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Noncentral interactions in inelastic scattering of nucleons on nuclei:
The case of°C(p,p’)*?C*(1%)
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An irreducible tensor formalism to analyze inelastic scattering of nucleons on nuclei with arbitrary spins is
outlined and the nature of noncentral interactions involved therein is studied. In the particular case of inelastic
scattering of nucleons offC leading to the (1) excited state at 15.11 MeV, the relative importance of vector
and tensor amplitudes is examined using be1 and bREX codes.
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I. INTRODUCTION where
The primary motivation behind experimental studies of Ao PiXPr s PitPr G=AxR (1.2
proton-nucleus and meson-nucleus collisions was, to start lpi X py|’ lpi+pi|’ '

with, to study the hadronic structure of nuclei in contrast to

the information derived from electron-scattering studies orf0 provide an orthogonal coordinate system wgthand p;

their electromagnetic structure. As pointed out by HoffmannPeing incident and outgoing c¢.m. momenia,denote the
in the historical survey at the LAMPF workshép]: “The  Pauli spin matrices of the nucleon, and

pioneering cross-section measurements suggested that the - N

pre-existing non-relativistic microscopic theories were ad- Ty=[1"M)0"| 1.3
equate to describe the data and that the data could be ana- :
lyzed to obtain the details of the underlying structure. Butcor_}_r;]e_zcts the exr?t_ed _nu_(lzleaér stthate to"trlle groug_d Sta“?- f
when high quality cross-section and analyzing power datr%uh IS approach IS simiiar 1o the well-known discussion o

were obtained with the intention of using it to deduce new tginma(\)r;e Iﬁﬁéfgi\]l ?%aé[;(eerlgr% Ilr;tfczjrens]sa?ef irfurf::/zxwrzlz?b_le
nuclear structure information, systematic discrepancies sut P : P P

faced. Experiment then turned to providing data which fully'n terms of the phase shifts and mixing parameters associated

tested the theories, and the systematic disagreement betwes: h partial waved5]. They can also be discussed in terms

nesedata and oretclprecitons 0 uestonng d TEELYE PEETIaHE fvesening e s el s o
the fundamental validity of the NR theories themselves.” : ’

The advent of the Dirac optical model and relativistic im. tions in the case of elastic scattering of particles with arbi-

pulse approximation remedied the situation to some exte ary spins on spin-zero targets was glls_cussed by QOhnson
but the successes reported prompted Negele at the same’ by exprekssmg the scattering matrix in terms of !rreduc-
workshop[2] to remark, “There is no clear evidence yet as /¢ €NSOrs7q(S) of rankk constructed out of the spin op-

to whether or not these models do the right deed for th&rators,S. This was generalized more recenf§] to the
wrong reasons.” discussion of noncentral interactions in the case of elastic

This assessment highlights the need for developing forscattering of particles where both projectiles and targets have

malisms through which inelastic scattering of nucleons orfPitrary spinss,; ands,, using the irreducible tensor formal-
nuclei can be analyzed in a model-independent way. In pafS™ developed earligid] for hadron scattering and reactions
ticular, Piekarewicz, Amado, and Sparroi@] have ex- With arbitrary spins.

pressed the scattering matrix for inelastic scattering of pro- 1€ Purpose of this paper is to fully develop the model-
tons on2C leading to the 1 excited state at 15.11 MeV in independent approach, to inelastic scattering of nucleons on

the form nuclei, considering in general nuclear transitids— J;,
expressing the amplitudes in terms of partial waves and iden-
tifying the nature of noncentral interactions involved. The

