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Midrapidity charge distribution in peripheral heavy ion collisions

Klaus Morawetz,1,2 Pavel Lipavsky´,3 Jacques Normand,1 Daniel Cussol,1 Jean Colin,1 and Bernard Tamain1
1LPC-ISMRA, Bld. Marechal Juin, F-14050 Caen, France

2Max-Planck-Institute for the Physics of Complex Systems, Noethnitzer Str. 38, D-01187 Dresden, Germany
3Institute of Physics, Academy of Sciences, Cukrovarnicka´ 10, 16200 Praha 6, Czech Republic

~Received 13 November 2000; published 22 February 2001!

The charge density distribution with respect to the velocity of matter produced in peripheral heavy ion
reactions around Fermi energy is investigated. The experimental finding of enhancement of midrapidity matter
shows the necessity to include correlations beyond Boltzmann-Uehling-Uhlenbeck~BUU! which was per-
formed in the framework of nonlocal kinetic theory. Different theoretical improvements are discussed. While
the in-medium cross section changes the number of collisions, it leaves the transferred energy almost un-
changed. In contrast the nonlocal scenario changes the energy transferred during collisions and leads to an
enhancement of midrapidity matter. The renormalization of quasiparticle energies can be included in nonlocal
scenarios and leads to a further enhancement of midrapidity matter distribution. This renormalization is ac-
companied by a dynamical softening of the equation of state seen in longer oscillation periods of the excited
compressional collective mode. We propose to include quasiparticle renormalization by using the Pauli-
rejected collisions which circumvent the problem of backflows in Landau theory. Using the maximum relative
velocity of projectile and targetlike fragments we associate experimental events with impact parameters of the
simulations. For peripheral collisions we find reasonable agreement between experiment and theory. For more
central collisions, the velocity damping is higher in one-body simulations than observed experimentally,
because of missing cluster formations in the kinetic theory used.
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I. INTRODUCTION

Numerical simulations based either on the Boltzma
equation@including the Pauli blocking it is often called th
Boltzmann-Uehling-Uhlenbeck~BUU! equation@1## or on
the closely related method of quantum molecular dynam
~QMD! @2,3# are extensively used to interpret experimen
data from heavy ion reactions. Due to their quasiclass
character, they offer a transparent picture of the internal
namics of reactions and allow one to link observed part
spectra with individual stages of reactions. Naturally, sim
lation results are only approximate. For example, BUU sim
lations fail to describe the energy and angular distribution
neutrons and protons in low and mid energy domain@4–6#.

In particular, the formation of a necklike structure in p
ripheral heavy ion reactions and the impact on the fragm
tation mechanism and production of light charged partic
has been discussed for a couple of years@7–16,21–23#. It
has been suggested that this neck instability can be impo
for the fast decomposition of matter and is probably neut
rich @17#. Theoretical investigations suggest that the neck
not formed in usual heavy ion simulations starting from t
Landau equation@18–20# or BUU equations@26,27# includ-
ing additional mean-field fluctuations derived in@28,29# and
tested@30#. The inclusion of fluctuations in the Boltzman
~BUU! equation has been investigated resulting
Boltzmann-Langevin pictures@24,25,31–38#.

We will take here the point of view that the fluctuation
should arise by themselves in a proper kinetic descrip
where all relevant correlations are included in the collis
integral. The collision will then cause both a dephasing a
fluctuation by itself. This procedure without additional a
sumptions about fluctuations has been given by the nonl
0556-2813/2001/63~3!/034619~13!/$15.00 63 0346
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kinetic theory@39–41# and applied to heavy ion collisions i
@42–44#. We claim that the derived nonlocal off-set in th
collision procedure induces fluctuation in the density a
consequently in the mean field which are similar to the o
assumedad hoc in the approaches above. As a first step
verify this we will investigate the formation of a neck an
the midrapidity emission pattern. Indeed as we will demo
strate, the neck is much more pronounced if a nonlocal
netic theory is used.

Recent INDRA observation shows an enhancement
emitted matter in the region of almost zero relative veloc
which means that matter is stopped during the reaction
stays almost at rest@16,45#. This enhancement of midrapidit
distribution can possibly be associated with a pronoun
neck formation of matter. A pioneering work on describin
such midrapidity emission has been done by Galichet
Gulminelli @46#. The main problem is to find a proper sele
tion of experimental data@47#. The comparison between da
and simulation has been performed according to cuts in
transverse energy. This was possible since the applied
lescence model allows to get rid of the Fermi motion. Sin
we want to omit coalescence we select the proper comp
son with respect to the maximum velocity of the projectil
with respect to the ratio of transverse to total energy. T
latter ratio gives a nearly Fermi motion independent scali

We want to investigate here the peripheral heavy ion c
lisions and want to discuss different theoretical improv
ments of the BUU simulations. We start from the nonloc
BUU equation which includes from microscopic derivatio
the effect of binary correlations on the collision process.
this way we obtain a nonlocal off-set of the collision partne
which account for the readjustment of the trajectories acco
ing to the virial corrections, which would be for hard spher
©2001 The American Physical Society19-1
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KLAUS MORAWETZ et al. PHYSICAL REVIEW C 63 034619
the excluded volume. This off-set induces mean-field fl
tuations similar to the above-mentioned improvements
BUU. We will give a combined picture of nonlocal off-se
and quasiparticle renormalization which leads to the con
tent inclusion of binary correlation on the collision integr
and mean-field fluctuations. Section II represents the
merly derived nonlocal shifts in terms of an intuitive pictu
and discusses symmetries and implementation in nume
codes. The quasiparticle renormalization is suggested
form using the excluded events by Pauli blocking. In Sec.
we present the numerical results and compare different
proximations with the experimental data. Finally in Sec.
we summarize and give some outlook.

