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A framework to calculate two-particle matrix elements for fully antisymmetrized three-cluster configurations
is presented. The theory is developed for a scattering situation described in terms of the algebraic model. This
means that the nuclear many-particle state and its asymptotic behavior are expanded in terms of oscillator
states of the intercluster coordinates. The generating function technique is used to optimize the calculation of
matrix elements. In order to derive the dynamical equations, a multichannel version of the algebraic model is
presented.
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I. INTRODUCTION tion of the proper boundary conditions possible. The matrix
elements of kinetic and potential energy in the three-cluster

Since 1980, the so-called algebraic moda&M) of the  basis states are calculated using the generating function tech-
resonating group method has been used in the investigatiarique[5,18,19, and methods for an explicit derivation will
of bound and continuum states of nuclear systems. Initialbe presented.
the AM was applied to binary cluster configuratidrs-5]. The asymptotic behavior of relative motion of clusters is
Later on it was extended to describe binary clusters coupledbtained by considering large intercluster distances where
to collective (quadrupole and monopolechannels[5—-8].  the interaction between clusters approaches zero. We use the
Quite recently, three-cluster configurations were considereblding approximation to determine the asymptotic wave
in the AM framework[9—-11]. Such configurations play a functions. The folding approximation amounts to solving the
significant role in light nuclei, in particular for reactions of scattering equations without nucleon-nucleon interaction and
astrophysical interest. without intercluster antisymmetrization.

The algebraic model represents the nuclear many-particle In the case of neutral clusters, i.e., when intercluster Cou-
wave functions through their expansions in harmonic osciHomb interactions are absent, the asymptotic equations are
lator eigenstates. The use of a basis of square integrablcoupled in the hyperangular momentirthat is typical in
states reduces the Schinger equation to a matrix equation. the HHM. We will therefore introduce individual scattering
This procedure is well-known for bound states, but is alsachannels characterized by quantum nunibern configura-
applicable to continuum states when the appropriate boundions with charged clusters the Coulomb interaction also
ary conditions are imposed on the expansion coefficientsouplesK channels in the asymptotic region. Again the fold-
[1,2,12—-14. Thus the algebraic model provides a unified ap-ing approximation will be used to arrive at the appropriate
proach to bound and continuous spectra based on familiatsymptotic wave equations. A multiple channel approach
matrix techniques. which couples alK channels has to be used to solve the full

Solving an AM scattering problem requires two major AM system of equations. This extends the theoretical foun-
steps. The first is to define the basis states relevant to th@ation of the AM given in Ref[20] for two-cluster systems.
scattering channels being investigated and to compute the In part Il of this paper, the techniques discussed here will
Hamiltonian matrix elements in that basis. The second is tge applied to the three cluster configuratiams n+n for
consider the description of the asymptotic region and bound®He, anda+ p+ p for ®Be.
ary conditions in the basis and to solve the matrix equation
subject to those boundary conditions.

We elaborate on both steps in this paper for a fully anti- Il. THREE- s-CLUSTER SYSTEMS
symmetrized three-cluster system, and introduce the proper .
three-cluster continuum boundary conditions. Such a de- A. Wave functions

scription is still lacking in the literature. Three-cluster sys- The many-particle wave function for a three-cluster sys-

tems have been considered in some calculations, but theggm of A nucleons A=A, +A,+A;) can be written, using
the continuum was approximated through sets of two-clustefhe antisymmetrization operatot, as follows:

configurationd 15-17.

In our calculation the Pauli principle will be treated rig- W (qy, ... 0a—1)=A[ V1 (AP, (A)V3(Az) PRr(R)],
orously by taking full antisymmetrization into account for all (€N)
nucleons in the system. The basis states will be defined by a
composition of three clusters with “frozen” internal struc-
ture. The relative motions of the clusters are the relevanwhere the center of mass of tihenucleon system has been
degrees of freedom. They are described by the hypersphemliminated by the use of Jacobi coordinatgs The cluster
cal harmonics methoHHM). It makes a natural formula- wave functions¥;(A;)
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N The folding model is, however, also an acceptable ap-
proximation in the interaction region and can serve as com-
> parison to the fully antisymmetrized calculations. In the fold-
. > ing model, the clusters interact through a local, intercluster
9> a, o potential called the folding potential. As in the current paper
N N (0s) determinants¥;(A;) are used to describe the internal
state of the clusters, the folding potential will be easily cal-
culated and is a sum of three terms:

442 5+1 VEO=VE(R,)+VO(R) +VP(Ry), (5

FIG. 1. Two configurations of the Jacobi coordinates for the
three-cluster systemr+ N+ N.

where each term is simply the integral

VOR,)=2> > | drd7|V(A))?

ieA, jeA,

A=V, ..ol ) (=123 @
XV(ri=rj+R,)|[ V(A% (6)
represent the internal structure of thi cluster, centered
around its center of mas¥; . In our AM study these intrinsic  The coordinate®,, are associated with the relative position
cluster wave functions are fixed and are Slater determinan®@f the clusters
(within a factor for the center mass motjonf harmonic L 1
oscillator () states, corresponding to the ground-state con- R = E F—— 2 r @

figuration of the cluster4;<4 for all i). The Wx(R) wave VUAGE, T AL A,

function
and sum to zero; they are equivalent to tipgqg, Jacobi

Wr(R) =Wr(qR,q)=Wr(q;,0,) (3)  coordinates introduced earlier. In this way the folding ap-
proximation turns the three-cluster problem into an effective
represents the relative motion of the three clusters with rethree-particle problem for the relative motion coordinates.
spect to one another, ang andq, represent Jacobi coordi- Because the cluster states are fixed and built up sj (0
nates. In Fig. 1 we indicate an enumeration of possible Jaerbitals, the problem of labeling the basis states with quan-
cobi coordinates and their relation to the component clusteréum numbers relates to the intercluster wave function only.
The state(3) is not limited to any particular type of or- This holds true whether one uses the full antisymmetrization
bital; on the contrary we will use a complete basis of har-or the folding approximation. In a two-cluster case, the set of
monic oscillator states for the relative motion degrees ofjuantum numbers describing intercluster motion is unam-
freedom. Thus the ful\-particle state cannot be expressed agbiguously defined. In a three-cluster case, several schemes
a single Slater determinant of single particle orbitals. can be used to classify the intercluster wave function in the
An important approximation is obtained by breaking theoscillator representation. In Reff9,10] three distinct but
Pauli principle between the individual clusters, but retainingequivalent schemes were considered. One of these used the
a proper quantum-mechanical description of the clustergjuantum numbers provided by the hyperspherical harmonics

which is described by the wave function method(see, for instance, Refl21-23). This is the classi-
fication that we will adopt. Even within this particular
Ve, - - 0a-1) =V 1(A)DTL(A)V3(A3)PR(R). scheme there are several ways to classify the basis states. We