_ o Y- RV e case of1?C(p,p’)*2C*(1%) is then utilized for purposes of
M=Rao(Z- M) Ang(2- M) (0 W)+ A(2-K) (0 K) illustration and the relative importance of vector and tensor
+ Ak K)(o- EI)JFAqK(E' ) (oK) amplitudes is discussed in comparison with experiment. This
. . example is particularly interesting since the isovectorek-
+Aq(2-q)(0o-Q), (1.7 cited state at 15.11 MeV is @ emitter. Piekarewicz, Rost,
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and Sheparf10] point out that there areJ8+ 3 independent L / | .
quantities to determine in the case of a parity conserving 0 T:EI Clez v’ v)TC(li z viwwy) (2D
—J transition and the singlep(p’) observables are them-

selves inadequate to perform the empirical reconstruction f, yems of the transition matricé®, characterized by chan-
the scattering matrix, except when-=0. They say “coinCi- e jsospin,l. The Clebsch-Gordon coefficients are denoted
dence measurements may then provide the only practicg), c[18]. The isospin projections for the projectile and scat-
way to completely determine the scattering amplitude andered nucleons are denoted byand v', respectively. The

tive to differences between various theoretical models.”pe defined in terms of given by Eq.(2.1) through

Even after leaving out photon polarization, which is difficult

to measure at this energy, one can fidd,12 many sets of

L gy i 2 ke ) (3 p' Isme| M3 pdimy)
coincidence observables to complement the singtep’(

measurements and the coincidence cross section. Atedls 27D

[13], who have reported simultaneous measurements of = (z " 3me;ps|Tlpi s wdimy),
(p,p’) and (p,p’y) coincidence observables at 200 MeV,

point out that'?C(p,p’)*2C* (1) has been found to be an
excellent candidate from the experimental point of view,Wherep andp, are the final and initial c.m. momenta, re-
since it has a large enough branching ratio to the ground Stagepectivély. Thel density of final states ana t.he magnitllde of
and its excitation energy is sufficiently high to make eventspe yejative velocity in the initial state are denotedyand

of interest easy to identify in a photon spectrum. Based on, respectively. Introducing channel spisands; , the ma-

the data obtained ifil3], Wells and WissinK 14] have re- iy elements may be expressgtd,7—9 in the form
cently made a model-independent determination of the com-

plete scattering amplitude for the 15.11 MeV; Htate of (seper sl TP Simi)
12C following [10-13. The relevance of observables based
on photon polarization have also been discussed theoretically

v

(2.2

(=D TIwW(s sl ;K0 [170K]

[15], which would come in handy, when the appropriate _|f,|i|j,k

techniques are developed. In fact, Weltsal.[13] say, “Un- , R
derstanding the behavior of the 15.11 MeV state¥@ has X[si] T 1.6 Clsikst s miame) (— D)UY, (Py)
therefore often been viewed as a critical test of our models of .

the nucleon-nucleuéNA) interactions.” ®Y,i(pi))k,q, (2.3

The plan of the paper is as follows. In Sec. Il, we outline

the irreducible tensor for_mahsm for mela_s_tlc scattering (_)fwhere the notations are same ag8¢d] andle .. are the
nucleons on nuclei involving nuclear transitions from an ini- ) ) RO
partial wave amplitudes [20]. Defining Mffsf s,

tial state with spin-parity)™ , isospinl;, and its projection 4
' ' =\(27D/v) T, 1. and noting thafs¢u:) transforms un-

v; to a final excited state with spin-pari ;Tf, isospinl;,
and its projectiony;. Explicit partial wave expansions are der rotations like an irreducible tensléf[f of ranks; ; while
obtamed for_ the wredumblg tensor a_lmplltudes. Matrix ele—<si,ui| does so like ()2#B% | an irreducible tensor of rank
ments in spin space are discussed in terms of these ampli- Hi he f
tudes with reference to several well-known coordinate sysSi [21]; we now express\t in the form
tems. In Sec. lll, we identify the rich variety of noncentral
interactions. In Sec. IV, we consider the important particular M= Sk k

: . X = St,Si) - M (s¢,S0) 1, 2.4
case of ’C(p,p’)**C*(1") and illustrate the results using szsi,k[ (S1.51) (S1.50)] 249
the well-known computer codesng1 and DREX, based, re-
spectively, on the nonrelativistic distorted wave impulse apwhere
proximation[16] and its relativistic counterpart, taking ex-
plicit knock on exchqnge terms into co_nsideratibh?]. Sg(sf'Si):(i)zsi[sf](st(@ Bsi)g (2.5
Summary and conclusions are presented in Sec. V.

