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Midrapidity charge distribution in peripheral heavy ion collisions
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The charge density distribution with respect to the velocity of matter produced in peripheral heavy ion
reactions around Fermi energy is investigated. The experimental finding of enhancement of midrapidity matter
shows the necessity to include correlations beyond Boltzmann-Uehling-UhleitBeltk) which was per-
formed in the framework of nonlocal kinetic theory. Different theoretical improvements are discussed. While
the in-medium cross section changes the number of collisions, it leaves the transferred energy almost un-
changed. In contrast the nonlocal scenario changes the energy transferred during collisions and leads to an
enhancement of midrapidity matter. The renormalization of quasiparticle energies can be included in nonlocal
scenarios and leads to a further enhancement of midrapidity matter distribution. This renormalization is ac-
companied by a dynamical softening of the equation of state seen in longer oscillation periods of the excited
compressional collective mode. We propose to include quasiparticle renormalization by using the Pauli-
rejected collisions which circumvent the problem of backflows in Landau theory. Using the maximum relative
velocity of projectile and targetlike fragments we associate experimental events with impact parameters of the
simulations. For peripheral collisions we find reasonable agreement between experiment and theory. For more
central collisions, the velocity damping is higher in one-body simulations than observed experimentally,
because of missing cluster formations in the kinetic theory used.
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[. INTRODUCTION kinetic theory[39—41 and applied to heavy ion collisions in
[42—-44. We claim that the derived nonlocal off-set in the

Numerical simulations based either on the Boltzmanncollision procedure induces fluctuation in the density and
equation[including the Pauli blocking it is often called the consequently in the mean field which are similar to the one
Boltzmann-Uehling-UhlenbeckBUU) equation[1]] or on  assumechd hocin the approaches above. As a first step to
the closely related method of quantum molecular dynamicserify this we will investigate the formation of a neck and
(QMD) [2,3] are extensively used to interpret experimentalthe midrapidity emission pattern. Indeed as we will demon-
data from heavy ion reactions. Due to their quasiclassicastrate, the neck is much more pronounced if a nonlocal ki-
character, they offer a transparent picture of the internal dyrnetic theory is used.
namics of reactions and allow one to link observed particle Recent INDRA observation shows an enhancement of
spectra with individual stages of reactions. Naturally, simu-emitted matter in the region of almost zero relative velocity
lation results are only approximate. For example, BUU simuwhich means that matter is stopped during the reaction and
lations fail to describe the energy and angular distribution ofstays almost at re§16,45. This enhancement of midrapidity
neutrons and protons in low and mid energy donjdin6). distribution can possibly be associated with a pronounced

In particular, the formation of a necklike structure in pe- neck formation of matter. A pioneering work on describing
ripheral heavy ion reactions and the impact on the fragmensuch midrapidity emission has been done by Galichet and
tation mechanism and production of light charged particlesGulminelli [46]. The main problem is to find a proper selec-
has been discussed for a couple of ydars16,21-23 It  tion of experimental datpd7]. The comparison between data
has been suggested that this neck instability can be importaand simulation has been performed according to cuts in the
for the fast decomposition of matter and is probably neutroriransverse energy. This was possible since the applied coa-
rich [17]. Theoretical investigations suggest that the neck idescence model allows to get rid of the Fermi motion. Since
not formed in usual heavy ion simulations starting from thewe want to omit coalescence we select the proper compari-
Landau equatiof18—-20 or BUU equationg26,27] includ-  son with respect to the maximum velocity of the projectiles
ing additional mean-field fluctuations derived[28,29 and  with respect to the ratio of transverse to total energy. The
tested[30]. The inclusion of fluctuations in the Boltzmann latter ratio gives a nearly Fermi motion independent scaling.
(BUU) equation has been investigated resulting in We want to investigate here the peripheral heavy ion col-
Boltzmann-Langevin picture®4,25,31-38 lisions and want to discuss different theoretical improve-

We will take here the point of view that the fluctuations ments of the BUU simulations. We start from the nonlocal
should arise by themselves in a proper kinetic descriptioBUU equation which includes from microscopic derivation
where all relevant correlations are included in the collisionthe effect of binary correlations on the collision process. By
integral. The collision will then cause both a dephasing andhis way we obtain a nonlocal off-set of the collision partners
fluctuation by itself. This procedure without additional as-which account for the readjustment of the trajectories accord-
sumptions about fluctuations has been given by the nonlocahg to the virial corrections, which would be for hard spheres
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the excluded volume. This off-set induces mean-field fluc—,q (i) a modification of scattering probabilitﬁ-‘=]-‘(1
tuations similar to the above-mentioned improvements Of+(K_Kf)V 1f(p, cOSB)|,.— ).

BUU. We will give a combined picture of nonlocal off-sets oo K
and quasiparticle renormalization which leads to the consisl;I

tent inclusion of binary correlation on the collision integral €
and mean-field fluctuations. Section Il represents the for
merly derived nonlocal shifts in terms of an intuitive picture
and discusses symmetries and implementation in numeric
codes. The quasiparticle renormalization is suggested in
form using the excluded events by Pauli blocking. In Sec. llI
we present the numerical results and compare different a
proximations with the experimental data. Finally in Sec. IV
we summarize and give some outlook.

