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T=0 and T=1 pairing and the formation of four-particle correlated structures
in the ground states ofZ=N nucleli
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The T=0 andT=1 pairing correlations are discussed within the framework of two simple models: the
SQO(8) algebraic model and the singjemodel with a surface interaction. The possibility of an approximate
description of the ground-state wave functions in terms of correlated four-partic® S=0 (a-like) struc-
tures is investigated. The overlap of the approximate and the exact wave functions is shown to be larger than
0.93 for any relation between tfile=1 andT=0 pairing strengths. The influence of the neutron-proton pairing
interaction terms on the quadrupole sum rule and on the ground-state magnetic moments of the odd nuclei with
Z=N=1 is analyzed.
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[. INTRODUCTION that the four-particle correlated structures that emerge are not
real a particles. It is more appropriate to call thesmlike
The treatment of th&=1 pair correlations among nucle- structures.
ons of the same kind in heavy nuclei is significantly simpli-  In the present paper, we investigate the structure of the
fied because a simple approximate expression for thwave functions of the ground and excited states of the sys-
ground-state wave function of the even-even nucleus—thém withnp pairing in more detail. A simple one-term ex-

BCS wave functiof1,2]—can be here employed. A specific Pression written with the help of the creation operators of the
feature of the BCS wave function is that it is not an eigen_four—particle correlated structures is discussed. The case with

function of the particle number operator. However, it is pos-Nterplay of bothT=0 andT=1 pairing interaction channels

sible to restore the corresponding symmetry by a projectiortS discussed.
The projected wave function is represented by an expression
in which a two-particle-creation operator, whose structure is Il. SO(8) ALGEBRAIC MODEL

determined by the pairing interaction matrix elements and by The Hamiltonian of the S@®) algebraic model which in-
the mean-field single-particle energies, is repeatedly appliegludes bothT=1 andT=0 pairing terms has the forfii3]
to the inert core wave function to get the corresponding num-

ber of particles. Such a description forms a basis for the

ge.neralized' senjority scheni8&] or the aIternqtive broken A=—(1+x)> (PL)f(PM)f—(l—x)Z (DL)f(DM)f,
pair approximation approacf,5]. Of course, it would be w m

useful to find an analogous simple approximate expression @
for the ground-state wave function of an even-even nucleus

also in the situation when the neutron-protarp] pair cor- Where
relations(either in the singlel' =1 channel or in both th&
=1 andT=0 channelsare important. (PL)f: VI+1 E Clon(w)l—mc?l()/Z)a(l/z)—aC(lﬁz)T(l/z)Tr
A generalization of thei-v Bogoliubov transformation to mo, 7,7
the case of thenp pairing has been discussed many times + ¥
(see, e.g.[6-9]). Since the particle number and the isospin X im, (112)0r, (123 - m, (112)- 0, (V27! (2)
are not conserved, this procedure should be treated with care
[10], particularly when both th&=1 andT=0 pair corre (DL)f: \/@ D Clorgl7mC(lﬁz)g-(l/z)(r'C?lt)/2)r(l/2)f7-

lations are present.

A useful insight into the role ohp pairing can be ob- .
tained within the framework of exactly solvable algebraic Xarm,(l/z)g,(1/2)7a|_m’(l/z)or’(l/z)_r- )
models. The model with botfi=1 andT=0 pairing chan-
nels has S@) symmetry[10—13. A simple expression for Above, afm’(l,z)(,,(l,z)f is the fermion creation operator de-
the SA8) ground-state wave function has been constructedcribing a nucleon with orbital momentuimspin projection
in such a way that the maximum possible number of fermi-o, and isospin projection. The parametek, which varies
ons form correlated four-particle=0, S=0 structure§10].  from —1 (pure isoscalar pairingto 1 (pure isovector pair-
These correlated four-particle structures are characterized hijig), governs the relative importance of isoscalar and isovec-
the same quantum numbersaparticles and this resultis in tor pairing in the Hamiltoniar{1).