connects the spin spacesfands; and

IIl. FORMALISM K 2 lbs e
M5(s,S) = —1)liTsiThTIW(s sl 5 jk

We consider, in general, the inelastic scattering of nucle- alSr.S1) PN =1 (silisirilk)
ons on a nucleus with initial spin—parit}.liTi , isospinl;, and i o a1 - Ak
its projectiony; leading to a final excited state with spin- XMis s [TTse] (Y1 (P @Y1 (P)g -
paritnyf, isospinl ¢, and its projectiorv; . Conservation of (2.6
isospin implies that the on-energy-shell transition maifrix
for this process is given by Defining spin operators,
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(2.7

F—

V2

for the nucleons anch(Jf ,J;) for the nuclear excitation on
the same lines as in EQR.5), we may express the spin ten-
sors of Eq.(2.4) in terms ofo';i andSZi(Jf ,J;), so that we

arrive at the general form for the spin structure/of as

=0y, 04:12 (ox*ioy)

M= D [(cMe8kd;,d

ky.kp.k

DTk k)], (2.8

for inelastic scattering of nucleons on a nuclear target with

arbitrary spinJ; leading to an excited state with splp. The
irreducible tensor amplitude@ﬁ(kl,kz) are made explicit
through

1

Té(kl,k»—[ 2]< DS lsgl k)
% Ji s
) [sellsiITkeI0Ko]
X127 & 3 s — g
k, k, k
XM g s (Y1, (PN @Y1 (P, 2.9

where M{fsf;lisi contain completely the dependence on en-

ergy, while (Y, (py) @Y, (p;))§ decide completely the angu-
lar dependence.
The elegant structure of EqR.8), with each of its terms

being a scalar product of two irreducible tensors, demonmamcesD
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(Y1,(P1) @ Y1.(p))§=(4m) " M2C(1lik; gOA)[ ;1Y ( 6,0).
(2.12

Consequently, in the CF,
(2.13

On the other hand, if the quantization axis Daxis is
chosen parallel t@; X p; and thex axis is chosen parallel to
p; (which we shall refer to as the transverse frame), T¥e
have

T ((Ky ko) = (= 1)¥9T(ky ko) e

~ o ~ an
Ylfmf(pf):Y|fmf(E,9>; Y|imi(pi):Y|imi(§,0)-
(2.19

Using the parity constraint Eq2.10 and noting[22] that
Ym(m/2,p) =0 for odd ( —m), we obtain the conditions

Ti(ky kp)=0 forallodd q if m=m (215

and

T(ky,ky)=0 foralleven q if = m=—m,

(2.19

in TF. A further constraint is obtained in the case of forward
scattering f=0), necessitating to be even when condition
(2.15 is satisfied and odd when E.16) holds. This fact
can be of considerable significance in the analysis of
forward-scattering data.

The irreducible tensor amplitudé’%(kl,kz) in any frame
(AF) may be expressed in terms ﬁg(kl,kz) in some stan-
dard frames(SF) say CF or TF using the standard rotation
(a B, 7v) with the appropriate choice of the Eu-

strates explicitly the rotational invariance. The summationg, angles @ B,7). In particular, Tk(kl k,)re can be ex-

overl;,l in Egs.(2.6) and(2.9) needs to be limited to
(—D)'tm=(~ (2.10

due to parity conservation. Clearly E®.8) provides a natu-
ral generalization of Eq(1.1) for arbitrary nuclear spin tran-
sitionstH—Jl’Ti . WhenJ;=0J¢=1, it is also clear thak,
can take only one valuie,=1 and the operator given by Eq.
(1.3 is identical to (1/3)S3(1,0) with g=M. We can

1)l

readily establish a connection between the amplitudes in Eq.