The effect of nonlocal collisions on the dynamics of
avy ion reactions has been studied already within a cas-
cade mode[50]. For a simple hard-sphere approximation of
nucleon-nucleon collisions, Halbert has demonstrated that
density patterns of°Ne+2*% reactions are sensitive to lo-

al or nonlocal treatment of collisions. Malfli¢b1] also
ound disturbing that all dynamical models rely more or less
n the use of the local approximation of binary collisions,
ecause the local approximation neglects a contribution of
the collision flux to both material relations which control the
hydrodynamic motion during the reaction, the compressibil-
ity and the share viscosity. To include the collision flux,
Il. THEORETICAL PRELIMINARIES Malfliet incorporated hard-sphere nonlocal collisions into the

The need for nonlocal corrections can be stimulated byBUU simulation code. Recently, this approximation has been
discussing the scattering of two particles as superpositions ¢fsed by Kortemeyer, Daffin, and Bayé&2].

wave packet$48] and similar used if49]. The asymptotic The hard-sphere approximation of a nonlocal collision is
wave packet after scattering can be written for large distancgufficient for the above-mentioned discussions of trends,
x from scattering center however, it cannot be used in realistic studies. Tddshoc

approximation has been used not only for its simplicity but
s K f(x, cos6) ox—e.) also because of lack of a first principle theory offering quan-
(X, k5, t) = J Wf(X’K’Kf)Te - tum mechanical displacements which would generalize the
(1) classical hard-sphere displacements proposed by Enskog. As
far as we know, until recently there was no nonlocal theory
with the scattering amplitudg «, cosé) whered is the angle  of binary collisions devoted to the nuclear matter. In litera-
between the relative momenta befoke,and after the colli- ture, there are closely related quantum theories of binary
sion, k. We proceed now and expand the scattering amplicollisions developed for moderately dense gage3,54].

tude around the final difference momemta: These, however, treat nonlocal collisions via gradient contri-
, ) butions to the scattering integral. The gradient form is suit-
f(k, cosd) =|f(k, cosn)|e ¢x- os0) able for hydrodynamic expansions studied in the chemical

_ _ physics, but is very inconvenient for numerical simulation

=f(ky, c08O)(1+ (k= k) V[ f(x, COSO)] =) and thus has never been employed for heavy ion reactions.

X @l (k= KV b(x, COSO) = ., ) Recent theoretical studies have filled this gap in theory.
Danielewicz and Praft55] pointed out that the collision de-

The derivative of the phas¢ leads now to the definition of 18y can be used as a convenient tool to describe the virial

the effective space shifts" and the time shifty corrections to the 9qu_ation pf s?attla fqr the gas of qp_asjparti—
cles. Although their discussion is limited to the equilibrium,
K Ky it marks a way how to introduce virial corrections also to

. W—COSGW dynamical processes. The kinetic equation for quasiparticles

2A'=V p|— =70 Pt —————— eospP with noninstantaneous and nonlocal scattering integral has
ke | ] been derived if39,56 as a systematic quasiclassical limit of

P Ky nonequilibrium Green’s functions in the Galitskii-Feynman

——cosa—) A, (3 approximation. It has been shown that the gradient correc-
|« | tions to the scattering integral can be rearranged into a form
o?f a collision delay and space displacements reminiscent of
classical hard spheres, i.e., into a form suitable for numerical

K
=qAt
m

where we denoted the shifts corresponding to the direction
k as|| and_L. Rewriting Eq.(1) we obtain

simulations.
f( k¢, cOSO) In this contribution we will put these ideas of nonlocali-
(X, K 't):ﬁ ties on firm ground using the quantum kinetic equation with

nonlocal scattering integrals which was derived from quan-
de _ . tum statistic§39,56] to show how the effect of nonlocalities
X j (277—ﬁ)3f(X,K,Kf)e“"(X+2A Je 'eddI*Y " play a role in simulations of heavy ion reactions and com-
pare them with experiment.

(4)

We observe three effects of scattering on the asymptdfics:
a genuine time delag, (ii) an effective displacement of the ~ The scattering integral of the nonlocal kinetic equation
two colliding particle ofA" with respect to the center of mass derived in[39] corresponds to the collision seen in Fig. 1.

A. Nonlocal kinetic theory
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p+q values but only indirectly via off-shell T-matrix constructed
from the interaction potential. Below we show how to cir-
cumvent this complication.

B. Instantaneous approximation

It is our intention to incorporate these features of colli-
sions into the BUU(or QMD) simulation codes. The self-
consistent evaluation of alk’s for all collisions would be
too demanding. We employ two kinds of additional approxi-
mations. First, we neglect the medium effect on binary col-
K lisions, i.e., use the well-known free-space T-matrix. Second,

out we rearrange the scattering integral into an instantaneous but
nonlocal form. This instantaneous form parallels hard-
sphere-like collisions that allow us to employ computational

) L methods developed within the theory of gagg# in a simi-
Assume that two particlea and b of initial momentak |5, way to[52].