a correspondence with as-cluster model applied to light Similarly to [10], we employ the boson mapping proce-
and medium mass nuclei. However, it is necessary to notdure[14] to obtain the solution of the fermion problem with

’
m,o,o’, T
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Hamiltonian(1). Using the generalized Dyson boson repre-
sentation of the fermion operatdis4—16

T T
ag a —>bss,—[C bss,]
at/at—>bw y
alas/—>2p blpbs/p, (4)
where
42 bls/b:tr stbs’t’a
T _ T
bss’ _bs 's?
[bss’ btt/] 6st55’t’_ 55'[’ 5s’tv
[bSS’ 1b’[t’]:Ov (5)

we can get a boson image of the Hamilton{an In our case
s=Im, 30,3 . Introducing the boson operators

00 1v
> cho mC(12)0(112)- o C(12)r(112)r

mO’TT

f

+
><b|m (1/12)0,(1/2) 7| —m,(1/2) — o, (1/2) 7'

1
T 00
DM_T E C|m| mc(ﬁz)g(l/z)g'C(1/2)T(1/2)—r
m,o, (T T
xb (6)

Im,(1/2)a,(1/2) 7,1 —m,(1/2) 0" ,(1/2)— 7

we obtain the boson representations of the fermion operato
(PL)i, (DL)s, (PL)s, and ©,,);:

(PL)i—21+1(P]-[C,PL)),
(P)i—21+1P,,,
(D])¢—+2I+1(D}-[C,D]]),
(D,)i—\21+1D,,

where forC we get, from Eqs(5),

()

C= (n 3(np+ngy)

arralt (et e’

+3[(P"-P"(D-D)+(D"-D")(P-P)
—(PT.PH(P-P)—(D"-D")(D-D)]]. (8

Above,

EPM o
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TPT

A T

PT.PT=2 (—1)*P
o

T tT— _ Tt
D'.D _E,:‘ (-1)#D}D",

Using Egs.(7) and(8) we obtain the boson representation of
the Hamiltonian(1):

(1+x)(21+1)n,— (1—x)(21+1)ny
+(1+x)Np(Np+Ng— 1)+ (1—x)Ng(Ny+ng—1)
—3(1+x)(PT-PN)(P-P)~3(1-x)(D'-D")(D-D)
+3(1+x)(DT-DN(P-P)+3(1—x)(PT-P")(D-D).
9

The above boson Hamiltonian is equivalent to the boson
Hamiltonian from[10] where a slightly different form has
been used.

The Hermicity of Hamiltonian9) can be restored by the
following transformation which conserves commutation rela-
tions:

Pl —(1+x)*P], P,—(1+x) ¥,

Dl—(1-x*D!, D,~(1-x"*D,. (10

Applying the transformatiorf10) to the Hamiltonian(9),
we get

rsH=—(1+x) (21 +1)n,— (1-x)(21 + 1)ng

(1+x) p(n +nd 1H+(1- x)nd(n +nd 1)
+3(1+x)(P"-PT)(P-P)+3(1-x)(D'-D")(D-D)
+3J1=X°[(DT-D)(P-P)+(P"-P")(D-D)].

The Hamiltonian(11) has been diagonalized and the eigen-
vectors have been constructed using the basis

(11)

INSTR=(P"-PHKDT-DHN"5"D"2"KP])T(D})90).
(12)

Here N is the total number of bosonS,is the spin {=0),
andT is the isospin. For simplicity we have considered as a
basis the state vectors with the maximum values of the spin
and isospin projections.