II. THEORETICAL PRELIMINARIES

The need for nonlocal corrections can be stimulated
discussing the scattering of two particles as superposition
wave packets@48# and similar used in@49#. The asymptotic
wave packet after scattering can be written for large dista
x from scattering center

fsc~x,k f ,t !5E dk

~2p\!3F~x,k,k f !
f ~k, cosu!

x
ei (kx2ekt)

~1!

with the scattering amplitudef (k, cosu) whereu is the angle
between the relative momenta before,k, and after the colli-
sion,k f . We proceed now and expand the scattering am
tude around the final difference momentak f :

f ~k, cosu!5u f ~k, cosu!ueif(k, cosu)

5 f ~k f , cosu!„11~k2k f !¹ku f ~k, cosu!uk5k f
…

3ei (k2k f )¹kf(k, cosu)k5k f. ~2!

The derivative of the phasef leads now to the definition o
the effective space shiftsD f and the time shiftD uu :

2D f5¹kfuk5k f
5

k f

uk f u
]k f

f1

k

uku
2cosu

k f

uk f u
uk f u

]cosuf

[
k

m
D i1S k

uku
2cosu

k f

uk f u
DD' , ~3!

where we denoted the shifts corresponding to the directio
k as i and'. Rewriting Eq.~1! we obtain

fsc~x,k f ,t !5
f ~k f , cosu!

x

3E dk

~2p\!3F̃~x,k,k f !e
ik•(x12D f )e2 i ek(D i1t).

~4!

We observe three effects of scattering on the asymptotics~i!
a genuine time delayD i , ~ii ! an effective displacement of th
two colliding particle ofD f with respect to the center of mas
03461
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and ~iii ! a modification of scattering probabilityF̃5F„1
1(k2k f)¹ku f (p, cosu)uk5kf

….
The effect of nonlocal collisions on the dynamics

heavy ion reactions has been studied already within a
cade model@50#. For a simple hard-sphere approximation
nucleon-nucleon collisions, Halbert has demonstrated
density patterns of20Ne1238U reactions are sensitive to lo
cal or nonlocal treatment of collisions. Malfliet@51# also
found disturbing that all dynamical models rely more or le
on the use of the local approximation of binary collision
because the local approximation neglects a contribution
the collision flux to both material relations which control th
hydrodynamic motion during the reaction, the compressi
ity and the share viscosity. To include the collision flu
Malfliet incorporated hard-sphere nonlocal collisions into t
BUU simulation code. Recently, this approximation has be
used by Kortemeyer, Daffin, and Bauer@52#.

The hard-sphere approximation of a nonlocal collision
sufficient for the above-mentioned discussions of tren
however, it cannot be used in realistic studies. Thisad hoc
approximation has been used not only for its simplicity b
also because of lack of a first principle theory offering qua
tum mechanical displacements which would generalize
classical hard-sphere displacements proposed by Enskog
far as we know, until recently there was no nonlocal theo
of binary collisions devoted to the nuclear matter. In liter
ture, there are closely related quantum theories of bin
collisions developed for moderately dense gases@53,54#.
These, however, treat nonlocal collisions via gradient con
butions to the scattering integral. The gradient form is su
able for hydrodynamic expansions studied in the chem
physics, but is very inconvenient for numerical simulati
and thus has never been employed for heavy ion reactio

Recent theoretical studies have filled this gap in theo
Danielewicz and Pratt@55# pointed out that the collision de
lay can be used as a convenient tool to describe the v
corrections to the equation of state for the gas of quasipa
cles. Although their discussion is limited to the equilibrium
it marks a way how to introduce virial corrections also
dynamical processes. The kinetic equation for quasiparti
with noninstantaneous and nonlocal scattering integral
been derived in@39,56# as a systematic quasiclassical limit
nonequilibrium Green’s functions in the Galitskii-Feynma
approximation. It has been shown that the gradient corr
tions to the scattering integral can be rearranged into a f
of a collision delay and space displacements reminiscen
classical hard spheres, i.e., into a form suitable for numer
simulations.

In this contribution we will put these ideas of nonloca
ties on firm ground using the quantum kinetic equation w
nonlocal scattering integrals which was derived from qu
tum statistics@39,56# to show how the effect of nonlocalitie
play a role in simulations of heavy ion reactions and co
pare them with experiment.

A. Nonlocal kinetic theory

The scattering integral of the nonlocal kinetic equati
derived in@39# corresponds to the collision seen in Fig. 1
9-2
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MIDRAPIDITY CHARGE DISTRIBUTION IN . . . PHYSICAL REVIEW C63 034619
Assume that two particlesa and b of initial momentak
andp start to collide at time instantt being at coordinatesr a
andr b . Due to a finite range of the interaction, at the beg
ning of collision particles are displaced byr b2r a5Dbe. The
collision has a finite durationD t , i.e., it ends att1D t . Dur-
ing the collision, both particles move so that their end co
dinates differ from those at the beginning,r a82r a5Da and
r b82r b5Db . The particlea transfers a momentumq to the
particle b, therefore their relative momentum changes fro
k5 1

2 (k2p) to k85 1
2 (k2p)2q. Their sum momentum is

modified by an external field acting on the colliding particl
during the collision going fromK5k1p to K85k1p
1DK . The same field changes the sum energy of collid
particles fromE5ea1eb to E85ea81eb85ea1eb1DE .

