subtraction use
above is sufficient to preserve the nonrelativistic limit~see
below!.
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In order to complete the description we need to spec
the form of covariant interactionVi j . A natural choice that
reduces to the correct nonrelativistic limit is@1#

Vi j ~p,k![VA~qi j !52
8ps

~qi j
2 2e2!2

, ~3.18!

where the four-momentum transfer depends on whethe
not i 5 j :

q11
2 5q22

2 5@E~k!2E~p!#22~k2p!2,

q12
2 5q21

2 5@MB2E~k!2E~p!#22~k1p!2.
~3.19!

A similar form could be used for the kernelVS ~which we
will not need!

Vi j ~p,k![VS~qi j !528psH 1

~qi j
2 2e2!2

1
4e2

~qi j
2 2e2!3J .

~3.20!

However, the form~3.18! has two drawbacks. First, at larg
p.k the kernel converges slowly, and the equation is ult
violet divergent. In Refs.@1,2# a form factor was introduced
to regularize this divergence. Second, using this form it
difficult to regularize the infrared (q250) singularities that
appear in thee50 limit. In the nonrelativistic case the infra
red singularity occurs only atq50 and can be regulated b
thed function subtraction in Eq.~2.3!. However, in the rela-
tivistic case infrared singularities occur not only whenqm

50, but also~for the iÞ j kernels! when the momentum
transfer is lightlike, so thatq250 but qmÞ0. These ‘‘off-
diagonal’’ singularities are not regulated by the subtractio
term, and their removal spoils the simplicity of this approa
@1#.

Since the role ofVA is to model the linear interaction, an
the principle requirement is that it reduces to the corr
nonrelativistic limit, both of these problems are eliminat
very simply if VA is defined as follows:

VA~qi j !52
8ps

qi j
4 1~P•qi j !

4/P4
, ~3.21!

whereP is the total four-momentum of the bound state. Th
form has the following advantages:~i! the denominator is no
singular unless bothq2 andP•q are zero, so the singularitie
are restricted toqm50; ~ii ! no ultraviolet regularization is
needed;~iii ! the interaction doesnot depend on the bound
state momentumP in the bound state rest frame; and~iv! it
has the correct nonrelativistic dependence onq2. One disad-
vantage of the form~3.21! is its dependence on the tota
momentumP of the particle pair. However, since this kern
confines particles in pairs that cannot be separated, they
naturally associated as a pair and we do not view this a
serious limitation. Another feature of the form~3.21! is that
its off-diagonal couplings are singular only whenW
52E(p) ~becausek1p50 also!. This is only possible for
8-7
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ÇETIN ŞAVKLI AND FRANZ GROSS PHYSICAL REVIEW C63 035208
excited states and, as we will prove below, confinement
quires the vertex function to be zero at this point, controlli
this singularity automatically.

The introduction of the definition~3.21! considerably sim-
plifies the solution of the relativistic equation~3.16!, but will
introduce electromagnetic interaction currents if the pho
four-momentum is not zero. These will be discussed in
subsequent paper.

Both Eqs.~3.8! and~3.16! have the correct nonrelativisti
limit with confinement. Consider the one-channel equat
~3.8! first, and letm1 and m2→`. Then the energy trans
ferred by the on-shell quark,E1(k)2E1(p)→0 and
VA(q11)→VA(q). Furthermore, ifMB5m21m11E, then to
first order in the small quantitiesk2 andmRE, the relativistic
propagator reduces to

1

m2
22k2

2
→ mR

m2~k222mRE!
, ~3.22!

and substituting this into Eq.~3.8! gives Eq.~2.19!. In the
two-channel caseq11→q12 as m→` and the kernelsV11
→V12. Since the subtraction in the two channels is a
identical, the contributions from the two channels are eq
and the coupled equations reduce to the single equa
~2.19!.

F. Proof of confinement

While one can visualize the potential in the nonrelativis
case and get a picture of the physics, it is less possibl
visualize the covariant interaction. What are the criteria w
which one can judge whether a given interaction really c
fines? If the particles are bound in a state of total mass la
than the sum of the masses of the constituents (MB.m1
1m2), the bound state could, in principle, decay into fr
constituents. Confinement prevents this from happening
one of two possible ways:~i! the quark propagators will no
have any physical mass poles@18#, or, as we will now prove
for this model,~ii ! the vertex function will vanish when th
quarks are simultaneously on-shell.