(1.1) and our irreducible tensor amplitud@%(kl,l) as will

be shown in Sec. IV. Moreover, we have a bonus here in that
Eq. (2.9 provides the partial wave expansions for the ampli-

tudes.

In general, the angular dependence?@f can be made

more explicit by choosing a convenient coordinate system. |

we choose traditionally the axis parallel to the beam, i.e.,
alongp; and they axis alongp; X p; so thatz-x is the scat-

tering plane(we shall refer to this frame as the conventional

frame, CH, we note that
Yim (D)= Omo(4m) " YA1] (2.1

so that

where n=m;m; and q= us—

pressed in terms of 7*(k1,k2)CF with
=(ml2,m712,7).

Further, from Eq.(2.4), the matrix elements ofM be-
tween initial- and final-channel spin states are readily given

by
M

(a,B,7)

= (Stpee| M|sipi)

27D
=\ TS K1 DC(sKsy utaen) T (51 51,

(2.17

The magnetic quantum numbegsi=u'+m; and u;=u
+m; in Eq. (2.17) are all measured with respect to the same
axis or quantization axis. Choosing the TF, i.e., thaxis
arallel top; X ps, the constraintg2.15 and (2.1 imply
that the matrix elements satisfy

=n(-1)IM

Il

M (2.18

Hgrk Hek?

i . This result, known to be
valid in the so-called transversity franj@3,24 is usually
derived by first of all establishing the symmetry constraints
due to parity conservation on the helicity amplitudes fol-
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TABLE I. Euler angles affecting transformation from the transverse frame to the helicity and transversity

frames.
Frame @1.81,71) (a@z,B82,72) (a3,B3,73) (aa,B4,74)
Helicity [25 T _rT TT T
y [25] (0,2,2) (0, 5% 0,55 .- 5.5
. T T T T
Transversity| 23 — —— — _ -
23] (2 ,o,o) ( > 77,0) 5 +0,o,0) ( > o)
Transversity[ 24] (0,0,0 (7,0,0) (0,0,0) (m+6,0,0)
lowed by Lorentz transformation®r boost$ and rotations 281 2%

in three dimensions. The elegant derivation given here of Eq. S ¢ (I1s13]3lis)= 2 2 2 G (st sislis)
(2.19 following [9] shows that it is enough if the quantiza- k1=0kp=0 "k

tion axis is chosen parallel tp; X ps. Any further rotation X[SK(I 1) - 7KK | S))], (3.D)
with respect to thez axis adds only a phase and does not

change the above conclusion that have the effect of reducin\%here

the number of amplitudes from 4J2+1)(2J;+1) to

2(23;+1)(23;+1) linearly independent, nonzero ampli- (kqkp)k ) ‘ K

tudes. Also, the matrix elements d#f with respect to the Tq ($1,8)= (TS T%S))q 3.2
nucleon- and nuclear-spin projections along a commaxis

of quantization say, in TF, are readily obtained through  and the geometrical factors are explicitly given by

i12
Mg um = (2 ' IMe| M|z nJim;) lekzk(|f5f?ii|i5i):(—1)|f_sf_j%
= C(LIssipm M) XW(lilgsisg i kj)(— 1)< k2 Kk ][k,]
" S1 S2 S
XC(z Jisiiumu) M, . (219 x{ S S, Sy, 3.3
K, k, k

Having identified the nonzero matrix elements in the TF, the
matrix elements in any other fram{@&F) can be obtained so thatM could be expressed in the form
through

M= Ml lisesishis). (3.4
My (AF) |f,sf§,j:,|i,si s, 115 Ssp s (1eSe3051isi). (3.4

_ 2 D(1/2)*(a B ) Comparison of Eq(2.8) with Eq. (3.4) reveals that they are
o B 3:P3,73 very much similar and we can in general define the effective
SR interaction in the case of inelastic scattering through
3 12
X Dmf,mf(a4,,84,74)D£L,,M)(al,,81,y1)
f (rilVerriy= 2 (a"1@8%2(3;,3))- (re VK| r}),
KKy k

