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Medium corrections in the formation of light charged particles in heavy ion reactions
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Within a microscopic statistical description of heavy ion collisions, we investigate the effect of the medium
on the formation of light clusters. The dominant medium effects are self-energy corrections and Pauli blocking
that produce the Mott effect for composite particles and enhanced reaction rates in the collision integrals.
Microscopic description of composites in the medium follows the Dyson equation approach combined with the
cluster mean-field expansion. The resulting effective few-body problem is solved within a properly modified
Alt-Grassberger-Sandhas formalism. The results are incorporated in a Boltzmann-Uehling-Uhlenbeck simula-
tion for heavy ion collisions. The number and spectra of light charged particles emerging from a heavy ion
collision change in a significant manner in effect of the medium modification of production and absorption
processes.
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I. INTRODUCTION

The description of the dynamics of an interacting man
body system is particularly difficult when the quasipartic
approach reaches its limits. That may be the case when
residual interaction is strong enough to build up correlatio
An example of such a system with correlations is nucl
matter in heavy-ion collisions. In collisions, the nuclear m
ter is first compressed and excited and then decompres
At another extreme of the macroscopic scale, the nuc
matter is formed during a supernova collapse and beco
the material of which a neutron star is made.

Here, we address the simplest case of the formation
correlations in a nonequilibrium situation: light-cluster pr
duction in low density nuclear matter. The production can
described microscopically following the set of generaliz
semiclassical Boltzmann equations. In the past, the cou
set was solved numerically for nucleonf N , deuteronf d ,
triton f t , and helium-3 f h Wigner functions within the
Boltzmann-Uehling-Uhlenbeck~BUU! approach@1,2#. The
formation and disintegration of clusters generally takes pl
in reactions involving different particles. The rates for r
spective processes are utilized in the Boltzmann collis
integrals.

Rates for collisions, whether involving clusters or not, a
central ingredients of all modern microscopic approache
heavy reactions such as the Boltzmann-Uehling-Uhlenb
~BUU! approach@1–4# or the quantum molecular dynamic
~QMD! @5,6#. For the status of those approaches see Ref.@7#.

The formation and disintegration of deuterons are the s
plest types of processes involving clusters discussed ab
Notably, with the exception of electromagnetic producti
and breakup (np
gd), these processes involve the min
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mum of three elementary particles (NNN
Nd) and, corre-
spondingly, require the solution of a three-body problem
the medium in their description. Complication brought in
the medium is evident even in the kinematics, as the med
brings in a preferred frame different from the center of ma
of the three bodies.

In general, the collision rates are affected by the surrou
ing medium. The common procedure is to ignore the m
dium dependence and to utilize free-spaceexperimental
cross sections. That procedure in many cases was very s
cessful. To calculate the rates, including theself-energy shift
and the properPauli blocking, and to study the influence o
the medium on different observables, a generalized A
Grassberger-Sandhas~AGS! equation@8# has been derived
@9–15#. The effective few-body problem in matter arise
within the Green function method@16# when following the
cluster mean-field expansion@17# or the Dyson equation ap
proach@18#. Besides the medium-dependent cross sectio
the Mott effect @19,20# plays an important role in nuclea
matter. Both effects are studied in this paper in the contex
a realistic simulation of a heavy ion reaction. As an exam
we choose the reaction studied in a recent experiment by
INDRA Collaboration, namely129Xe1119Sn at 50 MeV/
nucleon@21#.

The BUU approach will be explained in the followin
section. The needed three-body reaction input from the AG
type equations will be discussed in Sec. III. Details of t
derivation of these equations within the Green function
proach may be, e.g., found in Ref.@16#. In Sec. IV we shall
present numerical results and in the last section we s
summarize the paper and give conclusions.

II. NUCLEAR REACTIONS

Within the microscopic statistical approach, the react
system is described in terms of the Wigner distributionsf X
for light particles, thus for nucleonf N , deuteron f d ,
triton f t , and helion f h . Within the cluster mean-field

:
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approximation, these distributions follow the set of coup
semiclassical Boltzmann equations@1#,

] t f X1$UX , f X%5K X
gain$ f N , f d , f t , . . . % ~16 f X!

