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Faddeev description of two-hole-one-particle motion and the single-particle spectral function
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The Faddeev technique is employed to address the problem of describing the influence of both particle-
particle and particle-hole phonons on the single-particle self-energy. The scope of the few-body Faddeev
equations is extended to describe the motion of two-hole—one-paftieteparticle—one-holeexcitations.

This formalism allows one to sum both particle-particle and particle-hole phonons, obtained separately in the
random phase approximation. The appearance of spurious solutions for the present application of the Faddeev
method is related to the inclusion of a consistent set of diagrams. The formalism presented here appears
practical for finite nuclei and achieves a simultaneous inclusion of particle-particle and particle-hole phonons
to all orders while the spurious solutions are properly eliminated.

DOI: 10.1103/PhysRevC.63.034313 PACS nunier21.60.Jz, 21.10.Jx

. INTRODUCTION collective excitations that are actually observed® it is
necessary to at least consider an RPA description of the iso-
In recent years, the study ok’ p) reactions has been scalar negative parity stat¢é1]. To account for the low-
one of the most useful tools to probe correlations in nucleilying isoscalar positive-parity states an even more compli-
Absolute spectroscopic factors have become available fogated treatment will be required. Sizable collective effects
many closed-shell nucldil-3] demonstrating that the re- are also present in the pp and hole-h¢ie) excitations in-
moval probability for nucleons from these systems is re-olving tensor correlations for isoscalar and pair correlations
duced by about 35% in comparison with the simple shelffor isovector states. Another argument to improve the de-
model. The theoretical description of this reduction requiresscription of the coupling of s.p. states to low-lying collective
the inclusion of both short-range and long-range correlationsexcitations is provided by the lack of fragmentation at low
For nuclear matter a strength removal of about 15% is obenergy obtained in present theoretical studi&g] in dis-
tained by including short-range correlatid@g. For %0 the agreement with experimental data.
inclusion of short-range correlations leads to removal of One of the goals of the present work is to account for the
single-particle(s.p) strength of the order of 10%6,6]. The  collectivity in the ph and pghh) channels in a consistent
inclusion of long-range correlations for heavier nuclei like way while including these excitations at least at the RPA
“8Ca yields a qualitative description of the s.p. strength dis{evel. Since the observed fragmentation and depletion of the
tribution by including in the nucleon self-energy the cou-s.p. strength in'®O is quite substantial, it is reasonable to
pling to either low-lying collective particle-holéph) or  assume that these features are also important in the descrip-
particle-particlepp) phonons calculated in random phase ap-tion of the excitations that contribute to the self-energy. This
proximation (RPA) [7]. The additional depletion of about results in a self-consistent formulation where the dressing of
10% due to short-range correlations for this nucleus leads tthe nucleons is incorporated in the description of the collec-
a reasonable quantitative agreement for the largest fragmentigse excitations that ultimately lead to the dressing itself. For
of the experimental strength distribution. this reason the present work will be formulated using self-
Theoretical calculations of hole spectroscopic factors forconsistent Green’s function§SCGH. This type of self-
180 are not so successful. The experimental spectroscoptmonsistency must also be considered in describing pairing
strength[8] for the knockout of a proton from both th®,,  correlations in semimagic nuclgl2,13.
and p3j, shells corresponds to about 60%. The 10% reduc- A formalism in which both pp and ph phonons are treated
tion due to short-range correlations is mostly compensatedt the RPA level in the self-energy was proposed 1.
by the proper inclusion of the center-of-mass motion thafThis work focused on the two-time two-particle—one-hole
enhances the probability fgo removal by about 7%{9]. (2p1h propagator and generated a formulation that reduces
Calculations based on the Green’s function approach, include either including the pp-RPA or the ph-RPA phonons in the
ing both long- and short-range correlations, yield about aself-energy when ph or pp vertices are omitted, respectively.
25% reductior10]. These results still need to be corrected This expansion, however, was obtained using some drastic
for the center-of-mass effect. It is therefore fair to concludeassumptions and disregarding some of the constraints that
that the present theoretical results f60 are still about 20% arise when propagators in different diagrams of the expan-
away from the experimental data. The importance of low-sion are connected. Related to this issue is the appearance of
energy correlations is clearly demonstrated by the results afnphysical solutions for the 2plh propagator that have been
Ref.[10] and their proper inclusion is therefore crucial for a discussed if15]. Results in[15] have therefore been ob-
complete understanding of this puzzle. In the latter work theéained mostly for the TDA treatment of the 2p1h propagator.
self-energy was obtained including the effects of interactiondoreover, this approximation was obtained by employing
between both pp and ph excitations in the Tamm-Dancoffnean-field(single-polg s.p. propagators. In the present self-
approximationTDA). In order to account for the coupling to consistent treatment, which sums fully dressed propagators,

0556-2813/2001/63)/03431312)/$15.00 63 034313-1 ©2001 The American Physical Society



