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TÄ0 and TÄ1 pairing and the formation of four-particle correlated structures
in the ground states ofZÄN nuclei
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The T50 andT51 pairing correlations are discussed within the framework of two simple models: the
SO~8! algebraic model and the single-j model with a surface-d interaction. The possibility of an approximate
description of the ground-state wave functions in terms of correlated four-particleT50, S50 ~a-like! struc-
tures is investigated. The overlap of the approximate and the exact wave functions is shown to be larger than
0.93 for any relation between theT51 andT50 pairing strengths. The influence of the neutron-proton pairing
interaction terms on the quadrupole sum rule and on the ground-state magnetic moments of the odd nuclei with
Z5N61 is analyzed.
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I. INTRODUCTION

The treatment of theT51 pair correlations among nucle
ons of the same kind in heavy nuclei is significantly simp
fied because a simple approximate expression for
ground-state wave function of the even-even nucleus—
BCS wave function@1,2#—can be here employed. A specifi
feature of the BCS wave function is that it is not an eige
function of the particle number operator. However, it is po
sible to restore the corresponding symmetry by a project
The projected wave function is represented by an expres
in which a two-particle-creation operator, whose structure
determined by the pairing interaction matrix elements and
the mean-field single-particle energies, is repeatedly app
to the inert core wave function to get the corresponding nu
ber of particles. Such a description forms a basis for
generalized seniority scheme@3# or the alternative broken
pair approximation approach@4,5#. Of course, it would be
useful to find an analogous simple approximate expres
for the ground-state wave function of an even-even nucl
also in the situation when the neutron-proton (np) pair cor-
relations~either in the singleT51 channel or in both theT
51 andT50 channels! are important.

A generalization of theu-v Bogoliubov transformation to
the case of thenp pairing has been discussed many tim
~see, e.g.,@6–9#!. Since the particle number and the isosp
are not conserved, this procedure should be treated with
@10#, particularly when both theT51 andT50 pair corre-
lations are present.

A useful insight into the role ofnp pairing can be ob-
tained within the framework of exactly solvable algebra
models. The model with bothT51 andT50 pairing chan-
nels has SO~8! symmetry@10–13#. A simple expression for
the SO~8! ground-state wave function has been construc
in such a way that the maximum possible number of fer
ons form correlated four-particleT50, S50 structures@10#.
These correlated four-particle structures are characterize
the same quantum numbers asa particles and this result is in
a correspondence with ana-cluster model applied to ligh
and medium mass nuclei. However, it is necessary to n
0556-2813/2001/63~3!/034320~7!/$15.00 63 0343
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that the four-particle correlated structures that emerge are
real a particles. It is more appropriate to call thema-like
structures.

In the present paper, we investigate the structure of
wave functions of the ground and excited states of the s
tem with np pairing in more detail. A simple one-term ex
pression written with the help of the creation operators of
four-particle correlated structures is discussed. The case
interplay of bothT50 andT51 pairing interaction channel
is discussed.

II. SO„8… ALGEBRAIC MODEL

The Hamiltonian of the SO~8! algebraic model which in-
cludes bothT51 andT50 pairing terms has the form@13#

Ĥ52~11x!(
m

~Pm
† ! f~Pm! f2~12x!(

m
~Dm

† ! f~Dm! f ,

~1!

where

~Pm
† ! f5Al 1 1

2 (
m,s,t,t8

Clml2m
00 C(1/2)s(1/2)2s

00 C(1/2)t(1/2)t8
1m

3alm,(1/2)s,(1/2)t
† al 2m,(1/2)2s,(1/2)t8

† ~2!

~Dm
† ! f5Al 1 1

2 (
m,s,s8,t

Clml2m
00 C(1/2)s(1/2)s8

1m C(1/2)t(1/2)2t
00

3alm,(1/2)s,(1/2)t
† al 2m,(1/2)s8,(1/2)2t

† . ~3!

Above, alm,(1/2)s,(1/2)t
† is the fermion creation operator de

scribing a nucleon with orbital momentuml, spin projection
s, and isospin projectiont. The parameterx, which varies
from 21 ~pure isoscalar pairing! to 1 ~pure isovector pair-
ing!, governs the relative importance of isoscalar and isov
tor pairing in the Hamiltonian~1!.