2K X
loss$ f N , f d , f t , . . . % f X ,

X5N,d,t, . . . . ~1!
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dIn the above, UX is a mean-field potential and$•,•%
denotes the Poisson bracket. The upper sign on
right-hand side~rhs! is for the Bose and the lower fo
the Fermi-type fragments. Conversion between differ
species is accounted for in the collision integra
K$ f N , f d , f t , . . . %. For example, the deuteron gain ra
K d

gain(P,t) is
K d
gain~P,t !5E d3kE d3k1 d3k2u^kPuUuk1k2&udd→dd

2 f d~k1 ,t ! f d~k2 ,t ! f̄ d~k,t !

1E d3kE d3k1 d3k2u^kPuUuk1k2&uUNd→Nd
2 f N~k1 ,t ! f d~k2 ,t ! f̄ N~k,t !

1E d3kE d3k1 d3k2 d3k3u^kPuU0uk1k2k3&upnN→dN
2 f N~k1 ,t ! f N~k2 ,t ! f N~k3 ,t ! f̄ N~k,t !1••• . ~2!
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Eq.
Here we use the abbreviationsf̄ N5(12 f N) and f̄ d5(1
1 f d) and did not write overall energy-momentum conse
ing d functions. The ellipsis on the rhs of Eq.~2! denotes
further possible contributions from four and more body c
lisions ~e.g., tp
dd, hp
dd) or electromagnetic
(np
gd). The loss rateK d

loss(P,t) is given by

K d
loss~P,t !

5E d3kE d3k1 d3k2 d3k3u^k1k2k3uU0ukP&udN→pnN
2

3 f̄ N~k1 ,t ! f̄ N~k2 ,t ! f̄ N~k3 ,t ! f N~k,t !1••• . ~3!

The quantityU0 appearing in Eqs.~2! and ~3! is the in-
medium breakup transition operator for theNd→NNN reac-
tion and it is calculated using the AGS equation, as discus
in the next section. For three nucleons in isolation,U0 deter-
mines free-space breakup cross sectionsbu

0 via the equation
@8,22#

sbu
0 ~E!5

1

uvd2vNu
1

3!E d3k1 d3k2 d3k3u^kPuU0uk1k2k3&u2

32pd~E82E!~2p!3d (3)~k11k21k3!, ~4!

whereuvd2vNu denotes the relative velocity of the incomin
nucleon and deuteron. This equation along with detailed
ance is used to replace the squared transition matrix elem
by the breakup cross section@1#. The cross sections can b
extracted from data with theory aiding in interpolating a
extrapolating. This type of procedure is widely used and
a good chance of being successful in the low density regi
However, this procedure may not be sufficient for heavy
collisions particularly in the lower energy regime. The e
ementary cross section that enters into the Boltzmann e
tion depends on the medium, e.g., through blocking of in
mediate states in scattering or through self-energy
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intermediate states. This has been demonstrated for th
nucleon processes in Refs.@9,11#.

III. FINITE TEMPERATURE FEW-BODY EQUATIONS

The effective few-body problem in matter emerges with
the Green function method@16# when following the cluster
expansion@17# or related Dyson-equation approach@18#. In
the cluster-mean field expansion, a self-consistent system
equations can be derived describing anA particle cluster
moving in a mean field produced by the equilibrium mixtu
of clusters with different particle number. The self-consiste
determination of the composition of the medium is a ve
challenging task that is not solved until now. We adhere
an approximation where the correlations in the medium o
side the considered cluster are neglected so that the em
ding nuclear matter is described by the equilibrium distrib
tion of nucleon quasiparticles.

The formalism to describe three-body correlations
nuclear matter has been discussed in detail elsewhere@9–15#.
Here, we merely repeat some of the basic results for con
nience.

Let the Hamiltonian of the system be given by

H5(
1

k1
2

2m
a1

†a11
1

2 (
121828

V2~12,1828! a1
†a2

†a28a18 ,

~5!

wherea1 denotes the Heisenberg annihilation operator of
particle with quantum numbers indexed by 1, including sp
s1 and momentumk1. The free resolventG0 for anA particle
cluster is given in the Matsubara-Fourier representation

G0~z!5~z2H0!21 N[R0~z! N. ~6!

In the above,G0 , H0, andN are all operators in the space o
A particles. For simplicity, an indexA indicating that fact has
been dropped, but may get instituted when needed. In
5-2
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~6!, z denotes the Matsubara frequencieszl5pl/(2 ib)
1m with l50,62,64, . . . for bosons andl561,63, . . .
for fermions;m is the chemical potential andb51/kBT the
inverse temperature. The effective in-medium Hamilton
H0 for the quasiparticles in the mean field is given by

H05(
i 51

n ki
2

2m
1S i[(

i 51

n

« i , ~7!

where the energy shiftS1 is

S15(
2

V2~12,12̃! f 2 , ~8!

with the Fermi functionf 1

f 1[ f ~«1!5
1

e(«12m)/kBT11
. ~9!