The values ofD ’s are given by derivatives of the scatte
ing phase shiftf5Im ln TR(V,k,p,q,t,r ):

D t5
]f

]V U
E

,

Dbe5S ]f

]p
2

]f

]q
2

]f

]k D
E

,

Da52
]f

]k U
E

,

Db52
]f

]p U
E

,

DK5
]f

]r U
E

,

DE52
]f

]t U
E

. ~5!

Note that energyV enters as an independent quantity so t
one needs to know the scattering phase shift out of the
ergy shell. The on-shell energy,V5E, is substituted after
derivatives are taken. Since experiments provide us o
with the on-shell values of the scattering phase shiftf, set
Eq. ~5! of D ’s cannot be derived directly from experiment

FIG. 1. A nonlocal binary collision according to Eq.~5!.
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values but only indirectly via off-shell T-matrix constructe
from the interaction potential. Below we show how to c
cumvent this complication.

B. Instantaneous approximation

It is our intention to incorporate these features of co
sions into the BUU~or QMD! simulation codes. The self
consistent evaluation of allD ’s for all collisions would be
too demanding. We employ two kinds of additional appro
mations. First, we neglect the medium effect on binary c
lisions, i.e., use the well-known free-space T-matrix. Seco
we rearrange the scattering integral into an instantaneous
nonlocal form. This instantaneous form parallels ha
sphere-like collisions that allow us to employ computation
methods developed within the theory of gases@57# in a simi-
lar way to @52#.

In the instantaneous approximation we allow particles
make a sudden jump from their incoming trajectories in
their outgoing ones so that at timet1D t particles arrive at
the correct coordinates,r a8 andr b8 , with the correct momenta
k8 and K8. Accordingly, in the asymptotic region, aftert
1D t , there is no distinction between the noninstantane
and instantaneous pictures.

The actual time instant at which the jump happens d
not influence the asymptotic states, however, two particu
choices of the time instant are important with respect to
implementation into simulations. The first one is the time
which the simulation code selects two particles as adepts
the collision usually at the point of closest approach. We w
discuss this time later when we specify the simulati
scheme. The second one is the central time,t̃ 5t1 1

2 D t , for
which the instantaneous approximation maintains the sp
and time symmetries of the noninstantaneous collision.
we will see, these symmetries allow one to derive the va
of the sudden jump from experimental phase shifts.

The condition that the sudden jump correctly mimics t
noninstantaneous process is naturally met if one extrapol
the incoming and outgoing trajectories from known coor
nates and momenta att and t1D t , respectively, to the cen
tral time t̃ . Doing so one finds that extrapolated coordina
just before and after the sudden jump read

r̃ a5r a1
k

2m
D t ,

r̃ b5r b1
p

2m
D t ,

r̃ a85r a82
k2q

2m
D t5r a1Da2

k2q

2m
D t ,

r̃ b85r b82
p1q

2m
D t5r b1Db2

p1q

2m
D t . ~6!

In extrapolations of momenta we neglect Coulomb forces
that we assume that protons and neutrons are driven by
same force from the Skyrme potentialU, F52]U/]r . In
9-3



d

a

lo

n
se

s
e

n

-
turn
he
ses.

,

ns,
nal

.

va-
s.

no
le-

ts

KLAUS MORAWETZ et al. PHYSICAL REVIEW C 63 034619
this case, the relative momentum remains unchanged an
force affects only the sum momentum,

k̃5k,

K̃5K1FD t ,

k̃85k85k2q,

K̃85K82FD t5K1DK2FD t . ~7!

Finally, energies at the extrapolated phase-space points

ẽa5
k̃2

2m
1US r̃ a ,t1

D t

2 D5ea1
]U

]t

D t

2
,

ẽb5
p̃2

2m
1US r̃ b ,t1

D t

2 D5eb1
]U

]t

D t

2
,

ẽa85
~ k̃2q!2

2m
1US r̃ a8 ,t1

D t

2 D5ea82
]U

]t

D t

2
,

ẽb85
~ p̃1q!2

2m
1US r̃ b8 ,t1

D t

2 D5eb82
]U

]t

D t

2
. ~8!

In rearrangement we have used that the increase of the
netic energy, say

k̃2

2m
2

k2

2m
5

1

2m S k1
1

2
FD tD 2

2
k2

2m
5

kF

2m
D t ,

is compensated by the decrease of the potential energy a
the trajectory,

U~ r̃ a ,t !2U~r a ,t !5
]U

]r

k

2m
D t52F

k

2m
D t .

In a stationary potential, the compensation of kinetic a
potential energies reflects the energy conservation. The
ond order corrections inD ’s are neglected.

Using the extrapolated quantities, we can define a new
of effectiveD ’s corresponding to the instantaneous pictur

D̃be5 r̃ b2 r̃ a5Dbe2S k

m
2

p

mD D t

2
,

D̃a5 r̃ a82 r̃ a5Da2S k2q

m
1

k

mD D t

2
,

D̃b5 r̃ b82 r̃ b5Db2S p1q

m
1

p

mD D t

2
. ~9!

The space displacementsD̃be, D̃a, and D̃b can be ex-
pressed in terms of the on-shell scattering phase shift defi
as

f̃~k,p,q,r ,t !5fuV5(1/2)(ea1eb1e
a81e

b8) . ~10!
03461
the

re

ki-

ng

d
c-

et
,

ed

From Eqs.~5! and ~9! one can directly check that

D̃be5
]f̃

]p
2

]f̃

]q
2

]f̃

]k
,

D̃a52
]f̃

]k
,

D̃b52
]f̃

]p
. ~11!