J; ey
X Dmi,mi(azﬁz,)’z)/\/lu"'m; wrm! (TF) (2.20 (3.5

) o ) where
as linear combinations of the elements in TF. Thus the num-

ber of linearly independent amplitudes remain the same in

any frame. The Euler angles for transformation from the TF (rf|quk1k2)k|ri>= E U HRIEY
to some of the well-known frames are as in Table |. leoseodliosi
‘ Ak R
><<rf|vffsf ;Iisi|ri><rf|8q(|f ili)|ri>'
IIl. NONCENTRAL INTERACTIONS 3.6

The nature of noncentral interactions in elastic scattering
of particles with arbitrary spins; ands, was investigated in  Since ps#p; in the case of inelastic scattering, the radial
[8] by introducing projection-cum-spin-orbit flip operator  nonlocal terms in Eq(3.6) are given by
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) 2 TABLE II. The nonzero irreducible tensor amplitud@ﬁ(kl,l)
(rf|fosf;|isi|ri>:;(i)lf_lij dE E*ps pi ji,(pry) for ¥C(p,p’)*?C*(1") in TF.
X Mg sl (PO (37 . ) “ Amplitude
1 0 0 75(1,1)
following [25,2€], wherej, denote spherical Bessel functions 0 1 0 730,2)
and the inte_gration is with respect to the c.m. enegyn 1 1 0 Ti(1,1)
terms of whichp; and p; are readily known. In general, 1 2 0 T2(1,1)
. - _ - - 1 2 2 75(1,1)
<rf|85(|flli)|ri>:(_1)II[If](YIf(rf)®Y|i(ri))g (38) 1 2 -2 7'2_22(1’1)
for diagonal (;=1;) as well as off-diagonall¢+#1,) terms.
Forl;=1¢=I one can identify Piekarewiczet al. [10] wherein the most general rotational
K ‘ and parity invariant scattering matrix fop(p’) processes,
Sq(l,)=rq(L), (3.9 with specific reference to 01" transition, has been writ-

. ten as in Eq(1.1) employing the right-handed Cartesian co-
where L denotes the orbital-angular momentum Operatoryinate system given by E(L.2) with the quantization axis
For example, in the case &fN scattering the choice fdt - : ~ -
=2 leads to the well-known tensor interaction, whereas Eq?hosen alongy, andAX andy axis alongn and KL respec-
(3.9 leads to a spin-orbit tensor force. tively, so that pi=(w/2+6/2,m/2) and pi=(w/2

Thus the ternk, =k,=k=0 in Eq.(3.5) defines the spin- ~ #/2,7/2). In this frame, which we refer to asKg, the
independent central interaction, while terms with=k, but  irreducible tensor amplitudes satisfy
k+#0 lead to spin-dependent central interactions. All the rest _ K
of the terms correspond to spin-dependent noncentral inter- T‘iq(kl’kZ)“Kq_(_ 1) Tg(kl’kz)“Kq' (4.2

actions and these include spin-orbit interactions when they, using Eq(4.2), we note that the process is described by
choice(3.9) is made. Thus, it is interesting to note that the o, honzero irreducible tensor amplitudes in theq frame,
irreducible tensor amp“tUd?Eg(kl*kZ) readily admit inter- ot of which only six are independent. By making a trans-
pretat}on in term.s of a varle_ty' of cen'gral and noncentral IN-formation from the spherical to the Cartesian coordinates, we
teractions including spin-orbit interactions, so that the sensiaxpress the irreducible tensor amplitudes in théq frame

tivity of various spin observables to the different forms of iy terms of the Piekarewicet al. amplitudes of Eq(1.1)
interaction can be studied by expressing these observables jyough

terms of the irreducible tensor amplitudes.
In the particular case of’C(p,p’)*%C*(1"), the effec- 1
tive interaction may be expressed in the notation3jfas 78(1’1)an: - §[Ann+AKK+Aqq]'

