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Quark-antiquark bound states in the relativistic spectator formalism
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The original model ofqa-bound states, developed by Gross and Milana, which uses the relativistic spectator
(Grosg equations to give a manifestly covariant description of confinement in Minkowski space that is con-
sistent with chiral symmetry, is improved and extended. These improvements inclutdierivation of the
normalization condition for the relativistic wave functioiis) proof that confinement automatically prohibits
decays by implying the vanishing of the vertex function when both quarks are on (@hekxtension of the
model to the strange quark sector and to sectors with unequal quark magsesmoval of unphysical
singularities associated with the confining interaction, @ndinclusion of a realistic one-gluon-exchange
interaction. We use phenomenological quark mass functions to build chiral symmetry into the theory and to
explain the connection between the current quark and constituent quark masses. We obtain reasonable results
for pions and kaons, establishing that the formalism, designed to work well in the heavy quark sectors, can also
be extended to the light quark sector.
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I. INTRODUCTION commonly used in Euclidean metric based calculations, is a
stronger constraint since it forbids any free quark states. On
Description of simple hadrons in terms of quark-gluonthe other hand, it has been recently shd#6] thatthe lack

degrees of freedom has long been an active area in physic@f physical mass poles may be a consequence of a poor ap-
With the advent of Jefferson Laboratory, which operates apProximation to the physics, and not a consequence of con-
intermediate energies and therefore probes the structure §peément.We emphasize that the second mechanism using
hadrons, there are new opportunities to test simple theoret}® Gross equation allows one of the two quarks in a meson
cal descriptions of quark interactions. The first natural step irfe be on-sheu, but m_surels that, w;}the preslenccha of a confining
this direction is to obtain a thorough understanding of how to![gttev(/?)(}trlgg7qtu§rlgs1E\l/tgr):iseheer;?iziotmagti%gﬂs e‘?hte ipbe%l,:gt?)rsftgf
:L?:tégﬁt;(jstI\él;’ﬂ?bﬂlﬁrcl;?fggﬁ(&SE;J?gsf)ti?:j pr::)géiﬁz' Inmalism facilitates the use of the Minkowski metric, and the

h ined larity i ¢ -3 Th confinement mechanism of this approach has a closer resem-
avia ggalhne popllj(arl y In recen hyei |. The commor|1 . blance to nonrelativistic models.
goal of these works is to bridge the gap between nonrelativ-" e grganization of the paper is as follows. In Sec. Il we

istic quark models and more rigorous approaches, such agyjew the formalism for nonrelativistic confinement in mo-
lattice gauge theory or Feynman-Schwinger calculationsmentum space. This discussion is carried out in momentum
While the Euclidean metric based calculations avoid thespace in order to prepare for the relativistic generalization,
complicated singularities present in Minkowski space, theyhich can only be done in momentum space. Two different
required extrapolations limit their applicability to light bound methods of defining the momentum space confining interac-
states such as the pion and the kaon. Therefore, it is impotion are introduced, discussed, and compared. Both are
tant to develop Minkowski metric based models that can beneeded for Sec. Ill, where we outline the general philosophy
used over a wider scale of energies. One such work using thaf the spectator treatment of confined systems, examine the
spectator formalism was developed in Rdfk.2]. In those implications of confinement for the scattering amplitude, and
works a relativistic generalization of the linear potential wasprove that the relativistic linear potential used in earlier
developed and the pion was shown to be massless in thgorks automatically ensures that—q-+q vanishes at the
chiral limit. However, the calculations involved some ap- momentum where decay of the state into two physical quarks
proximations and related conceptual problems. In this workvould otherwise be kinematically possible. The treatment is
we improve and simplify the model presented in those workdirst presented for scalar particles, and then generalized to
and address in detail some of the conceptual issues related fermions. The development extends the initial work of Gross
confinement. and Milana[1,2] and permits us to find the covariant normal-

If a quark-antiquark pair(referred to collectively as ization condition for the first time. We then introduce a new
“quarks”) is confined to a meson bound state with mass form for the linear confining kernel in momentum space, Eq.
then the bound state cannot decay into two free quarks, eve3.21), which allows us to remove the unphysical singulari-
if the sum of the quark masses is less than the bound states present in the work of Refl] and extend the calcula-
mass. This trivial statement can be realized by two possibléons to the strange quark sector. Use of the kefBe21)
mechanisms: eithefa) the quark propagators are free of requires a different treatment of quark self energies than
timelike mass poled,3,4] or (b) the vertex function of the originally published1,2], and in Sec. IV we construct quark
bound statevanisheswhen both quarks are on-shell. In this mass functions with the correct chiral limit. These mass
work we provethat the Gross equation supports the secondunctions are consistent with asymptotic freedom, and allow
mechanism of confinement. The first mechanism, which isus to choose parameters that give good numerical results for
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] scattering formof the linear potential. If is small the scat-
[ P tering is strongly resonant, and the wave function is signifi-
5 [ P 1 cant at smallr only for energies near one of the allowed
e 1 resonances. The width of these resonance states becomes
7 : narrower, and their wave function approaches that of a bound
s F e - state, as=—0.
———————— In contrast, the potentidl, (r)— 1/e asr—o and there-
P fore binds particles with energids<l/e. We will refer to
I this as thebound state fornpotential. Ase— 0 this potential
[ Z does not permit scattering at any energy; it has a spectrum of
/ bound states only.
These two approximate forms of the linear confining po-
tential are very different, yet for sufficiently smaliit should
a1t ] be possible to move freely from one of these potentials to the
other, and the results obtained with either form should be
equivalent.The ability to move freely from one form to the
other is very helpful to the discussion of normalization and
scattering, and will be assumed without formal prodfe
will return to this later in this section.

V(r (in units of 6''%)
\
v
\

r (in units of 67?)

FIG. 1. The linear potential in coordinate space &#0.1\/o

ando=0.2. The solid line i$7(r), the dashed line i¥,(r), the B. Two eq“'Va'e“m;'gr?f‘;rfgﬁsr??m'nger equation
dotted line isV(r), and the dot-dashed line ¥4r). For “small” ) o ) )

r <0.3/e (the region inside the small bp¥, (r) andV¢(r) are both Next we write a Schrdinger equation appropriate for
approximately equal to . each of the potential€2.2). Following Ref.[1], the momen-

tum space form o¥/, given in Eq.(2.2b) can be written as
pseudoscalar bound states. The results are presented in Sec.