(4) shall restrict ourselves to the so-called Zernike-Brinkman ba-
sis[24]. This corresponds to the following reduction of the
Because each intrinsic cluster wave function is antisymmetynitary groupU (6), thesymmetry group of the three-particle
ric, as it is a Slater determinant apart from a factor for thegscillator Hamiltonian,
center mass motion, one is indeed neglecting the intercluster
antisymmetrization only. This results in what is known as the U(6)D0(6)D0(3)®0(3)D0(3). (8
“folding” model. It has the advantage of preserving the
identities of the clusters and, if the intracluster structure isThis reduction provides the quantum numbkréor the hy-
kept frozen, it reduces the many-particle problem to that opermomentump for the hyper-radial excitatiorl, for the
the relative motion of the clusters. It should, however, beangular momentum connected with the first Jacobi vetjor,
mentioned that breaking the antisymmetry will introducefor the angular momentum connected with the second Jacobi
spurious Pauli-forbidden states which have to be eliminatedvector, and- andM for the total angular momentum obtained
The folding approximation will be the natural choice for from coupling the partial angular momenitg, 1,. Collec-
calculating the asymptotic behavior of the three-cluster systively these quantum numbers will be denoted ihyi.e., v
tem, i.e., the disintegration of the system in the three nonin={n,K,(I11,)LM} in the remainder of the text.
teracting individual clusters. This amounts to the situation There are a number of relations and constraints on these
that all three clusters are a sulfficient distance apart and irguantum numbers: the total angular momentum is the vector
tercluster interactions are no longer in force. sum of the partial angular momenta and |,, i.e., L=1;
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+1, or|l;—1,|<L=<I;+l,; by fixing the values of; andl,, The solutions can be obtained analytically and are repre-
we impose restrictions on the hypermomentn1,+1,, ~ sented by a pair of Hekel functions for the ingoing and
l,+1,+2, I;+1,+4, ... . This condition implies that for outgoing solutions:

certain values of hypermomentukhthe sum of partial an- HD (ko) 02

gular momentd +1, cannot exceed; the partial angular RE) (p)= k+a(kp)lp (11)
momenta ; andl, define the parity of the three-cluster state Kig\P Hff)r 2(kp)p?|’

by the relation= (—1)'+*'2; for the “normal” parity states
m=(—1)" the minimal value of hypermomentum I, Where
=L, whereaX,,=L+1 for the so-called “abnormal” par-
ity statesm=(—1)-**; oscillator shells withN quanta are e [2mE
characterized by the constraiNt=2n+K. 52
Thus for a given hyperangular and rotational configura-

tion the quantum numben ladders the oscillator shells of One notices that these asymptotic solutions are independent
increasing oscillator energy. of all quantum numbers,, and are determined by the value

of hypermomentunk only.

When charged clusters are considered the asymptotic ref-
IIl. THE ALGEBRAIC MODEL erence Hamiltonian consists of the kinetic energy and the

A. Asymptotic solutions in coordinate representation Coulomb interaction:

@ 5d K]
+

; | Ze sl
Schralinger equation for quantum scattering systems, in par- | — >m -+ ==

; ’ X g2 2
ticular for nuclear cluster systems. It is based on a matrix dp> Pdp
representation of the Schiimger equation in terms of a (12)

square integrable basis, usually harmonic oscillator statess,q matrix||K] is diagonal with matrix elements(K +4),
and boundary _condltlon_s_ln terms of the asympto_nc behav!ogmd”Z |, the “effective charge,” is off diagonal i and
of the expansion coefficients of the wave function. In this 1) eDifferent K channels are now coupled. A standard
paper we restrict ourselves to a presentation tailored to th pproximation for solving these equations is to decouple

treatment of three-cluster systems. . them by assuming that the off-diagonal matrix elements of
In the case of three-cluster calculations, one needs to dﬂ'z | are sufficiently small:
e :

termine a proper approximation for the wave functi@).
Consider an expansion of the relative wave function [ 22
€)

The algebraic model implements a method to solve the [ 52

—E]IIR(p)H:O-

d> 5d K(K+4)

z
- 4 eff
dp? pdp p?

- 2m

‘I’R(QL%):EV c,V,(d1,092)

The constanZ.¢; depends oK and vy and all parameters of

with v={n,K,(I11,)LM} and{¥,} a complete basis of six- the many-body system under consideration. We will restrict
dimensional oscillator states. It covers all possible types ofUrselves to this decoupling approximation, but it is to be
relative motion between the three clusters. understood that its validity has to be checked for any specific
To obtain the asymptotic behavior of the three-cluster systhree-cluster system.
tem, we consider the folding approximation. The assumption 1h€ asymptotic solutions then become
that antisymmetrization effects between clusters are absent in Wi (2ikp)l p®?
the asymptotic region is a natural one. The relative motion R (p)= il p_ P
problem of the three clusters in the absence of a potential can K:%o W_i, (= 2ikp)/p>?]’
then be explicitly solved in the hyperspherical harmonics . . ) )
method (see, for instance, Ref§21-23). It involves the WhereW s the Whittaker functionu=K+2 and 7 is the
transformation of the Jacobi coordinates and g, to the  Well-known Sommerfeld parameter
hyper-radiusp and a set of hyperangl€3. The intercluster
wave function in coordinate representation is expanded in n= EZE”' (15)
hyperspherical harmonictﬂ;;O(Q) wherev, has been chosen h? K
as a shorthand for {I,)LM.
In the absence of the Coulomb interaction this leads to %
set of equations for the hyperradial asymptotic solutions;
with the kinetic energy operator as reference Hamiltonian

hZ
- 2m

(14)

As 7 is a function ofK, |4, andl, through the parameter
off, the asymptotic solutions will now be dependentkon
Vo.

B. Asymptotic solutions in oscillator representation
d> 5d K(K+4)

—
dp? pdp p?

—E}Rg, (p)=0. The algebraic model relies on an expansion in terms of
'+o oscillator functions, and the asymptotic behavior of the cor-
(10 responding expansion coefficients,. It was conjectured
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(see, for instance, Ref20]) that for very large values of the As we consider an asymptotic decoupling in the, ¢)
oscillator quantum numbar the expansion coefficients for quantum numbers, one will deal with asymptotic channels

physically relevant wave functions behave like characterized by theK( vo) values. So only in the internal
5 (or interaction region will states with differenK and v, be
Ca=(n4h)=2p5u(bpy), (16)  coupled by the short-range nuclear potential and the Cou-

. . lomb potential. The three-cluster system can therefore be de-
wherep,= y4n+2K+6 corresponds to the classical tuming scriped by a coupled-channels approach, where the indi-
point, b is the oscillator parameter, anfdis the hyper-radial ;iqual channels are characterized by a sifghalue, and we

wave function. . __ will henceforth refer to these channels al& ‘thannels.”
In the case of neutral clusters this leads after substitution

of the hyper-radial asymptotic solutions to the following ex- _ _

pansion Coefﬁcientsff): C. Multichannel AM equations

@) In the current many-channel description of the algebraic
(+)K Hi{ 2(kbpy) model for three-cluster systems, the channels will be charac-

G = V2 H@ (kbp,) | (17 terized by the a specific value of the set of quantum numbers