andp start to collide at time instaritbeing at coordinatess,  |n the instantaneous approximation we allow particles to
andry, . Due to a finite range of the interaction, at the begin-make a sudden jump from their incoming trajectories into
ning of collision particles are displaced by—r,=A". The  their outgoing ones so that at tinte- A, particles arrive at
collision has a finite duratiod, i.e., itends at+A. DUr-  the correct coordinates, andr/,, with the correct momenta,
ing the collision, both particles move so that their end coor-,.» o q k' Accordmgly, in the asymptotic region, after

dmates differ from those at the beginning,—r,=Az and | A there is no distinction between the noninstantaneous
_Ab The particlea transfers a momentum to the and instantaneous pictures
partlcleb therefore their relative momentum changes from The actual time instant at which the Jump happens does
=3(k—p) to k'=3(k—p)—q. Their sum momentum is not influence the asymptotic states, however, two particular
mod|f|ed by an external field acting on the colliding particleschoices of the time instant are important with respect to the
during the collision going fromK=k+p to K'=k+p  implementation into simulations. The first one is the time at
+Ag . The same field changes the sum energy of collidingyhich the simulation code selects two particles as adepts for

FIG. 1. A nonlocal binary collision according to E).

particles fromE=e€,+ €, t0 E' = €+ €,=€,+ €,+ Af. the collision usually at the point of closest approach. We will
The values ofA’s are given by derivatives of the scatter- discuss this time later when we specify the simulation
ing phase shifip=ImIn Tr(€2,k,p,q,t,r): scheme. The second one is the central titmet+ %A, , for

¢ which the instantaneous approximation maintains the space

Ay=—r]| and time symmetries of the noninstantaneous collision. As

Q| we will see, these symmetries allow one to derive the value

of the sudden jump from experimental phase shifts.

e [0 db P The condition that the sudden jump correctly mimics the

AP= % _a Tk E’ noninstantaneous process is naturally met if one extrapolates

the incoming and outgoing trajectories from known coordi-
nates and momenta andt+ A, respectively, to the cen-

J ~
Ag=— &—f ; tral time t. Doing so one finds that extrapolated coordinates
E just before and after the sudden jump read
d¢p ~ k
Ab——% E, ra=ra+ﬁAt,
2] p
AK:E E, rb—rb—i-%At,
ad ~ ., k=q k—q
AE:—E . (5) ra—ra_ﬁAt—ra‘l‘Aa—ﬁAt,
Note that energy) enters as an independent quantity so that T p+q A=rot A p+q A ®)
one needs to know the scattering phase shift out of the en- bbb pm TR Eb o, Tt

ergy shell. The on-shell energ$)=E, is substituted after

derivatives are taken. Since experiments provide us onlyn extrapolations of momenta we neglect Coulomb forces so
with the on-shell values of the scattering phase sfiftset  that we assume that protons and neutrons are driven by the
Eq. (5) of A’s cannot be derived directly from experimental same force from the Skyrme potentid] F=—oU/dr. In
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this case, the relative momentum remains unchanged and ttkgom Eqgs.(5) and(9) one can directly check that
force affects only the sum momentum,

- e 0D DD I
K=K, o ——— —
p dq ok’
K=K+FA,, _
- ad
k' =k'=Kk—q, Aa:_W’
K'=K'—FA=K+Ag—FA,. ) ~
A (1)
Finally, energies at the extrapolated phase-space points are b ap’
~ K ~ Ay U A, Effective displacementéll) can be evaluated from the ex-
€a==—FtU|To t+ = | =g+ — =, ; . :
2m 2 at 2 perimentally observed scattering phase shifts. Before we turn
to this pragmatic question, it is profitable to enlighten the
=2 conservation laws and symmetries of the collision processes.
- P - A, U A, ion | d sy ies of the collision p
eb=ﬁ+u rb,t+7 =€y W?,
C. Conservation laws
~, _(hli—q)2 cultr s Ay, U A The extrapolated momentum and energy gains vanish,
€™ 2m arT TR g 2 L
AK:K,_K:AK_ZFAtZO,
~ (p+q)? |- A U A
eg=(p2 9 +U rt'),t+?t =6{)——?t. (8) o U
m Jt Ag=€,+el—e;—ep=Ag—2—A=0. (12

at
In rearrangement we have used that the increase of the ki-

netic energy, say To show this we use that for a collision of isolated nucleons,

5 the scattering phase shift depends only on the initial and final
_ k_= k_FA momenta, k and «’, while sum momentunK and the
2m 2m~ " Skyrme potential only shift the energy bottom:

LSS o L
2m 2m 2m

2
is compensated by the decrease of the potential energy along (k+p)2
the trajectory, d(Q,k,p,q,r,t)=¢| Q— am —2U,k—p,q].
U k k (13)

Ua )= U(ra )= 5-A=—F 54,

The time derivative which results in the energy gaiathus
In a stationary potential, the compensation of kinetic and=an be expressed via the energy derivative and from(&g.
potential energies reflects the energy conservation. The seone finds thatAg=2(dU/dt)A,, therefore Ag=0. The
ond order corrections iA’s are neglected. space dependency also entersonly via the energy argu-
Using the extrapolated quantities, we can define a new sehent, thereforeA=2FA, or Ax=0. The cancellation of
of effectiveA’s corresponding to the instantaneous picture, hoth shifts simplifies the energy and momentum conserva-