The proof is identical to the nonrelativistic proof give
above and we will summarize it only for the one-chann
equation. SettingC50, the one channel bound state equ
tion ~3.8! can be written

GA~p,MB!522m1m2E d3kVA~p,k!

~2p!3 E1~k!

3FGA~k,MB!2GA~p,MB!

m2
22k2

2 G
12m1m2GA~p,MB!E d3kVA~p,k!

~2p!3 E1~k!

3H p2
22k2

2

~m2
22p2

2!~m2
22k2

2!
J . ~3.23!
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Since the first quark is on-shell, the second quark is on
positiveenergy mass shell when the magnitude of the re
tive three-momentumupu5p0 is

Am1
21p0

21Am2
21p0

25MB . ~3.24!

This occurs whenp0
2 is given by

4MB
2 p0

25@MB
22~m11m2!2#@MB

22~m12m2!2#.
~3.25!

As in the nonrelativistic case, the singularity atp5k is inte-
grable, and hence the second term on the rhs of Eq.~3.23!
will be singular for any vectorp0 ~with up0u5p0) unless

GA~p0 ,MB!50. ~3.26!

Therefore, the vertex function vanishes when both partic
are on their mass shell. This condition is illustrated diagra
matically in Fig. 4.

Note that the subtraction term in Eqs.~3.16! and ~3.23!
plays two central roles:~i! it regularizes the singular interac
tion atp5k and makes it zero atr 50, and~ii ! it is singular
when p2

2→m2
2, forcing condition ~3.26!. The subtraction

term is essential to the self consistent description of confi
ment. As in the nonrelativistic case the proof did not depe
on the specific form of the interaction.

We now discuss how confinement affects the stability
bound states under external disturbances.

G. Excitation of bound states

A consistent description of confinement implies that tw
free quarks cannot be liberated from a bound state, e
under the influence of an energetic external photon or o
probe. This requirment implies that the usual Born te
~shown in Fig. 5! is either canceled by the rescattering ter
or is a diagram that does not exist in the formalism. If t
Born term does not exist, the rescattering term, illustrated

FIG. 4. The confinement condition for the Gross vertex fun
tion.

FIG. 5. The Born term, which cannot exist if the quarks a
confined.
8-8
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QUARK-ANTIQUARK BOUND STATES IN THE . . . PHYSICAL REVIEW C 63 035208
Fig. 6, must be zero if the final state quarks are all on-sh
How are these restrictions built into the formalism?

When particles are confined there are no free two-part
states and the two-body propagator must always include
infinite number of interactions. Since there are no free p
ticle states, a perturbation theory for confined particles b
around the free propagator cannot be constructed. This
ture is built-in automatically if the two body propagato
satisfyhomogeneousintegral equations withno free particle
contribution.

To illustrate these ideas, we review the formalism for t
scattering amplitude and its relation to the two-body pro
gator. It is convenient to work with the scattering form of t
equation. In operator notation, Eq.~2.13! is

M ~p,p8,P!5h V~p,p8!2V~p,k!G0~k,k8,P!M ~k8,p8,P!

5h V~p,p8!2M ~p,k,P!G0~k,k8,P!V~k8,p8!,

~3.27!

whereG0(k,k8,P) is the free two body propagator@contain-
ing a factor ofd3(k2k8)], integration overd3k andd3k8 is
implied, and we have dropped the subscriptS for simplicity.
The parameterh was introduced in the discussion followin
Eq. ~2.15! and is very small, approaching zero ase→0.

Now the dressed propagatorG is related to the scatterin
amplitudeM by

G~p,p8,P!5z G0~p,p8,P!2G0~p,k,P!M ~k,k8,P!

3G0~k8,p8,P!, ~3.28!

wherez, to be determined, is a parameter proportional to
strength of the free particle scattering. If the potential co
fines there should beno inhomogeneous termandz50. To
determninez and the equation forG, substitute Eq.~3.27!
into Eq. ~3.28! giving

G~p,p8,P!5z G0~p,p8,P!

2hG0~p,k,P!V~k,k8!G0~k8,p8,P!