C. BARBIERI AND W. H. DICKHOFF PHYSICAL REVIEW C63 034313

FIG. 1. Example of an approximation for the self-energy. Although this approximation contains both ph and pp correlations, it would
generate incorrect results due to the need of subtracting the second order term to avoid double counting.

this approach is no longer possible. deev equations is the appearance of spurious solutions
To proceed with the inclusion of both pp and ph collec-[21,22, which also have to be considered for the 2plh
tivity in the nucleon self-energy it is important to note that propagator. As pointed out if23], the spurious eigenstates
the naive summation of diagrams containing both pp and plare easy to recognize for the few-body problem since they
phonons leads to serious inconsistencies. This approximaticalso diagonalize the unperturbed Hamiltonian. Their main
is depicted in Fig. 1. The last of the three diagrams on thdeatures are that their eigenvalues are known and that their
right-hand side is already contained in each of the other twavave-function amplitudes sum up to zero. The situation is
and must therefore be subtracted to avoid double countingnore complicated in the many-body problem when the Fad-
This subtraction introduces spurious poles in the Lehmanileev technique is employed. In particular, the fulfilment of
representation of the self-energy and generates meaninglesi®sure relations for pp and ph amplitudes is related to the
solutions of the Dyson equation. The minus sign in front ofbehavior of the spurious Faddeev eigenstates. Without a con-
this term may also prevent in some cases the proper normasistent treatment of this relation the spurious solutions will
ization of the spectroscopic amplitudes. This feature can benix with the physically meaningful ones. Applying the Fad-
understood by considering a possible solution near such deev technique to the many-body problem, it is important to
spurious pole. The normalization is determined by the desolve for all physical solutions that contribute to the self-
rivative of the self-energy at this ener$3] and will not  energy. Thus, it is necessary to develop a formalism in which
yield a correct result on account of the additional minus sigrthe spurious solutions are correctly separated from the physi-
when the third diagram dominates. In addition, each of thecal ones.
first two terms in Fig. 1 ignores the Pauli correlations be- The practical implementation of the present Faddeev
tween the freely propagating line and the quasiparticlescheme is beyond the scope of this paper. The resulting set
forming the phonons, as noted [iil]. In the present work a of equations require a great deal of computational effort,
formalism is pursued that sums the contribution of the ppespecially when dressed propagators are employed. Never-
and ph phonons to the self-energy to all orders avoiding théheless, it appears that they can be solved in practice and
subtraction of the second-order diagram. The treatment afesults using this formalism will be presented elsewhere.
Pauli correlations is improved over methods that employ ph In Sec. Il we briefly describe the SCGF approach based
RPA phonons in the self-energy since all exchange terms an the Dyson equation and present the exact Faddeev formal-
the 2plh level are consistently included. ism for the four-time 2p1h propagator. The construction of a
Other approaches have been proposed in the literature thednsistent formulation for the two-time 2plh propagator in-
attempt to extend the nature of the phonon correlations ineluding the propagation of the pp and ph RPA phonons to all
cluded by performing massive summations of diagribis-  orders is presented in Sec. Ill. Although so far only the 2p1h
18]. Nevertheless, a consistent resummation of both pp andropagator has been mentioned, it should be understood that
ph phonons to all orders has not been achieved in these ptie corresponding two-hole—one-parti¢hlp propagator
pers. The main problem in pursuing such an infinite summamust be included in the calculation of the nucleon self-
tion of diagrams for the 2plh propagator, which includesenergy. In the present work no coupling terms are considered
both pp and ph RPA correlations, is related to the fact that ¢hat transform the 2plh into the 2hlp propagatansvice
two-body interaction can invert the sense of propagation offersa. For this reason the same technique can be used for
only two lines(i.e., change at most two holes in two particles both propagators and we will use the generic 2plh to repre-
and vice versawhile the third line continues to propagate in sent both. In Sec. IV the appearance and treatment of spuri-
the original direction. In this way, a propagator depending orous solutions is discussed. Some technical details are rel-
more than two times is generated. It is therefore necessamgated to the Appendices. Conclusions are drawn in Sec. V.
first to consider an exact formulation involving the four-time
Green'’s function for the 2plh propagator. Direct application
of four-time propagator equations presumably will remain
impractical for the forseeable future. Appropriate approxima-
tions to this equation are therefore necessary to construct the A. Self-energy and 2plh propagator
relevant two-.timeS Green's functions_ thqt cor_1tain the SOUQ.ht' We consider a finite system & fermions interacting by
after correlations. The scheme studied in this paper consists . e .
in computing the RPA phonons in the pp and ph channelsg"€ans of a wo-body interactiod. As usual, one may in-
separately, and then summing them to all orders employing #oduce an appropriate mean-field potentiato localize the
Faddeev techniqugL9,20. nucleons and spllt the Hamiltonian into an unperturbed one-

A nontrivial problem in the implementation of the Fad- body partd,=T+U and a residual interactiod,=V—U.

