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Algebraic model for scattering in three-s-cluster systems. I. Theoretical background
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A framework to calculate two-particle matrix elements for fully antisymmetrized three-cluster configurations
is presented. The theory is developed for a scattering situation described in terms of the algebraic model. This
means that the nuclear many-particle state and its asymptotic behavior are expanded in terms of oscillator
states of the intercluster coordinates. The generating function technique is used to optimize the calculation of
matrix elements. In order to derive the dynamical equations, a multichannel version of the algebraic model is
presented.
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I. INTRODUCTION

Since 1980, the so-called algebraic model~AM ! of the
resonating group method has been used in the investiga
of bound and continuum states of nuclear systems. Initi
the AM was applied to binary cluster configurations@1–5#.
Later on it was extended to describe binary clusters coup
to collective ~quadrupole and monopole! channels@5–8#.
Quite recently, three-cluster configurations were conside
in the AM framework @9–11#. Such configurations play a
significant role in light nuclei, in particular for reactions o
astrophysical interest.

The algebraic model represents the nuclear many-par
wave functions through their expansions in harmonic os
lator eigenstates. The use of a basis of square integr
states reduces the Schro¨dinger equation to a matrix equation
This procedure is well-known for bound states, but is a
applicable to continuum states when the appropriate bou
ary conditions are imposed on the expansion coefficie
@1,2,12–14#. Thus the algebraic model provides a unified a
proach to bound and continuous spectra based on fam
matrix techniques.

Solving an AM scattering problem requires two maj
steps. The first is to define the basis states relevant to
scattering channels being investigated and to compute
Hamiltonian matrix elements in that basis. The second is
consider the description of the asymptotic region and bou
ary conditions in the basis and to solve the matrix equa
subject to those boundary conditions.

We elaborate on both steps in this paper for a fully an
symmetrized three-cluster system, and introduce the pro
three-cluster continuum boundary conditions. Such a
scription is still lacking in the literature. Three-cluster sy
tems have been considered in some calculations, but t
the continuum was approximated through sets of two-clu
configurations@15–17#.

In our calculation the Pauli principle will be treated rig
orously by taking full antisymmetrization into account for a
nucleons in the system. The basis states will be defined
composition of threes clusters with ‘‘frozen’’ internal struc-
ture. The relative motions of the clusters are the relev
degrees of freedom. They are described by the hypersp
cal harmonics method~HHM!. It makes a natural formula
0556-2813/2001/63~3!/034606~16!/$15.00 63 0346
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tion of the proper boundary conditions possible. The ma
elements of kinetic and potential energy in the three-clus
basis states are calculated using the generating function t
nique @5,18,19#, and methods for an explicit derivation wi
be presented.

The asymptotic behavior of relative motion of clusters
obtained by considering large intercluster distances wh
the interaction between clusters approaches zero. We us
folding approximation to determine the asymptotic wa
functions. The folding approximation amounts to solving t
scattering equations without nucleon-nucleon interaction
without intercluster antisymmetrization.

In the case of neutral clusters, i.e., when intercluster C
lomb interactions are absent, the asymptotic equations
uncoupled in the hyperangular momentumK that is typical in
the HHM. We will therefore introduce individual scatterin
channels characterized by quantum numberK . In configura-
tions with charged clusters the Coulomb interaction a
couplesK channels in the asymptotic region. Again the fol
ing approximation will be used to arrive at the appropria
asymptotic wave equations. A multiple channel approa
which couples allK channels has to be used to solve the f
AM system of equations. This extends the theoretical fo
dation of the AM given in Ref.@20# for two-cluster systems

In part II of this paper, the techniques discussed here
be applied to the three cluster configurationsa1n1n for
6He, anda1p1p for 6Be.

II. THREE- s-CLUSTER SYSTEMS

A. Wave functions

The many-particle wave function for a three-cluster s
tem of A nucleons (A5A11A21A3) can be written, using
the antisymmetrization operatorA, as follows:

C~q1 , . . . ,qA21!5A@C1~A1!C2~A2!C3~A3!CR~R!#,
~1!

where the center of mass of theA-nucleon system has bee
eliminated by the use of Jacobi coordinatesqi . The cluster
wave functionsC i(Ai)
©2001 The American Physical Society06-1
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C i~Ai !5C i~q1
( i ) , . . . ,qAi21

( i ) ! ~ i 51,2,3! ~2!

represent the internal structure of thei th cluster, centered
around its center of massRi . In our AM study these intrinsic
cluster wave functions are fixed and are Slater determin
~within a factor for the center mass motion! of harmonic
oscillator (0s) states, corresponding to the ground-state c
figuration of the cluster (Ai<4 for all i ). The CR(R) wave
function

CR~R!5CR~q1
(R) ,q2

(R)!5CR~q1 ,q2! ~3!

represents the relative motion of the three clusters with
spect to one another, andq1 andq2 represent Jacobi coord
nates. In Fig. 1 we indicate an enumeration of possible
cobi coordinates and their relation to the component clust

The state~3! is not limited to any particular type of or
bital; on the contrary we will use a complete basis of h
monic oscillator states for the relative motion degrees
freedom. Thus the fullA-particle state cannot be expressed
a single Slater determinant of single particle orbitals.

An important approximation is obtained by breaking t
Pauli principle between the individual clusters, but retain
a proper quantum-mechanical description of the clust
which is described by the wave function

CF~q1 , . . . ,qA21!5C1~A1!C2~A2!C3~A3!CR~R!.
~4!

Because each intrinsic cluster wave function is antisymm
ric, as it is a Slater determinant apart from a factor for
center mass motion, one is indeed neglecting the interclu
antisymmetrization only. This results in what is known as
‘‘folding’’ model. It has the advantage of preserving th
identities of the clusters and, if the intracluster structure
kept frozen, it reduces the many-particle problem to tha
the relative motion of the clusters. It should, however,
mentioned that breaking the antisymmetry will introdu
spurious Pauli-forbidden states which have to be elimina

The folding approximation will be the natural choice f
calculating the asymptotic behavior of the three-cluster s
tem, i.e., the disintegration of the system in the three non
teracting individual clusters. This amounts to the situat
that all three clusters are a sufficient distance apart and
tercluster interactions are no longer in force.

FIG. 1. Two configurations of the Jacobi coordinates for
three-cluster systema1N1N.
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The folding model is, however, also an acceptable
proximation in the interaction region and can serve as co
parison to the fully antisymmetrized calculations. In the fo
ing model, the clusters interact through a local, interclus
potential called the folding potential. As in the current pap
(0s) determinantsC i(Ai) are used to describe the intern
state of the clusters, the folding potential will be easily c
culated and is a sum of three terms:

V(F)5V(F)~R12!1V(F)~R23!1V(F)~R31!, ~5!

where each term is simply the integral

V(F)~Rty!5 (
i PAt

(
j PAy

E dttdtyuCt~At!u2

3V~r i2r j1Rty!uCy~Ay!u2. ~6!

The coordinatesRty are associated with the relative positio
of the clusters

Rty5
1

At
(

i PAt

r i2
1

Ay
(

j PAy

r j ~7!

and sum to zero; they are equivalent to theq1 ,q2 Jacobi
coordinates introduced earlier. In this way the folding a
proximation turns the three-cluster problem into an effect
three-particle problem for the relative motion coordinates

Because the cluster states are fixed and built up of (s)
orbitals, the problem of labeling the basis states with qu
tum numbers relates to the intercluster wave function on
This holds true whether one uses the full antisymmetrizat
or the folding approximation. In a two-cluster case, the se
quantum numbers describing intercluster motion is una
biguously defined. In a three-cluster case, several sche
can be used to classify the intercluster wave function in
oscillator representation. In Refs.@9,10# three distinct but
equivalent schemes were considered. One of these use
quantum numbers provided by the hyperspherical harmo
method~see, for instance, Refs.@21–23#!. This is the classi-
fication that we will adopt. Even within this particula
scheme there are several ways to classify the basis states
shall restrict ourselves to the so-called Zernike-Brinkman
sis @24#. This corresponds to the following reduction of th
unitary groupU(6), thesymmetry group of the three-particl
oscillator Hamiltonian,

U~6!.O~6!.O~3! ^ O~3!.O~3!. ~8!