K A tion to its form commonly used for instantaneous collisions.
Abe=T —T,=Abe (__ B) -t Briefly, in the instant collision the Skyrme potential has no
é m mj 2’ time to pass any energy and momentum to colliding nucle-
ons.
o~y o~ k—q kA, An additional simplification follows from the continuity
Ag=ri—ra=A— | —+—=| 5, . . o~
m m/ 2 of the center-of-mass motion. This requirgst-r,=r,+ry
or A,+A,=0. This relation is satisfied by displacements
R, =T —Ty=Ap— P+q N E) ﬁ (99  (11.Indeed, in the approximation of isolated collisi€i8),
b m m/ 2 the on-shell energy argument reduces:
The space displacements®® A,, and A, can be ex- 1 (k+p)?
pressed in terms of the on-shell scattering phase shift defined (€t e,te.te)— —-2U
o 2 a’ b 4m

- (k—|o)2+(k—p—2q)2
~8m 8m '

a(kip!qxat):¢|Q:(1l2)(sa+eb+e;+et”) : (10) (14)
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The on-shell scattering phase shifD) then does not depend s 1 9 cosod b 1 id
on the sum momenturk+ p, therefore the derivatives with !
respect tck andp are mutually connected:

—=| = = + .
ar "\ T« o[x] | x[[x'| 9cOSO) " |i|[x'| 9COSE

(21)
%:_ﬁ_ (15  The derivative with respect to the final momentum is
gk dp obtained from Eq(21) via the interchangea < .

According to Eq.(11), the displacement of the partickeis i
opposite to the displacement of the partiale E. Time-reversal symmetry

As mentioned above, we want to express the effective

Ap=—A,. (16) displacements in terms of observable scattering phase shifts.
This will make it possible to circumvent the uncertainty
D. Rotational symmetry about interaction potentials and supply the simulation codes

directly with experimental values.

The symmetries are best seen in the barycentric represen- =
tation in )\:vhich the phase shift is a function ())/f the initiall3 and Although the phasg shitp does not depend on the energy
) ) ~ ~ , Q, it is still not experimentally known for general momen-
fm?l relative mom<alnta,¢(k— P,a)=¢(x, k'), where x  ,m g but only for momenta which satisfy the energy con-
=z(k—p) and «'=3(k—p—2q). From substitution into  geryation, k- p)2=(k—p—2q)2. Due to time-reversal
the barycentric framework one obtains symmetry of the collision process, it is possible to express
the effective displacements in terms of derivatives along this
momentum shell.
k' The experimentally available values of the scattering

phase shift are restricted to the shall|=|«|:

a_axa+ax’ 6?_1 +1
ok ok dk 0K gi' 20k 2

07_&K6'+5K'5_ 19 1 0 P ~ 0 , 22
D R D e 29k 20 bexd €0S0, | k|) = p(cosb, | k|,[ " )jr=e - (22)

In Eq. (21) we need to separate derivations with respect to

d Ik 9 Ik’ I J |k| and|«’|. Fortunately, due to the time- and space-reversal
_:__+__:__, (17) . . ey - . _
aq  dq Ik 99 g’ P symmetries, the scattering phase shift is a symmetric func
tion of |«| and|«’|:
therefore the displacements in terms of relative momenta ~ o~ ,
read p(cosb,||,[x'|)= ¢(cost,|«'],|]). (23)
_ 199 1% Since we need to find the derivatives only far' |=|«| and

=—_ > __ - symmetry(23) implies

J ~ J ~
o 199 1 ¢ —,¢(|K|,|K’I)‘ = o(k|k']) :
AHSZAb+Abe=Abe—Aa=—Ea—¢+§;¢,. (18 (9|K| PUEP |(9K| [x"|=]x|
K dK (24)

Apparently, thed , does not change under replacement of thewe obtain a direct link to observable scattering phase shift
initial and final momentax«— «’. As a complementary dis-

placement we have introducéd™ instead ofAP® which re- J ~ , 1

verses its orientation under the replacement of initial and m(b(cosa’lKl"K ) 2 W¢EXP(COSG,|K|).

final momenta. i’ | =] (25)
For central forces, the scattering phase shift has to satisfy

the rotational symmetry, therefore it depends only on the

d

deflection angled F. Displacements in simulations
Now we are ready to evaluate the effective displacements
_ KK' from experimental scattering phase shifts. From E48),
cosO= e (19 (21), and(25) we find
and amplitudes of initial and final relative momenta, < _ K+« ﬂ ‘wexp_ _ IPexp
~ ~ T 21k2\ 2 k] (cos6=1) 7 osa)
b(r,k")=p(cosb, | k|,[x']). (20
ivati ~ K—K' |K| I pex Jdex
The vector derivatives follow from & dx)cosé AMS= — — | = 2P (cosh+1) —2|. (26)
= ' (U ||x'|) — k(cosal|x]?) and @dx)|x|=«l|«| as 2|x2\ 2 9|k d cosé
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In agreement with their even/odd symmetry under inter- 1078
change of initial and final momenta, tAeg, is proportional to ey,

the sumk+ «’ while A"S to the differencec+ «'. From the Ly | |

energy conservation, kt+ «')(k—k')=«k?—k'?=0, fol- 10° | | I ‘ '
lows that these two vectors are orthogonal. Before we

present actual values of displacements, it is profitable to §

(cos0,K)

compare their form with the model of hard spheres and the " 107 - ' - . .

approximation by the collision delay. 0 10 20 30 40 50 60
For classical hard spheres of radRighe scattering phase _, 04 ‘ T . . .

shift depends only on the transferred momentymx — «’ g 02|

as, ¢"'S=7—2|q|R. From Eq.(26) follows thatA,=0 and ¢ ‘ l ’ I i ‘ ! , ' ‘ ‘ l

AMS=g/|g|2R. The hard-sphere approximation used in g 0.0 ‘“'r‘r'r{ i ’ ' ' ' ! ' | I i |

model _stud!e$50—52 thus r_1eglects~&a1 and uses a constant 3 02 | ;

a~pprOX|mat|on of the amplitude of the other displacement, E° 04 . . L '

|AHS|=2R. This amplitude is conveniently evaluated from 3 40 50 60

0 10
the cross sectiony= 7R2. 10 .