Il. SELF-CONSISTENT GREEN'S FUNCTION APPROACH
AND 2plh PROPAGATOR
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Since we are mainly interested in low-lying bound states of The propagatog,s(7) can be obtained as the sum of an
finite systems, we consider s.p. states with discrete quantuinfinite set of diagrams, built from interaction vertices and
numbers. As a basis, we choose the set of s.p. sfafe®iat  unperturbed s.p. propagat@$) corresponding téi,. In the
diagonalizeH, with corresponding eigenvalues . The to-  nuclear case, a strong coupling exists between the s.p. degree

tal Hamiltonian can then be written as of freedom and both collective low-lying states as well as
o high-lying states. The latter coupling is related to the strong
H=Hy+H, short-range repulsion in the nuclear force. The resulting frag-
mentation of the s.p. strength, as observed in experimental
=> £%'¢c data, suggests that this feature must already be included in

« e the description of these couplings. For this reason, self-

consistent one-body propagators need to be considered in the
+ % 2 Vaﬁ’ﬁc(‘ryc;cacy_g Ua,BCzTICB Y cons_truction of the nucleon se_lf—energy. This se_lf—
aBys apB consistency feature also emerges in an exact formulation,
N ) _ involving the coupling to two-, three-, andbody propaga-
wherec, (c,) are the creatioridestruction operators of a tors, which can be derived using the equation of motion
particle in the stater, V4 , s are the antisymmetrized matrix method[26]. In short, this means that for the nuclear case
elements oV, andU, 4z correspond to the matrix elements one needs to develop the perturbation theory in terms of the

of U. _ dressed propagat@®) approximated in an appropriate way.
The one-body propagator of th&-body system with The approach we use here consists in computipg( )
ground statéW5) is defined ag24,25 as a solution of the Dyson equation
Gap(7) =~ (Wl TICa(T)CE(0)] W), 2 9ap(1) =g + g U 7= t) 235t~ ) gsp(t2), (3)

where cz(t) and c,(t) now correspond to operators in the whereX* ,(7) is the irreducible self-energy. Here and in the
Heisenberg picture. In the Lehmann representation, all théllowing, we employ the convention of summing over all
eigenvalues of the excited states of the systems wWithl repeated indices and integrate frofaw to +o° over all re-
andA—1 particles appear, as well as their spectroscopic ampeated time variables, unless specified otherwise.

plitudes for transitions to those states that are relevant for By considering the equation of motion fg,4(7), one
comparison with experimental data. obtains tha} ;(7) can be written as the sum of two terms

EZB( T) :EEE+VQ)\,[LVR/LV)\,‘Y§8(77’T’ T+;O+ 10!07) Vy(?,ﬁs ’ (4)

whereEZE represents thétime independentHartree-Fock one-particle irreducible diagrams that cannot be separated by
part of the self-energy, which can be computed from thecutting a single line. These terms are included in the 2plh
solutiong,z(7) itself. The 2plh propagatd®, appearing in Green’s functiongi‘f,lgy‘aﬁy defined below. The relation be-

the last term of Eq(4), contains the sum of all so-called tweenR andg??*" is given by[27]

. 2p1h . I . -1 I .
Runnapy(tiita tsita ts te) = 000wy (t1it2, 13 ts,ts,t6) = 0,0 (L1125 t5, 1) G, 0 (1 = 1)), 4p(te 1" ts,ts),  (5)

in which g;j is the inverse of the one—body Gregn’s function gie;])-\r,]aﬁ'y(tl o, taits,ts,te)
(2) and g'"" and g?P'" are the four- and six-point Green’s et ) )
functions defined as =—i(Wo|T[ex(ta)c,(ta)c,(tr)cy(ta)cy(ts)C (te)]

X|Wp), 7
guﬁ,ya(tl,tz;ts,h) Vo) @)

=~ (WG| Tleh(to)Calt)Cl(ts) Ci(ta) 1 VE) respectively.
(6) The propagatoR,,,, .z, is the solution of the following

equation that has a similar form as the Bethe-Salpeter equa-
and tion for pp and ph propagators:

034313-3



C. BARBIERI AND W. H. DICKHOFF PHYSICAL REVIEW C63 034313

FIG. 2. Bethe-Salpeter equatid®) for the
2plh propagator with vertices given by E).
The irreducible interaction vertices for the pp and
two ph channels are denoted PP and KP",
respectively. The irreducible vertex involving all
three lines simultaneously is denoted K§P".