This reduction provides the quantum numbersK for the hy-
permomentum,n for the hyper-radial excitation,l 1 for the
angular momentum connected with the first Jacobi vectorl 2
for the angular momentum connected with the second Ja
vector, andL andM for the total angular momentum obtaine
from coupling the partial angular momental 1 , l 2. Collec-
tively these quantum numbers will be denoted byn, i.e., n
5$n,K,(l 1l 2)LM % in the remainder of the text.

There are a number of relations and constraints on th
quantum numbers: the total angular momentum is the ve
sum of the partial angular momental1 and l2, i.e., L5 l1
6-2
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1 l2 or u l 12 l 2u<L< l 11 l 2; by fixing the values ofl 1 andl 2,
we impose restrictions on the hypermomentumK5 l 11 l 2 ,
l 11 l 212, l 11 l 214, . . . . This condition implies that for
certain values of hypermomentumK the sum of partial an-
gular momental 11 l 2 cannot exceedK; the partial angular
momental 1 and l 2 define the parity of the three-cluster sta
by the relationp5(21)l 11 l 2; for the ‘‘normal’’ parity states
p5(21)L the minimal value of hypermomentum isKmin
5L, whereasKmin5L11 for the so-called ‘‘abnormal’’ par-
ity statesp5(21)L11; oscillator shells withN quanta are
characterized by the constraintN52n1K.

Thus for a given hyperangular and rotational configu
tion the quantum numbern ladders the oscillator shells o
increasing oscillator energy.

III. THE ALGEBRAIC MODEL

A. Asymptotic solutions in coordinate representation

The algebraic model implements a method to solve
Schrödinger equation for quantum scattering systems, in p
ticular for nuclear cluster systems. It is based on a ma
representation of the Schro¨dinger equation in terms of a
square integrable basis, usually harmonic oscillator sta
and boundary conditions in terms of the asymptotic beha
of the expansion coefficients of the wave function. In th
paper we restrict ourselves to a presentation tailored to
treatment of three-cluster systems.

In the case of three-cluster calculations, one needs to
termine a proper approximation for the wave function~3!.
Consider an expansion of the relative wave function

CR~q1 ,q2!5(
n

cnCn~q1 ,q2! ~9!

with n5$n,K,(l 1l 2)LM % and$Cn% a complete basis of six
dimensional oscillator states. It covers all possible types
relative motion between the three clusters.

To obtain the asymptotic behavior of the three-cluster s
tem, we consider the folding approximation. The assump
that antisymmetrization effects between clusters are abse
the asymptotic region is a natural one. The relative mot
problem of the three clusters in the absence of a potential
then be explicitly solved in the hyperspherical harmon
method ~see, for instance, Refs.@21–23#!. It involves the
transformation of the Jacobi coordinatesq1 and q2 to the
hyper-radiusr and a set of hyperanglesV. The intercluster
wave function in coordinate representation is expanded
hyperspherical harmonicsHK

n0(V) wheren0 has been chose
as a shorthand for (l 1l 2)LM .

In the absence of the Coulomb interaction this leads t
set of equations for the hyperradial asymptotic solutio
with the kinetic energy operator as reference Hamiltonia

H 2
\2

2mF d2

dr2
1

5

r

d

dr
2

K~K14!

r2 G2EJ RK,n0
~r!50.

~10!
03460
-

e
r-
ix

s,
r

e

e-

f

-
n
in

n
an
s

in

a
,

The solutions can be obtained analytically and are rep
sented by a pair of Ha¨nkel functions for the ingoing and
outgoing solutions:

RK,n0

(6) ~r!5H HK12
(1) ~kr!/r2

HK12
(2) ~kr!/r2J , ~11!

where

k5A2mE

\2
.

One notices that these asymptotic solutions are indepen
of all quantum numbersn0, and are determined by the valu
of hypermomentumK only.

When charged clusters are considered the asymptotic
erence Hamiltonian consists of the kinetic energy and
Coulomb interaction:

H 2
\2

2mF d2

dr2
1

5

r

d

dr
2

iKi

r2 G1
iZe f fi

r
2EJ iR~r!i50.

~12!

The matrixiKi is diagonal with matrix elementsK(K14),
and iZe f fi , the ‘‘effective charge,’’ is off diagonal inK and
( l 1l 2). Different K channels are now coupled. A standa
approximation for solving these equations is to decou
them by assuming that the off-diagonal matrix elements
iZe f fi are sufficiently small:

H 2
\2

2mF d2

dr2
1

5

r

d

dr
2

K~K14!

r2 G1
Ze f f

r
2EJ RK,n0

~r!50.

~13!

The constantZe f f depends onK andn0 and all parameters o
the many-body system under consideration. We will rest
ourselves to this decoupling approximation, but it is to
understood that its validity has to be checked for any spec
three-cluster system.

The asymptotic solutions then become

RK,n0

(6) ~r!5H Wih,m~2ikr!/r5/2

W2 ih,m~22ikr!/r5/2J , ~14!

whereW is the Whittaker function,m5K12 andh is the
well-known Sommerfeld parameter

h5
m

\2

Ze f f

k
. ~15!

As h is a function ofK, l 1, and l 2 through the paramete
Ze f f , the asymptotic solutions will now be dependent onK
andn0.

B. Asymptotic solutions in oscillator representation

The algebraic model relies on an expansion in terms
oscillator functions, and the asymptotic behavior of the c
responding expansion coefficientscn . It was conjectured
6-3
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~see, for instance, Ref.@20#! that for very large values of the
oscillator quantum numbern the expansion coefficients fo
physically relevant wave functions behave like

cn5^nuc&.A2rn
2c~brn!, ~16!

wherern5A4n12K16 corresponds to the classical turnin
point, b is the oscillator parameter, andc is the hyper-radial
wave function.

In the case of neutral clusters this leads after substitu
of the hyper-radial asymptotic solutions to the following e
pansion coefficientscn

(6) :

cn
(6)K.A2H HK12

(1) ~kbrn!

HK12
(2) ~kbrn!

J . ~17!

This result can be obtained in an alternative way@25,26#
by representing the Schro¨dinger equation, with the kinetic
energy operatorT̂ as the Hamiltonian to describe th
asymptotic situation, in a~hyper-radial! oscillator represen-
tation

(
m50

`

^n,~K,n0!uT̂2Eum,~K,n0!&cm
K,n050. ~18!

This matrix equation is of a three-diagonal form because
the properties ofT̂ and the oscillator basis. Solving for th
expansion coefficientscn

K,n0 leads to a three-term recurrenc
relation

Tn,n21
K,n0 cn21

K,n01~Tn,n
K,n02E!cn

K,n01Tn,n11
K,n0 cn11

K,n050, ~19!

where

Tn,m
K,n05^n,~K,n0!uT̂um,~K,n0!&. ~20!

The asymptotic solutions~i.e., for highn) of this recurrence
relation are then precisely given by Eq.~17!.

When the Coulomb interaction is present we again ap
Eq. ~16! to obtain

cn
(6)K.A2H Wih,m~2ikbrn!/Arn

W2 ih,m~22ikbrn!/Arn
J . ~21!

In this case the oscillator representation of the Schro¨dinger
equation is no longer of a tridiagonal form, and cannot
solved analytically for the asymptotic solutions to corrob
rate this result.