20 30
The approximation discussed by Danielewicz and Pratt T ' . H | | ' . l ' t !
[55] deals only with the collision delay defined accordingto & 05 ™ i ’
Wigner as the energy derivative of the scattering phase shift. o 00 H el de I r’#‘“”‘
This approximation is obtained from E(®6) if one neglects & |, - ang. dependent on-shell deriv.
the derivative with respect to the deflection angle, there- @ ~05 [ ~ ~ ang.averaged on-shellderiv.
~ _ , THS_ 3 { -~ 3ng. averaged sep. Paris potential
fore A,=—[(k+«')/2m](ddexy/ JE) and A™=—[(x -10 : . . . .
—k")12M](Iexp! IE), WhereE=|x|*/m is energy in the 0 10 20 30 40 50 60
barycentric system. Im MeV]

Numerical values of these two contributions are compared
in Fig. 2. The dots in the vertical line show a spread of FIG. 2. The effective displacement as a function of the deflec-
values due to the angular dependence, the curves show vaibn angle and the kinetic energy?/m, in the barycentric coordi-
ues averaged over deflection angles with the weight given bgpate system. The columns of dots show the spread of components
the differential cross section displayed in the top section. Thavith deflection angle. The lines show the angle-averaged values.
parallel component, shown in the bottom section, has a typiThe amplitude of the T-matrix is presented in the top section to
cal value of 0.5 fm. The negative large values below 3 MeVindicate the weight of individual processes. The orthogonal compo-
can be ignored since corresponding processes have vepgntA,/2=d¢/d cosé/2« shown in the middle section, has appre-
small rates due to the Pauli blocking. The perpendiculaciably smaller values than the parallel componeut;2m
component, shown in the middle section, has about three=d¢/d«/2 shown in the bottom section.
times smaller values, moreover, it tends to average out. For . o
energies above 10 MeV, the displacements can be well apvhere the same compensation of off-shell derivatives\py
proximated by a constant value, as is the case of the har@Cccurs as described before when jumping at the center time
sphere model. Moreover, the amplitude of the displacemerit. Please recall that E¢27) agrees with Eq(3).
is close to the estimate based on the differential cross sec-
tion, despite conceptual difference between both concepts. G. Renormalization of quasiparticle energies
Our results thus confirm that estimates used56-52,55
are quite reasonable.

In [40] we have used as the time of instant jump the tim
of closest approach. This distance is different from the dis-
tance AP® required from the equivalent scattering scenario
presented in Fig. 3 as a solid line. We consider now the time
required to travel fromA,, to the distance of closest ap-
proachA,= (m/2«%) kA, in analogy to[58]. Within this
scenario we are allowed to jump at the point of closest ap- A A A +k-q-(p+q) A
proach to the final asymptoti¢§) and(7) with the additional b= T m ¢

distance the particle travel during,. The effective final
jump in the barycentric frame is

Afi(A —A —Abe)—K—,(A -4y
2 a b m t t

So far we have discussed the nonlocal shifts as if there
pwere free classical particles. The interaction affects, how-

------ »------0 closest approach

k-p Age t o center of mass
= }(Za_ZHS) + K S K- (Za+ZHS), (27 FIG. 3. A nonlocal binary collisiorisolid line) together with the
2 2| k| scenario of sudden jump at the closest approach.
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ever, the free motion of particles between individual colli- We can use Eq.31) to fit D so that the known renormalized

sions. The dominant effect is due to mean-field forces whichmassm* is reproduced.

bind the nucleons together, accelerating particles close to the

surface towards the center. These forces are conveniently 2. Three-dimensional Fermi liquid

mcIude_d via potentlals_ of Skyfme and Hartr_e_e type. ) In the classical three-dimensional system all collisions
_ Besu_je forces_, the |nte_ract|on also modifies the ve_Iomtyhave a finite deflection angle. In the quantum system, how-

with which a particle of a given momentum propagates in th&, e there are zero-angle collisions which represent an in-

system. This effect is known as the mass renormalization. A ference between scattering states and the incoming state of

numerical implementation of the renormalized mass is rathef,e interaction. In the dialect of the perturbative expansion

involved since a plain use of the renormalized mass insteagne can say that the particle makes a detour from its trajec-

of the free one leads to incorrect currents. Within the Landabﬂory in the phase space but nowhere on the detour does it

concept of quasiparticles, this problem is cured by the back, - the energy shell and thus it has to return back. The

flow, but it is not obvious how to implement the backflow yatqur causes a delay expressed by the &hift the Fermi
within the BUU simulation scheme. In our studies, we CIl liquid, the Pauli exclusion principle blocks a majority of

cumvent the problem of backflows using explicit zero-anglephase space cell on the energy shell so that the zero-angle

collisions dominate over the dissipative events. We will use
these blocked events to simulate the renormalization of the
mass.