Similarly to @10#, we employ the boson mapping proc
dure@14# to obtain the solution of the fermion problem wit
©2001 The American Physical Society20-1
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Hamiltonian~1!. Using the generalized Dyson boson rep
sentation of the fermion operators@14–16#

as
†as8

† →bss8
†

2@Ĉ,bss8
†

#,

at8at→btt8 ,

as
†as8→(

p
bsp

† bs8p , ~4!

where

Ĉ5 1
4 ( bss8

† btt8
† bstbs8t8 ,

bss8
†

52bs8s
† ,

@bss8 ,btt8
†

#5dstds8t82dst8ds8t ,

@bss8 ,btt8#50, ~5!

we can get a boson image of the Hamiltonian~1!. In our case

s5 lm, 1
2 s, 1

2 t. Introducing the boson operators

Pn
†5

1

A2
(

m,s,t,t8
Clml2m

00 C(1/2)s(1/2)2s
00 C(1/2)t(1/2)t8

1n

3blm,~1/2!s,~1/2!t,l 2m,~1/2!2s,~1/2!t8
† ,

Dm
† 5

1

A2
(

m,s,s8,t

Clml2m
00 C(1/2)s(1/2)s8

1m C(1/2)t(1/2)2t
00

3blm,~1/2!s,~1/2!t,l 2m,~1/2!s8,~1/2!2t
† , ~6!

we obtain the boson representations of the fermion opera
(Pm

† ) f , (Dm
† ) f , (Pm) f , and (Dm) f :

~Pm
† ! f→A2l 11~Pm

† 2@Ĉ,Pm
† # !,

~Pm! f→A2l 11Pm ,

~Dm
† ! f→A2l 11~Dm

† 2@Ĉ,Dm
† # !,

~Dm! f→A2l 11Dm , ~7!

where forĈ we get, from Eqs.~5!,

Ĉ5
1

2l 11
@ 1

2 ~ n̂p1n̂d!22 1
2 ~ n̂p1n̂d!

1 1
4 @~P†

•P†!~D•D !1~D†
•D†!~P•P!

2~P†
•P†!~P•P!2~D†

•D†!~D•D !##. ~8!

Above,

n̂p[(
m

Pm
† Pm ,
03432
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n̂d[(
m

Dm
† Dm ,

P†
•P†5(

m
~21!mPm

† P2m
† ,

D†
•D†5(

m
~21!mDm

† D2m
† .

Using Eqs.~7! and~8! we obtain the boson representation
the Hamiltonian~1!:

Ĥ52~11x!~2l 11!n̂p2~12x!~2l 11!n̂d

1~11x!n̂p~ n̂p1n̂d21!1~12x!n̂d~ n̂p1n̂d21!

2 1
2 ~11x!~P†

•P†!~P•P!2 1
2 ~12x!~D†

•D†!~D•D !

1 1
2 ~11x!~D†

•D†!~P•P!1 1
2 ~12x!~P†

•P†!~D•D !.

~9!

The above boson Hamiltonian is equivalent to the bos
Hamiltonian from@10# where a slightly different form has
been used.

The Hermicity of Hamiltonian~9! can be restored by the
following transformation which conserves commutation re
tions:

Pm
† →~11x!1/4Pm

† , Pm→~11x!21/4Pm ,

Dm
† →~12x!1/4Dm

† , Dm→~12x!21/4Dm . ~10!

Applying the transformation~10! to the Hamiltonian~9!,
we get

Ĥ52~11x!~2l 11!n̂p2~12x!~2l 11!n̂d

1~11x!n̂p~ n̂p1n̂d21!1~12x!n̂d~ n̂p1n̂d21!

1 1
2 ~11x!~P†

•P†!~P•P!1 1
2 ~12x!~D†

•D†!~D•D !

1 1
2 A12x2@~D†

•D†!~P•P!1~P†
•P†!~D•D !#. ~11!

The Hamiltonian~11! has been diagonalized and the eige
vectors have been constructed using the basis

uNSTk&5~P†
•P†!k~D†

•D†!~N2S2T)/2 2k~P1
†!T~D1

†!Su0&.
~12!