V, and some conclusions are given in Sec. VI. Vi (q)=lim | Va(q)— b\x(q)f d3q’ VA(q’)}, 2.3
e—0
Il. NONRELATIVISTIC CONFINEMENT IN MOMENTUM
SPACE where

A. Alternative approximations for the nonrelativistic linear 8S7o
potential ValQ)=— ——5=. (2.9
o o . 8 (0P+€)?
We start by reviewing the discussion of confinement

within the context of the nonrelativistic Scliinger equation  Note that the second terfthe “subtraction term’ ensures
given in Ref.[1]. We will denote potentials in coordinate that
space byV and in momentum space . The nonrelativis-
ic linear ntial i
tic ea pOte tial 1s J' dSq V|_(q)=0, (25)
V(r)=or. (2.2 o

which is the momentum space form of the statement that
This potential can be constructed from familiar Yukawa-likeV/(r =0)=0. This subtraction has been previously used in

potentials in two different ways: Refs.[1,2], and also by Adler and Davig7] to regularize
- B their treatment of confinement in the coulomb gauge. The
Vg(r)=ore™ (228 Fourier transform oW/, , for finite €, is
V(r)=lim x %) (r( =) o .
e—0 LrE__eie_ = AI’+—. _ dq .
€ € V r)=f e '9"VA(q) (2.6
2.2 Al 2m)? A(d
These various potentials are shown in Fig. 1 for the illustra- e 1
tive case ofe=0.1Jo ando=0.2. Note that the two poten- =—o—_—= lim U(f— ;), 2.7
tials Vg(r) andV,(r) both approximate the linear potential <0

V(r) whenr <1/e, but these two approximate potentials be-and the subtraction term cancels the singulartéfm insur-
have very differently at large. ing that the linear part of the potential has the correct behav-
The potentialVs(r)—0 at larger, so that, strictly speak- ior in the limit ase—0 and that it vanishes at the origin (

ing, it does not confine particles at all. This potential always=0).

permits scattering, and we will therefore refer to this as the Adding a potentiaV, constant in coordinate space
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Ve(r)=—

Ve(a)=—(2m)*6%(a)C, (2.8

to the potential2.2b, and inserting the total potential into

the momentum space Schklinger equation gives

2

p
2mg ~E

W A(P,Po)

d3k
=—J(2 )3VA(p k) [Wg(K,po) = ¥a(P.Po)]

+C VAP, Po), (2.9
or, alternatively,
p? .
{z—mR—E—vA(m W A(p,Po)
= f dng( k) Wa(k,po) (2.10
(2m)° AlP AlK;Po). :
Heremg is the reduced masg is the energy,
Po=2mgE, (2.12)
and, for the linear potential introduced above,
~ g
Va(0)=-— (2.12
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This will be referred to as thecatteringform of the equa-
tion. As stated above, we will assume that the two equations
(2.10 and (2.13 give equivalent results whea is very
small.

It is important to our relativistic discussion in the next
section to be very clear in what sense the two equations
(2.10 and(2.13 are equivalent. To develop this idea more
precisely, introduce wave functions suggested by the bound
(2.10 and scattering2.13 forms of the Schidinger equa-
tion. These wave functions are

2m ,Po)
W (o) = — RV P:Po) 014
p _po
2mrM<(p,p’)
q,S(pipO):P (277)37] 6\3(p_p/)_R2—s(p2p ’
P"—Po
(2.15

where y is the nonrelativisticvertex function (defined in
analogy with the relativistic vertex functipmnd Mg is the
half off-shell scattering amplitudqo’zzpé, and P is the
operator that projects out the quantum numbers of the initial
state(the same spin, angular momentum, and internal sym-
metries as the bound described ¥y). The wave function
(2.15 has the form of the usual scattering wave function,
with the 6 function describing the asymptotic plane-wave
part. We have chosen to multiply this plane-wave part by a
(small) parametery. This parameter can be removed by di-
viding the wave function and the half off-shell scattering
amplitude byz, so it is, strictly speaking, an arbitrary scale
factor.

However, the size ofy is fixed by physical consider-
ations. Whene is very small and the energg<E_;, the

The constant potential is used to adjust the energy scal&vave function¥gis, in general, very small at short distances

These equations will be referred to as theund stateform

r. The exception occurs at speciasonantenergies near the

of the equation. The name comes from the fact that the spedound state energies of E¢2.10. At these energies the
trum of Eq. (2.9 consists of bound states and scatteringboundary conditions can be satisfied by a scattering solution

states, where

g
E<; +C=E.; bound states,

g
E>? +C=E; Scattering states.

This shows clearly how, in the limie—0, the equations
confine quarks of any energy.
While Eq.(2.10 has no scattering states B E;;, itis

clear that the equation obtained by replaciig(r) by its

large at smallr, with a small oscillatory tail escaping to
infinity (as shown in Fig. 2 If we require that the scattering
solution(2.15 and the bound state soluti¢?.14) be ofcom-
parable size at short distancets is necessary to choosg
small, as illustrated in Fig. 2. This complicated limiting pro-
cess will be summarized by the equation

(2.1

where the— symbol means that the spectrum of resonance
scattering states obtained from E@.13 converges to the
spectrum of bound states obtained from Ej10), and that,

in the region of confinemerit.e., wherer <E/o), the reso-
nant wave function§2.15 are comparable to the bound state

Ws(p,Po) =Y alP,Po),

counterpartVs(r) defined in Eq(2.2a, has scattering states wave functions(2.14), and the nonresonant solutions to Eq.
for all E>0. This potential has no subtraction, so its mo-(2.13 are very small.

mentum space Schdinger equation is simply

p? d3k
[H_E} S(p’DO):_j(quP

Vs(p—k) ¥s(k,po).
(2.13

The equivalencg2.16) can also be stated in terms of the
scattering amplitude and the vertex function

PMg(p,p") < ¥(P,Po)- (2.17

These amplitudes satisfy the following equations:
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10 ; T —————r 10

Yr) (dimensionless)
V(r) (in units of ")

1 10 100

# (in units of 67')

FIG. 2. Comparison of possible wave functiofrs(r) (falling
dotted ling and ¥ 4(r) (heavy solid ling. [For reference, the poten-
tials V4(r) (thin solid line and V| (r) (rising dotted ling are also
shown] The normalization is chosen so thlf,«< Vg, making the
plane-wave tail of¥ g (shown in the boxsmall. In this example
7=0.05.

d3k
Mg(p,p') = nVs(p—p’)—Zme wvs(p—k)

XMs(k,p’) N 2mgC Mg(p,p")
k= pj P>~ p;

: (2.18

d3k
Y(P,Po) = —Zme WVA(p_ k)

2mgC y(p,Po)
p’—p5

¥(K,Po) _ ¥(P.Po)
k?~p§  p*—pg

(2.19

where, in the limite—0 (and »—0), the two amplitudes
Mg and y are equivalenfin the sense of Eq2.17)].

In the next section we will use the generalization\o§
when € is very small but nonzero, ang when we want to
discuss exact confinemene€0). Only Eg.(2.19 has a
well defined mathematical limit whea—0. It will always
be assumed that eith®&t 5 or y may be used with equivalent
results.

C. Implications of confinement in nonrelativistic theory

PHYSICAL REVIEW C63 035208

and then substitute this into ER.19 [with C=0 for the
moment, giving

(P.Po) = — 2MMg ¥ >fd—3kV<—k>
Y(P,Po)= R Y(Po.Po (2m)° AlP
1 1

d3k
- _ZmRJ
k?-p5  p*—p} (2m)3

XVa(P—K) [R(K,po) = R(p,Po) ].  (2.2D)

All terms on the(right-hand sidg of this equation should be
regular agp’— p(z). Because of the subtraction, the term in-
volving R is finite, and, because of our choice @f, only
oneof the two remaining terms is zero éf is finite,

X

lim f 3T, 2 - PR —finite,
P2 p2 (2m)° k“=pg € \4pote
. f ¢ Vap—k) o ( )
im [ —————=——1m — 0
p?p2 (2m?® p*—p; €202\ PP=Pg
(2.22
Hence the subtraction term will be singular unless
¥(Po,Po) =0. (2.23

This condition also ensures that the constant term is not sin-
gular. We will discuss the physical interpretation of this re-
sult in the next section.