A link between the renormalization of the mass and zero- Unlike in the simple one-dimensional scattering on fixed
angle collision has been already pointed out by Landau. Welefects, the displacemeit is a vector oriented along the
find it instructive to describe this mechanism first for adifference momentum,
simple one-dimensional system of randomly distributed bar-

collisions to which we add a nonlocal correction.

1. One-dimensional system of fixed scatterers

riers. Tunneling then corresponds to the zero-angle scattering k—p

and reflection to a dissipative collision. We focus on the D=D| [k—p|’ (32)
piece of quasifree trajectory, i.e., the trajectory between two

successive dissipative collisions. wherek is a momentum of the assumed particle while

A tunneling through barriers speeds up or slows down théyelongs to its partner in the prohibited collision. In general,
mean velocity of particles. To simulate this effect on thethe displacemenD]| is a function ofk andp. For simplicity
motion, at each tunneling we shift a particle by a displacewe assume this function as a constant and fit its value to the
mentD in the direction of its motion. For simplicity we take mass renormalization at the Fermi surface.
the amplitude ofD as constant. After time the particle For the fitting of the displacemeil we assume the zero
moves over a distance temperature at which all real collisions are blocked by the
Pauli exclusion principle so that all binary encounters con-
tribute to the renormalization. The mean velocity of the par-
ticle is then given by its free motion and the mean value of
the displacements per the time unit,

k
x=t—+ND, (28
m

wherek/m is its velocity between tunnelings ardl is the

number of barriers on the trajectory of lengthOn average o= E E dp U|k_ Pl
N=cx, wherec is concentration of barriers. The mean ve- m 4 ) @2#h)°" m
locity of a particle then reads

p
pl’

k—

The mean value of displacements is proportional to the fre-
X k k quency of binary entrainments, i.e., it is the sum of integrals
T m(1-cD) —(1+cD). (29 over distributions of protons and neutrons weighted with the
scattering cross sectiot and their relative velocity to the
. . . . S observed particle.
For the three-dimensional system with particle-particle inter- With good approximation the cross sectioris indepen-

actions, the corrections to the mean velocity will be I|m|teddent of energy so that one can easily evaluate the integral in
to the linear approximation. Eq. (33);

Relation(29) can be compared with the velocity of a par-
ticle evaluated within the renormalized mass:

x k
v=—=—+cD
t m

k k
) U=a+n0|D|E—nU|D|<v>. (34)
V= (30) . . .
m The renormalized velocity thus depends on the density,
from which follows dp 2p2
n=2 f 2mh)? P 323" 39
m
e~ 1Feb. B and the mean velocity of the nuclear matter,
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FIG. 4. The time evolution of3'Ta+23’Au collisions atE,,,/A=33 MeV and 8 fm impact parameter in the BUl&ft), nonlocal
kinetic model (middle) as well as the nonlocal model with quasiparticle renormalizatigight). Plots in the first column show the
(x—2)-density cut where Ta as projectile comes from below. The mass momenta are shown by arrows. The corresponding second column
gives the charge density distribution versus relative velocity in cm/ns where the target-like distribution of Au is on the left and the
projectilelike distributions of Ta on the right.

1 dp p =0.16 fm 2 one finds valugD|=0.5 fm. This value is
<U>:ﬁ ; (2mh)° fpa- (36) very close to the nonlocal correction in dissipative collisions,
see Fig. 2.

For the moving nuclear matte(p)#0, mean velocity
(34) corresponds to the quasiparticle energy
k2 (k—m(v))?
m 6= 4 nojp) KT
—=1+no|D|. (37) 2m 2m
m
An approximation of this structure is commonly used in
One can see that this formula has the same interpretation agnple applications of the Landau concept of quasiparticles.
the one-dimensional cag@l), becauseno is the average

For the system in restp)=0, we find the mass renor-
malization,

(39

number of scatterers on the trajectory of unitary length. H. Summary and simulation schema
Formula(37) allows us to fit|D| from known values of The derived effective nonlocal collision procedure is eas-
the effective mass. Fom*:m=3:4, ¢=40 mb andn ily incorporated in the usual collision simulation by an addi-
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FIG. 4 (Continued.

tional advection step. The quasiparticle renormalization andise the scattering events which are merely rejected in stan-
effective mass are found to be possible to incorporate by thdard simulation codes by Pauli blocking.
same advection step but performed for the events rejected
normally by Pauli blocking. IIl. NUMERICAL RESULTS