Effective displacements~11! can be evaluated from the ex
perimentally observed scattering phase shifts. Before we
to this pragmatic question, it is profitable to enlighten t
conservation laws and symmetries of the collision proces

C. Conservation laws

The extrapolated momentum and energy gains vanish

D̃K5K̃82K̃5DK22FD t50,

D̃E5 ẽa81 ẽb82 ẽa2 ẽb5DE22
]U

]t
D t50. ~12!

To show this we use that for a collision of isolated nucleo
the scattering phase shift depends only on the initial and fi
momenta,k and k8, while sum momentumK and the
Skyrme potential only shift the energy bottom:

f~V,k,p,q,r ,t !5fS V2
~k1p!2

4m
22U,k2p,qD .

~13!

The time derivative which results in the energy gainDE thus
can be expressed via the energy derivative and from Eq~5!

one finds thatDE52(]U/]t)D t , therefore D̃E50. The
space dependency also entersf only via the energy argu-
ment, thereforeDK52FD t or D̃K50. The cancellation of
both shifts simplifies the energy and momentum conser
tion to its form commonly used for instantaneous collision
Briefly, in the instant collision the Skyrme potential has
time to pass any energy and momentum to colliding nuc
ons.

An additional simplification follows from the continuity
of the center-of-mass motion. This requiresr̃ a81 r̃ b85 r̃ a1 r̃ b

or D̃a1D̃b50. This relation is satisfied by displacemen
~11!. Indeed, in the approximation of isolated collision~13!,
the on-shell energy argument reduces:

1

2
~ea1eb1ea81eb8!2

~k1p!2

4m
22U

5
~k2p!2

8m
1

~k2p22q!2

8m
. ~14!
9-4
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MIDRAPIDITY CHARGE DISTRIBUTION IN . . . PHYSICAL REVIEW C63 034619
The on-shell scattering phase shift~10! then does not depen
on the sum momentumk1p, therefore the derivatives with
respect tok andp are mutually connected:

]f̃

]k
52

]f̃

]p
. ~15!

According to Eq.~11!, the displacement of the particleb is
opposite to the displacement of the particlea:

D̃b52D̃a . ~16!

D. Rotational symmetry

The symmetries are best seen in the barycentric repre
tation in which the phase shift is a function of the initial a
final relative momenta,f̃(k2p,q)[f̃(k,k8), where k
5 1

2 (k2p) and k85 1
2 (k2p22q). From substitution into

the barycentric framework one obtains

]

]k
5

]k

]k

]

]k
1

]k8

]k

]

]k8
5

1

2

]

]k
1

1

2

]

]k8
,

]

]p
5

]k

]p

]

]k
1

]k8

]p

]

]k8
52

1

2

]

]k
2

1

2

]

]k8
,

]

]q
5

]k

]q

]

]k
1

]k8

]q

]

]k8
52

]

]k8
, ~17!

therefore the displacements in terms of relative mome
read

D̃a52
1

2

]f̃

]k
2

1

2

]f̃

]k8
,

D̃HS5D̃b1D̃be5D̃be2D̃a52
1

2

]f̃

]k
1

1

2

]f̃

]k8
. ~18!

Apparently, theD̃a does not change under replacement of
initial and final momenta,k↔k8. As a complementary dis
placement we have introducedD̃HS instead ofD̃be which re-
verses its orientation under the replacement of initial a
final momenta.

For central forces, the scattering phase shift has to sa
the rotational symmetry, therefore it depends only on
deflection angleu,

cosu5
kk8

ukuuk8u
, ~19!

and amplitudes of initial and final relative momenta,

f̃~k,k8!5f̃~cosu,uku,uk8u!. ~20!

The vector derivatives follow from (]/]k)cosu
5k8(1/ukuuk8u)2k(cosu/uku2) and (]/]k)uku5k/uku as
03461
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]f̃

]k
5kS 1

uku
]f̃

]uku
2

cosu

ukuuk8u

]f̃

] cosu D 1k8
1

ukuuk8u

]f̃

] cosu
.

~21!

The derivative with respect to the final momentumk8 is
obtained from Eq.~21! via the interchangek↔k8.

E. Time-reversal symmetry

As mentioned above, we want to express the effect
displacements in terms of observable scattering phase sh
This will make it possible to circumvent the uncertain
about interaction potentials and supply the simulation co
directly with experimental values.

Although the phase shiftf̃ does not depend on the energ
V, it is still not experimentally known for general momen
tum q but only for momenta which satisfy the energy co
servation, (k2p)25(k2p22q)2. Due to time-reversal
symmetry of the collision process, it is possible to expre
the effective displacements in terms of derivatives along
momentum shell.

The experimentally available values of the scatter
phase shift are restricted to the shelluk8u5uku:

fexp~cosu,uku!5f̃~cosu,uku,uk8u!u uk8u5uku . ~22!

In Eq. ~21! we need to separate derivations with respect
uku anduk8u. Fortunately, due to the time- and space-rever
symmetries, the scattering phase shift is a symmetric fu
tion of uku and uk8u:

f̃~cosu,uku,uk8u!5f̃~cosu,uk8u,uku!. ~23!

Since we need to find the derivatives only foruk8u5uku and
symmetry~23! implies

]

]uk8u
f̃~ uku,uk8u!U

uk8u5uku

5
]

u]ku
f̃~ ukuk8u!U

uk8u5uku
,

~24!

we obtain a direct link to observable scattering phase sh

]

]uk8u
f̃~cosu,uku,uk8u!U

uk8u5uku

5
1

2

]

]uku
fexp~cosu,uku!.