It should be noted that the above elaborations are valid
relatively small values of momentumk and sufficiently large
values of discrete hyper-radiusrn , or when

k2

rn
2

!1 ~22!

which defines the ‘‘asymptotic regime’’; it shows that fo
any value ofk one can find values forn where the relation is
satisfied.
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As we consider an asymptotic decoupling in the (K,n0)
quantum numbers, one will deal with asymptotic chann
characterized by the (K,n0) values. So only in the interna
~or interaction! region will states with differentK andn0 be
coupled by the short-range nuclear potential and the C
lomb potential. The three-cluster system can therefore be
scribed by a coupled-channels approach, where the i
vidual channels are characterized by a singleK value, and we
will henceforth refer to these channels as ‘‘K channels.’’

C. Multichannel AM equations

In the current many-channel description of the algebr
model for three-cluster systems, the channels will be cha
terized by the a specific value of the set of quantum numb
K,n0, whereas the relative motion of clusters within th
channel is connected to the oscillator indexn. We will useK
henceforth as a corporate index for individual channels,
assume it represents allK,n0 quantum numbers.

The Schro¨dinger equation can be cast in a matrix equat
of the form

(
K8

(
m

^n,KuĤ2Eum,K8&cm
K850. ~23!

We will now use a representation of the dynamical eq
tions presented in Ref.@20#. As we will consider anS-matrix
formulation of the problem, the expansion coefficients a
rewritten as

cn
K5cn

(0)K1dKiK
cn

(2)K2SKiK
cn

(1)K , ~24!

where, for the current channelK, thecn
(6)K are the incoming

and outgoing asymptotic coefficients~valid for all n), and
the matrix elementSKiK

describes the coupling between th

current channelK and the entrance channelKi . Thecn
(0)K are

referred to as ‘‘residual coefficients’’@20#, since they repre-
sent the deviation from the asymptotic ones, and are diffe
from zero for smalln only.

As shown in Refs.@12,27,14#, the cn
(6)K satisfy the fol-

lowing system of equations for a given channelK:

(
m50

`

^n,KuĤ02Eum,K&cm
(6)K5b0

(6)Kdn,0 , ~25!

Ĥ0 being the asymptotic reference Hamiltonian, whi
equals the kinetic energy operator for uncharged clust
and the kinetic energy operator plus Coulomb interaction
charged clusters. The right-hand side featuresb0

(6)K which is
a regularization factor to eliminate the irregular behavior
the c0

(6)K . This factor indeed allows one to solve Eq.~25!
for all values ofn @20#, leading to a regular solution for ver
smalln and to correct solutions in the asymptotic region. T
value ofb0

(6)K can be obtained for both reference Hamilt
nians ~i.e., with or without Coulomb!. The set of Eqs.~25!
for the asymptotic coefficients can then be solved num
cally to different degrees of approximation depending on
6-4
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requested precision. Thecn
K(6) have the desired asymptot

behavior@cf. Eqs.~17! and ~21!#.
Substitution of Eq.~24! in Eq. ~23! then leads to the fol-

lowing system of dynamical equations for the many-chan
system:

(
K8

(
m

^n,KuĤ2Eum,K8&cm
K8(0)

2(
K8

SKiK8@b0
(1)K8dn,0dK8K1Vn

KK8(1)#

52b0
(2)Kdn,0dKiK

2Vn
KKi (2) , ~26!

where the dynamical coefficientsVn
KK8(6) , defined in Ref.

@20#, are given by

Vn
(6)KK85 (

m50

`

^n,KuV̂um,K8&cm
(6)K8 . ~27!

This system of equations should be solved for the resid
coefficientscn

K(0) and theS-matrix elementsSK8K .
To obtain an appropriate approximation to the exact so

tion of Eq. ~26!, we consider an internal region correspon
ing to n,N and an asymptotic region withn>N. The choice
of N is such that one can expect the residual expansion
efficients $cn

(0)K% to be sufficiently small in the asymptoti
region. Under these assumptions Eq.~26! reduces to the fol-
lowing set ofN11 equations (n50 . . .N):

(
K8

(
m,N

^n,KuĤ2Eum,K8&cm
(0)K8

2(
K8

SKiK8@b0
(1)K8dn,0dK8K1Vn

KK8(1)#

52b0
(2)Kdn,0dKiK

2Vn
KKi (2) . ~28!

The total number of equations for a given entrance ch
nel Ki amounts toNch(N11), and solving the set of equa
tions by traditional numerical linear algebra leads to
NchN residual coefficients $cn

K(0) ;K5Kmin . . . Kmax;n
50 . . .N21% and Nch S-matrix elements $SKiK

;K

5Kmin . . . Kmax%. The set of equations has to be solved
all Nch entrance channels labeled byKi .

D. Numerical solution and convergence

The numerical solution of the AM equations crucially d
pends on a proper choice ofN, distinguishing the interna
from the external region. The determining factor in this is t
form of the potential energy matrix elements which, contra
to the short-range coordinate character of the potential,
be of a slowly descending nature inn. If this is the case, a
sufficiently large value ofN has to be chosen.

In the case of three-cluster systems it is known from
erature@28# that the potential asymptotically behaves as 1r3

in the hyper-radius, with a corresponding effect on the m
trix elements. It will be shown later on that the asympto
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form of the effective potential in the current case follows th
behavior. It is well known@29–31# that potentials with an
asymptotic tail 1/r3 dramatically change the phase shift b
havior in the low energy region and that special care sho
be taken to get convergent results. This cannot always
obtained by merely choosing a sufficiently large value ofN.

In Ref. @20# a numerical strategy to take care of long ta
in the potential in the AM was developed. It dramatica
improves the convergence of the results with significan
smaller values forN. We refer to Ref.@20# for further details.

IV. THE GENERATING FUNCTION METHOD

A. General principle

In this section, the general principles for calculating m
trix elements in a three-cluster basis will be explained. T
two main quantities of interest are: the overlap matrix, a
the Hamiltonian matrix. The former is of importance becau
of the proper normalization of the basis states. The latte
decomposed into the kinetic energy operator, the matrix
ments of which are obtained mainly by group-theoreti
considerations, the potential energy operator, which in
case will be chosen to be a semirealistic two-body interac
based on a superposition of Gaussians, and the Coul
contribution.

In this work matrix elements for two-body Gaussian i
teractions will be derived. From these matrix elements
other functional forms of two-body interactions can be o
tained using Gaussian transforms. This latter procedure
be followed to calculate the matrix elements of the Coulo
interaction.

The basic principle of generating functions is well-know
from mathematical physics. A generating function or gene
tor state depends on a parameter, referred to as the gen
ing coordinate, in such a way that an expansion with resp
to that parameter yields basis states as expansion term
familiar example is the single-particle translated Gauss
wave function

f~r uR!5expH 2
1

2
r21A2R•r2

1

2
R2J ~29!

with the translation parameterR acting as generator coord
nate. The choice of parametrization of the generator coo
nate influences the quantum numbers of the individual b
states that are generated. In a Cartesian parametrizatioR
5(Rx ,Ry ,Rz) one generates the familiar Cartesia
fnx

(Rx)fny
(Ry)fnz

(Rz) oscillator states. With a radial pa

rametrizationR5RŘ ~where the inverted hat stands for
unit vector! the expansion yields

f~r uR!5 (
n,l ,m

N nlR
2n1 lYlm~Ř…fnlm~r !, ~30!

whereNnl the is normalization factor
6-5
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Nnl5A 4pG~3/2!

n!G~n1 l 13/2!22n1 l
.

In fact, the expression

N nlR
2n1 lYlm~Ř!

is an orthonormal oscillator function in Fock-Bargma
space.

An underlying mathematical connection exists betwe
such expansions, group representation theory, and coh
state analysis@32,33#. In the present work we exploit th
generating function principle to facilitate the computation
matrix elements. The matrix element of any operator
tween generating states is a function of the generating c
dinates on the left and right

X~R,R8!5^f~r uR!uX̂uf~r uR8!&. ~31!