1G0~p,k,P!V~k,k8!G0~k8,k9,P!

3M ~k9,k-,P!G0~k-,p8,P!

5z G0~p,p8,P!1~z2h! G0~p,k,P!V~k,k8!

3G0~k8,p8,P!2G0~p,k,P!V~k,k8!

3G~k8,p8,P!. ~3.29!

FIG. 6. Can an external photon probe disintegrate the bo
state?
03520
ll.

le
an
r-
lt
a-

e
-

e
-

The second term is eliminmated by choosingz5h, and
gives familiar equations for the dressed propagator

G~p,p8,P!

5h G0~p,p8,P!2G0~p,k,P!V~k,k8!G~k8,p8,P!

5h G0~p,p8,P!2G~p,k,P!V~k,k8!G0~k8,p8,P!,

~3.30!

where the second form parallels the second form of
~3.27!.

The interpretation of Eqs.~3.28! and ~3.30! for the
dressed propagator follows from the interpretation of E
~3.27! for the scattering amplitude. Ase→0, the parmeter
h→0 and the inhomogeneous term vanishes. In this li
both the scattering amplitude and the propagator satisfy
mogeneous equations.

The amplitudeJ for inelastic scattering induced by
probe g can be obtained from the dressed propagator
striping off the final free propagators. IfJ is the current de-
scribing the coupling of the probe to the quark, then t
inelastic scattering amplitude is@9#

J~p,P,q!5G0
21~p,k,P1q!G~k,p8,P1q!

3J~P1q,P!C~P!

5$h1M ~p,k,P1q!G0~k,p8,P1q!%

3J~P1q,P!C~P!. ~3.31!

Here the first term proportional toh is the Born term shown
in Fig. 5, and we see that there is no Born term in the limit
exact confinment~i.e., h50). Furthermore, in the presenc
of confinement the scattering matrix satisfies the same ho
geneous equation satisfed by the bound states@Eq. ~3.27!
with h50], and an extension of the proof given in Sec. III
above shows that the scattering matrix in Fig. 6 must be z
if both final state quarks are on shell.

We have constructed a self-consistent description of c
finement within the context of relativistic spectator equ
tions.

H. Generalization to fermions

If the quarks have spin, the kernel in the spectator eq
tion will be an operator in the Dirac space of the two quar
This operator can be written

V~p,k!5(
i 51

3

a i Oi1 Oi2Vi~p,k!, ~3.32!

where the Dirac matricesO, which operate on the Dirac in
dices of particles 1 and 2, describe the spin-dependent s
ture of quark-antiquark interaction. Thea i are parameters
determined either empirically~by fitting the spectrum!, from
lattice calculations, or from the theory. In this paper we co
sider only three possible spin structures: scalarO1 j51j ,
pseudoscalarO2 j5g5 j , and vectorO3 j5gm j /2. With this

d

8-9
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ÇETIN ŞAVKLI AND FRANZ GROSS PHYSICAL REVIEW C63 035208
notation the one channel spectator equation for spin 1/2
ticles with constant massesm1@m2 is given by

G~p,P!52E d3k

~2p!3E1~k!
(

i
Vi~p,k!Oi1~m11k” 1

1!

3H G~k,P!

m2
22k2

2J ~m22k” 2!Oi2 , ~3.33!

where the quark has massm1 and is on shell, so thatk1
1 2

5m1
25p1

1 2, and the antiquark has massm2. Therefore, the
momentum transfered by the interaction is

~p12k1!25@E1~p!2E1~k!#22~p2k!2[q. ~3.34!

As in the nonrelativistic case, we consider a kernel co
posed of linear, constant, and one-gluon exchange pie
The interaction kernel for the linear part of the potentialVL is

VL~p,k![(
i 51

3

aLi Oi1 Oi2VL~p,k!,

5S as11121apsg51g521
1

4
av gm1g2

mD VL~p,k!,

~3.35!

whereVL(p,k) is

VL~p,k!5VA~q11~p,k!!

2E1~k! d3~p2k!E d3k8
VA@q11~p,k8!#

E1~k8!
.

~3.36!