Having obtained exact eigenstates, we investigate the pos-
sibility to represent them within terms af-like two-boson
T=0, S=0 structures. Those are obtained as the linear com-
binations of the operator{- P") and ©'-D™):

AT=(P'.P")cosg—(D'-D")sing (13

and the orthogonal one
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A'T=(PT.P")sing+(D'-D")cosé. (14

1.000
First, let us consider eigenstates Wk 0 andT=0. The

lowest state is approximated by
A™2|0), (15)

A
+ x 0.995
=

The paramete in Eq. (13) is determined so as to get a
maximum overlap of the state vect(t5) with the lowest | =
S=0, T=0 exact eigenstate. The next excited eigenstate? 0090
with S=0, T=0 is approximated by the form

g
g
«
X

ATN/Z— 1A,T|0>, (16)
from which a projection on the vect¢t5) is subtracted. The S e o s 1o
higher eigenstates are constructed similarly by increasing the ' ' X ’ ’

degree of theA'" operator in the expression for the state
vector and orthogonalizing this approximate state to the pre-
viously obtained lower-lyinga-correlated expressions. For o2 i : i :
every eigenstate we determine the valugphich gives a (b)

maximum overlap of the corresponding approximate state
vector with the exact one. Thus, the valueséfbre state
dependent.

The calculations have been done for a total number of o
nucleons equal to 1&humber of boson®=8), orbital an-
gular momentunml =3, and the eigenstates with isospin o WA 1
=0 and spinS=0.

The results of the calculations are shown in Fig. 1. All
overlaps of the exact and the corresponding approximate
state vectors are larger than 0.985 for all values loétween
—1 and 1! The values o do not depend on the state in the
dynamical symmetry limits atx=0 [SU(4)], x=1 ) . ) . ) . )
[SO'(5)], andx=—1 [SO(5)]. Between the dynamical 1.0 -0.5 0.0 05 1.0
symmetry limits, the values of are state dependent but this X
dependence is not strong. The calculations show that if we .
take for all eigenstates the sarfaverage value of 8, we get FIG. 1. (a) Dependenche of the .overlap of the exagt and approxi-
for the overlaps values equal to or larger than 0.97 for alffat€ State vectors of the'Gstates in the S@) algebraic model on
values ofx. Eti:eg)parzraedft)ex. (b) gelperlldt_ence of ttzje ang};(l%u::\ro?utc?d in qus. f

. . . an on X. Calculations are aone 1or tne total numper o

These results mean that thellke_ bi-bosons, which are nucleons equal to 12.
the boson analogs of the four-fermidr=0, S=0 correlated
structures, are very important structure units. A representa- i
tion of the eigenstates is simplified significantly with the help !N the present study, we search for the approximate wave
of them. It stresses the important role of the four-nucleorfunction by the principle of maximal overlap. In view of the

a-like correlations in the regime afp pairing. almost perfect agreement of the approximate and exact solu-
The lowest eigenvectors with a nonzefaand S can be tions, we have found a little difference between the maximal
described approximately by the expression overlap and variational procedures. _
The other aspect which makes a difference between
(AT)(N—S—T)/Z(p’{)T(DDS|o>_ (17) present calculations and those of REIf0] is our employ-

ment of the bosonized and Hermitized @DHamiltonian
Again, the calculations confirm the almost perfect overlap ofand comparison of the exact solutions of this Hamiltonian
this construction with the exact solution. with the bosonic analogs of the-like correlated wave func-

A similar discussion of the S@) wave functions in terms tions. This approach does not agree completely with the
of a-like structures has been performed[i0]. There, the genuine fermionic procedure but again the differences are
ground-state wave functions have been analyzed. The variaot large and are of order up to L4 3).
tional principle has been employed and the genuine fermi-

onic wave functiongboth the exact and approximateave
been considered ifL0]. IIl. SINGLE- j-LEVEL WITH SURFACE & INTERACTION

The SA8) model comprising only the fermion pairs with
the values of the angular momentulw0 andJ=1 is, of
For x=0 [SU(4) symmetry limif, the overlap is 100%. course, an idealization of the real situation. In fact, we
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should take into account also the fermion pairs with other vitu=(al aTaTaT)l .
values of the angular momentuinAs a rule, fermion pairs
with T=0 and angular momentuthequal to the maximum M= (apagagag) (23)