K25 K,vq, Whereas the relative motion of clusters within the
This result can be obtained in an alternative a§,26)  channel is connected to the oscillator indexVe will useK
by representing the Schitimger equation, with the kinetic henceforth as a corporate index for individual channels, and

energy operatori as the Hamiltonian to describe the 2SSUme it represents &l v, quantum numbers.

asymptotic situation, in éhyper-radial oscillator represen- The Schrdinger equation can be cast in a matrix equation
tation of the form

- . ) KA —E|m,K")cX =0. 23
mz,o(n,(K,vo)|T—E|m,(K,v0)>c§’ 0=0. (18 %%m | Im.K”)em 3

This matrix equation is of a three-diagonal form because of We will now use a representation of the dynamical equa-
. 2 . . . tions presented in Ref20]. As we will consider arS-matrix
the properties off and the oscillator basis. Solving for the

, . K. g formulation of the problem, the expansion coefficients are
expansion coefficients,'"° leads to a three-term recurrence rewritten as

relation
K_ ~(0)K (-)K_ (+H)K
K, K, v, K, K,v K, v, K,vg__ C,=C +5K-KC SK»KC , (24)
Tn,nglcn—f_'—(Tn,no_E)Cn 0—’_-I—n,n-(i)—lcn+f_0’ (19) " " e e
where where, for the current channi| thec! ™)X are the incoming
A and outgoing asymptotic coefficiengalid for all n), and
Tﬁ'n”1°=<n,(K,vo)|T|m,(K,vo)>. (20)  the matrix elemen§y x describes the coupling between the

) o ) ) current channeKk and the entrance chanrig]. Thecff’)K are
The asymptotic solutiong.e., for highn) of this recurrence | oferred to as “residual coefficientd20], since they repre-

relation are then precisely given by E4.7). _ sent the deviation from the asymptotic ones, and are different
When the Coulomb interaction is present we again apply,om zero for smalin only.
Eq. (16) to obtain As shown in Refs[12,27,14, the c(*)¥ satisfy the fol-

. lowing system of equations for a given chankel
Wi, .(2ikbpy) /oy 9%y b 9

Wi, .(—2ikbpy)/\py - )
_ > (nK[Ho—Elm,K)ci =B85, (25

In this case the oscillator representation of the Sdimger m=0 '
equation is no longer of a tridiagonal form, and cannot be
solved analytically for the asymptotic solutions to corrobo-H, being the asymptotic reference Hamiltonian, which
rate this result. equals the kinetic energy operator for uncharged clusters,

It should be noted that the above elaborations are valid fognd the kinetic energy operator p|us Coulomb interaction for
relatively small values of momentukinand sufficiently large charged clusters. The right-hand side featlﬁ@K which is
values of discrete hyper-radiys, or when a regularization factor to eliminate the irregular behavior of
the c{™. This factor indeed allows one to solve HE5)
for all values ofn [20], leading to a regular solution for very
smalln and to correct solutions in the asymptotic region. The
value of 8{~)X can be obtained for both reference Hamilto-
which defines the “asymptotic regime”; it shows that for nians(i.e., with or without Coulomp The set of Eqs(25)
any value ofk one can find values far where the relation is for the asymptotic coefficients can then be solved numeri-
satisfied. cally to different degrees of approximation depending on the

CE,i)KZ\/E

(21)

k2
—<1 (22)
Pn
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requested precision. Thé.f(i) have the desired asymptotic form of the effective potential in the current case follows this

behavior[cf. Egs.(17) and(21)]. behavior. It is well known29-31] that potentials with an
Substitution of Eq(24) in Eq. (23) then leads to the fol- asymptotic tail 1% dramatically change the phase shift be-

lowing system of dynamical equations for the many-channehavior in the low energy region and that special care should

system: be taken to get convergent results. This cannot always be
obtained by merely choosing a sufficiently large valueNof
2 E (n,K| - E|m,K’>c,’§'(°) _ In Ref. [20] a numerical strategy to take care of Iong tails
K m in the potential in the AM was developed. It dramatically
improves the convergence of the results with significantly
_ 2 SK K,[B(ﬂ 5, 05K,K+V§K'(+)] smaller values foN. We refer to Ref[20] for further details.
—_ gLk KKi(-) IV. THE GENERATING FUNCTION METHOD
=B S0tk =V, (26)
A. General principle
where the dynamical coeﬁicientwsﬁ'('(i), defined in Ref. In this section, the general principles for calculating ma-
[20], are given by trix elements in a three-cluster basis will be explained. The

two main quantities of interest are: the overlap matrix, and
the Hamiltonian matrix. The former is of importance because
of the proper normalization of the basis states. The latter is
decomposed into the kinetic energy operator, the matrix ele-
This system of equations should be solved for the residuahents of which are obtained mainly by group-theoretical
coefficientscﬁ(o) and theS-matrix elementsSy . considerations, the potential energy operator, which in our
To obtain an appropriate approximation to the exact solucase will be chosen to be a semirealistic two-body interaction
tion of Eq. (26), we consider an internal region correspond-based on a superposition of Gaussians, and the Coulomb
ing ton<N and an asymptotic region with=N. The choice  contribution.
of N is such that one can expect the residual expansion co- In this work matrix elements for two-body Gaussian in-
efﬂC'ents{C(o)K} to be sufficiently small in the asymptotic teractions will be derived. From these matrix elements of
region. Under these assumptions E2f) reduces to the fol- other functional forms of two-body interactions can be ob-

©

Vgt)KK’ZnZO<n,K|\A/|m,K’)c$ni)K'. (27)

lowing set of N+ 1 equations§=0 . ..N): tained using Gaussian transforms. This latter procedure will
be followed to calculate the matrix elements of the Coulomb
S S (KA —Em,K el Interaction. ' . '
= ' m The basic principle of generating functions is well-known

from mathematical physics. A generating function or genera-
B (+)K KK’ (+) tor state depends on a parameter, referred to as the generat-
2 SK k' [Bo ™ Onodkrkt Vi ] ing coordinate, in such a way that an expansion with respect
to that parameter yields basis states as expansion terms. A
(28) familiar example is the single-particle translated Gaussian
wave function
The total number of equations for a given entrance chan-
r]el K; amounts toNh(N+ 1_), anq solving the set of equa- ¢(r|R)=exp{ _ lr2+ J2R-r— ERz (29)
tions by traditional numerical linear algebra leads to the 2 2
NenN  residual  coefficients {cK(® ;K=K . . . Kman
=0...N-1} and Ng, Smatrix elements {S ;K _ . . .
=Ky - - - Kmaod. The set of equations has to be solved forwith the translfs\tlon paramet& acting as generator coordi- '
all N, entrance channels labeled Hy. nate._The choice of parametrization of the generator coord_l-
nate influences the quantum numbers of the individual basis
states that are generated. In a Cartesian parametriz&tion
=(R«,Ry,R,) one generates the familiar Cartesian

Tge numerical solurt1|0n ofd;tfhedAM equr;l]tlonsr::rumally dle bn, (RY ¢n (Ry)¢)n (R,) oscillator states. With a radial pa-

ends on a proper choice istinguishing the interna

fprom the exte?na?regmn The determgnng fagtor in this is therar_netrlzatlonR RR (vx_/here_ the inverted hat stands for a

form of the potential energy matrix elements which, contraryun't vecto) the expansion yields

to the short-range coordinate character of the potential, can

be of a slowly descending nature im If this is the case, a

sufficiently large value oN has to be chosen. _ (IR =D NoRZHY, (R (), (30)
In the case of three-cluster systems it is known from lit- n,m

erature[28] that the potential asymptotically behaves gs>1/

in the hyper-radius, with a corresponding effect on the ma-

trix elements. It will be shown later on that the asymptoticwhereV,, the is normalization factor

KKi(=)
n .