In this work we employ a pure scalar linear interaction,as
51,aps5av50, but in later calculations the coefficientsa i
will be determined empirically. The one-gluon exchange a
constant interactions will be pure vector

Vg~q!5gm1 gn2 Vg
mn~q!,

Vc~q!5gm1 g2
m C, ~3.37!

where

Vg
mn~q![2S gmn2

qmqn

q2 D Vg~q!

52S gmn2
qmqn

q2 D 1

q22L2

d16p2/3

ln~t1uq2u/lQCD
2 !

,

~3.38!

whered512/(3322Nf)512/27, the color factor of 4/3 ha
been included,L51 GeV,t 5 2, andlQCD 5 200 MeV. In
previous work@2# quark propagators with constant mass
were used. In this work we parametrize the quark propag
by
03520
r-
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S~p!5
1

m~p!2p”
, ~3.39!

wherem(p) is a mass function for the quark, to be defin
later.

If the constituents are identical or close in mass and
equations are to be applied to the description of nearly m
less bound states, thefour-channelequation should be used
Numerical solutions of the four-channel equation will be p
sented in this work.

The four channels are defined by the constraints in
four-momentak1 and k2 arising from the requirement tha
both the quark and the antiquark be constrained toboth their
positive and negative energy mass-shells. A formal way
obtain the equations is to integrate over the internal ene
k0 by averaging the contributions from the quark and an
quark poles inboth the upper and lower halfk0 complex
plane, as illustrated in Fig. 7. This averaging is needed
ensure charge conjugation~particle-antiparticle! symmetry,
and leads to four coupled equations. However, even tho
the form of the equations is obtained in this way, we emp
size that the equations are theoretically justified by the ar
ment that the singularities in the interaction kernel omitted
this procedure tend to be cancelled by other higher or
terms that would otherwise have been neglected, and
this leads to covariant equations with the correct nonrela
istic limit. The inclusion of the negative energy poles, n
glected in other applications of the symmetrized equati
@12#, is required in cases whereP→0 @1#.

The four constraints are conveniently identified by t
notation

kj
s5$sE~k!,~2 ! j 11 k%, ~3.40!

which generalizes that introduced in Eq.~3.17!. Here the
superscripts56 denotes either the positive or negative e
ergy mass shell constraints. Then, introducing the opera

L~k!5m~k!1k” , ~3.41!

and defining the four channel vertex functions

G1
s~p,MB!5G~p1

s ,p2!,

G2
s~p,MB!5G~p1 ,p2

s!, ~3.42!

and wave functions

FIG. 7. Propagator poles in the complexk0 plane.
8-10
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QUARK-ANTIQUARK BOUND STATES IN THE . . . PHYSICAL REVIEW C 63 035208
C1
s~p,MB!5

L~p1
s!G1

s~p,MB!L~2p2!

m~p2!22p2
2

,

C2
s~p,MB!5

L~p1!G2
s~p,MB!L~2p2

s!

m~p1!22p1
2

, ~3.43!

permits us to write the four-channel spectator equation in
following compact form:

G i
s~p,MB!52

1

2 (
j r

E d3k

~2p!3 2E~k!
$Vi j

sr~p,k!

3@C j
r~k,MB!2C i

s~p,MB!#

2d i j dsrVg
mn~p2k!gmC j

r~k,MB!gn%

2C gmC i
s~p,MB!gm, ~3.44!

where the rhs of the equation now sums over both posi
and negative energy contributions (r 56) from eachquark
( j 56). The Kroneckerd i j dsr functions restrict the one
gluon exchange interaction to the diagonal channels~where
the same particle is on the same mass shell before and
the interaction!. Inclusion of the one-gluon exchange in of
diagonal channels leads to numerical instabilities, which
principle can be handled by using more grid points in n
merical integrations. Restricting this interaction to diago
channels eliminates these singularities from the gluon pro
gator.

I. Charge conjugation invariance

The final task is to show that Eq.~3.44! is invariant under
the charge conjugation operation

GC~p1 ,p2!5CGT~p2 ,p1!C 21. ~3.45!

This is done by proving that bothG andGC satisfy the same
equation.

First note that, when particle 1 is on shell, interchange
p1 andp2 gives

G1
s~p,MB!5G~p1

s ,p2!→G~p2 ,p1
s!5G2

s~2p,MB!
~3.46!

and is equivalent to 1↔2 andp→2p. Then

C1
s C~p,MB!5CC2

s T~2p,MB!C 21,

C2
s C~p,MB!5CC1

s T~2p,MB!C 21. ~3.47!