~25!

F. Displacements in simulations

Now we are ready to evaluate the effective displaceme
from experimental scattering phase shifts. From Eqs.~18!,
~21!, and~25! we find

D̃a52
k1k8

2uku2 S uku
2

]fexp

]uku
2~cosu21!

]fexp

] cosu D ,

D̃HS52
k2k8

2uku2 S uku
2

]fexp

]uku
2~cosu11!

]fexp

] cosu D . ~26!
9-5
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KLAUS MORAWETZ et al. PHYSICAL REVIEW C 63 034619
In agreement with their even/odd symmetry under int
change of initial and final momenta, theD̃a is proportional to
the sumk1k8 while D̃HS to the differencek1k8. From the
energy conservation, (k1k8)(k2k8)5k22k8250, fol-
lows that these two vectors are orthogonal. Before
present actual values of displacements, it is profitable
compare their form with the model of hard spheres and
approximation by the collision delay.

For classical hard spheres of radiusR, the scattering phas
shift depends only on the transferred momentumq5k2k8
as,fHS5p22uquR. From Eq.~26! follows that D̃a50 and
D̃HS5q/uqu2R. The hard-sphere approximation used
model studies@50–52# thus neglectsD̃a and uses a constan
approximation of the amplitude of the other displaceme
uD̃HSu52R. This amplitude is conveniently evaluated fro
the cross section,s5pR2.

The approximation discussed by Danielewicz and P
@55# deals only with the collision delay defined according
Wigner as the energy derivative of the scattering phase s
This approximation is obtained from Eq.~26! if one neglects
the derivative with respect to the deflection angle, the
fore D̃a52@(k1k8)/2m#(]fexp/]E) and D̃HS52@(k
2k8)/2m#(]fexp/]E), whereE5uku2/m is energy in the
barycentric system.

Numerical values of these two contributions are compa
in Fig. 2. The dots in the vertical line show a spread
values due to the angular dependence, the curves show
ues averaged over deflection angles with the weight given
the differential cross section displayed in the top section. T
parallel component, shown in the bottom section, has a t
cal value of 0.5 fm. The negative large values below 3 M
can be ignored since corresponding processes have
small rates due to the Pauli blocking. The perpendicu
component, shown in the middle section, has about th
times smaller values, moreover, it tends to average out.
energies above 10 MeV, the displacements can be well
proximated by a constant value, as is the case of the h
sphere model. Moreover, the amplitude of the displacem
is close to the estimate based on the differential cross
tion, despite conceptual difference between both conce
Our results thus confirm that estimates used in@50–52,55#
are quite reasonable.

In @40# we have used as the time of instant jump the ti
of closest approach. This distance is different from the d
tanceDbe required from the equivalent scattering scena
presented in Fig. 3 as a solid line. We consider now the t
required to travel fromDbe to the distance of closest ap
proach D̃ t5(m/2k2)kDbe in analogy to @58#. Within this
scenario we are allowed to jump at the point of closest
proach to the final asymptotics~6! and~7! with the additional
distance the particle travel duringD̃ t . The effective final
jump in the barycentric frame is

D f5
1

2
~Da2Db2Dbe!2

k8

m
~D t2D̃ t!

5
1

2
~D̃a2D̃HS!1

k8

2uku2
k•~D̃a1D̃HS!, ~27!
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where the same compensation of off-shell derivatives byD t
occurs as described before when jumping at the center
t̃ . Please recall that Eq.~27! agrees with Eq.~3!.

G. Renormalization of quasiparticle energies

So far we have discussed the nonlocal shifts as if th
were free classical particles. The interaction affects, ho

FIG. 2. The effective displacement as a function of the defl
tion angle and the kinetic energy,k2/m, in the barycentric coordi-
nate system. The columns of dots show the spread of compon
with deflection angle. The lines show the angle-averaged val
The amplitude of the T-matrix is presented in the top section
indicate the weight of individual processes. The orthogonal com
nent,D'/2[df/d cosu/2k shown in the middle section, has appr
ciably smaller values than the parallel component,D i2m
[df/dk/2 shown in the bottom section.

FIG. 3. A nonlocal binary collision~solid line! together with the
scenario of sudden jump at the closest approach.
9-6
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MIDRAPIDITY CHARGE DISTRIBUTION IN . . . PHYSICAL REVIEW C63 034619
ever, the free motion of particles between individual co
sions. The dominant effect is due to mean-field forces wh
bind the nucleons together, accelerating particles close to
surface towards the center. These forces are convenie
included via potentials of Skyrme and Hartree type.

Beside forces, the interaction also modifies the veloc
with which a particle of a given momentum propagates in
system. This effect is known as the mass renormalization
numerical implementation of the renormalized mass is ra
involved since a plain use of the renormalized mass inst
of the free one leads to incorrect currents. Within the Land
concept of quasiparticles, this problem is cured by the b
flow, but it is not obvious how to implement the backflo
within the BUU simulation scheme. In our studies, we c
cumvent the problem of backflows using explicit zero-an
collisions to which we add a nonlocal correction.

1. One-dimensional system of fixed scatterers

A link between the renormalization of the mass and ze
angle collision has been already pointed out by Landau.
find it instructive to describe this mechanism first for
simple one-dimensional system of randomly distributed b
riers. Tunneling then corresponds to the zero-angle scatte
and reflection to a dissipative collision. We focus on t
piece of quasifree trajectory, i.e., the trajectory between
successive dissipative collisions.