The tilde in 12̃indicates antisymmetrization. The factorN in
Eq. ~6! is associated with particle statistics and it is given

N5 f̄ 1 f̄ 2••• f̄ A6 f 1f 2••• f A , ~10!

where f̄ 512 f . The upper sign inN is for an odd number of
constituent fermions and the lower sign is for an even nu
ber of fermions or bosons. Note that the commutation ho
NR05R0N.

The full resolventG in the Matsubara-Fourier represent
tion may be written as

G~z!5~z2H02V!21N[R~z!N, ~11!

where the potentialV is a sum over two-body interaction
within all possible pairsa in the cluster, i.e.,

V5(
a

Va5(
a

N2
aV2

a , ~12!

where V2
a denotes the two-body potential in Eq.~5!. Note

that, in consequence of Eq.~12!, the effective potential is
non-Hermitian,V†ÞV, and alsoR(z)NÞNR(z). This leads
to the necessity of introducing the right and left eigenvect
as, e.g., done in the context of the four-body problem in R
@15#. For a paira5(12) of anA particle cluster, the effective
potential of Eq.~12! is

^12uN2
(12)V2

(12)u1828&5~ f̄ 1 f̄ 22 f 1f 2!V2~12,1828!. ~13!

A useful operator is the channel resolventGa(z) within anA
particle cluster, where only effective pair interaction in cha
nel a is considered. This operator may be represented a

Ga~z!5~z2H02Va!21N5~z2H02N2
aV2

a!21N

[Ra~z!N. ~14!

Using inverses to the operatorsR defined in Eqs.~6!, ~11!,
and~14!, it is possible to derive formally the resolvent equ
03460
n
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tions. For the sake of similarity with the isolated case, theA
particle channelt matrix Ta is defined by

Ra~z!5R0~z!1R0~z!Ta~z!R0~z!. ~15!

Upon introducingTa(z)5N2
aT2

a(z), Eq. ~15! yields to the
well-known Feynman-Galitzki equation@16#

T2
a~z!5V2

a1V2
aR0~z!N2

aT2
a~z!. ~16!

We remark that equations of a similar form were derived
different authors in the past@23,24#.

Note that the above equations are also valid for the tw
particle subsystem embedded in a larger cluster~three, four,
or more particles!. As for the isolated equations, the effec
of the remaining particles appear only in the Matsubara
quenciesz ~energies! of the considered particles within th
cluster. No additional statistical factors related to the lar
cluster arise. One should note that the statistical effects g
erally arise in the resolventG0 and not in the potentialV2.
However, it is possible to rewrite the respective equatio
introducing an effective potential, as shown in Eq.~16!, and
instead using unchanged resolvents. Following the more
tuitive picture of the blocking in the propagation of the pa
ticles, described by the resolvents, we directly find in E
~16! the proper expression for thet matrix which enters the
Boltzmann collision integrals~see, e.g., Ref.@25#!.

Derivation of the three-body in-medium equation is re
tively straightforward and was given in Refs.@11–14#. The
AGS operatorUba(z) @8# for the three-particle system i
defined within the equation

R~z!5dbaRa~z!1Rb~z!Uba~z!Ra~z!, ~17!

and it satisfies the following AGS-type equation:

Uba~z!5 d̄baR0~z!211(
g

d̄bgN2
gT2

g~z!R0~z!Uga~z!.

~18!

This equation includes consistently the medium effects,
tistical and self-energy shifts in the same way as
Feynman-Galitzki equation for the two-particle correlation
We use above the notationd̄ab512dab . The AGS-type
equation yields the three-body transition operatorU for a
three-particle cluster as well the transition operator fo
three-particle cluster embedded in a still larger cluster. In
latter case, the effect of the other particles in the clus
appears only in the Matsubara frequency~energy! z. The
transition operator is defined in Eq.~17! in such a manner
that no additional factorsN accompanyU whenU is further
employed. This in turn guarantees that the cluster equat
are valid also if they are part of a larger cluster. The tw
body subsystemt matrix entering in Eq.~18! is the same as
the one given in Eq.~16!. In that way it is possible to use a
results of the few-body algebra recurrently, in particu
those based on the cluster decomposition property.