Expansion of this function will yield the matrix elemen
between the basis states. They can be identified in the ex
sion by the appropriate dependence on the generator co
nates

X~R,R8!5(
nlm

(
n8 l 8m8

NnlNn8 l 8R
2n1 lR8~2n81 l 8!

3Ylm* ~Ř…Yl 8m8~Ř8…^fnlm~r !uX̂ufn8 l 8m8~r !&.

~32!

Of course, one is not required to expand with respect to
parameters at once. Elimination of the angular depende
first, yields a partial generating function for the radial mat
elements:

X~R,R8!5(
lm

(
l 8m8

Ylm* ~Ř…Yl 8m8~Ř8…Xlm; l 8m8~R,R8!

Xlm; l 8m8~R,R8!5(
n

(
n8

NnlNn8 l 8R
2n1 lR8(2n81 l 8)

3^fnlm~r !uX̂ufn8 l 8m8~r !&. ~33!

Such partial generating functions will prove to be partic
larly useful when we apply the generating function meth
to the three-cluster problem with six generator coordina
~corresponding to six degrees of freedom! and an extensive
setn5$n,K,(l 1l 2)LM % of quantum numbers.

The calculation of the matrix elements with the generat
function method is a two-step process. The first step is
calculation of the generating function for the operator
volved. Usually this is accomplished with analytical tec
niques. The second step is the expansion of the genera
function with respect to the generator coordinates. Sev
approaches have been used in this respect. Explicit diffe
tiation is one of them. Using recurrence relations for t
expansion terms is another one@34#. In any case, the work
involved here is straightforward but extremely tedious; b
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approaches are best implemented using algebraic manip
tion software such asMATHEMATICA or MAPLE.

In this paper we introduce a representation of the gen
ating functions in a manageable form to obtain explicit m
trix elements and their connecting recurrence relations.

B. Three-cluster generator state

The customary generator state for the intercluster b
functions is given by~in what follows we shall use smallq
for the Jacobi vectors and capitalQ for the corresponding
generating coordinates!

C~q1 ,q2uQ1 ,Q2!5expH 2
1

2
~q1

21q2
2!

1A2~Q1•q11Q2•q2!2
1

2
~Q1

21Q2
2!J .

~34!

The choice of parametrization is linked to the basis sta
one intends to generate. Associated with our choice of b
~Zernike-Brinkman@24#!, we introduce hyperspherical coo
dinates. The hyper-radius and hyperangles, both for sp
coordinates and for generating parameters, are defined b

r5Aq1
21q2

2, q15r cosu, q25r sinu;

R5AQ1
21Q2

2, Q15R cosQ, Q25R sinQ. ~35!

Using these, one expands the generating function~34! in
hyperspherical harmonic functions:

C~q1 ,q2uQ1 ,Q2!5(
n

Cn~r,u,q̌1 ,q̌2!Jn* ~R,Q,Q̌1 ,Q̌2!,

~36!

where the full set of quantum numbersn ~introduced previ-
ously! is involved in the summation. The oscillator bas
functions are

Cn~r,u,q̌1 ,q̌2!5Nn,KrKexp$2r2/2%Ln
K12~r2!

3HK
( l 1l 2)LM

~u,q̌1 ,q̌2! ~37!

and the generator coordinate functions are

Jn~R,Q,Q̌1 ,Q̌2!5Nn,KRK12nHK
( l 1l 2)LM

~Q,Q̌1 ,Q̌2!.
~38!

HereH denotes the hyperspherical harmonic function

HK
( l 1l 2)LM

~Q,Q̌1 ,Q̌2!5N K
( l 1l 2)LM

FK
( l 1l 2)

~Q!

3$Yl 1
~Q̌1!3Yl 2

~Q̌2!%LM

FK
( l 1l 2)

~Q!5~cosQ! l 1~sinQ! l 2PK2 l 12 l 2/2
l 211/2,l 111/2

~cos 2Q!.

~39!
6-6
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From Eq.~38!, one easily deduces the procedure for sele
ing basis functions with fixed quantum numbersn
5$n,K,(l 1l 2)LM %. One has to differentiate the generatin
function (K12n)-times with respect toR and then to setR
50. After that one has to integrate overQ with the weight
FK

( l 1l 2) to project onto the hypermomentumK; one has to

integrate over unit vectorsQ̌1 and Q̌2 with weights
Yl 1m1

(Q̌1) andYl 2m2
(Q̌2) to project onto partial angular mo

menta. The order of these operations is not important an
a matter of convenience for each specific case. Howe
these calculations, in particular those connected with in
grating over hyperangleQ, are extremely extensive an
cumbersome. For this reason, we introduce a new genera
function appropriate for three-cluster calculations.

We start from the function below which depends on sev
generating coordinates:

C~q1 ,q2ue,Q1 ,Q2! ~40!

5~11e!23expH 2
1

2

12e

11e
~q1

21q2
2!

1
A2

11e
~Q1•q11Q2•q2!2

1

2

1

11e
~Q1

21Q2
2!J .

~41!

It was used previously in a different context@7,19,35# to
describe the coupling between monopole and two-cluster
grees of freedom. In those cases, the parameterQ generates
basisfunctions of intercluster motion while parametere gen-
erates collective monopole excitations of theA-nucleon sys-
tem. Here, we will modify the function somewhat and use
only for the intercluster motion. We exploit the redundan
in the set of generating parameters~seven parameters vs s
degrees of freedom! and the fact that all expressions up
now are valid for complex generator coordinates also.
restrict the moduli ofQ1 andQ2 and set
um

e
ce

03460
t-

is
er
-

ng

n

e-

t

e

Q15S, Q252 iS. ~42!

When the complex conjugate version of Eq.~40! is used,
e.g., in the calculation of matrix elements, Eq.~42! is also
complex conjugated.

We now consider the new set of generator coordina
e,S,Q̌1 ,Q̌2 , and substitute Eq.~42! in Eq. ~40!, where the
inverted hats onQ1 andQ2 again indicate the angular com
ponents of both variables. This leads to

C~que,S,Q̌1 ,Q̌2!5~11e!23expH 2
1

2

12e

11e
~q1

21q2
2!

1
A2S

11e
~Q̌1"q12 i Q̌2•q2!J

5(
n

Cn~r,u,q̌1 ,q̌2!Fn~e,S,Q̌1 ,Q̌2!,

~43!

where the weights associated with each basis function
given by

Fn~e,S,Q̌1 ,Q̌2!5N K
( l 1l 2)LMNn,K~2 i ! l 2enSK

3$Yl 1
~Q̌1!3Yl 2

~Q̌2!%LM . ~44!

These are of a simpler structure and easier to use than
~38! because through Eq.~42! the dependence on the hype
angular coordinate has been eliminated.

The full generating function for the matrix elementsXn,n8
of operatorX̂ now has the following general structure:
X~e,S,Q̌1 ,Q̌2 ;e8,S8,Q̌18 ,Q̌28!5 (
n,n8

^Cn~r,u,q̌1 ,q̌2!uX̂uCn8~r,u,q̌1 ,q̌2!&Fn* ~e,S,Q̌1 ,Q̌2!Fn8~e8,S8,Q̌18,Q̌28!

5 (
n,n8

Xn,n8N K
( l 1l 2)LMN

K8

( l 18 l 28)L8M8Nn,KNn8,K8~2 i ! l 2~ i ! l 28enen8SKS8K8

3$Yl 1
* ~Q̌1!3Yl 2

* ~Q̌2!%LM$Yl
18
~Q̌18!3Yl

28
~Q̌28!%L8M8 , ~45!
heir
e a
en-
where again the shorthand notation for the quant
numbersn5(n,K,(l 1l 2)LM ) andn85(n8,K8,(l 18l 28)L8M 8)
is used. As explained before, we will also consid
partial generating functions which have been redu
r
d

with respect to a subset of generating coordinates and t
corresponding quantum numbers. Most often, we will us
reduction with respect to the angular momentum dep
dence, i.e.,
6-7



um
a

pe
ex
pe
s

fo
he

th
or
th
vi
b
T
is

in
le
Fi
ng
th

en-

the

l

h-

l

., by

nfir-
ated
w-
to

tion

VASILEVSKY, NESTEROV, ARICKX, AND BROECKHOVE PHYSICAL REVIEW C63 034606
X~e,S,Q̌1 ,Q̌2 ;e8,S8,Q̌18 ,Q̌28!