A tunneling through barriers speeds up or slows down
mean velocity of particles. To simulate this effect on t
motion, at each tunneling we shift a particle by a displa
mentD in the direction of its motion. For simplicity we tak
the amplitude ofD as constant. After timet the particle
moves over a distance

x5t
k

m
1ND, ~28!

wherek/m is its velocity between tunnelings andN is the
number of barriers on the trajectory of lengthx. On average
N5cx, wherec is concentration of barriers. The mean v
locity of a particle then reads

v5
x

t
5

k

m
1cD

x

t
5

k

m~12cD!
'

k

m
~11cD!. ~29!

For the three-dimensional system with particle-particle int
actions, the corrections to the mean velocity will be limit
to the linear approximation.

Relation~29! can be compared with the velocity of a pa
ticle evaluated within the renormalized massm* :

v5
k

m*
, ~30!

from which follows

m

m*
511cD. ~31!
03461
h
he
tly

y
e
A
er
d
u
k

e

-
e

r-
ng

o

e

-

-

We can use Eq.~31! to fit D so that the known renormalize
massm* is reproduced.

2. Three-dimensional Fermi liquid

In the classical three-dimensional system all collisio
have a finite deflection angle. In the quantum system, h
ever, there are zero-angle collisions which represent an
terference between scattering states and the incoming sta
the interaction. In the dialect of the perturbative expans
one can say that the particle makes a detour from its tra
tory in the phase space but nowhere on the detour doe
reach the energy shell and thus it has to return back.
detour causes a delay expressed by the shiftD. In the Fermi
liquid, the Pauli exclusion principle blocks a majority o
phase space cell on the energy shell so that the zero-a
collisions dominate over the dissipative events. We will u
these blocked events to simulate the renormalization of
mass.

Unlike in the simple one-dimensional scattering on fix
defects, the displacementD is a vector oriented along th
difference momentum,

D5uDu
k2p

uk2pu
, ~32!

where k is a momentum of the assumed particle whilep
belongs to its partner in the prohibited collision. In gener
the displacementuDu is a function ofk andp. For simplicity
we assume this function as a constant and fit its value to
mass renormalization at the Fermi surface.

For the fitting of the displacementD we assume the zero
temperature at which all real collisions are blocked by
Pauli exclusion principle so that all binary encounters co
tribute to the renormalization. The mean velocity of the p
ticle is then given by its free motion and the mean value
the displacements per the time unit,

v5
k

m
1(

a
E dp

~2p\!3 s
uk2pu

m
f puDu

k2p

uk2pu
. ~33!

The mean value of displacements is proportional to the
quency of binary entrainments, i.e., it is the sum of integr
over distributions of protons and neutrons weighted with
scattering cross sections and their relative velocity to the
observed particle.

With good approximation the cross sections is indepen-
dent of energy so that one can easily evaluate the integra
Eq. ~33!:

v5
k

m
1nsuDu

k

m
2nsuDu^v&. ~34!

The renormalized velocity thus depends on the density,

n5(
a
E dp

~2p\!3 f p5
2pF

3

3p2\3 , ~35!

and the mean velocity of the nuclear matter,
9-7
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FIG. 4. The time evolution of73
181Ta179

197Au collisions atElab /A533 MeV and 8 fm impact parameter in the BUU~left!, nonlocal
kinetic model ~middle! as well as the nonlocal model with quasiparticle renormalizations~right!. Plots in the first column show the
(x2z)-density cut where Ta as projectile comes from below. The mass momenta are shown by arrows. The corresponding secon
gives the charge density distribution versus relative velocity in cm/ns where the target-like distribution of Au is on the left a
projectilelike distributions of Ta on the right.
-

n

s,

in
les.

as-
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^v&5
1

n (
a
E dp

~2p\!3 f p

p

m
. ~36!

For the system in rest,̂v&50, we find the mass renor
malization,

m

m*
511nsuDu. ~37!

One can see that this formula has the same interpretatio
the one-dimensional case~31!, becausens is the average
number of scatterers on the trajectory of unitary length.

Formula~37! allows us to fituDu from known values of
the effective mass. Form* :m53:4, s540 mb and n
03461
as

50.16 fm23 one finds valueuDu50.5 fm. This value is
very close to the nonlocal correction in dissipative collision
see Fig. 2.

For the moving nuclear matter,^v&Þ0, mean velocity
~34! corresponds to the quasiparticle energy

ek5
k2

2m
1nsuDu

~k2m^v&!2

2m
. ~38!

An approximation of this structure is commonly used
simple applications of the Landau concept of quasipartic

H. Summary and simulation schema

The derived effective nonlocal collision procedure is e
ily incorporated in the usual collision simulation by an add
9-8
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FIG. 4 ~Continued!.
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tional advection step. The quasiparticle renormalization
effective mass are found to be possible to incorporate by
same advection step but performed for the events reje
normally by Pauli blocking.

Finally, we would like to comment on properties of th
proposed simulation scheme. The renormalization depe
on the distribution of particles in the surrounding medium
has four nice properties:~i! the renormalization vanishes a
the local density goes to zero,~ii ! the renormalization van
ishes when a high temperature closes the Luttinger gap
cause all collisions will be at finite angles,~iii ! the anisotropy
of the quasiparticle velocity in the presence of a nonz
current in medium is automatically covered, and~iv! the
backflows connected to the mass renormalization are cov
because both particles jump, keeping the center of m
fixed. Last but not least, the simulation does not require
introduce new time-demanding procedures, one can sim
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use the scattering events which are merely rejected in s
dard simulation codes by Pauli blocking.