Finally, we would like to comment on properties of the
proposed simulation scheme. The renormalization depends Let us discuss the proposed correction to the local and
on the distribution of particles in the surrounding medium. Itideal (no quasiparticle renormalizatiprBoltzmann (BUU)
has four nice propertiesi) the renormalization vanishes as simulation. First we introduce the pure nonlocal corrections
the local density goes to zer(i) the renormalization van- and then we discuss the quasiparticle renormalization.
ishes when a high temperature closes the Luttinger gap be- The evolution of the density can be seen in the corre-
cause all collisions will be at finite anglg$j ) the anisotropy  sponding left pictures of Fig. 4 for the BUUeft pane) and
of the quasiparticle velocity in the presence of a nonzeramonlocal scenaridmiddle panel as well as the additional
current in medium is automatically covered, afid) the  quasiparticle renormalizatiotright panel. We see that the
backflows connected to the mass renormalization are coveratnlocal scenario leads to a longer and more pronounced
because both particles jump, keeping the center of masseck formation between 200-240 fnivhile the BUU
fixed. Last but not least, the simulation does not require tdoreaks apart already at 200 ftn/
introduce new time-demanding procedures, one can simply The question arises whether this pronounced neck forma-
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FIG. 5. The time evolution of the number of nucleon collisions Vs [CM/NS]
for Ta+Au atE,,,/A=33 MeV and different impact parameter in ~ FIG. 8. The maximum velocity, impact parameter and ratio of
the BUU (thick black lin®, nonlocal kinetic modelbroken ling  longitudinal to total kinetic energy of TaAu collisions atE, s, /A
and for the case of 8 fm impact parameter the local BUU with a=33 MeV in the BUU (solid line) and the nonlocal model with
cross section twice as largthin dark line. quasiparticle renormalizatiofdotted ling.

tion is simply by more collisions and corresponding correla-line). We see that the number of collisions is visibly en-
tions. This would lead us to the assumption that a simpléhanced by doubling the cross section while for the nonlocal
increase in the cross section, as sometimes called the iBcenario we get only a slight enhancement at the beginning
medium effect, would lead to the midrapidity matter en-and later even lower values with respect to local BUU. The
hancement. This is, however, only the case for smaller imtatter fact comes from the earlier decomposition of matter in
pact parameters[46]. To understand the qualitative the nonlocal scenario. Consequently, from the number of
difference between the nonlocal scenario and an increase g@bllisions we would conclude that the increase of cross sec-
cross section by in-medium effects we perform a simulationion leads to more correlations than the nonlocal scenario.
where in the local BUU scenario the cross section has been However, when we look at the corresponding transverse
doubled. We see in Fig. 5 the number of collisions per timeand kinetic energies in Fig. @ fm impact parametgmve see

for the different scenarios. that the transverse and longitudinal energy is almost not

For 8 fm impact parameter we compare the local BUUchanged compared with local BUU. Oppositely, the nonlocal
(thick black ling with the nonlocal(broken ling and the scenario leads to an increase of transverse energy of about 2
local BUU multiplying the cross section times tw@hin  MeV and about 1 MeV in longitudinal energy. We conclude
that the increase of cross section leads to a higher number of
collisions but not to more dissipated energy while the non-
local scenario does not change the number of collisions
much but the energy dissipated during the collisions.
Roughly speaking we can say that the quality of collision is
changed.

Returning to the discussion of pronounced neck formation
in Fig. 4 we see now that the quality rather than the quantity
of collisions is what produces the neck. The simple increase
of the number of collisions does not change much.

Now we can proceed and discuss the charge matter distri-
bution with respect to the velocity. We define the mean ve-
locity according to the mass current of matter:

20

b=0 fm

15 |

10

5

15

10

EJA, E/A [MeV]

5

15 p~..

10

. . . dp
5 100 200 0 100 200 300 n(r,t):f ——3f(p.r,t), (39
(2m)
t [fm/c]

FIG. 6. The time evolution of the longitudingthin lines and 1 dp
transverse energfthick lines including Fermi motion of nucleon v(r,)= mn(r,t)f (2m)° pf(p.r.1), (40)
collisions for TatAu at E,,,/A=33 MeV and different impact
parameter in the BUU(black ling, nonlocal kinetic equation
(dashed ling and for the case of 8 fm impact parameter the localfrom which we define the distribution of hydrodynamical
BUU but with twice the cross sectioaotted ling. velocities
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FIG. 7. The time evolution of the transverse energy including 0_5 -3 -1 1 3 5
Fermi motion for Ta-Au at E;,,/A=33 MeV and 8 fm impact VialCm/ns]
parameter in the BUU(black ling, nonlocal kinetic equation FIG. 9. The matter distribution versus velocity of FAu colli-

(dashed ling the local BUU but twice cross secti¢dashed dotted  sjons atE,,,/A=33 MeV and different impact parameter in the
line) and the nonlocal scenario with quasiparticle renormalizationrBUU (solid line), nonlocal kinetic equatiofdashed lingas well as
(long dashed ling the nonlocal model with quasiparticle renormalizatidotted ling.

contours which means we have lower densities and faster
F(v_,t):f dr n(r,t)8(v —vged T, 1)), (41)  matter disintegration so that, in fact, the neck is much more
pronounced than in the simple nonlocal scenario and of
course more pronounced than in BUU. The detailed compari-

wherevgs{r 1) is the projection ofv(r,t) onto the fission son of the time evolutions of the transverse energy for 8 fm

line. This distribution we identify with the so-called charge impact parameter can be seen in Fig. 7.