5 (
( l 1l 2)LM ,(l 18 l 28)L8M8

X( l 1l 2)LM ;( l
18 l

28)L8M8~e,S,e8,S8!

3$Yl 1
* ~Q̌1!3Yl 2

* ~Q̌2!%LM$Yl
18
~Q̌18!3Yl

28
~Q̌28!%L8M8

~46!

with the partial generating function

X( l 1l 2)LM ;( l
18 l

28)L8M8~e,S,e8,S8!

5 (
n,K,n8,K8

XK,n,(l 1l 2)LM ;K8,n8,(l
18 l

28)L8M8

3N K
( l 1l 2)LMN

K8

( l 18 l 28)L8M8Nn,KNn8,K8~2 i ! l 2~ i ! l 28

3ene8n8SKS8K8 ~47!

generating matrix elements for specified (l 1l 2)LM and
( l 18l 28)L8M 8 only.

The asymmetry in the treatment of the different quant
numbers is motivated by the methodology in which the m
trix elements will be used. Indeed, all quantities in this pa
are calculated in the context of the algebraic model. As
plained earlier the spatial asymptotic behavior is map
onto the asymptotic behavior of the expansion coefficient
the oscillator basis. As for fixedK the n quantum numbers
ladder through the oscillator shells, they will be needed
sufficiently high values in order to properly describe t
asymptotic region.

V. MATRIX ELEMENTS IN THE FOLDING
APPROXIMATION

In this section we derive the generating functions for
overlap and Hamiltonian in the folding approximation, f
several reasons. The folding approximation is indeed
natural representation for discussing the asymptotic beha
of the three cluster system, as the antisymmetrization
tween clusters vanishes at large intercluster distances.
calculation of generating functions in this approximation
also illuminating for the subsequent derivation of generat
functions in a fully antisymmetrized setting, as the princip
are identical, but the implementation is more complex.
nally, the folding approximation provides an interesti
model to discuss the importance of antisymmetrization in
interaction region.

A. Matrix elements for the overlap

The overlap of two generating functions of the form~40!
is easily obtained, and can be written as

I ~e,Q1 ,Q2 ;e8,Q18 ,Q28!,

5D23expH 1

D (
i 51

2 FQi•Qi81
1

2
~e8Qi

21eQi8
2!G J ,

~48!
03460
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D512ee8.

After substitution of Eq.~42! in Eq. ~48!, one obtains

I ~e,S,Q1 ,Q2 ;e8,S8,Q18 ,Q28!

5D23expH SS8

D
Q̌1•Q̌18J expH SS8

D
Q̌2•Q̌28J .

~49!

It is interesting to note that the arguments of the expon
tial factors are diagonal in the generator coordinatesS and
S8. To obtain an expansion in terms of angular momenta,
well-known relation

exp$a•b%54p(
lm

i l~ab!Ylm* ~ â!Ylm~ b̂! ~50!

can be applied, wherei l(x) is the modified spherical besse
function of the first kind. Substitution of Eq.~50! in Eq. ~49!,
and applying traditional angular momentum coupling tec
niques leads to

I ~e,S,Q1 ,Q2 ;e8,S8,Q18 ,Q28!

5~4p!2 (
l 1 ,m1 ,l 2 ,m2

i l 1S SS8

D D i l 2S SS8

D DYl 1m1
* ~Q̌1!

3Yl 2m2
* ~Q̌2!Yl 1m1

~Q̌18!Yl 2m2
~Q̌28!

5~4p!2 (
( l 1l 2)LM

i l 1S SS8

D D i l 2S SS8

D D
3$Yl 1

* ~Q̌1!3Yl 2
* ~Q̌2!%LM$Yl 1

~Q̌18!Yl 2
~Q̌28!%LM. ~51!

The reduced generating function@cf. Eq. ~47!# then becomes

I( l 1l 2)LM ;( l 1l 2)LM~e,S;e8,S8!5~4p!2D23i l 1S SS8

D D i l 2S SS8

D D .

~52!

This reduced generating function~52! is diagonal in the par-
tial angular momental 1 and l 2, and independent of tota
angular momentumL, thus valid for all angular momentaL
compatible withl 1 and l 2.

The matrix elements with quantum numbersK ~also n)
can now be obtained through a standard procedure, e.g
differentiating Eq.~52! with respect toSandS8 ~e ande8 for
n). In particular, as Eq.~52! depends on the product ofSand
S8 only, the overlap is diagonal inK. Likewise, the depen-
dence one and e8 appears as a product in the factorD, so
that the overlap is again diagonal inn. The fact that the
generated overlap matrix elements are diagonal is a co
mation of the fact that these matrix elements were gener
in an orthogonal basis. The calculation of the matrix is ho
ever not unimportant, as it provides a straightforward way
obtain the norm of the generator coordinate basis func
~44!.
6-8
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B. Matrix elements for the kinetic energy

In order to calculate the kinetic energy one can use
properties of the oscillator basis. The matrix elements of
kinetic energy of relative motion of the clusters are related
those of the oscillator potential by the virial theorem

^NuT̂RuN&5^NuV̂OuN&5
1

2
EN

^N62uT̂RuN&52^N62uV̂OuN&, ~53!

where

V̂O5
1

2
\v(

i 51
qi

2 ~54!

and EN5\v@N13#5\v@2n1K13# is the oscillator en-
ergy of relative motion.

One easily obtains a representation of the oscillator po
tial in the manifold spanned by the generating function~43!:

~q1
21q2

2!C~q1 ,q2ue,S;Q̌1 ,Q̌2!

5F ~11e!2
d

de
1~11e!S

d

dS
13~11e!G

3C~q1,q2ue,S;Q̌1 ,Q̌2! ~55!

so that the kinetic energy operatorT̂R can be represented b

TR5
1

2
\vF2~12e!2

d

de
1~12e!S

d

dS
13~12e!G .

~56!

In a wider context, one can associate this operator w
the generatorsR (1), R (2), andR(0),

R (1)5Fe2
d

de
1eS

d

dS
13eG ,

R (2)5F d

deG ,
R (0)5F2e

d

de
1S

d

dS
13G , ~57!

of theSp(2,R) group classifying the space of relative motio
of three-particle states, and whose irreducible representa
are labeled by hypermomentumK so that

VR5
1

2
\v@R (0)1R (1)1R (2)#,

TR5
1

2
\v@R (0)2R (1)2R (2)#. ~58!

Using again the shorthand notationn05( l 1l 2)LM , matrix
elements are then readily found to be
03460
e
e
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^n,K,n0uT̂Run,K,n0&5
1

2
\v@2n1K13#,

^n11,K,n0uT̂Run,K,n0&52
1

2
\vA~n11!~n1K13!,

^n21,K,n0uT̂Run,K,n0&52
1

2
\vAn~n1K12!. ~59!

The full kinetic energy of the three cluster system mu
include the internal kinetic energy of the clusters:T̂5T̂R

1T̂cl . As we consider frozens clusters only, this contribu-
tion is purely diagonal and equal to

Tcl5
3

4
\v(

i 51

3

~Ai21!5
3

4
\v~A23!. ~60!

C. Matrix elements for a Gaussian potential

For a Gaussian two-body interaction with strengthV0 and
rangea,

V~r i ,r j !5V0expH 2
~r i2r j !