III. NUMERICAL RESULTS

Let us discuss the proposed correction to the local
ideal ~no quasiparticle renormalization! Boltzmann ~BUU!
simulation. First we introduce the pure nonlocal correctio
and then we discuss the quasiparticle renormalization.

The evolution of the density can be seen in the cor
sponding left pictures of Fig. 4 for the BUU~left panel! and
nonlocal scenario~middle panel! as well as the additiona
quasiparticle renormalization~right panel!. We see that the
nonlocal scenario leads to a longer and more pronoun
neck formation between 200–240 fm/c while the BUU
breaks apart already at 200 fm/c.

The question arises whether this pronounced neck for
9-9



la
p

n
im
e
e
io
e
m

U

n-
cal
ing
he
in
of

ec-
o.
rse

not
cal
ut 2
e

er of
n-

ons
ns.
is

ion
tity
ase

stri-
ve-

al

ns
n

ca

of

KLAUS MORAWETZ et al. PHYSICAL REVIEW C 63 034619
tion is simply by more collisions and corresponding corre
tions. This would lead us to the assumption that a sim
increase in the cross section, as sometimes called the
medium effect, would lead to the midrapidity matter e
hancement. This is, however, only the case for smaller
pact parameters@46#. To understand the qualitativ
difference between the nonlocal scenario and an increas
cross section by in-medium effects we perform a simulat
where in the local BUU scenario the cross section has b
doubled. We see in Fig. 5 the number of collisions per ti
for the different scenarios.

For 8 fm impact parameter we compare the local BU
~thick black line! with the nonlocal~broken line! and the
local BUU multiplying the cross section times two~thin

FIG. 5. The time evolution of the number of nucleon collisio
for Ta1Au at Elab /A533 MeV and different impact parameter i
the BUU ~thick black line!, nonlocal kinetic model~broken line!
and for the case of 8 fm impact parameter the local BUU with
cross section twice as large~thin dark line!.

FIG. 6. The time evolution of the longitudinal~thin lines! and
transverse energy~thick lines! including Fermi motion of nucleon
collisions for Ta1Au at Elab /A533 MeV and different impact
parameter in the BUU~black line!, nonlocal kinetic equation
~dashed line! and for the case of 8 fm impact parameter the lo
BUU but with twice the cross section~dotted line!.
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line!. We see that the number of collisions is visibly e
hanced by doubling the cross section while for the nonlo
scenario we get only a slight enhancement at the beginn
and later even lower values with respect to local BUU. T
latter fact comes from the earlier decomposition of matter
the nonlocal scenario. Consequently, from the number
collisions we would conclude that the increase of cross s
tion leads to more correlations than the nonlocal scenari

However, when we look at the corresponding transve
and kinetic energies in Fig. 6~8 fm impact parameter! we see
that the transverse and longitudinal energy is almost
changed compared with local BUU. Oppositely, the nonlo
scenario leads to an increase of transverse energy of abo
MeV and about 1 MeV in longitudinal energy. We conclud
that the increase of cross section leads to a higher numb
collisions but not to more dissipated energy while the no
local scenario does not change the number of collisi
much but the energy dissipated during the collisio
Roughly speaking we can say that the quality of collision
changed.

Returning to the discussion of pronounced neck format
in Fig. 4 we see now that the quality rather than the quan
of collisions is what produces the neck. The simple incre
of the number of collisions does not change much.

Now we can proceed and discuss the charge matter di
bution with respect to the velocity. We define the mean
locity according to the mass current of matter:

n~r ,t !5E dp

~2p!3 f ~p,r ,t !, ~39!

v~r ,t !5
1

mn~r ,t !E dp

~2p!3 p f~p,r ,t !, ~40!

from which we define the distribution of hydrodynamic
velocities

a

l

FIG. 8. The maximum velocity, impact parameter and ratio
longitudinal to total kinetic energy of Ta1Au collisions atElab /A
533 MeV in the BUU ~solid line! and the nonlocal model with
quasiparticle renormalization~dotted line!.
9-10
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MIDRAPIDITY CHARGE DISTRIBUTION IN . . . PHYSICAL REVIEW C63 034619
F~ v̄,t !5E dr n~r ,t !d„v̄2vfiss~r ,t !…, ~41!

wherevfiss(r ,t) is the projection ofv(r ,t) onto the fission
line. This distribution we identify with the so-called charg
density distribution.

The definition of mean mass~current! velocity does not
include the Fermi energy which is integrated out. In the c
that we do have a different repartitioning of Fermi ener
during the collision than described in our kinetic equation
will have here an ambiguity. Since the dynamical clus
formation is not described in our approach we might ha
here a smaller effect of Fermi energy on the mass veloc
This will lead us indeed to the observation that BUU
nonlocal kinetic equations have too much stopping compa
to the experiment when more central collisions are con
ered. For peripheral collisions we believe that this kine
description is sufficient which we will prove by proper ass
ciation of experimental events to the maximum in the vel
ity distribution.

We plot in Fig. 4 also the normalized charge distributi
versus velocity and see that after 160 fm/c we have an ap-
preciable higher midrapidity distribution for the nonloc
scenario~mid panel! than the BUU~left panel!. Together
with the observation that for nonlocal scenario we hav
pronounced neck formation we see indeed that the neck
mation is accompanied with high midvelocity distribution
matter.