angular momentum allowed by a corresponding shell model
configuration have low energy and play an important roleare orthonormal, fully antisymmetric basis vectors of neutron
One should clarify whether the conclusions of the precedingn) and proton(p) subsystems, respectively. These vectors
section about the possibility of approximating the exact waveare constructed using coefficients of fractional percentage
functions by four-particleT=0, J=0 correlated structures (CFP) with definite angular momentumand have an addi-
are also valid in the more general case. tional quantum numbet to distinguish orthonormal states
We consider a model Hamiltonian with nucleons of bothwith the samd.
kinds interacting by the surfacg-interaction (SDI) [1 We investigate the possibility to approximate exact
+y(71-7)18(|r1— 1) 8(r;—Ry) and occupying isolated ground states of the Hamiltonidf8) by usinga-like corre-
single-particle level with angular momentym lated structures. The creation operator of the four-parficle
=0, J=0 correlated structure is introduced as

H=—(1-%2 Gy Ay ooAim.00
3 M A'=32 cillapxahx[a;%as ] o, (24)

R
_(1+X)§ Gl'JMEMT Asm,amAmamy (18) 10 Eq. (24) the coefficients:, should satisfy the relation

Here, 4cy= D, 2n+1c, (25)
A=even
IM ™ al . -
A:'JrM,TMT: E Cim. erz C(l,ZT)T (1/2)r ]m (12 &m (12)r" in order to get & =0 operator. Moreover, the coefficierds
m,m

(19 in Eq. (24) are normalized so that

: : , 0|AAT|0)=1.
Wherea;rmy(l,z)r is a creation operator of a nucleon with an- (ol 10)

gular momentuny, its projectionm, and isospin projectiom.  Some of thec, coefficients are negative.
Another notation is The lowest state witd=0 andT=0 is approximated by

1 2 [3=0,T=0) 4= N Y4A)?0), (26)

and the coefficients, are determined so as to get a maxi-
Goy=[1— (- 1)J](fj2“]+g]2‘]) mum overlap of Eq(26)_vv7ith the corresponding exact eigen-
vector. In our case of= 3, there are only two free param-

1 eters in the expressiai26).

(311J:[1+(_1)J]§fj2’J (20 As is shown in Fig. 2, the overlap of the exact and ap-
proximate ground-state vectors is larger than 0.93 for all val-
ues of the Hamiltonian parameter The dependence of the
coefficientsc, on the parametex is displayed in Fig. &).

For thex=1 case with a purdf=1 pair interaction, the

and

_ 21 +1 coefficientc, with A=0 is much larger than the other ones.
ENCN I i) This finding reflects the prevailing role of thie=1, J=0
pair and the usefulness of the seniority classification in that
2j+1 case. . . - .
9j1= 1(1/2)1(1/2) (22) Thus for the model with SDI's, we obtain a similar pic-
V23+1 ture as in Sec. Il where the $8) algebraic model has been

considered. However, the model with SDI’s is more realistic
The parametex regulates the relative role of thHe=1 and  than the S@8) model. What is especially important is that it
T=0 pairing in the Hamiltoniar{18). includes fermion pairs with angular momentu# 0, 1.
The calculations have been done for the single-particle

angular momentunp= %, total number of nucleons equal to IV. INFLUENCE OF THE np-PAIR CORRELATIONS

8 (midshel), and eigenstates_ with iso_sanzO a_nd angular ON SOME PHYSICAL QUANTITIES
momentumJ=0. The following fermionic basis has been
used for exact diagonalization of the Hamiltonid®): It was discussed above that the ground-state wave func-
tions of the even-eve@ =N nuclei can be approximated
Il,a,B)=[vi*x 7f],|0), (220 quite well by expressions in which the maximum possible
number of fermions forms the correlated four-partidie
where =0, J=0 structures. All information about the ground state
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To see the effect of the different types of pairing correla-
tions on the quantities mentioned above it would be conve-
nient to have the possibility to switch off or to scale these
correlations in the wave functions. However, using the wave
functions given as expansions in the basis sté®% it is
difficult to realize this idea. It is easier to use the correspond-
ing scaling factor in the Hamiltonian. One of them is already

0.98F

0.96}F

A
)

&

< 0.94F
o

(]