= —B5 800k k—V

D. Numerical solution and convergence
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\/ 47T (3/2) approaches are best implemented using algebraic manipula-
Ny = _ tion software such aMATHEMATICA OF MAPLE.
nIT(n+1+3/2)2%""! In this paper we introduce a representation of the gener-

_ ating functions in a manageable form to obtain explicit ma-
In fact, the expression trix elements and their connecting recurrence relations.

2n+1 »

NaRT Y im(R) B. Three-cluster generator state
is an orthonormal oscillator function in Fock-Bargmann The customary generator state for the intercluster basis
space. functions is given by(in what follows we shall use smadj

An underlying mathematical connection exists betweerfor the Jacobi vectors and capit@l for the corresponding
such expansions, group representation theory, and coheregénerating coordinatgs
state analysi§32,33. In the present work we exploit the
generating function principle to facilitate the computation of _ . E 2. 2
matrix elements. The matrix element of any operator be-qf(Ql’QZ'Ql’QZ) exp — 5(Arta)
tween generating states is a function of the generating coor-

dinates on the left and right + \/E(Ql' Ui+ Qy- ) — 1(Q§+ Q%)
5 .
X(R,R")=(¢(r|R)[X|¢(r[R")). (31) (34)

Extpansmtr;] OL th!s f;nlctlor_;_hwnl y|elg th; rr;_?tr:;(.eltiments The choice of parametrization is linked to the basis states
etween the basis states. 1hey can be identiied In the expaggq jhiangs to generate. Associated with our choice of basis

sion by the appropriate dependence on the generator coor Eernike-Brinkmar{24]), we introduce hyperspherical coor-

nates dinates. The hyper-radius and hyperangles, both for spatial
coordinates and for generating parameters, are defined by

X(R,R,):E E ananl/RZnHRr(Zn’H’)

nim /7 p=+05+Q5 Q§;=pcoSh, Q,=psiné;
XY* ﬁ Y’ ’ ﬁ, X AR ’ .
Im( ) | m( )<¢n|m(r)| |¢n| m (r)i ) R= \/m’ Q1=RCOS®, Q2=Rsin®. (35)
32

, ) ) Using these, one expands the generating funct®$ in
Of course, one is not required to expand with respect to a'hyperspherical harmonic functions:

parameters at once. Elimination of the angular dependence
first, yields a partial generating function for the radial matrix oL Lo
elements: V(0,021 Q1.Q2) =2 ¥,(p,6,01,0)E%(R.0,Q1.Q,),

. . (36)
X(RR)=2 2 YR (R)Ximyrm (RR) , ,
m 7y where the full set of quantum numbers(introduced previ-
ously) is involved in the summation. The oscillator basis
Ximtrmr (RIR) =X S NNy RETHIR G119 functions are
n n' v o~
W ,(p,0,01,02) =Ny kp"exp{ — p?/2} Ly "2(p?)

X(baim(DIX| (D). (33) PRIV
. i . . . XHKl 2 (01q1!q2) (37)
Such partial generating functions will prove to be particu-
larly useful when we apply the generating function methodand the generator coordinate functions are
to the three-cluster problem with six generator coordinates
i i i = - I11)LM R

(corresponding to six degrees of freedoamd an extensive :V(R’G)'Ql'Qz):Nn’KRK+2an<1 2) (0,0,,0,).
setv={n,K,(l4l,)LM} of quantum numbers. (38)

The calculation of the matrix elements with the generating
function method is a two-step process. The first step is thejereH denotes the hyperspherical harmonic function
calculation of the generating function for the operator in-

volved. Usually this is accomplished with analytical tech- H(|1|2)LM(®’Q:L,Q2):N(lllz)LMq)(lllz)(®)
niques. The second step is the expansion of the generating K K K
function with respect to the generator coordinates. Several X{Y1 QXY (Q2)}him

approaches have been used in this respect. Explicit differen-

tiation is one of them. Using recurrence relations for the (1415) L Lol 12014172

expansion terms is another of@4]. In any case, the work Pk’ ~(©)=(c0os0®)1(sin®)2P¢ | = ;7 (cos 20).
involved here is straightforward but extremely tedious; both (39
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From Eq.(38), one easily deduces the procedure for select- Q,=S, Q,=-iS. (42)
ing basis functions with fixed quantum numbens

={n,K,(l41,)LM}. One has to differentiate the generating

function (K +2n)-times with respect t&? and then to seR ~ When the complex conjugate version of H¢0) is used,
=0. After that one has to integrate ov@r with the weight €., in the calculation of matrix elements, E42) is also

@12 to project onto the hypermomentulty one has to  COMPlex conjugated. .
. . N L . . We now consider the new set of generator coordinates
integrate over unit vectorg; and Q, with weights

. L ; : €,5,0,,Q,, and substitute Eq42) in Eq. (40), where the
Y1,m, (Q1) andY, n (Q) to project onto partial angular mo- inyerted hats o, andQ, again indicate the angular com-
menta. The order of these operations is not important and igsonents of both variables. This leads to
a matter of convenience for each specific case. However
these calculations, in particular those connected with inte-
grating over hyperangl®, are extremely extensive and

cumbersome. For this reason, we introduce a new generating e _3 11-¢ ,
function appropriate for three-cluster calculations. V(a[€S5,Q.Qz)=(1+€) "exp — 21+ 6(q1+q2)
We start from the function below which depends on seven
generating coordinates: J2s . .
17 (Qurta—iQz:G2)
W(d1,02/€,Q1,Q,) (40) .o .
=2 W,(p,6,01,02)P,(€,5,Q1,Q2),
-3 11-e 5
=(1+e) “exp — 5 7 (d1t+a) (43)
\/E 11 2. 02 where the weights associated with each basis function are
+ 17— (Q1 91+ Q2-02) — 5 77— (Q1+Q3%) (. :
1+ 21+e€ given by
(41
It was used previously in a different contet,19,35 to oL (LM _
describe the coupling between monopole and two-cluster de- ®,(€,5,Q1,Qx) =N *? Ny k(—i)'2e"sk
grees of freedom. In those cases, the paran@tgenerates . .
basisfunctions of intercluster motion while parametegen- X{Y1, QXYL (Q2)him- (44

erates collective monopole excitations of #w@ucleon sys-

tem. Here, we will modify the function somewhat and use it . )

only for the intercluster motion. We exploit the redundancy These are of a simpler structure and easier to use than Eq.
in the set of generating parametéseven parameters vs six (38) because through E¢42) the dependence on the hyper-
degrees of freedojrand the fact that all expressions up to angular coordinate has been eliminated.