B. Faddeev-Bethe-Salpeter equations

RMV)\,a,By(tl ,t2 ,t3 ;t4;t5 yte)
=0ua(ti1—14)g,5(t2—t5)g )\ (tg—t3)

Equation(8) can be reduced to a set of coupled equations
in a way similar to the method proposed by Faddeev to solve

~0ualt2=14)9,5(ti—t5) g (te—ta) the three-body problerfi9,28. The inclusion of pp and ph
, ) ) RPA phonons in a consistent way requires this Faddeev ap-
TG (t1—=11)9,, (2= 1) gh(t3—t3) proach since it provides a natural framework for correctly

iterating quantities that have already been summed to all

orders like these RPA phonons. In the present work we will
®  neglect the contribution of the irreduciiéPP term in Eq.

(9) since it leads to the coupling of higher order particle-hole

terms than already considered in the following. We will
which is shown in Fig. 2 in terms of Feynman diagrams. Thetherefore require only three Faddeev components. Following

XK s ar gt (Ut 15t 10)

XRarpry apy(1a,15,16:t4,t5,te),

interaction vertex, also shown in Fig. 2, is givE2V] by standard notation in the literatuf@o], R, 4, will repre-
sent the component related to all diagrams ending with a
K e o torts 1o 1 vertex between legsandk with (i,j,k) cyclic permutations
wn eyt t2:taite ts ) of (1,2,3). We will employ the convention in which the third
=KEN (t),ta:ts,te) g, Lt —ty) leg propagates in the opposite direction with respect to the
MAy' 723175176  pal L T first two. The Faddeev componer®" can be written in
+Kﬁth’)ay(tl,t3;t4,t6)g;B1(t2—t5) terms of the 2plh propagat® and the contribution of the
(op) _ 1 three dressed but noninteracting s.p. propagators. This defi-
T Ky ap(tit2ita,15)9, (te— o) nition is given in detail here for all three components, omit-
(pph) ) ting explicit reference to the time variables for convenience
+ K,LLV)\,aB'y(tl1t21t31t41t57t6)' (9) Of nOtatlon
h ) R(l) :g g K(ph) R
In Eq. (9), KPP andK(PM represent the pp and ph irreduc- pon,aBy™ Jvedp\ep, noRuyo,apy
ible vertices whileKPP" is the 2p1h irreducible vertex. It 1
should be noted that in Eq4) the propagatoR,,,, .z, IS + E(gwgvﬁgﬂ—gmgﬂﬁgw), (10a

only required at two times and therefore its complete knowl-
edge, as given by E@5), is not necessary to solve the Dyson

equation. On the other hand, the dependence on the time RO\ sy =0 KEY R, sy
variablest;, t,, andts is employed in the Bethe-Salpeter 1
equation(8), thus requiring that at least a four-time object be + E(g““g 89— 90a0,u50,0), (10D

employed to solve for the 2p1lh motion exactly.

Equations(3), (4), and(8) together form a set of coupled
equations, where the same propagator, which solves the R®)\ apy= 9000, KPP R sy
Dyson equation3), appears as input in the Bethe-Salpeter
equation(8). If the irreducible verticeK PP KM  and
KPP are also expressed in terms of thgs(7), then Egs.
(3) and (8) will generate a self-consistent expansion. Obvi-
ously, Eq.(8) and the irreducible vertex9) represent the The factor3 in Egs. (10) properly takes into account the
exact solution folR and therefore require a suitable approxi- exchange symmetry between the parallel lines in the Fad-
mation. deev equations. With these definitions the full propagégpr

1
+ E(g,uagvﬁgy)\_gvagp,ﬁg‘y)\)' (10C)
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is given by H

. 1
RMV)\yaﬁV:izlzsR,(tlz/)\,aﬁy_E(g,uagvﬁgy)\_gyagp.ﬁgy}\)- """"" AT :
(13) H

s

The Faddeev equations now take the following form:
q oflowing fo FIG. 3. Diagrams that are included in the definition of the vertex

_ 1 for the pp channel. Herdl'” and AT’ are the forward- and
REB,x wpy=5 (909,899 ~91a0upd i) backward-going part of the energy dependent contribution to the pp
' 2 DRPA vertex(Al). The contribution of these three diagrams can be
factorized in an expression of the for@® T'®)G%> only after

0] (i)
+ ! ’ ! /B AN BTN BTN H -
9 Qv On )‘F,U« VN W YN (RM VN afy having redefined the propagatd®®~ andT'® to depend also on

+Rr® ), =123 (12) the particle and hole fragmentation indicesr{’,k). The last dia-
w'vIN iy e gram has a smaller effect on the physical solutions of the problem,
where therﬂ)m,a/;y vertices obey the following symmetry although it is essential for the elimination of spurious solutions.