Vv

0.92f . presented inH. It is the parametex which regulates the
relative role of theT=1 andT=0 pairing correlations. To
001 s 00 05 o investigate the influence of thep pairing forces, we multi-
x ply np-interaction terms both in thE=1 andT=0 parts of
the Hamiltonian(18) by a factorz which varies from zero
1.0 S , , , , (absence of thap-pairing force to one(full presence of the
L (b) \\\\ np-pairing forcg. Of course, the isospin invariance of the
0.8 T . Hamiltonian is broken foz+#+ 1. Using this artificial proce-
e dure we get some insight into the effect of different types of
0-6r T o ] pairing correlations. Although isospin is not significantly
o I broken in nuclei, usually, we are dealing with the effective
U 0.4t - o ) . -
o c, nuclear Hamiltonians derived for the restricted configura-
o.2lc < 0.001 ////—//" ] tional spaces. In these cases different numbers of the proton
. o c and neutron configurations can be left outside a restricted
0.0 -y, configurational space, especially fdr#Z nuclei. For this
0.0 0.2 0.4 0-6 0-8 -0 reason the relation between proton-proton, neutron-neutron,
z and proton-neutron interaction constants in the effective
Hamiltonian can differ from that in the total Hamiltonian.
1.0 — ; ; ; ; As is seen from Fig. @), the values of the coefficients
- (c) depend strongly on the paramete©Of course, whemz is less
0.81 e than 1, the isospin invariance is broken and the relat&
I does not hold. Foe=0, i.e., for onlynn- and pp-pairing
oor i forces, the coefficiento=1 and the neutron and proton sub-
5o '_C ] systems have zero angular momenta separately. This finding
| can be explained by the separation of the neutron and proton
0.2, i degrees of freedom and by the seniority conservation for the
o SDI in a singlej shell. With increasing, ¢ decreases and
0.0 == o = =5 c2’s with A\#0 increase. Therefore with increasiag the

neutron and proton parts of the four-particle correlated struc-

tures possess nonzero angular momenta and can influence
FIG. 2. (a) Dependence of the overlap of the exact and approxi-the ground-state magnetic moment and quadrupole sum rule.

mate ground-state vectors on the parametierthe singlej model In Fig. 2(c), similar correlations are observed between the

with SDI's. (b) Dependence of the squares of the coefficients of thevalues ofc, and the parametet¢ However, as follows from

ground-state vector multipole expansion on the paranzategulat-  Eq. (25), CS<1 whenz=1 even forx=+1, i.e., for only

ing a strength of thep interaction. The results are shown for  T=1 pairing force being present in the Hamiltonian. The

=0.(c) The same as itb) but for the dependence on the parameterreason for this is the presence of tlie=1, J=0 neutron-

x (z=1). proton pair correlations which create some angular momen-

is thus contained in the structure of the four-particle creatiofu™ in the neutron and proton subsystems separately.
operators(13) and (24). The important question arises as to 1 he square of the quadrupole proton oper&gy, ,
whether relevant experimental quantities exist in which such
an «a-like structure would be revealed and which would con- Qb = E cm gt o4,
firm the importance of tha@p pairing degrees of freedom. i e me, 2 m pEmep

In the present section, we discuss the quadrupole sum rule
calculated for the ground state of the even-evés N averaged over the ground state
nucleus and the ground-state magnetic moment of the odd
nucleus withZ=N=1. The former quantity mainly charac- (07 1(Q5-QH)[07), (27
terizes theE2-transition probability from the ground to the
first 2* state. Both theE2 sum rule and magnetic moment gives us a value of the quadrupole sum rule. The dependence
depend on the angular momenta of the neutron and proto®f the quantity(27) on z andx is illustrated in Figs. G and
subsystems. As in the preceding section, we consider eiglb). No significant change of the sum rule withis ob-
nucleons in thg =% (f;,) shell. An additional odd particle served. Therefore, the quadrupole sum rule cannot be used to
is taken to be a neutron. get information on théf=1 andT=0 pairing competition.