2

a2 J , ~61!

the folding potential~5! for (0s) clusters can be calculate
analytically. The result obtained from Eq.~6! is again of a
Gaussian form but with a modified strength and interact
length now also depending on the oscillator parameterb

V(F)~Rty!5V0z3/2expH 2
z

a2
Rty

2 J ~62!

z5S 11
b2

a2
@22mty

21# D 21

, mty5
AtAy

At1Ay
.

The matrix element of a Gaussian potential between
generating functions of the form~40! is not necessarily diag
onal in terms of the chosen Jacobi coordinates. In the fold
approximation one can, however, easily find a set Jac
coordinates in which the potential matrix element is diag
nal. The two sets of Jacobi coordinates will then be rela
by an orthogonal transformation.

In what follows, we distinguish the two types of Jaco
coordinates as follows: the original coordinates are deno
by q and were introduced in Sec. II A, and shown in Fig.
the diagonalizing coordinates will be denoted byx. An ex-
plicit example of the latter are easily obtained. Indeed,
any choice of two clustersi and j ( iÞ j ), k being the third
particle, one obtains a system of coordinatesx, uniquely de-
fined by indexk, as follows:

x15Ac1,k~r i2r j !,

x25Ac2,kS r k2
Air i1Aj r j

Ai1Aj
D , ~63!
6-9
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c1,k5m i j 5
AiAj

Ai1Aj
, c2,k5

Ak~Ai1Aj !

Ai1Aj1Ak
. ~64!

Each such Jacobi coordinate systemk leads to a diagona
representation for the potential energy between clustersi and
j. As both Jacobi systemsq and x are related through an
orthogonal transformation, we can invoke the Raynal-Re
theorem@36#. The latter states that any orthogonal transf
mation of Jacobi coordinates leads to an orthogonal trans
mation of the hyperspherical harmonics~39! in the wave
function ~37!, preserving the hypermomentum quantu
numberK,

HK
( l 1l 2)LM

~uq ,q̌1 ,q̌2!5 (
l1l2

Ol1l2

l 1l 2 HK
(l1l2)LM

~ux ,x̌1 ,x̌2!.

~65!

The Ol1l2

l 1l 2 are known as the Raynal-Revai coefficients@36#.

This transformation can then be used to obtain the ma
elements of the potential in the original set of coordinateq
through

^n,K,~ l 1l 2!LM uV̂un8,K8,~ l 18l 28!LM & (q) ~66!

5 (
l1l2

(
l18l28

Ol1l2

l 1l 2 O
l

18l
28

l 18 l 28

3^n,K,~l1l2!LM uV̂un8,K8,~l18l28!LM & (x) , ~67!

where the matrix element on the right-hand side, which
diagonal in thex representation, can be calculated in
straightforward way.

To obtain the latter matrix element we consider a gen
ating function of an identical structure as Eq.~40!, in which
we replace theq coordinates andQ generator coordinates b
x andX. A generating function for the two-body matrix e
ements is then easily obtained as a product of two integ
over x1 andx2 leading to

V~e,S,X̌1 ,X̌2 ;e8,S8,X̌18 ,X̌28!

5Vpre expH SS8

L
X̌1•X̌18J expH SS8

D
X̌2•X̌28J ~68!

Vpre5V0~DL!23/2expH 2
g

2DL
@~j8S!21~jS8!2#J ,

j511e, j8511e8,

D512ee85j1j82jj8,

L5D1gjj8,

g5
b2

a2

1

c1,a
.

03460
ai
-
r-
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s

r-

ls

By using Eq.~50!, one again eliminates factorized term
and sums to obtain the following reduced generating fu
tion @cf. ~47!#, in complete analogy to the procedure tak
for Eq. ~52!:

V( l 1l 2)LM ;( l 1l 2)LM~e,S;e8,S8!5Vprei l 1S SS8

L D i l 2S SS8

D D .

~69!

As was the case with the overlap, the matrix elements of
potential in thex coordinate system are diagonal with respe
to the partial angular momental 1 and l 2 and do not depend
directly upon the total angular momentumL; this is a direct
consequence of the characteristics of the operator. Exp
sion ~69! is again valid for all values of the total angula
momentaL that are compatible with the given partial angul
momental 1 andl 2, and thus represents a generating funct
for matrix elements with specific total angular momentumL.

One obtains matrix elements with specificK andn quan-
tum numbers through the standard procedures~differentia-
tion, recurrence relations, . . . ). So, forexample, one obtains

^n,K,~ l 1l 2!LM uV̂un8,K8,~ l 1l 2!LM & (x) ~70!

5S d

de D nS d

de8
D n8S d

dSD KS d

dS8
D K8

3V( l 1l 2)LM ;( l 1l 2)LM~e,S;e8,S8!uS5S850
e5e850

. ~71!

D. Matrix elements for the Coulomb potential

The Coulomb interaction in the folding approximation b
tween two clusters withZt and Zy number of protons is
given by Eq.~6! as

VC
(F)~Rty!5ZtZye

2 (
i PAt

(
j PAy

E dttdtyuCt~At!u2

3
1

ur i2r j1Rtyu
uCy~Ay!u2. ~72!

A straightforward calculation of its matrix elements is im
practical and very tedious. By, however, using the followi
Gauss transform:

1

r
5

2

Ap
E

0

`

dx exp$2r 2x2%, ~73!

one rewrites Eq.~72! as

VC
(F)~ty!5

2ZtZye
2

Ap
(

i PAt
(

j PAy

E dttdtyuCt~At!u2

3E
0

`

dx exp$2~r i2r j1Rty!
2x2%uCy~Ay!u2

5
2ZtZye

2

Apb
E

0

`

dgz3/2expH 2
Rty

2

b2
g2zJ , ~74!
6-10
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where

z5~11tg2!21, t522mty
21 , g5bx ~75!

and its matrix elements can be obtained by integrating ma
elements~depending onz) of the Gaussian potential.

Introducing the integration variables

s5
tg2

11tg2
, ~76!

transforms Eq.~74! to

VC
(F)~ty!5

2ZtZye
2

Apb

1

2At
E

0

1

ds s21/2expH 2
Rty

2

tb2
sJ

5
ZtZye

2

Rty
erfSARty

2

tb2D . ~77!

This form shows that the integration can be reduced t
finite interval. It also shows that the Coulomb interacti
between clusters does not behave asRty

21 as could be ex-
pected. For very large value ofRty , however, Eq.~77! prop-
erly reduces toZtZye

2/Rty , due to the asymptotic form o
the error function.

E. Asymptotic behavior of the potential contributions

As the folding model is used for defining the asympto
channels, it is clear that the asymptotic behavior of the
tential energy matrix elements in this model will be of vit
importance for the rate of convergence of the AM solutio
The effective potential in terms of the hyper-radiusr is de-
fined by integrating the folding potential over all hyperang
as formally indicated by

W~r!5(
t,y

Wty~r![WK,l 1 ,l 2
~r!

5K K,l 1 ,l 2U(
t,y

V̂~Rty!UK,l 1 ,l 2L .

~78!

Its asymptotic behavior is then obtained for large values or.
In the diagonal representation with Jacobi coordinatex

the calculation ofW(r) between one pair of clusterst andy
amounts to a straightforward integration over the hyp
angles.

The Gaussian interaction then exhibits the followi
asymptotic behavior:
03460
ix

a

-

.

s

-

Wty~r!'~21!K2 l 12 l 2V0NK
l 1l 2NK

l 1l 2S 1

2D K13

GS l 11
3

2D
3SAmtya

r D 2l 113S K1 l 12 l 211

2

K2 l 12 l 2

D
3S K1 l 12 l 211

2

K2 l 12 l 2

D , ~79!

which indeed shows a worst-case behavior~for l 150) of the
form 1/r3 as predicted in Sec. III D.