relations and are defined by simultaneous inclusion of both pp and ph collective low-

rﬁ}z)\,aﬁy(tlvt21t3;t4vt51t6) !ying excitations ir_1 describing the s.p. propagator. Sgcond, it
is necessary to simplify Eq12) to include only two-times
:1*(52A pay(t2,t1,t3its, by ) Green’s functions. This procedure no longer allows the in-
’ _ version of the propagation direction of all three lines to-
=0, a(ti—t)T'B" (tr,t35ts5,te), (138 gether. As a result, the Faddeev equations split up in two
separate expansions for the 2p1lh and the 2hlp components.
F/(_Lsg)\,aﬁy(tlatZItS;t4it5!t6) Although the hole spectral function is of primary interest for

comparison with experimental data, it must be stressed that
=T pay(t2,t1tsits, b tg) both 2p1h and 2h1p components are needed to generate the
- - self-consistent solution for the s.p. propagator. Since the for-
=g (te—ta)TPP) 4(t1,to5ty,ts). (13D malism involved is the same for both components, we will
5 5 describe only the forward-going2plh expansion. The
The gamma matriceB(PP andI"P" are the four-point func- €quations for the 2h1p case are completely analogous.
tions that solve the Bethe-Salpeter equation for the pp and ph
motion. These vertex functions contain the pp and ph A. Faddeev equations

phonons and can be written as To construct the present approximation scheme, it is more

= (op) _ convenient to use the energy representation. The correspond-
Y5 ap(titaits,ty) ing Lehmann representation of the s.p. propaga®ris
given by

=KOP (ty,toita, ta) +TOP, (1,551 1))

e e ;o Xo)* X YEYE*
Xg;u;(tl_ts)gw(tz_t4)K(7£rp,)aﬁ(t3,t4;t3,t4), (144 gaﬁ(w)zz ( a)+ _'8 +> a(_B)_ . (15

n w—eg,tlyp Kk w—g —Ipy

F(yp(sr,]z.,g(tlvt2§t3,t4) N AL T, A K_ /apA-1 A
where X7 — (WA cT[Wh) (VK=(WiYc,[Wh) are the

spectroscopic amplitudes for the excited states of a system
with A+1(A—1) particles and the poles, =E,"'—E}

X Gy (=130 u(ti— ) KPP (15, th5t5,ty). (14D (e =Eg—Eg ) correspond to the excitation energies with
respect to theA-body ground state. In Eq15) and in the
following, we use the indices andk to enumerate the frag-
ments associated with the one-particle and one-hole excita-
tions, respectively.

Apart from neglecting th& P vertex, Eq.(12) is oth- Employing the bare interactioV, .5 for the vertices
erwise a complete equation for the 2plh propagator. ThiK(PP andK(P", the Bethe-Salpeter equatiofis}) reduce to
general equation involves quantities that depend on severéte usual dressed RP®RPA) equationg29,30. The solu-
times and is therefore too complex to be solved numericallytions of these equations depend only on two times. These pp
In order to construct a manageable approximation schemand ph phonons correspond to the dressed version of the
that includes the relevant physical ingredients, two simplifi-phonons that are considered in RET] (see also Fig. 11
cations will be considered in this section. The first one in-These excitations describe the correlations that we aim to
volves the restriction to two-time pp and ph vertices thatiterate to all orders and, subsequently, to include in the self-
include the respective RPA contributions in these channelsnergy as explained in the introduction. These DRPA solu-
This approximation is the minimum step that maintains thetions can then be substituted in E¢s3) to generate th& ()

h . T .
= Kgypﬁ,gyﬁ(tl 1t2 lt3 !t4) +F(yp§r2LV(tl !tZ lt:ll_ !té)

Ill. APPROXIMATE FADDEEV EQUATIONS
FOR 2p1lh MOTION
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7 R

i
N, vn Ny ,anaﬁnﬁyky(w)

= %[Goinuvnl)\k}\ '“naﬁnﬁyky(w)
(Pp)
F pp v —Gojny;mﬂxkl\ ,anaﬁnﬁyky(w)]
# # +Gojny,un#)\k}\ ,an;,,rn;wk;(w)
. Fs’i’)”’u”'”;*’ki xl’v"ﬂ;v”n’;)\"k;:(w)

FIG. 4. A combination of two diagrams of the type shown here

can be used to connect the 2p1h and 2hlp propagators. Diagrams X[R(j,), o ()

like these are not included in the present approximation scheme. wm ATk anAng vk,

Nevertheless, their contribution appears in the normalization of (k) .
spectroscopic amplitudes. Explicit time-ordering is implied in this +Ru”n;’tv"n’,ﬁ>\”k{ ,anaﬁnﬂyky(w)]’ i=123, (16
diagram.