The in-medium bound state equation for anA particle
cluster follows from the homogeneous Lippman
Schwinger-type equation
5-3
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ucB&5R0~EB!VucB&5R0~EB!(
g

N2
gV2

gucB&, ~19!

where the sum is over all unique pairs in the cluster.
shown in Ref.@13#, it is convenient to introduce the form
factors for the three-body bound state:

uFb&5 (
g51

3

d̄bgN2
gV2

gucB3
&. ~20!

With these, one derives the homogeneous in-medium A
type equation

uFa&5 (
b51

3

d̄abN2
bT2

bR0~B3!uFb&. ~21!

Since the Green functions are evaluated in an indepen
particle basis, the one-, two-, and three-particle Green fu
tions are decoupled in hierarchy. To solve the in-medi
problem up to three-particle clusters, the one-, two-, a
three-particle problems are solved consistently. The pro
dure generates the single particle self-energy shift, given
Eq. ~8!, the two-body input including statistical factors in E
~16!, and, finally, the three-body scattering state.

When solving the equations, technical reasons force u
adopt some reasonable approximations valid at smaller e
tive densities. Thus, the nucleon self-energy is calculated
Eq. ~8!, but in the three-body equations we employ t
effective-mass approximation, i.e., we use

«15
k1

2

2m
1SHF~k1!.

k1
2

2m*
1SHF~Pc.m./3!. ~22!

For the sake of simplicity and the speed of the calculati
we moreover utilize angle-averaged Fermi-function fact
N̄2,

N̄2~p,q,Pc.m.!5
1

~4p!2 E d cosuq d cosup dfq dfp

3N2~p,q,Pc.m.!, ~23!

wherep andq are the standard Jacobi coordinates@22# and
the angles are relative toPc.m..

Rank-one Yamaguchi potentials@26# were employed in
the calculations of the deuteron breakup cross section in
coupled3S1– 3D1 and the1S0 channels which should suffic
at low energies. Through the dependence of the Fermi fu
tions on the center of mass momentum, the integral equa
for the three-body system exhibits a dependence on the
momentum in the medium frame, in sharp contrast to
free-space case.

IV. RESULTS

The coupled set of Boltzmann transport equations@1,2#,
for the Wigner distribution functions of nucleonsf N , deuter-
ons f d , tritons f t , and helionsf h , is solved for the collisions
03460
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of heavy ions. For the clusters, treated in the quasipart
approximation, it is essential to consider the Mott effe
@1,19,20#. Without considering this effect the description
data fails badly.

The Mott effect occurs when a bound state wave funct
requires too many momenta components in the regime
ready occupied by momenta of other particles~Pauli
blocked!. In Ref. @1# a geometrical model was introduced
order to account for the Mott effect in a numerical soluti
of the transport equations~1!. Specifically, in the model the
formation of a quasiparticle cluster is allowed only if th
overlap of the respective isolated bound state wave func
f and the Fermi sphere given in Eq.~9! is lower then a
specific cutoff valueFcut. For the deuteron, the formation i
then allowed if@1#

E d3 q fS q1
Pc.m.

2 D uf~q!u2<Fcut, ~24!

wherePc.m. denotes the net momentum of the bound state
the medium frame andq denotes the relative momentum o
the nucleons in the deuteron. The cutoffFcut needs to be
specified and it enters as a parameter the collision sim
tion. For the clusters in the Boltzmann equation set, we
the calculated deuteron and triton Mott momenta@13,27# to
restrict the choices for the parameterFcut. Note, however,
that the procedure is not completely stringent since the m
ods of calculating the Mott momenta, following the ge
metrical picture and thet matrix approach, are different. Th
differently calculated Mott momenta are shown in Fig. 1 f
the temperatureT510 MeV. No bound states are possib
for the region below a respective curves in Fig. 1. As seen
Fig. 1, the parametrization given in Eq.~24! with a cutoff
value of Fcut50.15 fits reasonably the microscopic calcul