I1l. CONFINEMENT IN THE SPECTATOR FORMALISM
A. Introduction

At this point it is very tempting to generalize the nonrel-
ativistic linear potential2.3) by simply replacing the three
vectorq by a four vectorg

s

V(q)% lim

e—0

VA(q)—é“(q)f d“q’VA(q’)}+(2w)36“(q)C.
(3.1)

This, seemingly obvious, generalization will not reduce to
the correct nonrelativistic limit because of the unconstrained
behavior of thefdqgj Va(q') integral. Lacking a four dimen-
sional expression for the linear interaction that reduces to the
correct nonrelativistic limit, we rephrase our question: Can
one find a covariant equation that reduces to the Rlthger
equation(2.19 with a linear interaction? The confining rela-
tivistic bound state equation should be a relativistic generali-

We now derive an interesting restriction on the vertexzation of Eq.(2.19.

function y that will have an important physical interpretation
in the next section. To obtain this result, look at £E2.19
when p?—p3. Expandy aroundp3 using the fact thaty
depends only op?,

¥(P,Po) = ¥(Po.Po) + (P?—Pp3) R(p,po),  (2.20

A covariant equation with the correct nonrelativistic limit
is the Gross equatiof8,9]. If two quarks with masses)
=m, are not identical, the one-channel equation may be
used. It has the feature that the four-dimensional loop inte-
grals are constrained so that the heavier constitgerth
massm; in this example is restricted to its positive-energy
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] ] of Isgur, Jeschonnek, Melnitchouk, and Van Orden on quark
' hadron duality might be extended to this formalifid].

B. One channel scattering equations for scalar quarks

T We will begin with the one-channel equation. The mo-
+ Vi r mentum and mass of the quark grgand m;, the momen-
: tum and mass of the antiquark gve andm,, the total mo-

mentum isP, and the relative momentum 5 where
FIG. 3. One of the two-channel Gross equations for the bound
state vertex functio’. In this figure thex means that the particle P=p;+p2,
is on the mass shell.

1

mass shell(provided Mg>0; see Ref[10]). It has been P=5(P1=P2)- 3.2
shown by Zeng, Van Orden, and Robdrd] that the one-
channel spectator equations can be used to give a good a8ince the equations areanifestlycovariant[1,2], they may
count of heavy measons. be solved in any frame, and it is convenient to solve them in

If the particles are identical and the magg of the bound  the rest frame where
state is comparable tm, a symmetrized two-channel equa-
tion should be used. This is illustrated in Fig. 3. In this case P=p1+p,={Mg,0}. 3.3

an average of the contributions in which either particle 1 i )
(channel 1 or particle 2(channel 2 are on their positive- '€ quark will be on mass-shell, and the symppl will be

energy mass shell are included, and this leads to a set &f€d to+d2enot2e the particle on fissitiveenergy mass-shell

equations in which the two channels are coupled. The synf)-€. P; “=mi and in the rest frame pg)o=Ei(p)

metrized two-channel equation has been used previously t& Vms+p?]. The scattering amplitudeM(p; ,p,,p’s

describe low-energiN N scattering 12]. +,p5) is denotedM4(p,p’,P), or in the one-channel case
However, as is well knowri13], both the one-channel where there can be no confusion, simply M (p,p’,P).

equation and the symmetrized two-channel equations deéFhen, introducing a relativistic generalization of the potential

velop pathological behavior when the mass of the bound/gand writing the equation in the rest frartthis will be the

state approaches zero. The reasons for this, and the way ¢onvention from now o)) the one-channel equation for the

fix it were first discussed in Ref1]. Briefly, as the mass of scattering of scalar “quarks”ri;=m,) can be written

the bound statee— 0, distant singularities that may be nor-

mally neglected move into close range and give very large 2m;m,

contributions. If these singularities are included from the  Ms(P.p",P)=7Vs(p,p’,P)— (2m)°

start, the equation has a smooth behavioruas0 and is T

consi_ster_lt with chiral symmetryl]. To include these extra d®k V4(p.k,P) Mg(k,p’,P)

contributions more channels are needed, and if the particles f K > s

are identical, one needs to use a four-channel equation. This E1(k) m;—(P—kq)

four channel equation is a symmetrized version of the un-

symmetrized two channel equation used in REfs?]. One n 2m,C Ms(p,p’,p) (3.4
of the purposes of this paper is to present calculations using mg—(p— pl+)2 ' '
the four-channel equation, and to improve on the work of

Ref. [1]. This equation is the relativistic generalization of E2.18).

We emphasize that once we know how to handle the Alternatively, the bound state form of the scattering equa-
“hard” problem of treating light quarks in nearly massless tion is
bound states, we will be in a position to combine it with the
successes already achieved in the heavy meson-meson sector , 2mm, [ d3k
[11] and build a comprehensive model of mesons. In view of Ma(P,p",P)=~— Wf mVA(p*k’P)
the complexity of the light quark sector, our purpose here is
to see if this promising approach can be used to describe
light mesons.

In this section we will first review the one-channel equa-
tions, and using a relativistic generalization of the two forms ,
of confinement given in Eq(2.2) we will show that the + 2m,C Ma(p.p’.P)
relativistic normalization condition for a confined wave func- m3—(P—p;)?
tion is the same as for a conventional bound state wave func-
tion. We will then obtain a relativistic generalization of the This is the analog of Eq2.19 and has a smooth limit as
condition (2.23), and discuss its interpretation. Finally, we e—0. The kernelsVg and V5 will be specified latel{see
will show how to discuss scattering in the presence of conEgs.(3.20 and(3.21) below]. Equationg3.4) and(3.5) will
finement. This last discussion indicates how the recent worke our starting points for this section.

MA(k,p,:P) . MA(p!p,’P)
m;—(P—k{)? mi—(P—p;y)?

(3.9

035208-5
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C. One channel bound state equation for scalar quarks

In the vicinity of a bound state of maddg, or a very
narrow resonance with mass and widtty=Mg+iM,, the
scattering amplitude has the form

Ix(p,Mg) I'x(p’,Mg)
Mg—P?

MX(plpI!P):_ +RX(p1MB)l

(3.6)

whereX= A or S depending on which of the two forn(3.4)
or (3.5 we are using. Ik is finite and we are using E¢3.4),
the widthM, #0. If we use Eq(3.4) the width is zero for all
states with mass below some critical mags—e as €
—0.

Substituting the form(3.6) into either Eq.(3.4) or Eq.
(3.5, and equating residues at the pdteal or complex
gives the bound state equations for the vertex functiops

d*kVg(p,k,Mpg)
(2m)3Ey(k)

FS(kvMB)

mZ—(Mg—k{)?

Is(p,Mg)= _Zmlmzf

N 2m, CI'g(p,Mp)
m5—(Mg—p;)?’

3.7

d3kVa(p,k,Mp)
(2m)3Ey(k)

FA(klMB) _ FA(p!MB)
m;—(Mg—ki)? mi—(Mg—p;)

Fa(p,Mg)=— 2m1m2f

2

L 2M2CTA(p.Me)

m3—(Mg—p;)?’

(3.9

where we use a mixed notation wig denoting both the
mass and the four vect¢Mg,0}, the difference being clear
from the context.

As with the scattering amplitudes, the two vertex func-
tions are equivalent in the limg¢—0

I's(p,Mg)=T'a(p,Mg),

but the vertex functio’ , is more convenient to calculate in
the limit e—0.

(3.9

D. Normalization condition and charge conservation

PHYSICAL REVIEW C63 035208

d3k
(2m)° 2E4(K)

d
P,

I'a(k,Mg) I'a(k,Mpg)

2pH=
mi—(P—k;)?