HereN is the total number of bosons,S is the spin (L50),
andT is the isospin. For simplicity we have considered a
basis the state vectors with the maximum values of the s
and isospin projections.

Having obtained exact eigenstates, we investigate the
sibility to represent them within terms ofa-like two-boson
T50, S50 structures. Those are obtained as the linear co
binations of the operators (P†

•P†) and (D†
•D†):

A†5~P†
•P†!cosu2~D†

•D†!sinu ~13!

and the orthogonal one
0-2
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T50 AND T51 PAIRING AND THE FORMATION OF . . . PHYSICAL REVIEW C 63 034320
A8†5~P†
•P†!sinu1~D†

•D†!cosu. ~14!

First, let us consider eigenstates withS50 andT50. The
lowest state is approximated by

A†N/2u0&. ~15!

The parameteru in Eq. ~13! is determined so as to get
maximum overlap of the state vector~15! with the lowest
S50, T50 exact eigenstate. The next excited eigens
with S50, T50 is approximated by the form

A†N/221A8†u0&, ~16!

from which a projection on the vector~15! is subtracted. The
higher eigenstates are constructed similarly by increasing
degree of theA8† operator in the expression for the sta
vector and orthogonalizing this approximate state to the p
viously obtained lower-lyinga-correlated expressions. Fo
every eigenstate we determine the value ofu, which gives a
maximum overlap of the corresponding approximate s
vector with the exact one. Thus, the values ofu are state
dependent.

The calculations have been done for a total number
nucleons equal to 16~number of bosonsN58), orbital an-
gular momentuml 53, and the eigenstates with isospinT
50 and spinS50.

The results of the calculations are shown in Fig. 1.
overlaps of the exact and the corresponding approxim
state vectors are larger than 0.985 for all values ofx between
21 and 1.1 The values ofu do not depend on the state in th
dynamical symmetry limits at x50 @SU(4)#, x51
@SOT(5)#, and x521 @SOS(5)#. Between the dynamica
symmetry limits, the values ofu are state dependent but th
dependence is not strong. The calculations show that if
take for all eigenstates the same~average! value ofu, we get
for the overlaps values equal to or larger than 0.97 for
values ofx.

These results mean that thea-like bi-bosons, which are
the boson analogs of the four-fermionT50, S50 correlated
structures, are very important structure units. A represe
tion of the eigenstates is simplified significantly with the he
of them. It stresses the important role of the four-nucle
a-like correlations in the regime ofnp pairing.

The lowest eigenvectors with a nonzeroT and S can be
described approximately by the expression

~A†!(N2S2T)/2~P1
†!T~D1

†!Su0&. ~17!

Again, the calculations confirm the almost perfect overlap
this construction with the exact solution.

A similar discussion of the SO~8! wave functions in terms
of a-like structures has been performed in@10#. There, the
ground-state wave functions have been analyzed. The v
tional principle has been employed and the genuine fer
onic wave functions~both the exact and approximate! have
been considered in@10#.

1For x50 @SU~4! symmetry limit#, the overlap is 100%.
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In the present study, we search for the approximate w
function by the principle of maximal overlap. In view of th
almost perfect agreement of the approximate and exact s
tions, we have found a little difference between the maxim
overlap and variational procedures.

The other aspect which makes a difference betw
present calculations and those of Ref.@10# is our employ-
ment of the bosonized and Hermitized SO~8! Hamiltonian
and comparison of the exact solutions of this Hamilton
with the bosonic analogs of thea-like correlated wave func-
tions. This approach does not agree completely with
genuine fermionic procedure but again the differences
not large and are of order up to 1/(l 1 1

2 ).

III. SINGLE- j -LEVEL WITH SURFACE d INTERACTION

The SO~8! model comprising only the fermion pairs wit
the values of the angular momentumJ50 andJ51 is, of
course, an idealization of the real situation. In fact, w

FIG. 1. ~a! Dependence of the overlap of the exact and appro
mate state vectors of the 01 states in the SO~8! algebraic model on
the parameterx. ~b! Dependence of the angleu introduced in Eqs.
~13! and ~14! on x. Calculations are done for the total number
nucleons equal to 12.
0-3
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YU. V. PALCHIKOV, J. DOBES, AND R. V. JOLOS PHYSICAL REVIEW C63 034320
should take into account also the fermion pairs with ot
values of the angular momentumJ. As a rule, fermion pairs
with T50 and angular momentumJ equal to the maximum
angular momentum allowed by a corresponding shell mo
configuration have low energy and play an important ro
One should clarify whether the conclusions of the preced
section about the possibility of approximating the exact wa
functions by four-particleT50, J50 correlated structure
are also valid in the more general case.