034320-5



YU. V. PALCHIKQV, J. DOBES, AND R. V. JOLOS

2.5 T T T T

| ()

n N N
N w N
T T T

<0719, 9,0 10,
o

o
o
o
o_
n
ol
~
o_
>
o_
[+ ]

X

.90 1 1 1 1 1 1 1 1 1
-10 -08 06 04 02 00 02 04 06 08 10

PHYSICAL REVIEW G3 034320

06} (b) i

14t J

-10 -08 -06 -04 02 00 02 04 06 08 1.0
X

FIG. 3. Dependence of the ground-state quadrupole sum rule of £/ 4. The same as in Fig. 3 but for the ground-state magnetic
the N=Z nucleus on the parametezgx=0) (a) andx (z=1) (b)

in the singlej model calculations.

moment of theN=Z+1 odd nucleus.

The sensitivity of this quantity omis more pronounced. The Where(I?), is the average value of the squared angular mo-
sum rule value is larger when tigp correlations are absent. mentum of the protorithe same for the neutrpisubsystem
For the ground-state wave function of the odd nucleu®f the even—even core described by the state vector

adjacent to th&' =0 line, we use thex-like correlated form

[im)=Noad “ajm(A")?0).
The magnetic moment operator is written as

M= gj,nj n,z+ gj,pj p,z»

(28)

(29

with fn(p)'z being thez component of the neutrofproton

angular momentum. For thé;;, shell, g; ,=—0.55 and

gj,p: 166

Using the state vectd28) and its expansion in the basis
(22), we obtain, for the magnetic moment by a direct calcu

lation,
m=jilulii)

even 1

=a i—(a -—a: ) 12
gj,n] (gj,n gj'p}Nodd (j+1)(2j+1)<| >p|

(30

Naval(AT)?|0).

The first term in Eq(30) is the single-particle magnetic
moment of an odd neutron. The second term is the contribu-
tion of the protons and neutrons forming the four-partitle
=0, J=0 correlated structures. Of course, tissN core
contribution appears due to the nonzero angular momenta of
the proton and neutron subsystems of the core. It is propor-
tional to the core average of the squared profeutron
angular momentum operator. If the proton and neutron sub-
systems of the even-evet=N nucleus have zero angular
momenta, the core term is equal to zero and the magnetic
moment approaches its single-particle value. This is illus-
trated in Fig. 4a) where the dependence of the magnetic

momentu on the Hamiltonian parameteris displayed. For
z equal to 1, i.e., for thep correlations fully included, the
contribution of the core nucleons becomes essential.

The sensitivity of the magnetic moment to the parameter
X, shown in Fig. 4b), is weak and insufficient to study the
T=1 and T=0 pairing competition. This finding is con-
nected with the fact that both the isovector and isoscalar
np-pair correlations introduce nonzero angular momentum
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into the neutron and proton subsystems and cause a deviatitike-nucleon anchp-pair correlations are important.

of the magnetic moment from the single-particle value. Employing this approximation, we have investigated the
influence of the different kinds of pair correlations on the
V. CONCLUSIONS ground-state magnetic moments of an odd nucleus and on the

. o electric quadrupole sum rule. The magnetic moment appears
~ We have discussed the=0 andT=1 palrlng.correla- to be quite sensitive to the presence of the correlations.
tions within the framework of two simple models: the 8D However, both the magnetic moment and quadrupole sum

algebraic model and the singjemodel with the surfac&  ryle are not sensitive enough to the competition between the
interaction. We investigate the possibility to represent ther— 1 andT=0 pair correlations.

wave vector of the ground state by a simple one-term expres-
sion obtained by using the creation operator of the four-
particle T=0, J=0 correlated structures. In the cases stud-
ied, an accuracy of better than 93% of the overlap of the
exact and approximate wave functions has been obtained. This work has been supported in part by the Russian
Thus, the possibility opens to formulate an approximate apFoundation of Basic Researé@rants No. 97-02-16030 and
proach, similar to the broken pair approximation for nuclei96215-96729and by the Grant Agency of the Czech Repub-
with like-nucleon pairing, to describe nuclei in which both lic (Grant No. 202/99/0149
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