J
:f(zw

d3k
)* Es(K)

FA(kiMB) (P_kI)MFA(k,MB)
(mi—(P—ki)?)?
(3.11)

This is a familiar result, which will be generalized to the
spin-1/2 case latér.

This normalization condition also follows from the con-
servation of chargéor, alternatively, can be used to prove
that charge is conserved-or the scalar case being discussed
in this section we assume that the two particles 1 and 2 have
equal masses bupossibly unequal charges; ande,. If
there are also no interaction currents the full current operator
will be given by the relativistic impulse approximatioRIA)
discussed in Refd.16,17]. The electromagnetic current of
the bound state in the RIA consists of the two terms resulting
from the coupling of the photon to particle 1 and 2. The
current is related to the form factor by

es F(q?)(P+P')*

o
|
of

277)3 2E,(k)
g
3K

et fd—
et | e
g

d3k
(27)3 2E,(K)

Toa(k,Mg) (P+P’—2k")# T'5a(k,Mp)
(m2=(P'—k*)2)(m2—(P—k")?)

[1a(k,Mg) (P+P’—=2k™)# T 1a(k,Mpg)
(m3— (P’ —k*)2)(m3—(P—k")?)

Ia(k,Mg)(P+ P’—2k+)" I'a(k,Mpg)
(m2—(P'—k")2)(mi—(P—k")?)

(3.12

The bound state equation and the normalization conditiornvhere the second line follows if we us® =m, and the fact
for the bound state wave function can be derived from ahat, for equal mass particles, the vertex functign(particle

nonlinear form of Eq(3.4) [15]. In this paper the derivative
dVs/dP,=0 in the rest frame, so the result {or equal

mass particles

(3.10

In view of the relation(3.9) this relation can also be written

d3k
ﬁp# (277)3 2E;(k)

I's(k,Mg) I's(k,Mg)

p~r
mi—(P—ky)?

1 on-shell = I', (particle 2 on-shell = I". At q=0, this
expression becomes

n the nonrelativistic limit the normalization condition reduces to
the normalization condition of the Scliimger wave function. This
indicates that although the relativistic wave function does not have
a probability interpretation it is a relativistic generalization of the
nonrelativistic Schrdinger wave function.
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d3k In order to complete the description we need to specify
eg F(0) 2P#=(e;+ ez)f — the form of covariant interactiok';; . A natural choice that
(2m)? Eq(k) reduces to the correct nonrelativistic limit[is]
 Falk,Mg) (P—K*)# Ta(k,Me) -~
[m2—(P—k*)?]2 Vij(p,k)EVA(qu)=—(2_—22, (3.18
0ij — €%)
=(e;+ 2P~ 1
(&r+e) 313 Where the four-momentum transfer depends on whether or
Hence, the normalization condition guarantees charge cor® oti=j:
servation 05;=03=[E(K) = E(p) 1>~ (k—p)?,
€ F(0)=eB=e1+ez. (314} q12 q21 [MB E( k ]2 (k+p)2

(3.19

A similar form could be used for the kern¥ls (which we
will not need

E. Symmetrized two channel equation for equal mass scalar
quarks

If the quarks have equal massn{=m,=m), and the

bound state mass is positive and not too small, a symme- 1 462

trized two channel equation is needed. The two channels will V;;(p,k)=V(qj;) = —-8mo) — 55 >

be labeled 1 and 2 depending on whether the quark or anti- (dij—€9)°  (gij—¢€)
quark is on mass-shell, and the symipgl denotes that the (320

o . - +
partlclf Is on ftspositive energy mass-she[l.e., P1 =m? However, the form3.18 has two drawbacks. First, at large
and po =E(p)=Vm“+p?]. Starting from Eq.(3.8), and  ,_y the kernel converges slowly, and the equation is ultra-
suppressing the subscripf the vertex functions for the two et divergent. In Refs[1,2] a form factor was introduced
channels are denoted to regularize this divergence. Seczond, using this form it is
_ + _ + difficult to regularize the infraredq~=0) singularities that
F1(P.Me)=T(p1.P2), - T2(P:Me)=T(p1.p )&3 15  appear in thee=0 limit. In the nonrelativistic case the infra-

' red singularity occurs only ai=0 and can be regulated by
the § function subtraction in E¢2.3). However, in the rela-
“ivistic case infrared singularities occur not only whefi
=0, but also(for the i#] kernel3 when the momentum

With this notation, the symmetrized two channel equation for,
equal mass scalar “quarks” with a confining interaction can

be written transfer is lightlike, so that>=0 but g*#0. These ‘off-
s diagonal’ singularities are not regulated by the subtraction
) a°kVi(p.k) term, and their removal spoils the simplicity of this approach
[i(p.Mg)=—m?2) 1]
(2m)*Ej(k) - . : . :
Since the role o¥/, is to model the linear interaction, and
I'i(k,Mp) Ii(p,Mg) the principle requirement is that it reduces to the correct

nonrelativistic limit, both of these problems are eliminated
very simply if V, is defined as follows:

m?—(P—k/)2 m?—(P—p/)?

2mCT'i(p,Mg)
T (Ppp)?’ (3.10 Valgy) = — T (3.21)
m pi AV qﬁ+(Pq|])4/P4, -

wherei andj label which of the two quarks is on-shell, and whereP is the total four-momentum of the bound state. This

N 1 form has the following advantage$) the denominator is not
k" ={E(k),(=)"" "k} (317 singular unless both? andP- q are zero, so the singularities
are restricted tay*=0; (ii) no ultraviolet regularization is
is the momentum of the on-shell quark. Note that theneededjiii) the interaction doesot depend on the bound
strength of thev;; term has been multiplied by 1/2, reflecting state momentun® in the bound state rest frame; afid) it
the fact that the interaction is @verageof the strengths in  has the correct nonrelativistic dependencegénOne disad-
two channels that are equal in the nonrelativistic limit. Thisvantage of the form(3.21) is its dependence on the total
equation uses the same subtraction for bothi the and the  momentumP of the particle pair. However, since this kernel
i#]j terms. This prescription differs from that previously confines particles in pairs that cannot be separated, they are
used in Ref[1]. In this work the kernel below will not, in naturally associated as a pair and we do not view this as a
general, be singular wheij, and the subtraction used serious limitation. Another feature of the forf8.21) is that
above is sufficient to preserve the nonrelativistic lifsee its off-diagonal couplings are singular only whew
below). =2E(p) (because&k+p=0 alsg. This is only possible for
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excited states and, as we will prove below, confinement re- V% ‘
quires the vertex function to be zero at this point, controlling
this singularity automatically. r

The introduction of the definitiof8.21) considerably sim-
plifies the solution of the relativistic equatig8.16), but will ¢ ‘
introduce electromagnetic interaction currents if the photon
four-momentum is not zero. These will be discussed in a
subsequent paper.

Both Egs.(3.8) and(3.16) have the correct nonrelativistic
limit with confinement. Consider the one-channel equatio
(3.9 first, and letm; and m,—«. Then the energy trans-
ferred by the on-shell quarkE;(k)—E;(p)—0 and
Va(910)—Va(q). Furthermore, iMg=m,+m,; +E, then to
first order in the small quantitids® andmgE, the relativistic
propagator reduces to

FIG. 4. The confinement condition for the Gross vertex func-
tion.