We consider a model Hamiltonian with nucleons of bo
kinds interacting by the surface-d interaction ~SDI! @1
1y(tW1•tW2)#d(urW12rW2u)d(r 12R0) and occupying isolated
single-particle level with angular momentumj:

Ĥ52~12x!(
J

G0,J(
M

AJM,00
† AJM,00

2~11x!(
J

G1,J (
M ,MT

AJM,1MT

† AJM,1MT
. ~18!

Here,

AJM,TMT

† 5 (
m,m8

Cjm, jm8
JM (

t,t8
C

(1/2)t,(1/2)t8

TMT ajm,(1/2)t
† ajm8,(1/2)t8

† ,

~19!

whereajm,(1/2)t
† is a creation operator of a nucleon with a

gular momentumj, its projectionm, and isospin projectiont.
Another notation is

x52
1

3
1

2

3
y,

G0,J5@12~21!J#~ f j ,J
2 1gj ,J

2 !,

G1,J5@11~21!J#
1

3
f j ,J

2 ~20!

and

f j ,J5
2 j 11

A2J11
Cj (1/2),j 2~1/2!

J0 ,

gj ,J5
2 j 11

A2J11
Cj (1/2),j (1/2)

J1 . ~21!

The parameterx regulates the relative role of theT51 and
T50 pairing in the Hamiltonian~18!.

The calculations have been done for the single-part
angular momentumj 5 7

2 , total number of nucleons equal t
8 ~midshell!, and eigenstates with isospinT50 and angular
momentumJ50. The following fermionic basis has bee
used for exact diagonalization of the Hamiltonian~18!:

uI ,a,b&5@n I
a3p I

b#0u0&, ~22!

where
03432
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n I ,M
a 5~an

†an
†an

†an
†! I ,M

a ,

p I ,M
a 5~ap

†ap
†ap

†ap
†! I ,M

a ~23!

are orthonormal, fully antisymmetric basis vectors of neutr
~n! and proton~p! subsystems, respectively. These vect
are constructed using coefficients of fractional percent
~CFP! with definite angular momentumI and have an addi-
tional quantum numbera to distinguish orthonormal state
with the sameI.

We investigate the possibility to approximate exa
ground states of the Hamiltonian~18! by usinga-like corre-
lated structures. The creation operator of the four-particlT
50, J50 correlated structure is introduced as

A†5 1
2 (

l
cl†@an

†3an
†#l3@ap

†3ap
†#l‡0 . ~24!

In Eq. ~24! the coefficientscl should satisfy the relation

4c05 (
l5even

A2l11cl ~25!

in order to get aT50 operator. Moreover, the coefficientscl

in Eq. ~24! are normalized so that

^0uAA†u0&51.

Some of thecl coefficients are negative.
The lowest state withJ50 andT50 is approximated by

uJ50,T50&app5N 21/2~A†!2u0&, ~26!

and the coefficientscl are determined so as to get a max
mum overlap of Eq.~26! with the corresponding exact eigen
vector. In our case ofj 5 7

2 , there are only two free param
eters in the expression~26!.

As is shown in Fig. 2, the overlap of the exact and a
proximate ground-state vectors is larger than 0.93 for all v
ues of the Hamiltonian parameterx. The dependence of th
coefficientscl on the parameterx is displayed in Fig. 2~c!.
For the x51 case with a pureT51 pair interaction, the
coefficientcl with l50 is much larger than the other one
This finding reflects the prevailing role of theT51, J50
pair and the usefulness of the seniority classification in t
case.

Thus for the model with SDI’s, we obtain a similar pic
ture as in Sec. II where the SO~8! algebraic model has bee
considered. However, the model with SDI’s is more realis
than the SO~8! model. What is especially important is that
includes fermion pairs with angular momentumJ5” 0,1.