Ver=V1 0 3+V, 3 L+Va(oX3) - L+V, N

1
TH(L k=5 | Aga— 5 Annt Ack) |,

X (6®3)2- (rar)?)+Vs(e®3)2- (LeL)?), 3]
(3.10

1 1 1
71(0,1)an= _T—l(oil)an: — —=Ano;

where the first three terms corresponding kg ,k,,k) are J6
(1,10),(0,11),(1,1,1), respectively; while the last two
terms correspond to (1,1,2); there is no spin-independent i
central interaction, sinck,=1. Ti(l,l)an= —71_1(1,1)an= — m[AKq—AqK],
IV. INELASTIC NUCLEON SCATTERING ON *C i
2 _ g2 _
The inelastic scattering of nucleons 6fC leading to the 7211, Dnkq=T1(1,Dnkg=— 2\/§[AKq+AqK]1

1" excited state is a process of the type 0—3+1 and
following Sec. Il, the scattering matrix is given by 1
72 )LD nkg=T5(1, Drkg=7=[Amn— Akl (43
_ Ky on @1 K 2\3
M=2 [(MeSHL0)NTHk,D]. 4D

Kok . . . . .

A connection between the irreducible tensor amplitudes in

Choosing to work in the transverse frarfiF), the six non- the_TF and those of Piekarfwiez al.is easily facilitated by
zero, independent, irreducible tensor amplitudes associatd®ting  that T5(TF)=3q, D¢, (0,m/2,m/2— 0/2)T5,(NK0),
with the process are presented in Table 1, where the corwhere 6 is the scattering angle. We thus have

straint due to parity conservation, E@®.10), has been ap- )
plied. We next establish connection with the work of Ano=3T5(0, D,
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0.6

200 MeV
DW81

044

0.2 4
g
A
0 ]
02+
04 -
0 5 10 15 20
0.8 "
200 MeV (b)
DREX

-0.8

0 5 10 15 20
0;.m.(deg)

FIG. 1. D,,, plotted against. ,(deg). The solid line shows the
calculations usingwsi (a) andbrex (b). The short-dashetlong-
dashed line shows calculations with tensérecto) amplitudes set
to zero.

Ann=V2T5(1, )7~ T5(1, D)7,
70 1 2 3 —i672
Agq=—1 To(1.D)7e+ ETo(Llhp"‘ E[e T5(1, D

+él 0722<1,1>TF]} ,
1.5 3 —i072
AKK: —|78(1,1)-|-|:+ ETO(].,].)TF_ \/;[e Tz(lyl)TF
+é ”T22(1,1)TF]] :

. 3 —i i
Agg=—1 \/;[e UT5(1, D)7 €' T2 5(1,D)1¢

+\2T3(1, D) 1],
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0.2

(@),

200 MeV

a

0.1 :
0 5 10 15 20
08 X
200 MeV ()

06| DREX ;
0414 ."

a
02| .

0;.m.(deg)

FIG. 2. P plotted agains®. ,(deg). The solid line shows the
calculations usingws1 (a) andbrex (b). The short-dasheflong-
dashedl line shows calculations with tensérecto) amplitudes set
to zero.

Aqk=—i \[z[e“’Té(l,DTF—e‘@Tz2<1.1>TF
—\2TH(1, D¢ 4.9

We next express the inelastic nucleon-spin observables in
terms of the irreducible tensor amplitudes through

do
dq Pes

1 1 1 (n+n’") /

=52 X lE PO (BB (AN

N=0n’"=0 k=|n—n’
(4.9
a,B=0X,Y,2,

where
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0.3

Byn.n)=3 X [KI[k'Iki][kiI[n] 200 MeV @
kg bk DWS1
1 1 -
Z Z k 1
5 7 f 0.15 L
X[n'IW(ki1nk'ikkps 11, <
2 2 1
n n «k
X (=D ( Tk, D@ T™ (k,1)5,
(4.6 T
-0.15 ‘ ‘ ‘
and the irreducible tensor@,;l(a) are defined through 0 5 10 15 20
PZ(a)=Tr(aa02). (47) 0.45 o
We note that the nonzeﬂé,’l(a) are 2%)Rl\lgiv
PY0)=2; Pi2)=2; PL,(x)=72; 031
Pl (y)=—i\2. (4.8
& 0151 !