Finally, the Dirac direct products1^ 1, gm ^ gm, and g5
^ g5 are invariant underC. Hence, changingk→2k and
performing the transformations~3.45! and~3.46!, shows that
Eq. ~3.44! is also invariant. Therefore the charge conjugat
eigenstates, labeled byh56

Gh
s ~p,MB!5G1

s~p,MB!1h G2
s C~p,MB!, ~3.48!
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are solutions of the equation and charge conjugation sym
try is proved.

J. Dynamical quark mass

The dynamical quark mass function is the solution of t
Dyson-Schwinger equation. In NJL-type models, thisone-
bodyequation for the spontaneous generation of quark m
and thetwo-bodybound state equation for a state of ze
mass become identical in the chiral limit~when the bare
quark mass is zero!. In this limit the quark mass function an
the bound state wave function for a massless pseudos
bound state are identical, and spontaneous symmetry br
ing assures the existence of a massless pseudoscalar b
state.

In this paper, we adopt a slightly different approach. W
will first choose a convenient mass function, and thenre-
quire that thetwo-bodyequation for a massless pseudosca
bound state automatically has a solution when the bare q
mass is zero. In this case the quark mass function and
wave function for the massless Goldstone boson will not
identical, but at least the existence of the Goldstone boso
the chiral limit is assured. We willdefine the quark mass
function of flavorf by

mf~p![mf
01c~mf

0! f ~p!, ~3.49!

wheremf
0 is the current quark mass of flavorf, and f (p) is a

universal function defined by

f ~p![
1

up2u1L2
. ~3.50!

The functionc(mf
0) can be thought of as a polynomial i

powers ofmf
0 . This is the typical structure of the mass fun

tion that is usually obtained from the solution of the o
body equation.

The reason for not solving the one-body equation, in o
case, is twofold. The first problem is the difficulty of inco
porating one-gluon exchange into the one-body equat
Because of the on-shell constraint in the loop momenta,
one-gluon exchange interaction leads to an ultraviolet div
gence. The second problem is associated with our choic
infrared regularization of the linear interaction. The infrar
singularities are regulated by theP•q term in the denomina-
tor of the linear interaction equation~3.21!, and this would
imply that the resultant mass function is a function of tw
arguments, i.e.,m5m(p2,p2). This is unacceptable, an
rather than forsaking important features of the model such
confinement and asymptotic freedom, we choose to mo
the quark mass functions.

The form ~3.49! guarantees that at large momenta, qua
masses go to their current quark mass values as dictate
asymptotic freedom@3#. In the chiral limit the quark mass
function reduces to

mx~p!5c~0! f ~p!, ~3.51!

which has a solution@that is zero whenc(0)50]
8-11
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mx5SAL6

27
1

c~0!2

4
1

c~0!

2 D 1/3

2SAL6

27
1

c~0!2

4
2

c~0!

2 D 1/3

. ~3.52!

We fix the chiral massmx by requiring that the pion bound
state equation has a massless solution when the quark
is mx . This insures that a massless pion exists in the ch
limit when mf

050. Next we choosea value for the light
current quark massmu

05md
0 and fix c(mu

0) so that the two-
body equation gives the correct value for the physical p
mass. This also fixes the value of the on-shell quark m
away from the chiral limit. Similarly, wechoose ms

0 and fix
c(ms

0) by fitting the kaon mass. For three flavors it is the
fore sufficient to have a functionc(mf

0) that is a polynomial
of order two inmf

0 . As new flavors are introduced the ord
of the polynomial accordingly can be increased.

To summarize, we have six mass paramete
mu

0 ,ms
0 ,c(0),c(mu

0),c(ms
0), andL. In practice we fixL at 1

GeV andchoosethe current quark massesmu
0 andms

0 to be
near the values expected by current theory. We then ad
thec’s to give a zero mass pion in the chiral limit, and a re
pion and kaon with the observed masses. This proces
repeated for different values of the current quark masses
the potential parameterss andC until satisfactory values for
the constituent quark masses and the spectrum of exc
pions is obtained. The final values of the parameters will
given in the next section.