The analogous evaluation for the Coulomb interact
leads to the following~exact! expression:

Wty~r!5
ZK,l 1 ,l 2

e f f

r
~80!

with

ZK,l 1 ,l 2
e f f 5

1

2
ZtZye

2Amty

3 (
n,m50

(K2 l 12 l 2)/2

~2 !K2 l 12 l 22n2mS K2 l 11 l 211

2

n
D

3S K2 l 11 l 211

2

m
D S K1 l 12 l 211

2

K2 l 12 l 2

2
2n
D

3S K1 l 12 l 211

2

K2 l 12 l 2

2
2m

D
BS K2 l 12n2m1

3

2
,n1m1 l 111D ~81!

andB stands for the beta function.
These results corroborate the fact that special care sh

be taken to get properly convergent results, even more c
cally when a Coulomb contribution between the clusters
present.

VI. MATRIX ELEMENTS WITH FULL
ANTISYMMETRIZATION

When considering full antisymmetrization between
particles of the three-cluster wave function the normalizat
of the basis states becomes a nontrivial problem. The o
lap, i.e., the matrix representation of the antisymmetrizat
operatorA, needs to be explicitly calculated.

As was carried out in the previous section one wou
normally start from the generating state~40! to obtain gen-
6-11
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erating matrix elements in terms ofe ande8, facilitating the
treatment of the hyperangular coordinates. We propose
alternative representation for the scaled generating state~40!
which is more suited to our calculations, and hereto int
duce the following integral transformation:

C~que,Q!5E dk exp$2k2%C~q;Q1A2ek!. ~82!

This allows us to obtain Eq.~40! by scaling on the generato
coordinate only. In other words, generating matrix eleme
can be obtained with the simpler generating state~29! and
scaled later on, reducing effectively the calculational burd

A. Matrix elements for the overlap

Because the individual cluster states are Slater dete
nants, apart from the center-of-mass factor, one can use
familiar determinantal formulas to calculate the generat
function. Starting then from the generating state~29! for the
single-particle orbitals one obtains

I ~Q1 ,Q2 ;Q18 ,Q28!5(
n

D (n)expH (
i , j 51

2

Bi j
(n)Qi•Qj8J .

~83!

The coefficientsD (n) andBi j
(n) as well as the number of th

terms depend on the specific type of three-cluster config
tion, viz. the number of nucleons per cluster and their sp
isospin quantum numbers.

In order to reduce Eq.~83! with respect to the angula
quantum numbers it is profitable to diagonalize the forms
the exponentials of Eq.~83!. This can easily be achieved b
diagonalizing its 2 by 2 coefficient matrixBi j

(n) . This again
amounts to making an orthogonal transformation from
original Jacobi coordinatesq to new Jacobi coordinatesx.
This orthogonal transformation will induce a correspond
transformation of the basis functions which can be hand
by the Raynal-Revai theorem as discussed in the prev
section. The block-diagonal form of an exponential term c
be written as

expH (
i 51

2

l iX i•X i8J . ~84!

We now introduce the scaling one ande8 by carrying out
the transformation~82! on both generator coordinatesX and
X8 for every ~block-diagonal! term in Eq.~83!, leading to

I ~e,X1 ,X2 ;e8,X18 ,X28!

5~D1D2!23/2expH (
i 51

2
l i

D i
FX i•X i81

l i

2
~e8X i

21eX i8
2!G J ,

~85!

where

D i512l i
2ee8.
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In order to further reduce the generating function in the p
tial angular momental 1 and l 2 we substitute Eq.~42! in Eq.
~85!,

I ~e,S,X̌1 ,X̌2 ;e8,S8,X̌18 ,X̌28!

5~D1D2!23/2expH l1
22l2

2

2D1D2
@S2e81S82e#J

3expH l1

D1
SS8X̌1•X̌18J expH l2

D2
SS8X̌2•X̌28J . ~86!

By using Eq.~50! this produces in complete analogy
Eq. ~52! a generating function for all total angular momen
L compatible withl 1 and l 2:

I( l 1 ,l 2)LM ;( l 1l 2)LM~e,S;e8,S8!

5~4p!2~D1D2!23/2expH l1
22l2

2

2D1D2
@S2e81S82e#J

3 i l 1S l1

D1
SS8D i l 2S l2

D2
SS8D . ~87!

If l15l2, the overlap depends on the factorSS8 only and
is therefore diagonal with respect to hypermomentumK, as
was the case in the folding approximation. In the gene
case one will havel1Þl2, and Eq.~87! generates nondiago
nal matrix elements inK. Hypermomentum is thus no longe
a good quantum number for three-cluster systems, cont
to the folding approximation.

The generating function for the overlap withK50, and
consequently for angular momental 15 l 25L50, is obtained
immediately by puttingS5S850. This simplicity is an in-
dication of the very suitable form of our generating functio

The matrix elementsI
n,n8

K,n0 ;K8,n0 can now again be gener
ated by a standard procedure, such as differentiation or
currence relations.

B. Matrix elements for the kinetic energy

The matrix elements of the kinetic energy operator can
derived without use of a generating function. One of t
effects of the antisymmetrization operator is to mix ba
states within a fixed oscillator shell. The ‘‘diagonal’’~i.e.,
within a shell! and ‘‘off-diagonal’’ ~within neighboring
shells! kinetic energy matrix elements are easily found to
connected to the matrix elements of the overlap by

T
n,n8

K,n0 ;K8,n085
1

2
\vF2n1K131

3

2
~A23!G

3I
n,n8

K,n0 ;K8,n08d2n1K,2n81K8 ,

T
n11,n8

K,n0 ;K8,n0852
1

2
\vA~n11!~n1K13!

3I
n,n8

K,n0 ;K8,n08d2n1K,2n81K8 ,
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where the restriction on the quantum numbers to remain
the same oscillator shell (2n1K52n81K8) has been ac-
counted for.

C. Matrix elements for a Gaussian potential

If one considers a Gaussian form for the nucleon-nucl
potential, and calculates a generating matrix element for
interaction using Slater determinants with individual orbit
of the form ~29! one obtains terms of the form

V~Q1,Q2 ;Q18,Q28!

5V0~12z!3/2expH 2zF(
i 51

2

~CiQi1Ci8Qi8!G2

1 (
i , j 51

2

Bi j Qi•Qj8J , ~88!

where

z5
2b2

2b21a2
~89!

and V0 stands for any of the even (V13 and V31) and odd
(V11 andV33) components of theNN interaction. Againb is
the oscillator radius anda the range of the potential well
The first term in the exponent of Eq.~88! contains the factor
z and the vectorsC1Q11C2Q2 andC18Q181C28Q28 . The lat-
ter have a simple meaning: they define the distance betw
the two clusters which respectively contain one of the nuc
ons in the interacting pair.

In the diagonal representation~88! becomes

V~X1 ,X2 ;X18,X28!5V0 expH 2zF(
i 51

2

~GiX i1Gi8X i8!G2

1(
i 51

2

l iX i•X i8D ~90!

and the coefficientsCi , Ci8 and Gi , Gi8are trivially related
by the orthogonal diagonalizing transformation.

In order to eliminate crossterms inX1•X2 andX18•X28 we
introduce an additional transformation through the integ
identity

e2a2
5

1

p3/2E2`

`

dZ exp$2Z212i ~Z•a!% ~91!

leading to the following integral form for the block~90!:

V~X1 ,X2 ;X18,X28!

5V0

1

p3/2
expH (

i 51

2

l iX i•X i8J E
2`

`

dZ

3expH 2Z212i z(
i 51

2

~GiZ•X i1Gi8Z•X i8!J . ~92!
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Using Eq.~82! on bothX i andX i8 , one obtains after in-
tegrating over the correspondingk i andk i8

V~e;X1 ,X;e8;X18,X28!