Due to conditions imposed by parity and rotational invari-
ance, out of the possible 16 spin transfer observables only
eight are nonzero. The spin observables inrieg and TF

are themselves related through

D o=P=Dy, o]
0.15 ‘ ‘ !
Don=Ay=Do,, 0 5 10 15 20
D,,=D,,, 0..m.(deg)
0 P sing FIG. 3. A, plotted agains®, »(deg). The solid line shows the
DKK=CO§—D +SIP=D.. + (Dyy+ D) calculations usingws1 (a) andbrex (b). The short-dashefong-
27X 27V 2 X Xy dashedl line shows calculations with tensérecto amplitudes set
to zero.

0 .0 siné
qu:COSZEDyy+SIn2§DXX_ 2 (Byxt Dy, into consideration the dire¢texchange terms and both the

NN interactiong 27,29 are fitted to reproduce tH¢N phase

0 .0 sinéd shift solutions of[30]. The Cohen and Kurat[81] nuclear
DKq=C°52§ny_S'”2§Dyx+ — (Dyy=Dx, structure amplitudes are used in both cases.
A comparison is made of the theoretical estimates for the
0 0 sin@ spin observables with the experimental data reported by
DqK=CO§§Dyx—Si”2§ny+ — (Dyy=Dxo- Wells et al. [13] for 200-MeV measured at four angleg,
(4.9 =5.5°,8.8°,12.1°, and 16.5°. We next proceed to calculate

the spin observables byi) setting all the second-rank

The irreducible-tensor formalism outlined above lends it-irreducible-tensor amplitudes to zero afid setting all the
self conveniently to the study of the relative importance ofvector amplitudes to zero, to facilitate an analysis of the
the vector and second-rank tensor amplitudes. We use thelative importance of the vector and tensor terms. In the
pwa1 and DREX computer codes that formulate the NA scat- former case, the calculations are represented by short-dashed
tering in the nonrelativistic and relativistic impulse approxi- lines and in the latter, by long-dashed lines.
mation respectively. Thews1 code uses the elementayN The plots(solid ling) for the normal component observ-
interaction as parameterized by Franey and Lf%# and  ables,D,,,P, andA, are shown in Figs. 1, 2, and 3. Com-
distorted waves from an optical potential derived from theparing the experimental data with calculations based on
400-MeV data of Jonest al. [28]. The DREX code uses the Dwsl and DREX codes, we notice that both the calculations
NN interaction of Horowitz[29] and distorted waves from account for the measured observables only partially. The
an optical potential using thidN interaction and a nucleon Dws1 calculation forD,,, provides a closer fit in comparison
density derived from electron scattering. Both codes takevith the DREX calculation, while the measurétdandA, are
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FIG. 5. D, plotted agains®, ,(deg). The solid line shows the
calculations usingws1 (a) andbrex (b). The short-dashefong-
dashedl line shows calculations with tens@recto) amplitudes set
to zero.

FIG. 4. P-A, plotted against. (deg). The solid line shows
the calculations usingwsi1 (a) and brRex (b). The short-dashed
(long-dashefl line shows calculations with tensgvectoy ampli-
tudes set to zero.

not satisfactorily described by eith@ReEx or bwsi. It is  fact calculations with the tensor terms set to zero yield
interesting to note that in the absence of vector terms, thP-Ay:O in the range under consideration.