"Since the first quark is on-shell, the second quark is on its
positiveenergy mass shell when the magnitude of the rela-
tive three-momentunip| = p, is

\/mf+p3+ \/m§+p§=MB. (3.29

This occurs wherpj is given by
1 mg

M2 my(k?— 2meE)’ (322 AMZ p2=[ M3 (m, +m,)2[MZ— (m,—m,)?2].

(3.29

and substituting this into Eq3.8) gives Eq.(2.19. In the  As in the nonrelativistic case, the singularitypatk is inte-
two-channel casej;1—(q, as m—« and the kernels/;;  grable, and hence the second term on the rhs of(E§3
—Vy,. Since the subtraction in the two channels is alsowill be singular for any vectop, (with |pg|=po) unless
identical, the contributions from the two channels are equal

and the coupled equations reduce to the single equation I'A(pg,Mg)=0. (3.26
(2.19.

Therefore, the vertex function vanishes when both particles
are on their mass shell. This condition is illustrated diagram-
matically in Fig. 4.

While one can visualize the potential in the nonrelativistic ~ Note that the subtraction term in Eq8.16 and (3.23
case and get a picture of the physics, it is less possible tplays two central roledi) it regularizes the singular interac-
visualize the covariant interaction. What are the criteria withtion atp=k and makes it zero at=0, and(ii) it is singular
which one can judge whether a given interaction really conwhen pgﬂmg, forcing condition (3.26). The subtraction
fines? If the particles are bound in a state of total mass largeerm is essential to the self consistent description of confine-
than the sum of the masses of the constitueMg¥m;  ment. As in the nonrelativistic case the proof did not depend
+m,), the bound state could, in principle, decay into freeon the specific form of the interaction.
constituents. Confinement prevents this from happening in We now discuss how confinement affects the stability of
one of two possible waygi) the quark propagators will not bound states under external disturbances.
have any physical mass polgk8], or, as we will now prove
for this model,(ii) the vertex function will vanish when the G. Excitation of bound states

quarks are simultaneously on-shell. , L ' .
The proof is identical to the nonrelativistic proof given A consistent description of confinement implies that two
above and we will summarize it only for the one-channelfree quarks cannot be liberated from a bound state, even

equation. Settings=0, the one channel bound state equa-under the influence of an energetic external photon or other
tion (3.8 can be written probe. This requirment implies that the usual Born term

(shown in Fig. 5 is either canceled by the rescattering term,
d®kVa(p,k) or is a diagram that does not exist in the formalism. If the
PP Born term does not exist, the rescattering term, illustrated in
(2m)7 Eq(k)

F. Proof of confinement

Ca(p,Mg)=— 2m1m2J

% Fa(k,Mg)—T'a(p,Mg)

m3—k3

d’kVa(p,k) X

+2m1m2FA(puMB)f PP T—— r
(27)° Eq(k)

+
p2—ks
X > T NE (3.23 FIG. 5. The Born term, which cannot exist if the quarks are
(mz—p3)(m3—k3) confined.

035208-8



QUARK-ANTIQUARK BOUND STATES IN THE . .. PHYSICAL REVIEW C 63 035208

gives familiar equations for the dressed propagator

< T > >’3 2o G(p.p".P)
=1Go(p,p’,P)—Go(p,k,P)V(k,k")G(K',p",P)

% The second term is eliminmated by choositig », and

FIG. 6. Can an external photon probe disintegrate the bound =71Go(p,p',P)—G(p,k,P)V(k,k")Go(k",p’",P),
state? (3.30
Fig. 6, must be zero if the final state quarks are all on-shellynere the second form parallels the second form of Eq.
How are these restrictions built into the formalism? (3.27).

When particles are confined there are no free two-particle The interpretation of Egs(3.28 and (3.30 for the
states and the two-body propagator must always include agressed propagator follows from the interpretation of Eq.
infinite number of interactions. Since there are no free par(3 27 for the scattering amplitude. As—0, the parmeter
ticle states, a perturbation theory for confined particles builtﬂ_,o and the inhomogeneous term vanishes. In this limit

around the free propagator cannot be constructed. This fegph the scattering amplitude and the propagator satisfy ho-

ture is built-in automatically if the two body propagators mogeneous equations.

satlsf_thmogeneoumtegral equations witmo free particle The amplitude7 for inelastic scattering induced by a

contribution. _ _ _ probe y can be obtained from the dressed propagator by
To illustrate these ideas, we review the formalism for thegyining off the final free propagators. Jfis the current de-

scattering amphtu_de and its relgnon to the tvyo—body Propascribing the coupling of the probe to the quark, then the

gator. It is convenient to work with the scattering form of the j,o|5stic scattering amplitude 8]

equation. In operator notation, E@®.13 is

M(p,p’,P)=7V(p,p’)—V(p,k)Go(k,k',P)M (K’ ,p’,P) J(p.P,q)=G, ' (p.k,P+a)G(k,p’,P+0)
=7 V(p,p")—M(p,k,P)Go(k,k",P)V(K',p"), XJ(P+q,P)¥(P)
(3.27 ={n+M(p,k,P+q)Go(k,p",P+0q)}
XJ(P+q,P)¥(P). (3.31)

whereGy(k,k’,P) is the free two body propagatfcontain-
ing a factor of63(k—k’)], integration overd®k andd3k’ is
implied, and we have dropped the subscBgor simplicity.
The parametet; was introduced in the discussion following
Eqg. (2.19 and is very small, approaching zero &s:0.

Now the dressed propagat@ris related to the scattering
amplitudeM by

Here the first term proportional tg is the Born term shown
in Fig. 5, and we see that there is no Born term in the limit of
exact confinmenti.e., =0). Furthermore, in the presence
of confinement the scattering matrix satisfies the same homo-
geneous equation satisfed by the bound sthEep (3.27)
with »=0], and an extension of the proof given in Sec. lll F
above shows that the scattering matrix in Fig. 6 must be zero
G(p,p",P)={Go(p,p",P) = Go(p,k,P)M(k,K",P) if both final state quarks are on shell.
. We have constructed a self-consistent description of con-

X Go(k",p",P), (328 finement within the context of relativistic spectator equa-
tions.
where{, to be determined, is a parameter proportional to the
strength of the free particle scattering. If the potential con-

. . H. Generalization to fermions
fines there should beo inhomogeneous terand{=0. To

determnine? and the equation fo6s, substitute Eq(3.27) If the quarks have spin, the kernel in the spectator equa-
into Eq. (3.29 giving tion will be an operator in the Dirac space of the two quarks.
This operator can be written
G(pap,ap)ngO(pvplip) 3
_7]G0(p,k,P)V(k,k,)Go(k,,p,,P) V(prk):;l i OilOiZVi(pvk)a (332

+ ! ! 4
Go(P.k,PIV(KK) Go(k.K",P) where the Dirac matrice®, which operate on the Dirac in-

XM(K", K", P)Gy(k",p",P) dices of particles 1 and 2, describe the spin-dependent struc-
) , ture of quark-antiquark interaction. The are parameters
={Go(p,p",P)+({=7) Go(p,k,P)V(kK') determined either empiricallgby fitting the spectrum from

' DY , lattice calculations, or from the theory. In this paper we con-
X Go(k',p’,P)—Gy(p,k,P)V(k,k . , ;
o(K:p",P) = GolP VI ) sider only three possible spin structures: scalaf=1;,
XG(k',p’,P). (3.29 pseudoscalaOy;=vys;, and vectorOs;=1y,;/2. With this
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notation the one channel spectator equation for spin 1/2 par-