Having outlined the features of the model, we now tu
our attention to the details of the pseudoscalar bound s
equation with spin.

IV. PSEUDOSCALAR CHANNEL

The bound state vertex function has the following stru
ture

x5xcolor^ xflavor^ xspin. ~4.1!

The color space vertex function is a Kronecker delta funct
dcd , which reflects the color singlet nature of the bou
state. The flavor space vertex function is the matrixl f g

i in
SU~3! matrix space, which chooses the right flavor combin
tion of the meson under consideration. Indicesf ,g refer to up
down and strange quark entries (u,d,s51,2,3) of l i . For
example,@l1#ud5@l1#12. For a general meson typei, the
bound state vertex function is

xab, f g,cd
i ~k1 ,k2![dcd l f g

i Gab~k1 ,k2!, ~4.2!

where a and b are Dirac indices~to be suppressed in th
following discussion!. The most general form for the spin
space part of the vertex function for pseudoscalar meson

G~k1 ,k2!5g5$G01P” G11/k” G21@k” ,/P” # G3%, ~4.3!
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where G i5G i(k1 ,k2) are scalar functions. The dominan
contribution to the bound state vertex function comes fr
the first term of Eq.~4.3!,

G~k1 ,k2!'g5 G0~k1 ,k2!. ~4.4!

This approximation, which is exact in the chiral limit whe
P50 andm15m2, will be used for the pion and kaon boun
states in this work.

Assuming Eq.~4.4!, multiplying the four-channel equa
tions for pseudoscalar mesons byg5, and taking the trace
gives the following approximate coupled equations for ps
doscalar states:

G i
s~p,MB!52

1

2 (
j r

E d3k

~2p!3 2Ej~k!
$Vi j

sr~p,k!

3@F j~kj
r !G j

r~k,MB!2Fi~pi
s!G i

s~p,MB!#

16d i j dsrVg~p2k!F j~kj
r !G j

r~k,MB!%

12Fi~pi
s!CG i

s~p,MB!, ~4.5!

where the four-channel wave functionsG i
s(p,MB) are ob-

tained fromG0 as shown in Eq.~3.42!, and

F1~k1
r ![

m1m2~k2!1k1
r
•k2

m2
2~k2!2k2

2
,

F2~k2
r ![

m1~k1!m21k1•k2
r

m1
2~k2!2k1

2
, ~4.6!

where mi(ki
r)5mi(2ki

r)5mi . For future reference we
record the four-momentumqi j

rs[(p12k1) i j
rs exchanged be-

tween the two quarks. This depends on the initial and fi
channel. The distinct cases are

q11
rs5q22

2r ,2s5~rE~p!2sE~k!, p2k!,

q12
rs5~rE~p!1sE~k!2MB , p2k!,

q21
rs5~MB2rE~p!2sE~k!, p2k!. ~4.7!

The solution of Eq.~4.5! for a realistic choice of the param
eters will be discussed in the next section.

Before turning to this discussion, look at the coupl
equations in the chiral limit, whenP50 and the dynamica
quark masses are equal, so thatm1(k)5m2(k)5m(k). In
this limit, k152k2, and expanding to orderP•k1

r gives

F1~k1
r !5

m~k1
r ! m~P2ki

r !1k1
r
•P2ki

r2

m2~P2ki
r !2~P2ki

r !2

5
122mm8

224mm8

5
1

2
5F2~k2

r !, ~4.8!
8-12
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where m[m(6ki
s) and m8[dm(6k)/dk2u(k25m2) . Note

that, in the chiral limit, a zero in the numerator cancels a z
in the denominator, as in the NJL mechanism. Here, si
one of the two propagators in the bound state equation
already been removed by the mass shell condition, this c
cellation removes the all the poles from the propaga
Hence, using charge conjugation symmetry~3.45!, the four
coupled equations~4.5! reduce to onlytwo equations in the
chiral limit. These coupled equations are

Gx
1~p,0!52E d3k

~2p!3 2E~k!
$V1~p,k!

3@Gx
1~k,0!2Gx

1~p,0!#1V2~p,k!@Gx
2~k,0!