calculations foD,, (Fig. 1) are overestimated. Calculations  Figures 5 and 6 show comparison of experiment with
with only the scalar and tensor terms compare well with theheory forD, andD,,, respectively. The linear combination
estimates for th®,,, only at forward angles. Thews1cal-  of in-plane component observablé&, andD,,, are defined
culations forP (Fig. 2 show that the vector amplitudes are in [13] as

relatively more important than the tensor amplitudes. The

200-MeV DREX calculations demonstrate the same in the

range 0—8°. Similarly, the importance of vector amplitudes D,=D,/, sina+Dg  cosa,

in A, (Fig. 3) is quite pronounced. Much attention has been

evinced in accounting for the nonvanishing combination

P-A, [32]. In terms of irreducible tensor amplitudes in the D,=D_ ssina+Dg sCoSa, (4.11)

TF, we have,

o

P—A,=6[|72 ,(1,1)|?—|75(1,D|*] where a~264° is the angle ofhorizonta) spin precision
1 5 1% experienced by the scattered proton flux in the dipole field of
+4\3RE\270(1,D)T5 (L) +TH(1,) T (LD], K600 spectrometer. and S stand for the longitudinal and
(4.10 sideward components and the prime indicates that the frame
of reference of the scattered nucleon is rotated with respect
which clearly indicates that thB-A, is sensitive to tensor to that of the incident nucleon bg. In terms of the ampli-
amplitudes. This fact is explicitly demonstrated in Fig. 4. Intudes defined by Piekarewi&t al. [10],
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sing 04

) 0
DL’L:C032§DKK_Sm2§qu+T(DqK_DKq)v 200 MeV (@
DW81

0 0 sing
DS'S: CO§§qu_S|nZ§DKK+ T(DCIK_DKQ)’

0 .0 sing
DL,S=c0§§DKq+S|n2§DqK+ T(DKK+qu),

0 .0 sing@
Dgs= Co§§DqK+ stEDKq— —— (D +Dgg)-

(4.12

The calculations show fairly good fit for these observables
except in the case afwsi calculations forD, . The figures
also explicitly demonstrate that the vector amplitudes have a
negligible role to play in the case of in-plane component
observables, especially at forward angles.

V. SUMMARY AND CONCLUSIONS 027
We have outlined a model-independent irreducible tensor
formalism to discuss inelastic scattering of nucleons on nu- & of
clei. The formalism is valid at all energies and for arbitrary
spin-parity transition§i’”—>\];Tf of the nucleus. The irreduc-
ible tensor amplitudes have also been explicitly expressed in 02
terms of the partial wave amplitudes. This facilitates in par-
ticular to obtain partial wave expansions for the amplitudes
defined by Piekarewicz, Amado, and Sparri@i/for inelas-
tic scattering of protons on’€leading to I" excited state at ‘ ‘ ‘
15.11 MeV, which has attracted considerable experimental 0 5 10 15 20
work. 0;.m.(deg)
The formalism in terms of irreducible tensors has an ad-
ditional advantage in that it facilitates the discussion of the FIG. 6. D, plotted agains¥. n(deg). The solid line shows the
central and noncentral interactions that come into play irfalculations usingwsi (&) andpRrex (b). The short-dashedong-

inelastic scattering of nucleons on nuclei. In the particula/d@shed line shows calculations with tensorectoy amplitudes set
case under consideration, there is no spin-independent celf- e

tral interaction and the noncentral interactions are limited toCan compare the empirical values so determined with those
second rank. We find that the nonvanishing combinationyeceq from model-dependent codes. This may facilitate

P-A, is highly sensitive to the second-rank tensor ampli-y,q change of inputs into the models selectively so as to
tudes. The numerical calculations show that if the tensor amf)ring the theoretical estimates closer to experiments

plitudes are set to zero, théh A, is zero in the range under
consideration.

In view of the general applicability of the formalism, we
advocate empirical analyses of data on inelastic scattering of We thank J. Piekarewicz for making available thes1i
nucleons on various nuclei and leading to different excitedand DREX computer codes. One of &.R) acknowledges
states in terms of irreducible tensor amplitudes so that onwith thanks the support of the CSifdia).
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