density distribution. , We recognize that the transverse energies including qua-
_ The definition of mean masigurren) velocity does not  gjnarticle renormalization are similar to the nonlocal scenario
include the Fermi energy which is w_ﬂeg_rated out. In_the cas@nd higher than the BUU or BUU with twice the cross sec-
that we do have a different repartitioning of Fermi energytion. However, please recall that the period of oscillation in
during the collision than described in our kinetic equation wethe transverse energy which corresponds to a giant resonance
will have here an ambiguity. Since the dynamical clusterhecomes larger for the case with quasiparticle renormaliza-
formation is not described in our approach we might haveion. Since, therefore, the energy of this resonance decreases
here a smaller effect of Fermi energy on the mass velocitywe can conclude that the compressibility has been decreased
This will lead us indeed to the observation that BUU orby the quasiparticle renormalization. Sometimes this quasi-
nonlocal kinetic equations have too much stopping comparegarticle renormalization has been introduced by momentum
to the experiment when more central collisions are consideependent mean fields. The effect is known to soften the
ered. For peripheral collisions we believe that this kineticequation of state. We see here that we get a dynamical qua-
description is sufficient which we will prove by proper asso-siparticle renormalization and a softening of equation of
ciation of experimental events to the maximum in the veloc-state. This softening of equation of state is already slightly
ity distribution. remarkable when the nonlocal scenario is compared with
We plot in Fig. 4 also the normalized charge distributionBUU. With additional quasiparticle renormalization we see
versus velocity and see that after 160 drwe have an ap- that this is much pronounced.
preciable higher midrapidity distribution for the nonlocal
Scenario(mid pane] than the BUU(Ieft pane}. TOgether B. Comparison with experiments
with the observation that for nonlocal scenario we have a . . .
pronounced neck formation we see indeed that the neck for- '€ BUU simulations will now be compared to one ex-

mation is accompanied with high midvelocity distribution of Periment performed with INDRA at GANIL, the TFeAu
matter. collision atE,,/A=33 MeV. The first question when com-

paring with experiments concerns the proper selection of
events such that one can compare with specific impact pa-
rameter of the simulation. We choose here the point of view

Now we use the quasiparticle renormalization schemahat the maximum in the charge distribution with respect to
which have been outlined in Sec. Il G. We see in Fig. 4velocity which is a measure for stopping gives a good cor-
(right pane] that the midrapidity distribution of matter is relation with impact parameter. Indeed if we compare the
once more enhanced in comparison to nonlocal scenarigorresponding correlation between impact parameter and this
without quasiparticle renormalization. The seemingly shortemaximum velocity we obtain indeed an almost linear corre-
lifetime of the neck is artificial due to the chosen densitylation as in Fig. 8.

A. Quasiparticle renormalization
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The matter distribution is shown for different approxima- nonlocal scenario including quasiparticle renormalization
tions in Fig. 9. One recognizes clearly the successive enwhile simple BUU fails to reproduce midrapidity matter.
hancement of midrapidity matter around 6—8 fm if one uses
nonlocal kinetic theory and quasiparticle renormalization IV. SUMMARY AND CONCLUSION
correspondingly. It is interesting to remark that the dynami- . ] ) )
cal quasiparticle renormalization which leads to a softening The extension of BUU simulations by nonlocal shifts and
of the equation of state as discussed in Fig. 7 enhances tifglasiparticle renormalization has been presented and com-
midrapidity distribution. In contrast a mere soft static param-Pared to recent experimental data on midrapidity charge dis-
etrization of the mean field does not change the midrapiditﬁ”bunons_- It is found that b_oth_the nonlocal_shlfts as _WeII as
emission appreciabl46]. the quasiparticle renormahz_a.tlon must be included in order

For the identification with experimental selection we uset© get the observed midrapidity matter enhancement.
the selection of events in the following way. First, we select 1he inclusion of quasiparticle renormalization has been
events which show a clear one fragment structure. This coerformed by using the normally excluded events by Pauli
responds to events where we have clear target- and proje[glocklrjg. Slnce_the quasiparticle renormahzaﬂqn and corre-
tilelike residues. Since the used kinetic theory is not capabléPonding effective mass features can be considered as zero
to describe dynamical fragment formation we believe tha@ngle collisions they can be realized by nonlocal shifts for
these events are the ones which are at least describafeé Scattering events which are normally rejected. This
within our frame. Next, we use impact parameter cuts withmeans that one has to perform the advection step for the
respect to the transverse energy since this shows in all sim§ases of Pauli-blocked collisions without colliding the par-
lations fairly good correlation to the impact parameter. In ourticles. Besides giving a better description of experiments,
numerical results we see almost linear correlations betweelis has the effect of a dynamically softening of equation of
impact parameter, maximal velocity and the convenient rati¢tate seen in longer oscillations of giant compressional reso-
between transverse and total kinetic energy as seen in Fig. Bance. _ . _ _

For each selected experimental transverse energy bin we N this way we present a combined picture including non-
can plot now the maximum velocity versus the ratio of the!ocal off-sets represe_n_tmg the nqnlocal_character o_f scz_itter-
transverse to kinetic energy. We see in Fig. 10 that the nulnd, Which leads to virial correlations with the quasiparticle
merical Ve|ocity damp|ng agrees with the experimenta| Se|ec[en0rmallzat|0n, and as a. result to mean field fluctuations.
tion only for very peripheral collisions. For such events weWe propose that no additional stochasticity needs to be as-
plot in Fig. 10 the charge density distribution and comparesumed in order to get realistic fluctuations.
the experiment with the simulation. These charge density
distributions have been obtained using the procedure de-
scribed in Ref[47]. The data are represented by light gray
points, the standard BUU calculation by the thin line and the The authors would like to thank the members of the
nonlocal BUU with quasiparticle renormalization calculation INDRA Collaboration for providing the experimental data.
by the thick line. Reasonable agreement is found for théN. Shannon is thanked for reading the manuscript.
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