now are valid for complex generator coordinates also. We The full generating function for the matrix elemeixs .
restrict the moduli 0fQ; andQ, and set of operatorX now has the following general structure:

X(E,S,Ql,QZ;G,,S,,Qi,Qé): E <\I,V(pl01&1!&2)|)A(|‘Pv’(p10!&1!&2)>(I):(EaS:QI:QZ)(DV’(GI:S,!Qiiéé)

’
v,V

= X, NN AL N (—)2() 2em e SKS K

’
v,V

XYE QU XY (Q md Yi(QDX Y11 (Q)) (45

where again the shorthand notation for the quantunwith respect to a subset of generating coordinates and their
numbersyv=(n,K,(I11,)LM) and»'=(n",K’,(I1115)L'M") corresponding quantum numbers. Most often, we will use a
is used. As explained before, we will also considerreduction with respect to the angular momentum depen-
partial generating functions which have been reducedlence, i.e.,
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X(eiSin!QZ;E,’S,!Q:,L!Qé)

(I71)LM, (171)L" M/

x{YF(Q1) X YI*Z(QZ)}LM{YIi(QD X Y|é(éé)}u M’

Xugymsanpm (€,S,€',S")

(46)
with the partial generating function
Xugymsappm (€.S,€',S")
= > Kin, (141, LMK 07, (1)L M
n,K,n’ K’
115L'm’ . T
XA DMATE M AL N (=) 2(0)'2
X eNe "SKg'K’ (47)
generating matrix elements for specified,|g)LM and
(1115)L"M" only.

The asymmetry in the treatment of the different quantu
numbers is motivated by the methodology in which the ma-
trix elements will be used. Indeed, all quantities in this paper
are calculated in the context of the algebraic model. As ex-
plained earlier the spatial asymptotic behavior is mapped
onto the asymptotic behavior of the expansion coefficients in
the oscillator basis. As for fixell the n quantum numbers
ladder through the oscillator shells, they will be needed for
sufficiently high values in order to properly describe the
asymptotic region.

V. MATRIX ELEMENTS IN THE FOLDING
APPROXIMATION

PHYSICAL REVIEW (63 034606

where
A=1—c€€'.
After substitution of Eq(42) in Eq. (48), one obtains
1(€,5,Q1,Q2;€",S",Q1,Q3)
:A_geXp[%él'Qi]eXp{%éz'éé]-
(49

It is interesting to note that the arguments of the exponen-
tial factors are diagonal in the generator coordin&emd
S’. To obtain an expansion in terms of angular momenta, the
well-known relation

expla- b}=4w% i\(ab)YE (a)Ym(b) (50)

can be applied, wherg(x) is the modified spherical bessel
function of the first kind. Substitution of E€50) in Eq. (49),

mand applying traditional angular momentum coupling tech-

nigues leads to

(E,S,Ql,QZ;G’,S’,Qi,Qé)
SS
> nl(

I1,mq,15,my ) (

A
XY (Q2) Y1,m, (Q1)Y1,m,(Q3)

2Eity

XY QD)X Y (Q) bl Y1, (QD Y1, (Q)}him-  (BY)

Ss
A

|
P

=(4m)° )Yr;ml(ég

Ss
A

Ss
A

|
Iz

=(4m)? >

(I112)LM

In this section we derive the generating functions for the

overlap and Hamiltonian in the folding approximation, for

several reasons. The folding approximation is indeed the

natural representation for discussing the asymptotic behavio
of the three cluster system, as the antisymmetrization be-
tween clusters vanishes at large intercluster distances. The

calculation of generating functions in this approximation is

The reduced generating functipef. Eq. (47)] then becomes
SS

il

(52

SS

£(|1|2)LM;(|1|2)LM(E1S;6',S'):(47T)2A_3i|l( A

also illuminating for the subsequent derivation of generatingl Nis reduced generating functi¢g?) is diagonal in the par-
functions in a fully antisymmetrized setting, as the principlestial angular momentd, and I,, and independent of total
are identical, but the implementation is more complex. Fi-angular momentunh, thus valid for all angular momenta

nally, the folding approximation provides an interesting

compatible withl; andl,.

model to discuss the importance of antisymmetrization in the The matrix elements with quantum numbe{s(also n)

interaction region.

A. Matrix elements for the overlap

The overlap of two generating functions of the fo(40)
is easily obtained, and can be written as

I(EinrQZ;e,!Qi!Qé)!

2
1
=A‘3exp{

1>

i=1

1
[Qi‘Qi'+§(6’Qi2+6Q{2)”,

(48)

can now be obtained through a standard procedure, e.g., by
differentiating Eq{(52) with respect tdSandS' (e ande’ for

n). In particular, as Eq.52) depends on the product 8fand

S’ only, the overlap is diagonal iK. Likewise, the depen-
dence one and ¢’ appears as a product in the factby so

that the overlap is again diagonal m The fact that the
generated overlap matrix elements are diagonal is a confir-
mation of the fact that these matrix elements were generated
in an orthogonal basis. The calculation of the matrix is how-
ever not unimportant, as it provides a straightforward way to
obtain the norm of the generator coordinate basis function
(44).
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B. Matrix elements for the kinetic energy

N 1
In order to calculate the kinetic energy one can use the (n.K,vo| TrIn, K, vo) = Ehw[2n+K+3]’

properties of the oscillator basis. The matrix elements of the
kinetic energy of relative motion of the clusters are related to N 1
those of the oscillator potential by the virial theorem (n+ 1K, vo| Tg|n,K,vo) = — Ehw\/(n+ 1)(n+K+3),

. . 1
- —Z . 1
(N[TRIN)=(N[VoIN) =5 En (n—l,K,vo|TR|n,K,vo>=—Eﬁw\/n(n+K+2). (59

(N£2[Tg[N)=—(N=2|Vg|N), (53 The full kinetic energy of the three cluster system must
include the internal kinetic energy of the clustefis= T

+T. . As we consider frozes clusters only, this contribu-
tion is purely diagonal and equal to

where

.1
Vo=5ho2, o (54)
2= 3 3 3
: . Ta=-h A—1)=—-hw(A-3). 60

and Ey=7o[N+3]=%w[2n+K+ 3] is the oscillator en- g “’21 (Ai=1) 4 o ) (60
ergy of relative motion.