2Gx
1~p,0!#16Vg~p2k!Gx

1~k,0!%12CGx
1~p,0!,

Gx
2~p,0!52E d3k

~2p!3 2E~k!
$V1~p,k!

3@Gx
2~k,0!2Gx

2~p,0!#1V2~p,k!@Gx
1~k,0!

2Gx
2~p,0!#16Vg~p2k!Gx

2~k,0!%12CGx
2~p,0!,

~4.9!

FIG. 8. Quark mass functionsmf(p)[M (p2) are shown for
up/down, and strange quarks. On-shell quark masses aremu,d

5360 MeV, andms5588 MeV. At large momenta quark mas
values approachmu,d

0 55 MeV, andms
05100 MeV.

TABLE I. Summary of results.

Observable Calculated~MeV! Experimental~MeV!

mp 140 139.6
mh 320
mp* 1118 13006100
mK 495 495
mx 376

mu5md 360
ms 588
03520
o
e
as
n-
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where

V6~p,k!5
8ps

~p2k!41@E~p!7E~k!#4
. ~4.10!

Note that these two equations are symmetric under the in
change

Gx
1↔6Gx

2 , ~4.11!

and hence reduce to one equation forGx[Gx
156Gx

2 ,

Gx~p,0!52E d3k

~2p!3 2E~k!
$@V1~p,k!6V2~p,k!

16Vg~p2k!#Gx~k,0!2@V1~p,k!

1V2~p,k!#Gx~p,0!%12CGx~p,0!, ~4.12!

where the sign of theV2 term depends on the sign in th
relation ~4.11!. Since thep0 is even under charge conjuga
tion symmetry, the plus sign is the correct one to use.

Recalling Eq.~3.52!, the energiesE in Eq. ~4.12! depend
on mx . In the chiral limit, the energy is

FIG. 9. The four-channel vertex functions for the ground state
the pion.

TABLE II. Values of the parameters.

Parameter Value

mu
0 5 MeV

ms
0 100 MeV

c(0) 0.429 GeV3

c(mu
0) 0.400 GeV3

c(ms
0) 0.657 GeV3

s 0.4 GeV2

C 0.4929
L 1 GeV
8-13
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E~p!5Amx
21p2, ~4.13!

andmx is adjusted to ensure that Eq.~4.12! has a solution.
Oncemx @and hencec(0)] hasbeen fixed, Eq.~4.5! is solved
for various values of the bare quark massesmf

0 and the
‘‘mass functions’’c(mf

0), and all parameters are adjusted
give a reasonable spectrum.

We now present some numerical results for the qu
mass functions and the bound state vertex functions.

V. RESULTS

Before presenting our numerical results, we emphas
that the purpose of this paper isnot to fit the light quark
spectrum. We have far too many parameters and too
predictions to justify that. Our purpose here is to see h
this model would work in practice, and to show that reas
able numerical results can be obtained. A fit to the spectr

FIG. 10. The four-channel vertex functions for the first excit
state of the pion.

FIG. 11. The two positive energy vertex functions for the fi
excited state of the pion. The second node is due to the exc
state, and the first node assures that the bound state does not d
03520
k

e

w
w
-
,

meson decays, and electromagnetic interactions is postp
for a future work.

Illustrative quark mass functions are shown in Fig. 8. T
on-shell quark massesmf are given in Table I. At large mo-
menta, the quark mass alues approach the bare quark m
mf

0 shown in Table II. The other mass parameters and bo
state parameters are also shown in Table II. The parametL
that determines the scale of mass function was fixed aL
51 GeV and not adjusted during the fits. The third line
Fig. 8 is the momentump, and the intersection of this line
with the quark mass function gives the constituent qu
mass.

In Figs. 9 and 10 the ground and first excited state ver
functions of the pion are shown. Here we show the ver
functions as a function of the variablepj

s5sE(p)[sp0.
Note thatp0 is positive for positive energy states (s51)
and negative for negative energy states (s52). Because of
the symmetrization, the positive energy quark vertex fu
tion is the same as the negative energy antiquark vertex fu

t
ed
cay.

FIG. 12. The four-channel vertex functions for the nonstran
h.