IV. INFLUENCE OF THE np-PAIR CORRELATIONS
ON SOME PHYSICAL QUANTITIES

It was discussed above that the ground-state wave fu
tions of the even-evenZ5N nuclei can be approximate
quite well by expressions in which the maximum possib
number of fermions forms the correlated four-particleT
50, J50 structures. All information about the ground sta
0-4
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T50 AND T51 PAIRING AND THE FORMATION OF . . . PHYSICAL REVIEW C 63 034320
is thus contained in the structure of the four-particle creat
operators~13! and ~24!. The important question arises as
whether relevant experimental quantities exist in which s
ana-like structure would be revealed and which would co
firm the importance of thenp pairing degrees of freedom.

In the present section, we discuss the quadrupole sum
calculated for the ground state of the even-evenZ5N
nucleus and the ground-state magnetic moment of the
nucleus withZ5N61. The former quantity mainly charac
terizes theE2-transition probability from the ground to th
first 21 state. Both theE2 sum rule and magnetic mome
depend on the angular momenta of the neutron and pr
subsystems. As in the preceding section, we consider e
nucleons in thej 5 7

2 ( f 7/2) shell. An additional odd particle
is taken to be a neutron.

FIG. 2. ~a! Dependence of the overlap of the exact and appro
mate ground-state vectors on the parameterx in the single-j model
with SDI’s. ~b! Dependence of the squares of the coefficients of
ground-state vector multipole expansion on the parameterz regulat-
ing a strength of thenp interaction. The results are shown forx
50. ~c! The same as in~b! but for the dependence on the parame
x (z51).
03432
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To see the effect of the different types of pairing corre
tions on the quantities mentioned above it would be con
nient to have the possibility to switch off or to scale the
correlations in the wave functions. However, using the wa
functions given as expansions in the basis states~22! it is
difficult to realize this idea. It is easier to use the correspo
ing scaling factor in the Hamiltonian. One of them is alrea
presented inH. It is the parameterx which regulates the
relative role of theT51 andT50 pairing correlations. To
investigate the influence of thenp pairing forces, we multi-
ply np-interaction terms both in theT51 andT50 parts of
the Hamiltonian~18! by a factorz which varies from zero
~absence of thenp-pairing force! to one~full presence of the
np-pairing force!. Of course, the isospin invariance of th
Hamiltonian is broken forz5” 1. Using this artificial proce-
dure we get some insight into the effect of different types
pairing correlations. Although isospin is not significant
broken in nuclei, usually, we are dealing with the effecti
nuclear Hamiltonians derived for the restricted configu
tional spaces. In these cases different numbers of the pr
and neutron configurations can be left outside a restric
configurational space, especially forN5” Z nuclei. For this
reason the relation between proton-proton, neutron-neut
and proton-neutron interaction constants in the effect
Hamiltonian can differ from that in the total Hamiltonian.

As is seen from Fig. 2~b!, the values of the coefficientscl

depend strongly on the parameterz. Of course, whenz is less
than 1, the isospin invariance is broken and the relation~25!
does not hold. Forz50, i.e., for onlynn- and pp-pairing
forces, the coefficientc051 and the neutron and proton su
systems have zero angular momenta separately. This fin
can be explained by the separation of the neutron and pr
degrees of freedom and by the seniority conservation for
SDI in a single-j shell. With increasingz, c0

2 decreases and
cl

2’s with l5” 0 increase. Therefore with increasingz, the
neutron and proton parts of the four-particle correlated str
tures possess nonzero angular momenta and can influ
the ground-state magnetic moment and quadrupole sum

In Fig. 2~c!, similar correlations are observed between t
values ofcl and the parameterx. However, as follows from
Eq. ~25!, c0

2,1 whenz51 even forx511, i.e., for only
T51 pairing force being present in the Hamiltonian. T
reason for this is the presence of theT51, J50 neutron-
proton pair correlations which create some angular mom
tum in the neutron and proton subsystems separately.