whereG°~ is the forward-going part of the 2p1h propagator
matrices to be used in the Faddeev expansion. Both thfé)r three dressed but noninteracting lines. Using the nota-
forward- and backward-going components of the DRPA So_‘uons introduced after E|15) we have
lutions are included into the expansion as illustrated in Fig.~o> _
3. This is crucial in order to eliminate the spurious solutions ~ """ K '“”aﬁnﬁy"y(w)_ 5”u'”a5”v’“ﬁ5kx K

of the Faddeev equations as will be explained in Sec. IV and

Y

n N~k 1 Ne 1Ny K
(XM/‘XV YMN*X, XB yyv

Appendix C. X .
The working expression for thE() matrices, which de- w—(s, +&, —g)+in

pends on only two timegor equivalently one energyis ‘ s

given in some detail in Appendix A. Here we only need to (17

stress that the resulting’s cannot invert the freely propa-
gating line from hole to particle or vice versa, i.e., they can-,

not connect the 2p1lh amplitudes with the 2h1p ones. Eor thigansion to a tractable set of equations involving only two-
reason, the pp and ph phonons will be summed only in Ongme opjects. It is important to note that these equations are
time direction in a TDA way contributing separately to the gtjj| expressed in terms of the self-consistent solution
2p1h and 2hl1p propagators. The reader may notice that W@ s(w) and include both pp and ph RPA phonons in a cor-

contributions of the type shown in Fig. 4 can connect theract way. Thus they maintain all the features relevant for the
2plh and the 2h1p propagators. The inclusion of such termshysics we aim to describe.

leads to the simultaneous propagation of two phonons that
requires an extension of the approximation presented in this
paper. Since these terms are expected to contribute only in
higher order, we will neglect them in the following. We note  Equation(16) involves the use of propagators depending
that the collective RPA correlations in the pp and ph chanon a large number of indices. As a consequence, the dimen-
nels have already been computed through EGd) and  sion of the problem could easily grow up to a point where no
therefore remain properly included in our approximation. practical application is feasible for a real system. This diffi-

The remaining complication, related to the use of dressedulty can be overcome by introducing a new set of spectro-
propagators, concerns the interactions vertide®. As ex-  scopic amplitudes that depend only on the indices labeling
plained in Appendix A, thel' and the propagatorR"  the particle and hole fragments,0’,k) [31,32. Thereby
need to be redefined in such a way that their matrix elemente problem is reexpressed by changing from the basis of s.p.
also depend on the indices,(’,k), which label the frag- states{a}, used in definitiong5) and(10), to a new formu-
ments of the propagators. This implies that the eigenvalu&tion constructed in terms of the fragments labeled by
equations will involve summations on both the s.p. indices{n,k}. This procedure also allows to rewrite the eigenvalue
(a,B,7) and the ones corresponding to the fragmentationand normalization conditions corresponding to Ef) in a
(nq,ng,k,). The 2plh propagator and its Faddeev compoimore concise way. As long as the interaction elements
nents, as defined in Eq&) and(10), are recovered only at Vg ,s are energy independent, all the solutions can then be
the end by summing the solutions over all values ofobtained through a single diagonalization. This approach is
(ny,ng,k,)) and (,,n, k). particularly satisfactory from a physical point of view since

Putting together all the above considerations, the resultinthe equations reflect the mixing of the 2plh states repre-
approximation to the Faddeev equatiqid®) can be rewrit- sented by the r{,n’ k) fragments. This new formulation
ten in a way where all the propagators involved depend onlyloes not introduce any further approximation. Nevertheless,
on one energy variabl@r two time variables The forward- ~ since it appears relevant for a practical solution of the prob-
going part of this expansion can be written as follows: lem, we will describe it in the following.

Equation(16), together with thd"()’s given in Appendix
, approximate the general “Faddeev-Bethe-Salpeter” ex-

B. Faddeev amplitudes
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‘The Lehmann representation of the Faddeev componentsy capital boldface letters. We will also ukéor the identity
ROL ik, an,pn ok, contains all the poles;’ of the 2p1h  matrix in theV,® Vs space and the superscrpt to indicate
propagator, each with its own residue. One obtains for thesi€ vectors obtained by exchanging the two particle indices
components [thus,|1®*is the operator exchanginy andn, in Egs.(20)

and (21)].

(i),m * |aM
z (ﬁﬂnMVﬂy)\k}\ anaﬁnﬁyky
m

FQM'%MWVM(A an B gk, = . C. Faddeev Hamiltonian
m The eigenvalue equation for the Faddeev expansion can
+RW. (o), (18)  be obtained by substituting the Lehmann representéién
into Eq. (16) and extracting the residueﬁd of the poles.
where the superscripin labels the solutions of Faddeev after some algebra, one obtains the following set of equa-
equations. In Eq(18), R?'r)ee represent components contain- tions in terms of the<t! vectors
ing the same poles a8°~ (17). The sum of these terms
cancels exactly the contribution of the three freely propagat- . I ) il )
ing lines in Eq.(11), leaving in the Lehmann representation X"’=| HOH® +U® (i)T(') (xD+x®), i=1,23.
w—D
of the Faddeev propagator only those pcﬂéﬂ, that corre- (24)
spond to correlated 2plh states. This is most easily demon-
strated by applying the DRPA equations to both sides of Edin Eq. (24), the components of the matrices”, U@, and
(16). . T® are related to the spectroscopic amplitudes of the DRPA

The VGCtOr-'*ﬁ%':lnyxkx represent the amplitudes of the propagators, as explained in Appendix B. Th&)'s are di-
three Faddeev components and sum up to the residues of thgonal matrices containing the eigenvalues of the corre-
full propagator sponding DRPA.