FIG. 13. The four-channel vertex functions for the ground st
of the kaon.
8-14
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tion up to an overall phase (1 for states even under charg
conjugation and2 for odd states!. Also note that the curves
are not continuous because the argumentp0 cannot take val-
ues between (2m,1m). In Fig. 11 we present the excite
state vertex functions on a logarithmic scale. The location
the first node is exactly where both quarks are simu
neously on shell. Therefore, although kinematically allow
the excited state of the pion cannot decay into a free qu
antiquark pair. This numerical result is a consequence of
confinement condition~3.26!.

In Fig. 12 we present the non-strange-eta~the isospin zero
uū1dd̄ combination! ground state vertex functions. Not
that these are odd under charge conjugation. The kaon ve
functions are shown in Fig. 13. Since the kaon is form
from a quark and antiquark of unequal masses, the part
antiparticle symmetry is lost and the negative and posi
energy solutions have a different shape and size.

The mass function and the pion wave function in the c
ral limit are shown in Figs. 14 and 15.

VI. CONCLUSION

We have shown that a relativistic generalization of t
Schrödinger equation with linear interaction leads to t
Gross equation. It is not possible to write a Bethe-Salpe
equation that gives the correct linear interaction in the n
relativistic limit. We have proved that the relativistic gene
alization of the linear interaction leads to vanishing ver
amplitudes when both of the constituents are on-shell. T
guarantees that the bound state does not decay to its con
ents. This mechanism of confinement follows from insisti
on the correct nonrelativistic limit. The model incorporat
asymptotic freedom through the inclusion of a vector o
gluon exchange interaction, and quark mass functions
approach the current quark values at infinite momentu
There are no cutoffs orad hocform factors involved, and the
linear interaction involves only one coupling parameter. T

FIG. 14. The chiral limit of the quark mass functionM (p2)
[mx(p). The on-shell quark mass ismx5376 MeV. At large mo-
menta quark mass function approaches 0.
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approach gives a good description of the pion, kaon, and
It remains to use this formalism to describe the full mes

spectrum.
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APPENDIX: MORE ABOUT CONFINEMENT

While Eq. ~2.9! was derived for the linear potential wit
the specific choice ofVA given in Eq.~2.4!, it is instructive
to consider it in its most general form whereVA is an arbi-
trary function. From this point of view, the role of the seco
term in square brackets in Eq.~2.9! ~which arises from the
subtraction term! is to ensure that the coordinate space p
tential ṼA(r ) is redefined so that it is zero at the origin, i.e
Eq. ~2.9! is a standard Schro¨dinger equation for the potentia

ṼL~r !5ṼA~r !2ṼA~0!. ~A1!

Looking at it this way, we see that any potentialṼA(r ) for
which ṼA(r o)2ṼA(0)5`, for somer o , gives a confined
system when used with Eq.~2.9!. For example, even the
choice of a pure Coulomb-type interaction forṼA ,

ṼA~r !52
1

r
, ~A2!

would give confinement. The subtraction term forces the
teraction to vanish at the origin, which requires an infin
shift in the energy~just as in the case of the linear intera
tion! forcing the interaction to go to infinity at large dis
tances. The role of the subtraction is an essential par
introducing confinement. This trivial point is worth emph
sizing because it is just as crucial for the relativistic equ
tions as it is for the nonrelativistic Schro¨dinger equation.

FIG. 15. The chiral limit of the pion ground state vertex fun
tion.
8-15
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@6# Ç. Şavklı, F. Gross, and J. A. Tjon, Phys. Rev. D62, 116006

~2000!.
@7# S. L. Adler and A. C. Davis, Nucl. Phys.B224, 469 ~1984!.
@8# F. Gross, Phys. Rev.186, 1448~1969!.
@9# J. Adam, J. W. Van Orden, and F. Gross, Nucl. Phys.A640,

391 ~1998!.
@10# F. Gross, nucl-th/9908084.
03520
@11# J. Zeng, J. W. Van Orden, and W. Roberts, Phys. Rev. D52,
5229 ~1995!.

@12# F. Gross, J. W. Van Orden, and K. Holinde, Phys. Rev. C45,
2094 ~1992!.

@13# T. Nieuwenhius and T. A. Tjon, Phys. Rev. Lett.77, 814
~1996!.

@14# N. Isgur, S. Jeschonnek, W. Melnitchouk, and J. W. Van O
den ~unpublished!.
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