A. Quasiparticle renormalization

Now we use the quasiparticle renormalization sche
which have been outlined in Sec. II G. We see in Fig
~right panel! that the midrapidity distribution of matter i
once more enhanced in comparison to nonlocal scen
without quasiparticle renormalization. The seemingly sho
lifetime of the neck is artificial due to the chosen dens

FIG. 7. The time evolution of the transverse energy includ
Fermi motion for Ta1Au at Elab /A533 MeV and 8 fm impact
parameter in the BUU~black line!, nonlocal kinetic equation
~dashed line!, the local BUU but twice cross section~dashed dotted
line! and the nonlocal scenario with quasiparticle renormalizat
~long dashed line!.
03461
e

e
r
e
y.

d
-

c
-
-

a
r-

a

io
r

contours which means we have lower densities and fa
matter disintegration so that, in fact, the neck is much m
pronounced than in the simple nonlocal scenario and
course more pronounced than in BUU. The detailed comp
son of the time evolutions of the transverse energy for 8
impact parameter can be seen in Fig. 7.

We recognize that the transverse energies including q
siparticle renormalization are similar to the nonlocal scena
and higher than the BUU or BUU with twice the cross se
tion. However, please recall that the period of oscillation
the transverse energy which corresponds to a giant reson
becomes larger for the case with quasiparticle renormal
tion. Since, therefore, the energy of this resonance decre
we can conclude that the compressibility has been decre
by the quasiparticle renormalization. Sometimes this qu
particle renormalization has been introduced by momen
dependent mean fields. The effect is known to soften
equation of state. We see here that we get a dynamical
siparticle renormalization and a softening of equation
state. This softening of equation of state is already sligh
remarkable when the nonlocal scenario is compared w
BUU. With additional quasiparticle renormalization we s
that this is much pronounced.

B. Comparison with experiments

The BUU simulations will now be compared to one e
periment performed with INDRA at GANIL, the Ta1Au
collision atElab /A533 MeV. The first question when com
paring with experiments concerns the proper selection
events such that one can compare with specific impact
rameter of the simulation. We choose here the point of vi
that the maximum in the charge distribution with respect
velocity which is a measure for stopping gives a good c
relation with impact parameter. Indeed if we compare
corresponding correlation between impact parameter and
maximum velocity we obtain indeed an almost linear cor
lation as in Fig. 8.

n

FIG. 9. The matter distribution versus velocity of Ta1Au colli-
sions atElab /A533 MeV and different impact parameter in th
BUU ~solid line!, nonlocal kinetic equation~dashed line! as well as
the nonlocal model with quasiparticle renormalization~dotted line!.
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FIG. 10. The experimental charge distributio
of matter~dotted line! versus velocity in compari-
son with the BUU~thin solid line! and the non-
local model with quasiparticle renormalizatio
~thick line!. The maximum velocity versus ratio
of longitudinal to total kinetic energy of Ta1Au
collisions atElab /A533 MeV is given below.
The selected experimental cuts are given by do
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The matter distribution is shown for different approxim
tions in Fig. 9. One recognizes clearly the successive
hancement of midrapidity matter around 6–8 fm if one u
nonlocal kinetic theory and quasiparticle renormalizat
correspondingly. It is interesting to remark that the dynam
cal quasiparticle renormalization which leads to a soften
of the equation of state as discussed in Fig. 7 enhances
midrapidity distribution. In contrast a mere soft static para
etrization of the mean field does not change the midrapi
emission appreciably@46#.

For the identification with experimental selection we u
the selection of events in the following way. First, we sel
events which show a clear one fragment structure. This
responds to events where we have clear target- and pro
tilelike residues. Since the used kinetic theory is not capa
to describe dynamical fragment formation we believe t
these events are the ones which are at least describ
within our frame. Next, we use impact parameter cuts w
respect to the transverse energy since this shows in all s
lations fairly good correlation to the impact parameter. In o
numerical results we see almost linear correlations betw
impact parameter, maximal velocity and the convenient ra
between transverse and total kinetic energy as seen in Fi

For each selected experimental transverse energy bin
can plot now the maximum velocity versus the ratio of t
transverse to kinetic energy. We see in Fig. 10 that the
merical velocity damping agrees with the experimental se
tion only for very peripheral collisions. For such events w
plot in Fig. 10 the charge density distribution and comp
the experiment with the simulation. These charge den
distributions have been obtained using the procedure
scribed in Ref.@47#. The data are represented by light gr
points, the standard BUU calculation by the thin line and
nonlocal BUU with quasiparticle renormalization calculati
by the thick line. Reasonable agreement is found for
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nonlocal scenario including quasiparticle renormalizat
while simple BUU fails to reproduce midrapidity matter.

IV. SUMMARY AND CONCLUSION

The extension of BUU simulations by nonlocal shifts a
quasiparticle renormalization has been presented and c
pared to recent experimental data on midrapidity charge
tributions. It is found that both the nonlocal shifts as well
the quasiparticle renormalization must be included in or
to get the observed midrapidity matter enhancement.

The inclusion of quasiparticle renormalization has be
performed by using the normally excluded events by Pa
blocking. Since the quasiparticle renormalization and cor
sponding effective mass features can be considered as
angle collisions they can be realized by nonlocal shifts
the scattering events which are normally rejected. T
means that one has to perform the advection step for
cases of Pauli-blocked collisions without colliding the pa
ticles. Besides giving a better description of experimen
this has the effect of a dynamically softening of equation
state seen in longer oscillations of giant compressional re
nance.

In this way we present a combined picture including no
local off-sets representing the nonlocal character of sca
ing, which leads to virial correlations with the quasipartic
renormalization, and as a result to mean field fluctuatio
We propose that no additional stochasticity needs to be
sumed in order to get realistic fluctuations.
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