One easily obtains a representation of the oscillator poten- . . .
tial in the manifold spanned by the generating functi¢8): C. Matrix elements for a Gaussian potential

For a Gaussian two-body interaction with strengthand

(A5 +03) W (dy, 0zl €,5;Q1, Q) rangea,
2 d (ri_rj)2
= (1+E) &+(1+6)Sd—s+3(1+6) V(ri,l'j):VOEX _T , (61)
X W (01,0 €,5:Q1,Qz) (59 the folding potential5) for (0s) clusters can be calculated

analytically. The result obtained from E(p) is again of a
so that the kinetic energy operafbg can be represented by Gaussian form but with a modified strength and interaction

length now also depending on the oscillator paramieter

T—lﬁ 1 ZOI+1 Sd+31
rR=5h0l —(1-€) -+ (1-€6)S5g+3(1-€)). ,
56 VE(R,,) =V z*?expl — —R? (62)
T 0 2 ' N1v
a
In a wider context, one can associate this operator with
the generator® (), R (), and R, b2 A AA,
d q 7= 1+?[2_MTU] il MTU_AT+AU'
(N =| £2— —
R € de +eSdS+3e

The matrix element of a Gaussian potential between two
generating functions of the fori@0) is not necessarily diag-

R()= i onal in terms of the chosen Jacobi coordinates. In the folding

de|’ approximation one can, however, easily find a set Jacobi

coordinates in which the potential matrix element is diago-

0)_ d d nal. The two sets of Jacobi coordinates will then be related
R™= 25&+Sd_5+3 ' (57) by an orthogonal transformation.

In what follows, we distinguish the two types of Jacobi
of theSp(2,R) group classifying the space of relative motion coordinates as follows: the original coordinates are denoted
of three-particle states, and whose irreducible representatiof®y q and were introduced in Sec. Il A, and shown in Fig. 1;
are labeled by hypermomentukhso that the diagonalizing coordinates will be denoted hyAn ex-
plicit example of the latter are easily obtained. Indeed, for
any choice of two clustersandj (i #j), k being the third
particle, one obtains a system of coordinatesniquely de-
fined by indexk, as follows:

1
VR=§ﬁw[R(O)+R(+)+R(_)],

1
7§=§ﬁw[R(°)—R(*)—R(’)]. (58) X1 = VCy(ri— T
. . . o . Airi + AT
Using again the shorthand notatiog= (1,1,)LM, matrix Xo= /C2 Me— ) (63)
elements are then readily found to be Ait+A,
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AA Ac(A+A) By using Eq.(50), one again eliminates factorized terms
CLk= M= A T A Cz,k:m- (64) and sums to obtain the following reduced generating func-
o o tion [cf. (47)], in complete analogy to the procedure taken
for Eq. (52):

Each such Jacobi coordinate systé&nteads to a diagonal
representation for the potential energy between clust@nsl Sg ss
j. As both Jacobi systemg and x are related through an V(|l|2)LM;(|1|2)Lm(6,5;6',5’)=Vp,ei|l(T i, N
orthogonal transformation, we can invoke the Raynal-Revai
theorem[36]. The latter states that any orthogonal transfor- (69
mation of Jacobi coordinates leads to an orthogonal transfoixg \yas the case with the overlap, the matrix elements of the
mation of the hyperspherical harmoni¢39) in the wave  stential in thex coordinate system are diagonal with respect
function (37), preserving the hypermomentum quantum, the partial angular momenta and!, and do not depend
numberk, directly upon the total angular momentumthis is a direct
consequence of the characteristics of the operator. Expres-
(I112)LM SN l1l2 1 (MALM VIRV sion (69) is again valid for all values of the total angular
Hy (6:01,G) g;‘z X KK (6% %). momental that are compatible with the given partial angular
(65 momentd ; andl,, and thus represents a generating function
for matrix elements with specific total angular momentum
The O'&'fz are known as the Raynal-Revai coefficie38§]. One obtains matrix elements with specificandn quan-
This transformation can then be used to obtain the matri)gum numbers throug_h the standard procedL(l:bﬁerentla_-
elements of the potential in the original set of coordinages tOMN: recurrence relations. .). So, forexample, one obtains
through

(NK, (1) LMIVIn’ K", (111)LM) (70)
<an1(|1|2)LM|V|nI|KI!(Il|2)LM>(q) (66) - d)n( d n’( d)K d K’
= 2 2 O|1|2 Olilé de de’ ds ds
Iy’ >\ }\ )\,)\, . ! 1 — Qr —
Ao )\1)\2 172 1"2 XV(|1|2)LM;(|1|2)|_M(E,S,E ,S )|§;§,;8 (71)

X(N,K,(MA)LMVIn' K" (ANAHLM)y,  (67) _ _
D. Matrix elements for the Coulomb potential
where the matrix element on the right-hand side, which is  The Coulomb interaction in the folding approximation be-
diagonal in thex representation, can be calculated in atween two clusters witiz,. and Z, number of protons is

straightforward way. given by Eq.(6) as
To obtain the latter matrix element we consider a gener-

ating function of an identical structure as E40), in which F) _ 2 2

we replace the coordinates an@ generator coordinates by Ve (Rr)=2:2.8 i§T ,.Z\U d7,d7|¥(A,)]

x and X. A generating function for the two-body matrix el-

ements is then easily obtained as a product of two integrals 2

overx; andx, leading to X|fi—fj+ R, V(A (72

V(e,SXq,X:€",S X}, Xb) A straightforward calculation of its matrix elements is im-
practical and very tedious. By, however, using the following

SS. ., SS. ., Gauss transform:
=Vpre€Xp ——X1- X1 1exp ——Xz- X5 (68)
A A
1 2 (=
—=—f dxexp{—r2x?}, (73
—32 Y 12 "2 rJmlo
Vpre:VO(AA) exp — ZAA[(f S)°+(£S')7]¢,
one rewrites Eq(72) as

E=1+e, ¢&=1+¢€,

27,26
VEF)(TU):— E E dTTdTU|\I,T(AT)|2
A:1_€EI:§+§I_§§I, \/; ieA. jeA,
A=A+ ’yggl, Xfo dxexp{_(ri_rj+Rrv)2X2}|q,v(Au)|2
b2 1 zzrzveszd 3/2 REU 2 (74)
=— . = z7Texpy ——vZ¢,
4 3.2 Cl,a \/;b 0 Y b2 Y
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where N o1l 1\ K+3
~( — -1~ 1 1 — —
er(p)"“( 1) ! 2VONK NK (2 r |l+ 2)
z=(1+ty?) Y, t=2-pu,', y=bx (79 avaf KHli—1o+1
( wma) B
X 2
P
and its matrix elements can be obtained by integrating matrix K=l1=1
elementgdepending orz) of the Gaussian potential.
Introducing the integration variabke - =
X 2 , (79
K=1:=1,
tyz
s= Tot? (76)  which indeed shows a worst-case behavior |;=0) of the
tly form 1/p° as predicted in Sec. Ill D.
The analogous evaluation for the Coulomb interaction
transforms Eq(74) to leads to the followingexac) expression:
Zeff
Kilply
, W (p)= (80)
V(F)( ) ZZTZveZ 1 jld —1/2 R'rv
W)= ——— ——= ss “cexp — S )
c Jmb  24\t)o th? with
z.2¢° R? e 1 )
_cmtv v z VAV -
= R erf( tbz)_ (77) Klil,™ o M
(K=1,—1)/2 K=l +1+1
K—=ly—l,—n—
This form shows that the integration can be reduced to a X n';:O (—)f e 2
finite interval. It also shows that the Coulomb interaction n
between clusters does not behaveRig' as could be ex- _
K+l;—1,+1
pected. For very large value &,,, however, Eq(77) prop- K=1;+1,+1 _—
erly reduces t&Z,Z,e%R,,, due to the asymptotic form of «| T 2 7
the error function. K=1:—1,
m - -
2
E. Asymptotic behavior of the potential contributions K+l,—1,+1
As the folding model is used for defining the asymptotic 2
channels, it is clear that the asymptotic behavior of the po- X K—1].—|
tential energy matrix elements in this model will be of vital -1 2
importance for the rate of convergence of the AM solutions. 2
The effective potential in terms of the hyper-radjuss de-
fined by integrating the folding potential over all hyperangles 3
Bl|K—=l;—n—m+ s ,n+m+1;+1 (81)

as formally indicated by

2

andB stands for the beta function.