One can now define block-diagonal matridés D, etc.,
that contain on the diagonal the matricel$), D, etc.
These matrices act on the vectofsdefined in Eq.(23).
Using this notation one combines E@4) as follows:

m — (i),m
banaﬁn[ﬂ’ky_ 553 Banaﬁnﬁyky . (19)
We now define new Faddeev amplitudégh“:k that are re-

lated to thep"’s in such a way thaf31] L

w—

X=|HH"T+U

TT} MX (25)
_ _ D ’
BN iy = X X VX (20

anlﬁnzyk_ . .
where we have also introduced the matrix
where no summation is performed over the particle and hole

indicesn,, n,, andk. We also introduce the notation for the 1

spectroscopic amplitude, analogous to Ef) M= 1 I (26)
. (.
Xk i :;2 . Xk (21)

that takes into account the proper mixing between the Fad-
deev components.

In general,xnlnz,< and the componenusf]il)n2k define four- By introducing the vector

vectorsx andx(") all belonging to the same linear space. It is
useful to split up the latter in two spac¥g andVg contain-
ing all the vectors that are antisymmetric and symmetric with Y=
respect to the exchange of the two particle indicgandn,,
respectively. Thus,

)
——5T™MX (27)

[which appears in Eq(25)] and remembering thdD is a
X1 e V,®Vs. (22) diagonal matrix, it is possible to manipulate EZ5) into the
usual form of an eigenvalue equation

We also define a vectoX containing all the three compo-

nents wX=FX, (28)
x1) where we have introduced the Faddeev Hamiltoriidi23],
X=| x® eViaVi. 23 which is given by
x® F=[I—HH'™M] 'U{TM +D(U " H[I—HHTM]}.

29
Here and in the following, we use the convention to denote @
vectors with lower case boldface and operatorstrices  The form(28) of the Faddeev eigenvalue equations is useful,
with plain capital letters belonging to the spadg®Vs. since it reduces the problem to the diagonalization of a single
Both vectors and matrices in the spat%@vg are denoted (non-Hermitian Hamiltonian.
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The HamiltonianF can still correspond to a large matrix xg‘lnzk (20) is implied, which includes also the exchange
requiring a large amount of CPU time to diagonalize. As will jorms. Eq.(32) differs from the usual normalization of a

be explained later in Sec. IV, about two-thirds of its solu-yaye function for the fact that we have to subtract the addi-
tions are trivial and without physical meaning. Thus, it is Notiional terms

necessary to diagonalize the full Faddeev Hamiltor{2®)
but one can project it onto the space of physical solutions.

y = vORO' 4 30) TO(xD+x®) =123,

|

D. Symmetry requirements and normalization conditions ©-D0 33)

As a consequence of the Pauli exclusion principle, the
spectroscopic amplitudes for the 2p1h motion have to bdhese contributions correspond to the diagrams shown in
antisymmetric with respect to the exchange of the two parFig. 4 that have been discarded in the present expansion.
ticle indices. This statement applies to the full spectroscopic
amplitudes(19) and(21) but not to the single Faddeev com- IV. TREATMENT OF SPURIOUS SOLUTIONS
ponents, which have more complicated exchange properties. i _ i )
To exhibit the correct symmetry requirements for the Fad- 1 ne Faddeev form(zii)llsm is based on the introduction of
deev components, it is useful to introduce the following ex-different components™”’, which belong to the same linear

change operator, which works on the sp&2® of the three ~ SPace of the total spectroscopic amplitude&(22). These
x® components: components are the solutions of the Faddeev-eigenvalue

equation(28), which is formulated in a larger space in terms
| ex of the vectorsX containing all threex. Only one-third of
p—| 1ex (30) the solutions in this larger space have physical meaning
' while the others have to be discarded. One can clarify this
e problem by looking at how the complete spectroscopic am-
plitudesx are obtained from the componenxt§ through Eq.

The form of matrix(30) takes into account that the compo- (21). Relevant details for treating this issue are discussed
nentx!) has to change inta®) when the first two legé.e.,  pelow.

the two particlesare exchanged. Sindeis idempotenti.e., The antisymmetric solutions of the Faddeev equations
P?=P), it has only eigenvalues 1 and—1 and the respec- X _, are determined from two independent vecterandx,
tive eigenvectors are of the form as shown in Eq(31). In particular, one has to specify both
the symmetric and antisymmetric parts of the first vector
Xa Xa (x,) and only the antisymmetric part of the secong)(
X_1=| — 1% | and X ;=| +1¥%, [, (31) These solutions therefore belong to the space
Xo = 1% Xt 1%, Ve=V,a® V0 Vs. (34)

in which x, andx, are any two vectors. One easily recog- the complete spectroscopic amplitudegust also be anti-
nizes that the three Faddeev componentXof andX.;  symmetric under the exchange of the two particle indices, so
give rise to antisymmetric and symmetric spectroscopic aMmey pelong toV,. Thus, Eq.(21) must be regarded as a
pl'tUd?S' respectively, when the_y are mser;ed n E.Of)' projection fromVg to the smaller spac¥, and therefore