The square of the quadrupole proton operatorQ2m ,

Q2m
p 5 (

m,m8
Cjm8,2m

jm ajm,p
† ajm8,p ,

averaged over the ground state

^01
1u~Q2

p
•Q2

p!u01
1&, ~27!

gives us a value of the quadrupole sum rule. The depende
of the quantity~27! on z andx is illustrated in Figs. 3~a! and
3~b!. No significant change of the sum rule withx is ob-
served. Therefore, the quadrupole sum rule cannot be use
get information on theT51 andT50 pairing competition.
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e

r
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YU. V. PALCHIKOV, J. DOBES, AND R. V. JOLOS PHYSICAL REVIEW C63 034320
The sensitivity of this quantity onz is more pronounced. The
sum rule value is larger when thenp correlations are absen

For the ground-state wave function of the odd nucle
adjacent to theT50 line, we use thea-like correlated form

u jm&5Nodd
21/2ajm

† ~A†!2u0&. ~28!

The magnetic moment operator is written as

m̂5gj ,n ĵ n,z1gj ,p ĵ p,z , ~29!

with ĵ n(p),z being thez component of the neutron~proton!
angular momentum. For thef 7/2 shell, gj ,n520.55 and
gj ,p51.66.

Using the state vector~28! and its expansion in the bas
~22!, we obtain, for the magnetic moment by a direct calc
lation,

m[^ j j um̂u j j &

5gj ,nj 2~gj ,n2gj ,p!
Neven

Nodd

1

~ j 11!~2 j 11!
^ Î 2&p ,

~30!

FIG. 3. Dependence of the ground-state quadrupole sum ru
the N5Z nucleus on the parametersz (x50) ~a! andx (z51) ~b!
in the single-j model calculations.
03432
s

-

where^ Î 2&p is the average value of the squared angular m
mentum of the proton~the same for the neutron! subsystem
of the even–even core described by the state ve
Neven

21/2(A†)2u0&.
The first term in Eq.~30! is the single-particle magneti

moment of an odd neutron. The second term is the contr
tion of the protons and neutrons forming the four-particleT
50, J50 correlated structures. Of course, thisZ5N core
contribution appears due to the nonzero angular moment
the proton and neutron subsystems of the core. It is prop
tional to the core average of the squared proton~neutron!
angular momentum operator. If the proton and neutron s
systems of the even-evenZ5N nucleus have zero angula
momenta, the core term is equal to zero and the magn
moment approaches its single-particle value. This is ill
trated in Fig. 4~a! where the dependence of the magne
momentm on the Hamiltonian parameterz is displayed. For
z equal to 1, i.e., for thenp correlations fully included, the
contribution of the core nucleons becomes essential.

The sensitivity of the magnetic moment to the parame
x, shown in Fig. 4~b!, is weak and insufficient to study th
T51 and T50 pairing competition. This finding is con
nected with the fact that both the isovector and isosca
np-pair correlations introduce nonzero angular moment

of FIG. 4. The same as in Fig. 3 but for the ground-state magn
moment of theN5Z11 odd nucleus.
0-6
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T50 AND T51 PAIRING AND THE FORMATION OF . . . PHYSICAL REVIEW C 63 034320
into the neutron and proton subsystems and cause a devi
of the magnetic moment from the single-particle value.

V. CONCLUSIONS

We have discussed theT50 and T51 pairing correla-
tions within the framework of two simple models: the SO~8!
algebraic model and the single-j model with the surface-d
interaction. We investigate the possibility to represent
wave vector of the ground state by a simple one-term exp
sion obtained by using the creation operator of the fo
particle T50, J50 correlated structures. In the cases stu
ied, an accuracy of better than 93% of the overlap of
exact and approximate wave functions has been obtai
Thus, the possibility opens to formulate an approximate
proach, similar to the broken pair approximation for nuc
with like-nucleon pairing, to describe nuclei in which bo
d

.

ky

03432
ion

e
s-
-
-
e
d.
-

i

like-nucleon andnp-pair correlations are important.
Employing this approximation, we have investigated t

influence of the different kinds of pair correlations on t
ground-state magnetic moments of an odd nucleus and on
electric quadrupole sum rule. The magnetic moment app
to be quite sensitive to the presence of thenp correlations.
However, both the magnetic moment and quadrupole s
rule are not sensitive enough to the competition between
T51 andT50 pair correlations.
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