Im
ticles with constant masses,;>m, is given by
o3k > o
r ,P=—f— Vi(p,K) O (my+ K — e
(P.P) (27)3E1(k)2i (P.K)Oia(my+K7) —
[F(k,m
X

—k,)Oi5, 3.3
m%_kg](mz 2)0iz (3.33

FIG. 7. Propagator poles in the compliex plane.
where the quark has mass, and is on shell, so that; 2
=m?=p; 2, and the antiquark has mass. Therefore, the
momentum transfered by the interaction is S(p)

(p"—k")?=[Es(p)—Ey(k) ]~ (p—k)*=q. (3.34
wherem(p) is a mass function for the quark, to be defined
As in the nonrelativistic case, we consider a kernel comyater.
posed of linear, constant, and one-gluon exchange pieces. |f the constituents are identical or close in mass and the
The interaction kernel for the linear part of the potentigis  equations are to be applied to the description of nearly mass-
less bound states, tlieur-channelequation should be used.
Numerical solutions of the four-channel equation will be pre-
sented in this work.
1 The four channels are defined by the constraints in the
four-momentak,; andk, arising from the requirement that
=| ashlat apsysiysat g e 7"175> Vi(p.k), boththe quark ;nd thezantiqugrk be constra?nedmm their
33 positive and negative energy mass-shells. A formal way to
(3.39 obtain the equations is to integrate over the internal energy

= (3.39
m(p)—p

3
vL<p.k>Ei§1 ai; 011 0;VL(p.K),

whereV, (p,k) is ko by averaging the contributions from the quark and anti-
quark poles inboth the upper and lower halk, complex
VL(p,K)=Va(a11(p,k)) plane, as illustrated in Fig. 7. This averaging is needed to
ensure charge conjugatigiparticle-antiparticle symmetry,
3 ,VA[qll(p,k’)] and leads to four coupled equations. However, even though
—Ea(k) ﬁ(p_k)f dk W the form of the equations is obtained in this way, we empha-

size that the equations are theoretically justified by the argu-
(3.369  ment that the singularities in the interaction kernel omitted in

) ) ) ) this procedure tend to be cancelled by other higher order

In this work we employ a pure scalar linear interactie,  {erms that would otherwise have been neglected, and that
=l,aps=a,=0, butin later calculations the coefficient$  thjs |eads to covariant equations with the correct nonrelativ-
will be determined empirically. The one-gluon exchange andgtic |imit. The inclusion of the negative energy poles, ne-

constant interactions will be pure vector glected in other applications of the symmetrized equations
_ ” [12], is required in cases whefe—0 [1].
Vo(@) = 7,1 722 Vg ' (9), The four constraints are conveniently identified by the
“ notation
VC(Q): yﬂl Y2 C! (337)
S— —yi+t
where kS={sE(k),(—)I "1k}, (3.40
9“q” which generalizes that introduced in E@.17). Here the
VE(q)= (g,uv_ — | V4(q) superscrips= *+ denotes either the positive or negative en-
g 2 9 . h .
q ergy mass shell constraints. Then, introducing the operators
o ( g q”q”> 1 d167%/3 A(K)=m(K) +K, (3.41)
9? Ja?= A% In(r+|q?/Agcp) - _
(338 and defining the four channel vertex functions
S _ S

whered=12/(33-2N;)=12/27, the color factor of 4/3 has I'1(p.Mg) =T'(p1.P2),
been includedA =1 GeV,7 = 2, and\ gcp = 200 MeV. In
previous work[2] quark propagators with constant masses I'5(p,Mg)=T(p1,p3), (3.42
were used. In this work we parametrize the quark propagator
by and wave functions
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APHTS(P M)A (— are.solutions of the equation and charge conjugation symme-
Pi(p,Mp)= LA 5 o) 2( pZ), try is proved.
m(p2)°—p3

J. Dynamical quark mass

S S
A(P)Ta(P. M) A(~P2) (3.43 The dynamical quark mass function is the solution of the
m(pl)z—pi ’ Dyson-Schwinger equation. In NJL-type models, thise-
bodyequation for the spontaneous generation of quark mass
permits us to write the four-channel spectator equation in thend thetwo-bodybound state equation for a state of zero
following compact form: mass become identical in the chiral limiivhen the bare
qguark mass is zejoln this limit the quark mass function and

P3(p,Mg)=

s 1 dk or the bound state wave function for a massless pseudoscalar
Ii(pMg)=—5 er (2m)3 2E(K) Vi (p.K) bound state are identical, and spontaneous symmetry break-
ing assures the existence of a massless pseudoscalar bound
X[W](k,Mg) = W(p,Mg)] state. , _
y ) In this paper, we adopt a slightly different approach. We
— 805 Vg (P—K) ¥, Vi(kK,Mg)y,} will first choose a convenient mass function, and tmen
_ S quire that thetwo-bodyequation for a massless pseudoscalar
C v, ¥i(p.Mg) v*, (3.44 bound state automatically has a solution when the bare quark

gnass is zero. In this case the quark mass function and the
wave function for the massless Goldstone boson will not be
identical, but at least the existence of the Goldstone boson in

(Jlu:oﬁ )éxghhaen 'g?gé?;i:i‘z% 5tSCr) Iﬁgcélizninﬁséﬂ(:n&?se?ge the chiral limit is assured. We willefinethe quark mass
g g 9 function of flavorf by

the same particle is on the same mass shell before and after
the interaction Inclusion of the one-gluon exchange in off- me(p)=m?+c(m?) f(p), (3.49
diagonal channels leads to numerical instabilities, which in

principle can be handled by using more grid points in nu-wherem{ is the current quark mass of flavhrandf(p) is a
merical integrations. Restricting this interaction to diagonalyniversal function defined by

channels eliminates these singularities from the gluon propa-

gator. 1

f(p)=———s.
(p) 02+ A2

where the rhs of the equation now sums over both positiv
and negative energy contributions< =) from eachquark

(3.50

I. Charge conjugation invariance
The final task is to show that E3.44 is invariant under  The functionc(m?) can be thought of as a polynomial in

the charge conjugation operation powers ofm{ . This is the typical structure of the mass func-
c . . tion that is usually obtained from the solution of the one
I*(p1,p2) =CI'(p2,p1)C . (3.49  pody equation.

o ) C o The reason for not solving the one-body equation, in our
This is done by proving that bothi andI™ satisfy the same  age is twofold. The first problem is the difficulty of incor-

equr_:ltion. ) , ) orating one-gluon exchange into the one-body equation.
First note that, when particle 1 is on shell, interchange ofgecayse of the on-shell constraint in the loop momenta, the

p1 andp, gives one-gluon exchange interaction leads to an ultraviolet diver-
s s S gence. The second problem is associated with our choice of
I'1(p.Mg) =T'(p1,p2) = 1'(p2,p1) =T'3( p,MB)(3 46 infrared regularization of the linear interaction. The infrared

singularities are regulated by tfe g term in the denomina-
tor of the linear interaction equatiai8.21), and this would

and is equivalent to &2 andp— —p. Then . o ;
imply that the resultant mass function is a function of two

W3, Mg)=CWST(—p,Mg)C L, arguments, i.e.,m_=m_(p2,p2). This is unacceptable, and
rather than forsaking important features of the model such as
WSC(pMp)=C¥ST(—p.Mg)C L. 34 confinement and asymptotic freedom, we choose to model
2 (P-Mp)=C (—p:Me)C G40 e quark mass functions.
Finally, the Dirac direct producté®l, y,®y*, and ys The form (3.49 guarantees that at large momenta, quark

masses go to their current quark mass values as dictated by

® ys are invariant undeC. Hence, changink— —k and ? I
pen?orming the transformatior(8.45 and (3.46), shows that asymptotic freedonf3]. In the chiral limit the quark mass
function reduces to