FIG. 1. Deuteron and triton Mott momentaPMott shown as a
function of densityr at fixed temperature ofT510 MeV. The solid
line represents results of thet matrix approach. The dashed, dotte
and dashed-dotted lines represent the deuteron Mott momenta
the parametrization given in Eq.~24! for three different cutoff val-
uesFcut .
5-4
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tion of the Mott momenta for a temperature ofT510 MeV
and a wide density range. Note, that the cutoff values
both triton/helion and deuteron can be chosen to be appr
mately the same. We find only a slight variation ofFcut on
the temperature (Fcut.0.17 for T55 MeV!. To illustrate
sensitivity to differentFcut, we have plotted the Mott lines
for Fcut50.10 andFcut50.20 in Fig. 1. A larger value of
Fcut makes the space for bound stateslarger. We shall study
the influence of the Mott momentum on the results of re
tion simulations. The direct implementation of thet matrix
calculation for the Mott momenta into the BUU simulatio
requires the calculation of a local temperature that is v
time consuming. Therefore we will use the geometri
model, with a properly adjusted global value ofFcut, to ac-
count for the Mott effect in the numerical solution of Eq.~1!.

In Eq. ~4! we give the relation between the isolated thre
particle transition operators and the total deuteron break
cross section. The same equation is appropriate in defi
the medium-dependent cross section now in terms of
medium-dependent transition operatorU given in Eq.~18!.
The total deuteron break-up cross section can be used in
collision integrals~2! and~3!, as, e.g., has been demonstrat
in Ref. @1#. For illustration, we show in Fig. 2 the in-medium
break-up cross section at a temperature ofT510 MeV for
the three-body system at rest in the nuclear medium, wh
was explored to a larger extend in Refs.@9,11,14#. The solid
line represents the isolated cross section that reproduce
experimental breakup data; other lines correspond to dif
ent nuclear matter densities. The influence of the in-med
cross sections on characteristic kinetic quantities such as
chemical relaxation time is significant as has been dem
strated in Ref.@14#.

For a specific heavy ion reaction, we now investigate~i!
to what extend the medium dependence of the deute
breakup cross section affects the observables and, in par
lar, the deuteron production and~ii ! how sensitive are the
observables to the parametrization of the Mott momenta.
this end, we consider the central collision129Xe1119Sn at
E/A550 MeV and compare our theoretical results with t

FIG. 2. Neutron-deuteron breakup cross section for a three-b
system at rest in the nuclear medium. Solid line represents isol
breakup cross section. Other lines are for different densities a
temperatureT510 MeV.
03460
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experimental data of the INDRA Collaboration@21#.
To provide a first impression on how the use of i

medium rates in the Boltzmann collision integrals influenc
the outcome of the reaction simulation, Fig. 3 shows the to
deuteron number~gain minus loss! as a function of elapsed
time. The upper line is for the in-medium cross sections
pending on the local density and the temperature. The lo
line is for the isolated cross sections that reproduce the
perimental scattering data. Gain and loss rates are enha
by use of in-medium rates such that the net effect leads
significant increase in the total number of deuterons beca
equilibrium is maintained down to lower densities and te
peratures. In both simulations, we have usedFcut50.15.
Though the increase in the deuteron number may be sig
cant, the theoretical value of the total deuteron number m
be still too uncertain for a direct comparison to data. This
because the effect of the heavierA>4 clusters is not yet
included in our simulation.

The influence of the different medium effects on the sp
tral distribution of proton, deuteron, triton, and helion clu
ters is shown in Fig. 4. Solid line shows the results of o
calculation using themedium-dependentcross sections in the
collision integrals of the BUU simulation. Dashed line show
the spectra obtained using theisolated cross sections tha
reproduce the experimental data. In all cases we have
cluded the Mott effect and for the solid and the dashed li
we useF cut50.15. To demonstrate the sensitivity to diffe
ent Mott momenta, the dotted line shows results obtain
usingF cut50.20 for medium-dependent rates. As explain
in Refs. @9,11,14#, the deuteron breakup cross section
strongly enhanced near the threshold. As a consequence
find an enhancement of about 30% in the deuteron numbe
the energy rangeEc.m.<50 MeV if we compare the dashe
line ~for isolated deuteron breakup cross sections! to the
solid line ~for medium-dependent deuteron breakup cro
sections!. A larger absorption implies a larger productio
rate and maintaining the possible chemical equilibrium do
to lower freeze-out densities. Inspecting the dotted line,
find, as expected, that the number of clusters increases

dy
ed
he

FIG. 3. Integrated deuteron number as a function of elap
collision time when utilizing in-medium~upper curve! and isolated
~lower curve! rates from BUU simulation withFcut50.15.
5-5
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the rise inFcut. Hence, relaxing the limitation of the allowe
existence of a cluster~by using the same rates! leads to an
enhanced production as the clusters become more st
Also, simultaneously, the spectra appear steeper.