These results corroborate the fact that special care should
be taken to get properly convergent results, even more criti-
cally when a Coulomb contribution between the clusters is
present.

W(p) =2 Wr(p) =W, 1,(p)

> V(R,,)

:<K,|1,|2

K,|1,|2>.

(78) VI. MATRIX ELEMENTS WITH FULL

ANTISYMMETRIZATION

Its asymptotic behavior is then obtained for large values. of When considering full antisymmetrization between all
In the diagonal representation with Jacobi coordinates particles of the three-cluster wave function the normalization
the calculation ofV(p) between one pair of clustersandv  of the basis states becomes a nontrivial problem. The over-
amounts to a straightforward integration over the hyperdap, i.e., the matrix representation of the antisymmetrization
angles. operator.A4, needs to be explicitly calculated.
The Gaussian interaction then exhibits the following As was carried out in the previous section one would
asymptotic behavior: normally start from the generating sta#0) to obtain gen-
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erating matrix elements in terms efande’, facilitating the  In order to further reduce the generating function in the par-
treatment of the hyperangular coordinates. We propose aiial angular momentéd, andl, we substitute Eq42) in Eq.
alternative representation for the scaled generating &t8je  (85),

which is more suited to our calculations, and hereto intro-

duce the following integral transformation: 1(€,5,X1,X5;€',S", X}, X5)
NE—2\3
‘If(q|e,Q)=J dk exp{ — K2} (q;Q+ v2ek). (82 =(A1A2)3’2exp{2 A4, 2[SPe’+S %]]
This allows us to obtain Eq40) by scaling on the generator ﬁ vaRvel E VIR
coordinate only. In other words, generating matrix elements X ex Alssxl X1|exp g SSXa: Xy (86)

can be obtained with the simpler generating st@2® and

scaled later on, reducing effectively the calculational burden. By using Eq.(50) this produces in complete analogy to
Eqg. (52) a generating function for all total angular momenta

A. Matrix elements for the overlap L compatible withl, andly:

Because the individual cluster states are Slater determi; i w;q,i,)Lm(€,S;€’,S')
nants, apart from the center-of-mass factor, one can use the
familiar determinantal formulas to calculate the generating 5 _ap -\,
function. Starting then from the generating sté8) for the =(4m)"(A142) “7ex 2A A, “[Se' +S'E]
single-particle orbitals one obtains

2 2

A
2 Xi| —SS || SS) (87)
1(Q1,Q2;:QL,Q)=> D<”>e><p{”2=1 Biﬂ-”)Qi-Q;’} AATTRA
' (83 If A;=\,, the overlap depends on the fac®8 only and

is therefore diagonal with respect to hypermomentinas
The coefficientD ) and B(V) as well as the number of the was the case in the folding approximation. In the general
terms depend on the specrfrc type of three-cluster configurasase one will havé ; # X\ ,, and Eq.(87) generates nondiago-
tion, viz. the number of nucleons per cluster and their spinfhal matrix elements it. Hypermomentum is thus no longer
isospin quantum numbers. a good quantum number for three-cluster systems, contrary
In order to reduce Eq(83) with respect to the angular to the folding approximation.
guantum numbers it is profitable to diagonalize the forms in The generating function for the overlap wikh=0, and
the exponentials of Eq83). This can easily be achieved by consequently for angular moments=1,=L =0, is obtained
diagonalizing its 2 by 2 coefficient matnB . This again immediately by puttingS=S'=0. This simplicity is an in-
amounts to making an orthogonal transformatron from thedication of the very swtable form of our generating function.
original Jacobi coordinateg to new Jacobi coordinates The matrix elements ° can now again be gener-
This orthogenal transformation W“I induc_e a corresponding ted by a standard procedure such as differentiation or re-
transformation of the basis functions which can be handle
urrence relations.
by the Raynal-Revai theorem as discussed in the previous
section. The block-diagonal form of an exponential term can ) o
be written as B. Matrix elements for the kinetic energy
) The matrix elements of the kinetic energy operator can be
, derived without use of a generating function. One of the
eXP{Zl )\ixi'xi] (84) effects of the antisymmetrization operator is to mix basis
states within a fixed oscillator shell. The “diagonali.e.,
within a shel) and “off-diagonal” (within neighboring
shellg kinetic energy matrix elements are easily found to be
connected to the matrix elements of the overlap by

We now introduce the scaling anande’ by carrying out
the transformatiori82) on both generator coordinat¥sand
X’ for every(block-diagonal term in Eq.(83), leading to

' ’ ’ K,VO;K,,V, 1 3
[(€,X1,X5;€",X1,X5) Tn o 0= Eﬁw 2n+K+3+ E(A_S)
-312¢ é Ai N2 12 K,vg:K', v

:(AlA Z A_ X,X|+7(E Xi+6xi ) ’ Xlnn, 052n+K2I’1'+K'7
(85) L 1
K,vg:K ,1/0: _ -
here o 2hw\/(nJr 1)(n+K+3)
K,vg:K', v}
Ai=1-\?ee’. X|nn,0 %0an+K n' +K'
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where the restriction on the quantum numbers to remain on Using Eq.(82) on bothX; andX{ , one obtains after in-

the same oscillator shell (2-K=2n'+K") has been ac- tegrating over the corresponditkg andk/
counted for.

. « 1. ! ’
C. Matrix elements for a Gaussian potential V(€ X1, X €1 X1, X3)
If one considers a Gaussian form for the nucleon-nucleon “ai2g 2 N ) '
potential, and calculates a generating matrix element for the ~~(8142) Z T €'NXi T eNiX|
interaction using Slater determinants with individual orbitals

of the form(29) one obtains terms of the form 1 (=
., +2Xi-Xi’) ?2'[ dz
V(Q1,Q2:Q1,Qz) aoe) —o0
2 2 2
:Vo(l_g)glzeXD{ —Z{Z (QQ&C(Q()} Xexp{ —A22+2i§i21 (EZ-Xi+&Z- X)) [, (93
i=1 =
+> BijQi'Qj'], (88)  where agaim\;=1—\?ee’ and
ij=1
where _Gi+€,Gi,)\i ,_Gi,+6Gi)\i
2b2 | AT A
=— 89
2b%+a? ( 2

1
— _ 2 2 N e el
and V, stands for any of the everV{; and V3;) and odd A= 1+i21 A; [Gi+e'Gi"+2ee'N GG

(V11 andV33) components of th&IN interaction. Agairb is

the oscillator radius and the range of the potential well. ) ) _ .