Eq. (3.44 is also invariant. Therefore the charge conjugation
eigenstates, labeled by=*+ m,(p)=c(0) f(p), (3.51)

I5(p,Mg)=I3(p,Mg)+ 7nI'5%P,Mg), (348  which has a solutiofithat is zero wher(0)=0]
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A5 ¢c(0)2 ¢(0) 3 where I';=T";(k;,k,) are scalar functions. The dominant
E+ 2 +— contribution to the bound state vertex function comes from

2 the first term of Eq(4.3),

6 2 1/3
_(\/%f(g)—c(z—o)) @52 (kg k)~ 75 oKy ko). (4.4

This approximation, which is exact in the chiral limit when
We fix the chiral massn, by requiring that the pion bound P=0 andm;=m;, will be used for the pion and kaon bound
state equation has a massless solution when the quark magigtes in this work.
is m, . This insures that a massless pion exists in the chiral Assuming Eq.(4.4), multiplying the four-channel equa-
limit when m{=0. Next we choosea value for the light tions for pseudoscalar mesons by, and taking the trace
current quark mass’=m¢ and fix c(m?) so that the two-  9ives the following approximate coupled equations for pseu-
body equation gives the correct value for the physical piorfloscalar states:
mass. This also fixes the value of the on-shell quark mass 3
away from the chiral limit. Similarly, wehoose rﬁ and fix s — l dk st

y from * an T'S(p,Mg) 2| Vi (k)

c(mg) by fitting the kaon mass. For three flavors it is there- 27 (2m)° 2E;(k)
fore sufficient to have a functioo(my) that is a polynomial ot Sirs
of order two inm{. As new flavors are introduced the order KR (k)T (kMe) = Fi(pp)T(p. M) ]

mX=

of the polynomial accordingly can be increased. +68;; 55 Vg(p— K Fj(KNT(k,Mpg)}
To summarize, we have six mass parameters: . P
mJ,m2,c(0),c(md),c(m?), andA. In practice we fixA at 1 +2F;(p})CI'{(p,Mp), (4.5

GeV andchoosethe current quark masses, andm? to be _

near the values expected by current theory. We then adjuéhere the four-channel wave functioh¥(p,Mg) are ob-
thec’s to give a zero mass pion in the chiral limit, and a realt@ined fromI', as shown in Eq(3.42, and

pion and kaon with the observed masses. This process is ;

repeated for different values of the current quark masses and mMimMy(Kp) +K;-ky

ry —
the potential parametets andC until satisfactory values for Falky)= ma(ky)— k2
the constituent quark masses and the spectrum of excited
p@ons is obtained. The_ final values of the parameters will be My (Ky) My + Ky <K,
given in the next section. Fo(kh) = . R (4.6)
Having outlined the features of the model, we now turn m1(Ky) — k1
our attention to the details of the pseudoscalar bound state
equation with spin. where m;(kj)=m;(—k{)=m;. For future reference we

record the four-momenturg;’=(p,—k,);; exchanged be-
tween the two quarks. This depends on the initial and final

IV. PSEUDOSCALAR CHANNEL channel. The distinct cases are

The bound state vertex function has the following struc- s —r—s
ture 011=0z" ~=(rE(p)—sE(k), p—k),

rs_ _ _
X = Xcolor® Xflavor® X spin- 4.7 A12=(E(p) +E(K)=Ms, p—k),

rs__
The color space vertex function is a Kronecker delta function Go1= (Mg —rE(p) = sE(k), p=k). @0
dcq, Which reflects the color singlet nature of the boundThe solution of Eq(4.5) for a realistic choice of the param-
state. The flavor space vertex function is the maxr‘jg in eters will be discussed in the next section.
SU(3) matrix space, which chooses the right flavor combina- Before turning to this discussion, look at the coupled
tion of the meson under consideration. Indi¢ggreferto up  equations in the chiral limit, wheR=0 and the dynamical
down and strange quark entries,§,s=1,2,3) of \'. For  quark masses are equal, so tha(k)=m,(k)=m(k). In
example,[\ "],q=[\"]1. For a general meson typethe this limit, k;= —k,, and expanding to orde?- k| gives
bound state vertex function is
_ _ - m(KY) m(P—k{)+Kj- P—k{?
Xep.fg.cd Ki,K2) = 8caNig T op(Ky ko), (4.2 Falky)= m2(P—K')— (P—k!)2

where « and B are Dirac indicegto be suppressed in the _1-2mm'
following discussioh The most general form for the spin- P

- . 22— 4mm
space part of the vertex function for pseudoscalar mesons is
1
— r
T'(Ky ko) = ysiTot PT o+ /KT [K/P] T3}, (4.3 =5 = Falka), 4.8
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0.8 T T T T TABLE Il. Values of the parameters.
0.7 1 Parameter Value
—— strange
06 | —-— up, down mS 5 MeV
m? 100 MeV
05 ; c(0) 0.429 GeV
— c(md) 0.400 GeV?
04 F-—-———- £ 0
= ~/ c(md) 0.657 GeV
03 o o 0.4 GeV?
C 0.4929
02| A 1 GeV
0.1 F N 3
............... S where
0407 107 TS S 10 10°
p'(GeV’) 8mwa
V.(p,k)= 2 — e (4.10
FIG. 8. Quark mass functionsy(p)=M(p?) are shown for (p—K)*+[E(p)+E(K)]

up/down, and strange quarks. On-shell quark massesmgrg
=360 MeV, andm =588 MeV. At large momenta quark mass Note that these two equations are symmetric under the inter-
values approacn ;=5 MeV, andm?=100 MeV. change

where m=m(=kf) and m’=dm(=k)/dk? 2-mz . Note Ite=T, (4.1
that, in the chiral limit, a zero in the numerator cancels a zero * *
in the denominator, as in the NJL mechanism. Here, sinc@nd hence reduce to one e
one of the two propagators in the bound state equation has

already been removed by the mass shell condition, this can- 3
cellation removes the all the poles from the propagator. (p,o):_J'

Hence, using charge conjugation symmey5), the four X

coupled equation$4.5) reduce to onlytwo equations in the

quationFge=T 7 =+T,

——{[Vi(p,k)=V_(p,k
2y aei LV PREV-(PR

chiral limit. These coupled equations are +6Vy(p—K) I, (K,0)—[V.(p,k)
d3k +V_(p,K]T,(p,0)}+2CI'(p,0), (4.12
F;(p,0)=—f 3 {Vi(p.k) . .
(2m)° 2E(k) where the sign of th&/_ term depends on the sign in the

. + _ relation (4.11). Since them, is even under charge conjuga-
XLy (k0 =T, (p,0)]+V_(p,K[I', (k,0 tion symmetry, the plus sign is the correct one to use.
_rt 16V (- KT (kO +2CT* Recalling Eq.(3.52), the energie€ in Eq. (4.12 depend