Figure 5 compares energy spectra of the lightA<3 clus-
ters to INDRA data renormalized as in Ref.@21#. To compare
to our calculations we renormalize our results in the sa
fashion as data, i.e., the areas below the respective curve
normalized to the same fixed value. As before the res
obtained with themedium-dependentcross sections are rep
resented by a solid line; the dashed line shows the resul
the coupled BUU calculation using theisolated deuteron
breakup cross sections. In both calculations we useFcut
50.15. Overall, the renormalization seems to reduce the
fect of using different elementary rates in the collision in
grals. For the deuteron, thein-mediumrates lead to a mar
ginally steeper shape. Differences at higher c.m. energies
be attributed to statistical fluctuations.

Considering now the three-nucleon clusters, we find
helion/triton energy spectrum in a reasonable agreement
the experimental data. The only in-medium effect that

FIG. 4. Light charged particle spectra in the center of m
system for the reaction129Xe1119Sn at 50 MeV/nucleon. Calcula
tions with in-mediumNd reaction rates are represented by so
lines, while those with isolatedNd breakup cross sections are re
resented by dashed lines. In both casesFcut50.15 is employed.
Calculations withFcut50.20 and in-medium reaction rates are re
resented by the dotted lines.
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FIG. 5. Renormalized light charged light particle spectra in
center of mass system for the reaction129Xe1119Sn at 50 MeV/
nucleon. The filled circles represent the data of the INDRA C
laboration@21#. The solid line shows the calculations with the in
medium Nd reaction rates, while the dashed line shows
calculation using the isolatedNd breakup cross section; both wit
Fcut50.15.

FIG. 6. Mean transverse energy of light charged fragments
the angular range of20.5<cosuc.m.<0.5.
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consider for the three-nucleon clusters is the Mott effect
possible modification of the three-particle cluster format
and breakup rates is disregarded. The observed reduction
Fig. 4, of the three-nucleon cluster production in the cal
lation using the medium deuteron breakup cross section
response to the enhanced deuteron production. The app
deviation from experiment in the lowest energy bin is like
related to a long-lived residue appearing in the simulat
that in turn leads to an enhanced Coulomb barrier. This
fects the lowest energies only and might be cured by allo
ing for fluctuations in the residue that would lead to t
intermediate fragment production and, consequently, to
suppression of the Coulomb barrier. This is presently
accounted for in the model.

Finally, in Fig. 6 we show the measured values~filled
circles! for the mean energies of the light clusters emitted
transverse direction along with the result of the calculati
As the experimental spectrum is not perfectly reproduc
see Fig. 5, this integrated observable also shows some
crepancy with the experimental data. The same rema
given for Fig. 5 hold for Fig. 6 as well. The changes due
different Mott momenta and use of in-medium rates
rather small in this observable. No theoretical results
given fora particles which are not yet included in the sim
lations.

V. CONCLUSION

Within the microscopic transport description of heavy-i
collision dynamics, we have demonstrated the influence
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ee
-
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nt

-
-
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.
,
s-
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e

f

medium effects on some typical observables. The domin
medium effects are self-energy and statistical correctio
i.e., for clusters the Mott effect, and the change of react
rates that lead to faster time scales. The magnitude of
in-medium effects depends on the density and the ene
deposited in the system. The basis for microscopic calc
tions of the in-medium effects is the cluster mean-field e
pansion or Dyson equation approach. The effective few-b
equations resulting from these approaches are numeric
solved using well established and controllable few-bo
techniques. The chosen example of a heavy-ion reactio
129Xe1119Sn at beam energy of 50 MeV/nucleon. Both e
fects, Mott and rate modification, affect the considered
servables in a comparable fashion. Presently, we have im
mented the modifications of rates for the three-body brea
and formation only. However, through the coupling of t
Boltzmann equations, the number of three-nucleon cluste
also affected. We argue that a complete treatment requir
similar approach for the three- and four-nucleon clusters
fore a decisive comparison with experiments can be ma
First calculations for the Mott effect of thea particle solving
a proper four-body equation has been given in@15#.
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@20# G. Röpke, Phys. Lett. B215, 281 ~1987!.
@21# INDRA Collaboration, D. Gorioet al., Eur. Phys. J. A7, 245

~2000!, and references therein.
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