5~D1D2!23/2expH (
i 51

2
l i

2D i
~e8l iX i

21el iX i8
2

12X i•X i8!J 1

p3/2E2`

`

dZ

3expH 2DZ212i z(
i 51

2

~j iZ•X i1j i8Z•X i8!J , ~93!

where againD i512l i
2ee8 and

j i5
Gi1e8Gi8l i

D i
, j i85

Gi81eGil i

D i
,

D5H 11(
i 51

2
1

D i
@eGi

21e8Gi8
212ee8l iGiGi8#J .

To obtain a reduced generating function for specific angu
momentum quantum numbers, we again use expansion
mulas of an exponential in terms of spherical harmonics.
exponential terms with a real scalar product we use Eq.~50!,
whereas for exponential terms with an imaginary scalar pr
uct we use@37#

exp$ ia•b%54p(
lm

i l j l~ab!Ylm* ~ ǎ!Ylm~ b̌! , ~94!

where j l(ab) is the well-known spherical Bessel function.
Applying both Eqs.~50! and ~94! to Eq. ~93! leads to

V~e,X1 ,X;e8,X18,X28!

5~4p!6~D1D2!23/2exp(
i 51

2 H l i
2

2D i
~e8X i

21eX i8
2!J

3 (
k1 ,k2 ,k18 ,k28 ,k19 ,k29

i k181k281k191k29)
i 51

2

i kiS l i

D i
XiXi8D

3
1

p3/2E2`

`

dZ exp$2DZ2%Pk1 ,k2 ,k
18 ,k

28 ,k
19 ,k

29

3)
i 51

2

j k
i8
~2j iXiZ! j k

i9
~2j i8Xi8Z!. ~95!

Before performing the integration overZ, we again make the
substitution~42! in Eq. ~95! to obtain
6-13
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V~e,S,X̌1 ,X̌;e8,S8,X̌18 ,X̌28!5~4p!6~D1D2!23/2expH l1
22l2

2

2D1D2
~e8S21eS82!J (

k1 ,k2 ,k18 ,k28 ,k19,k29
i k181k281k191k29

3 i k1S l1

D1
SS8D i k2S l2

D2
SS8D 1

p3/2E2`

`

dZ exp$2DZ2% j k
18
~2j1SZ! j k

19
~2j18S8Z!

3 j k
28
~2 i2j2SZ! j k

29
~ i2j28S8Z!Pk1 ,k2 ,k

18 ,k
28 ,k

19,k
29
, ~96!

where

Pk1 ,k2 ,k
18 ,k

28 ,k
19,k

29
5)

i 51

2

„Yki
~X̌ i !•Yki

~X̌ i8!…„Yk
i8
~X̌ i !•Yk

i8
~ Ž!…„Yk

i9
~ Ž!•Yk

i9
~X̌ i8!…

5 (
( l 1 ,l 2)L;( l 18 ,l 28)L8;L9

P$k1 ,k2 ,k
18,k

28 ,k
19 ,k

29%;$( l 1 ,l 2)L;( l
18 ,l

28)L8;L9%

3~$Yl 1
~X̌1!3Yl 2

~X̌2!%L•$$Yl
18
~X̌18!3Yl

28
~X̌28!%L8Y L9~ Ž!%L!. ~97!
ni
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The intermediate~but redundant! index L9 is connected to
the integration variableZ of the integral transformation~91!.
Because of the orthogonality between spherical harmo
and of the scalar character of the potential operatorL andL8
will be equal, andL950 after integration overZ: we there-
fore anticipate by simplifying Eq.~97! to

Pk1 ,k2 ,k
18 ,k

28 ,k
19,k

29

5 (
( l 1 ,l 2)L;( l 18 ,l 28)L

P$k1 ,k2 ,k
18 ,k

28 ,k
19 ,k

29%;$( l 1 ,l 2)L;( l
18 ,l

28)L;0%

3
1

A4p
~$Yl 1

~X̌1!3Yl 2
~X̌2!%L

3$Yl
18
~X̌18!3Yl

28
~X̌28!%L!. ~98!

The expansion coefficients are then easily shown to be

P$k1 ,k2 ,k
18 ,k

28 ,k
19,k

29%;$( l 1 ,l 2)L;( l
18 ,l

28)L;0%

5(
k

~21! l 11 l 181k1LH l 28 l 2 k

l 1 l 18 LJ Ck0k0
00

3)
i 51

2

~21!k1~2ki11!~2ki811!~2ki911!

3H ki9 l i8 ki

l i ki8 k J C
k

i80ki0

l i0 C
k

i90ki0

l i80
Ck

i80k
i90

k0
. ~99!

Under the anticipative assumptionsL5L8 andL950, the
integration over the anglesŽ in Eq. ~96! is now trivial. The
remaining integration overZ is easily done after substitutin
the power expansions for the Bessel functionsj l(x) and
i l(x). The final result provides a tractable though very bu
03460
cs

result forV( l 1l 2)LM ;( l 1l 2)LM(e,S;e8,S8) that is not reproduced
here, as it carries no further additional information.

Again, by using the standard procedures such as diffe
tiation or recurrence relations one obtains the effective m
trix elements. In particular, the form of Eq.~70! remains
valid, though the analytic differentiation preferably shou
be performed within an algebraic package such asMATH-

EMATICA or MAPLE due to the bulkiness of the formulas.

D. Matrix elements for the Coulomb potential

The matrix elements of the Coulomb potential can now
most easily obtained from the Gaussian results. We cons
again the Gaussian integral representation

1

ur i2r j u
5

2

Ap
E

0

`

dx exp$2x2~r i2r j !
2%. ~100!

We use Eq.~96!, replacea2 by 1/x2, and introduce a new
integration variablet5g/(12g) whereg5x2b2, to obtain
symbolically

VC~e,S,X̌1,X̌2 ;e8,S8,X̌18,X̌28!

5
2

Ap
E

0

`

dxV~e,S,X̌1 ,X̌2 ;e8,S8,X̌18 ,X̌28!

5
2

bAp
E

0

1 dt

~12t !3/2t1/2
V~e,S,X̌1,X̌2 ;e8,S8,X̌18 ,X̌28!.

~101!

Mutatis mutandis we apply the integral transformatio
directly to the generating matrix elemen
V( l 1l 2)LM ;( l

18 l
28)LM(e,S;e8,S8),
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V( l 1l 2)LM ;( l
18 l

28)LM
C

~e,S;e8,S8!

5
2

Ap
E

0

`

dxV( l 1l 2)LM ;( l
18 l

28)LM~e,S;e8,S8!

5
2

bAp
E

0

1 dt

~12t !3/2t1/2
V( l 1l 2)LM ;( l

18 l
28)LM~e,S;e8,S8!.

~102!

This, however, leads to a very intricate evaluation of
integral, and thus for the reduced generating matrix elem
of the Coulomb potential.

A better procedure is to generate the quant
numbers K and K8 first, by differentiation of
V( l 1l 2)LM ;( l

18 l
28)LM(e,S;e8,S8) on S and S8, then settingS

5S850. This leads to reduced generating functions for e
K andK8 now only dependent one ande8, which are of a
much simpler form and allow for an analytic integration
Eq. ~102!. The further derivation on matrix elements forn
andn8 is then straightforward.

VII. CONCLUSION

In this paper we presented a framework for a microsco
three-cluster model within the algebraic model for scatteri
.
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It was shown that it is possible to obtain matrix elements
fully antisymmetrized three-cluster configurations, as well
a proper description for the three-cluster continuum in ter
of a hyperspherical description. The corresponding A
equations in a multichannel description were also introduc
In the current work the individual clusters were limited
contain onlys orbitals, thus reducing the mass of clusters
that of a four-nucleon system. The latter restriction is, ho
ever, not a fundamental one, and was taken to restrict
analytical and calculational burden.

In order to prove the validity and feasibility of the curre
model we will apply it to two specific three-cluster config
rations believed to be of importance to astrophysics,a1n
1n for 6He, anda1p1p for 6Be. These results appear i
part II of this paper.
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