The first term in the exponent of E(88) contains the factor To obtain a reduced generating funcnon for specific a_ngular
¢ and the vector€,Q;+C,Q, andC,Q!+C,Q}. The lat- momentum quantum numbers, we again use expansion for-
ter have a simple meaning: they define the distance betweéﬂmas of an exponential in terms of spherical harmonics. For
the two clusters which respectively contain one of the nucleexponentlal terms with a real scalar product we use(&),

ons in the interacting pair. whereas for exponential terms with an imaginary scalar prod-

In the diagonal representati@@8) becomes uct we use37]

2

V(xl,xz;x;,xg)=voexp{—g[21 (GiX;+G!X/) explia: b}=417|2 i'j,(ab) Y (A)Yim(D), (99

2
+ ?\iXi'Xi’) (90 wherej,(ab) is the well-known spherical Bessel function.
=1 Applying both Eqgs.(50) and(94) to Eq. (93) leads to
and the coefficient€;, C/ andG;, G/are trivially related
by the orthogonal diagonalizing transformation. V(e,Xq1,X;€",X1,X5)
In order to eliminate crossterms ¥y - X, andX; - X, we 5 5
introduce an additional transformation through the integral 6 _ap A 2 )2
identity =(4m)°%(A14,) expE aa (€ XETeX(?)
2 N
e @ S/J dZ exp{—Z2+2i(Z-a)} (91) X > itk ko ik-(A_IXiXiI>
i=1 "\ A4j

ky kg Ky kb K] K

leading to the following integral form for the blodR0): 1
XTJ dZ exp{ = AZ% Py i, ki K1 K

1720712

V(X1,X2;X1,X35)
2

2
:Voiexp{z )\ixi.x.’]f dz xI1 jw(26X2)ji(2€/ X 2). (95)
77_3/2 =] | e =1 1 i

(92) Before performing the integration ovér we again make the
substitution(42) in Eq. (95) to obtain

2
Xexp{ —Z242iL>, (GiZ-Xi+G!/Z-X!) 1.
i=1
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2 2

~ ~ ~ ~ )\ )\ ’ ’ ’ ”n "
V(e,S Xy, X;e' S X, X5)=(4m)8(A1A,) 32expl -2 (' S2+€S'3 > jkitkotkytky
ZAlAZ k k kl k! kH kH
1,82:81:82:81:82

A [ A2 1 ( 2 ; ray
A—lSS |k2 A—ZSS ﬁjwdz EXF{—AZ }Jki(2§1sz)]k/i(2§ls Z)

Xi,
Xk (—12€,82)jin(12858 Z) Py, itk k1K (96)
where

2

Pie b by ey = L (Vi) YOI (Y (X - Yig () (Vi (2) - Vi (X))

e )L.UZV)L,.L,, Py e bk KK IHLY LY
1:'2 AN L) ,

X (Y1, (X)X Y, (X HY (XD XY (X Y L Z2)h). (97)

The intermediatgbut redundantindex L” is connected to result f0rV(|1|2)LM;(|1|2)va|(€,5§6',5') that is not reproduced

the integration variabl& of the integral transformatio(®1). here, as it carries no further additional information.

Because of the orthogonality between _spherical harmonics Again, by using the standard procedures such as differen-

and of the scalar character of-the potgntlal operatandL’ tiation or recurrence relations one obtains the effective ma-

will be equal, and.” =0 after integration oveZ: we there-  {rx elements. In particular, the form of EG70) remains

fore anticipate by simplifying Eq97) to valid, though the analytic differentiation preferably should
be performed within an algebraic package suchvash-

Py ko Kk KK EMATICA or MAPLE due to the bulkiness of the formulas.

= E P{kl,kz,ki,ké,k’l’,k;};{(ll,lz)L;(liJé)L;O} D. Matrix elements for the Coulomb potential
(I1.0)L;(17 151 . .
pEm The matrix elements of the Coulomb potential can now be

1 . . most easily obtained from the Gaussian results. We consider
X\/T({Yll(xl)Xle(xz)}L again the Gaussian integral representation
a
1

., ., 2 (=
XY (XD XY (X2)h).- (98) \/_;Jo dxexp{—x(r;—r))%. (100

ri—rjl N
The expansion coefficients are then easily shown to be
We use Eq.96), replacea® by 1&2, and introduce a new

Plicy ey K K KK 1)L 1S)L;0} integration variable = y/(1— y) where y=x?b?, to obtain
symbolically
, 1, 1, k
:E (_1)|l+|l+k+L C(k)gkO
K b 1 L Ve(e,S,Xq,Xz0€",S' X4, X5)
2
k ’ " 2 * “ - v~
x T (=1)*a(2ki+1)(2k] +1)(2k]'+ 1) =—f dxV(e,5,X;,X5;€',S' X5, X5)
i=1 \/; 0
k;’ Ii, ki] 1,0 10 %) 2 1 d
X ,otcl el Lo (99) _ t I Tay
’ II kl k ki OkIO ki OkiO ki Oklo - b\/;_fO(1—t)3/2‘t1/2V(E,S,X1'X2,6 1S ,X1,X2)-
Under the anticipative assumptiobs=L’ andL"=0, the (10D

integration over the angles in Eq. (96) is now trivial. The

remaining integration ovex is easily done after substituting Mutatis mutandiswe apply the integral transformation
the power expansions for the Bessel functign&) and directy to  the  generating matrix  elements
i1(x). The final result provides a tractable though very bu"‘yv(l1I2)LM;<I1I§)LM(5:S:6’,3’),
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C i (€,S€,S) It was shown that it is possible to obtain matrix elements for
Ul LMyl ME =2 fully antisymmetrized three-cluster configurations, as well as
a proper description for the three-cluster continuum in terms
of a hyperspherical description. The corresponding AM
equations in a multichannel description were also introduced.
In the current work the individual clusters were limited to
2 (1 dt e contain onlys orbitals, thus reducing the mass of clusters to
" pJalo (1_t)slztl/zv('l'z)LM?('i'é)L'V'(E'S'E 'S"): " that of a four-nucleon system. The latter restriction is, how-
ever, not a fundamental one, and was taken to restrict the
(102 analytical and calculational burden.

This, however, leads to a very intricate evaluation of the In order to prove the validity and feasibility of the current

integral, and thus for the reduced generating matrix elemer}gggﬁlsvéil\i’!\llle%p%ygztzftvivrg sopr(te;:r;fg;t?()re:s—::rlgs;erséc:ggu-
of the Coulomb potential. P pnystes,

6 6 i
A better procedure is to generate the quantum+n for "He, anda+p+p for *Be. These results appear in

numbers K and K’ first, by differentiation of part II of this paper.
V(|1|2)LM;(|£|5)L|\/I(6,S?6',5') on S and S, then settingS

=S'=0. This leads to reduced generating functions for each ACKNOWLEDGMENTS
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