« (POTFEV(p=kl (K0} +2CT (p.O), onm, . In the chiral limit, the energy is

3k
Tﬁ(p,0)=—f—{V+(p,k) S S
X (27)3 2E(k) { —— quark on—shell .
3 3 N b e antiquark on-shell
X[T'y (k,0)=T, (p,0]+V_(p,K[I, (k0 ‘=
=L (p.0)]+6Vy(p—KI' (k,0}+2CI (p,0),
(49 g6
o
TABLE |. Summary of results. =
Observable Calculate@eV) Experimental(MeV)
m, 140 139.6
m, 320
m’ 1118 1306-100
Mk 495 495 0'910.0 —é.O —é.O —4‘:.0 —2I.0 0.‘0 210 410 610 810 10.0
m, 376 P, (GeV)
m,=my 360
mg 588 FIG. 9. The four-channel vertex functions for the ground state of

the pion.
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1.0 - i | —— quark on-shell i 09 | :
| ---- antiquark on-shell quark on-shell
i 0.7 b ---- antiquark on—shell
0.8 f ! .
! 05
I
0.6 : . 03}
I
3 | —~ 01 F
= ! Q
= 04r | I = 01 .
i -0.3 1
02 f ! i
! -0.5 E
----- eeeemn T N e T 0.7 J
0.0 o \/
-0.9 |
_02 1 1 L 1 L _11 ! 1 1 i ! i 1 ! 1
-6.0 -4.0 -2.0 0.0 20 4.0 6.0 -10.0 -80 -6.0 -40 -20 00 20 40 60 80 100
P, (GeV) P, (GeV)
FIG. 10. The four-channel vertex functions for the first excited FIG. 12. The four-channel vertex functions for the nonstrange
state of the pion. 7.
— 212 meson decays, and electromagnetic interactions is postponed
E(p)=Vmi+p%, (4.13 y g postp
for a future work.
and mX is adjusted to ensure that E@ﬂlz has a solution. Illustrative qual’k mass functions are shown in Flg 8. The

Oncem, [and hence(0)] hasbeen fixed, Eq(4.5) is solved ~ on-shell quark masses; are given in Table I. At large mo-

for various values of the bare quark masse® and the m(()anta, the_quark mass alues approach the bare quark masses
“mass functions”c(m?), and all parameters are adjusted to ™ shown in Table Il. The other mass parameters and bound
give a reasonable spectrum. state parameters are also shown in Table Il. The parameter

We now present some numerical results for the quarihat determines the scale of mass function was fixed at
mass functions and the bound state vertex functions. =1 GeV and not adjusted during the fits. The third line in
Fig. 8 is the momentunp, and the intersection of this line
with the quark mass function gives the constituent quark
mass.

Before presenting our numerical results, we emphasize In Figs. 9 and 10 the ground and first excited state vertex
that the purpose of this paper it to fit the light quark functions of the pion are shown. Here we show the vertex
spectrum. We have far too many parameters and too fefiunctions as a function of the variablg=sE(p)=sp.
predictions to justify that. Our purpose here is to see howNote thatp, is positive for positive energy states=+)
this model would work in practice, and to show that reason-and negative for negative energy states (-). Because of
able numerical results can be obtained. A fit to the spectrunthe symmetrization, the positive energy quark vertex func-

tion is the same as the negative energy antiquark vertex func-

V. RESULTS

141 T T T T T T T

quark on-shell

quark on—shell

'
0.8 ---- antiquark on—shell 1 09 I ____ antiquark on_shel , :
)
\
1
0.7 H E
[}
= Node due to confinement
[ H -—
a 05 ¢}
03} . =
i Node due to excited state
g 03 [
0.1
-0.2 L z
1 10 O 1 1 1 1 i i 1 1
P.(GeV) '-200 -150 -10.0 -5.0 0.0 50 100 150 20.0

P, (GeV)
FIG. 11. The two positive energy vertex functions for the first
excited state of the pion. The second node is due to the excited FIG. 13. The four-channel vertex functions for the ground state
state, and the first node assures that the bound state does not decafythe kaon.
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0.5 T — y T 1.0 .
0.4 08 - 1
0.3 06 | .
Ng N,;
= =
0.2 04 | .
0.1 02| .
00 OO Il L L Il Il L
10 0% 10® 107 10° 10' 10° 10° 10*
q'(GeV)
FIG. 14. The chiral limit of the quark mass functidv(p?) FIG. 15. The chiral limit of the pion ground state vertex func-

=m,(p). The on-shell quark mass i8, =376 MeV. At large mo-  tion.
menta quark mass function approaches 0.
approach gives a good description of the pion, kaon, and eta.

tion up to an overall phaseH for states even under charge It remains to use this formalism to describe the full meson
conjugation and- for odd states Also note that the curves SpPectrum.

are not continuous because the argunpntannot take val-

ues between{m,+m). In Fig. 11 we present the excited ACKNOWLEDGMENT

state vertex functions on a logarithmic scale. The location of , .

the first node is exactly where both quarks are simulta- This w<_)rk was supported in part by the U.S. Department
neously on shell. Therefore, although kinematically allowed O Education under Grant No. DE-FG02-97ER41032.

the excited state of the pion cannot decay into a free quark-

antiquark pair. This numerical result is a consequence of the APPENDIX: MORE ABOUT CONFINEMENT

confinement conditiorn3.26). . . . . .
: i . . While Eq. (2.9 was derived for the linear potential with
In Fig. 12 we present the non-strange-gke isospin zero the specific choice o¥/, given in Eq.(2.4), it is instructive

uu+dd combination ground state vertex functions. Note {5 sonsider it in its most general form wheve, is an arbi-

that these are odd under charge conjugation. The kaon vertgx, v, fnction. From this point of view, the role of the second
functions are shown in Fig. 13. Since the kaon is formederm in square brackets in E€.9) (which arises from the

from a quark and antiquark of unequal masses, the particlespiraction teris to ensure that the coordinate space po-
antiparticle symmetry is lost and the negative and IOOSltlvetential\~/A(r) is redefined so that it is zero at the origin, i.e.

energy solutions have a different shape and size. \ s i :
The mass function and the pion wave function in the chi-Eq' (2.9 is a standard Schdinger equation for the potential

ral limit are shown in Figs. 14 and 15. ~ ~ ~
? V(1) =Va(1) = V(0). (A1)

VI. CONCLUSION Looking at it this way, we see that any potenfigi(r) for

which Va(r,) —Va(0)=%, for somer,, gives a confined

We have shown that a relativistic generalization of the h ith
Schralinger equation with linear interaction leads to the System when used with E2.9. For example, even the

Gross equation. It is not possible to write a Bethe-Salpeteghoice of a pure Coulomb-type interaction g,
equation that gives the correct linear interaction in the non-
relativistic limit. We have proved that the relativistic gener-
alization of the linear interaction leads to vanishing vertex
amplitudes when both of the constituents are on-shell. This
guarantees that the bound state does not decay to its constitiould give confinement. The subtraction term forces the in-
ents. This mechanism of confinement follows from insistingteraction to vanish at the origin, which requires an infinite
on the correct nonrelativistic limit. The model incorporatesshift in the energyjust as in the case of the linear interac-
asymptotic freedom through the inclusion of a vector onetion) forcing the interaction to go to infinity at large dis-
gluon exchange interaction, and quark mass functions thdances. The role of the subtraction is an essential part of
approach the current quark values at infinite momentumintroducing confinement. This trivial point is worth empha-
There are no cutoffs axd hocform factors involved, and the sizing because it is just as crucial for the relativistic equa-
linear interaction involves only one coupling parameter. Thetions as it is for the nonrelativistic Schiimger equation.

~ 1
Van=-1, (A2)
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