Using the symmetry properties of the interaction boxesy st have a nonvanishing kernel. We denote this kernel by
(13 and the definition oM (26), one can show tha com- Vspand refer to its vectors apurious statesY s, Although

mutes with the matrix multiplyin& in Eq. (25) and there-  yhoqe states satisfy the Pauli requirements, they do not yield
fore with the Faddeev Hamiltonig29). Thus,P andF must any contribution to the full 2p1h propagator. We also con-

have a common set of eigenvalues. The relevant eigenvectofsjer the spacp;,, which is orthogonal to the kermn&ls
' P

in the present case correspond to those involng. and contains the antisymmetric sta¥és, that generate non-

_ The normalization condition is_derived as usual by CON~anishing spectroscopic amplitudesThe vectors belonging
sidering the Lehmann representatid®) for the components

) s to Vpp produce contributions to the 2plh propagator and
Rgdvk,aﬁy("’) [33,34. One can expand around a given pole therefore in the following they will be referred to physical
ey and consider terms to order zero and then make use Qftates In Appendix C, explicit basis sets for thé, andVs,
the conjugate of the eigenvalue equati@d). The resultisa spaces are given. Obviously, the combination of these two

condition for theX()’s which only allows proper normaliza- pasis sets forms an orthogonal basis/gfand one ha¥/p;,
tion for the antisymmetric component. These antisymmetric=y/, andVs,=Va®Vs.

solutionsX _; satisfy the following condition: It must be stressed that in general the solutions of the
Faddeev eigenvalue equati28) do not automatically sepa-
xtx— E y(i)Ty(i):Z' (32) rate into the physical and spurious states just defined. Nev-
i=123 ertheless, it is shown in Appendix C that the state¥ gfare

proper eigenstates of the Faddeev Hamiltonian for the expan-
wherex is the spectroscopic amplitude appearing in 24)  sion presented in this paper. This feature always occurs for
and the factor of 2 appears because a sum over all indices tie three-body problem but is not guaranteed when working
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with quasiparticle and quasihole excitations unless a proper We note that if the upper-right block of E¢B5) is not

set of diagrams is considered. When this condition is satiszero, a mixing between thép, andY g, states occurs for all
fied, there exists a set of spurious solutions of the Faddeethe eigenstates of the Faddeev Hamiltonian. In this situation,
equation(28) that spans the spaaés, completely. The pro- the spurious eigenvalues will differ from the unperturbed
jection of the Faddeev Hamiltoniaf29) onto the physical energies and all of the solutions of the Faddeev equations

and spurious subspac¥sy, and Vs, then takes the form will contain a componentYp,. The Faddeev formalism
would therefore become useless, since it would no longer be
(Ph|F|Ph) 0 possible to discern between “good” and “bad” solutions. In
= (SHFIPhY  (SHFISP ] (35  Appendix C we show how the correct behavior of spurious

solutions is related to the presence of backward-going con-
It should be noted that the physical sta¥s, , belonging trjbutions of the DRPAI" matrices(sge Fig. 3 In case these
to Vpy,, differ from the spurious one¥g, (€ Vsy) not only g!agraml.f, ar(tah nelgI%%ted, T'e s.?tunpus sstartefg_o longer
because they give rise to physically meaningful spectro- lagonalize the Faddeev mamiitonian. such diagrams may
scopic amplitudes but also because they are not solutions ve a small contribution to the description of Iow-lymg
States but they are essential to make the whole formalism

the Faddeev equation@9). In general, a physically mean- resented here meaningful. As a general rule, when derivin
ingful eigenvector of35), Xpnysical, IS @ Mixture of states 2x ansions based on thge Féddee\?e uations, it should be keg t
belonging to bothVp, and Vg,, due to the mixing term in Fr)nind that not all iol A fqd' ’ be off _p
(SPF[PhY. Thus, r possible sets of diagrams can be effec
tively summed to all orders. Instead, one must first check the
consistency of the set of diagrams with respect to the behav-

Xphysica=C1Ypnt C2Ysp, B8 jor of spurious solutions.
wherec,; andc, are some constants. In other words, a spu-
rious componeny g, is also generated that will be automati- V. SUMMARY AND CONCLUSIONS
cally projected out when computing the spectroscopic ampli- . . L
tudgxp(zjl). . f P : The present theoretical description of the distribution of

It is important to recognize that such spurious Conmbu_s_pectroscopic strength at low energies_ lacks important ingre-
tions are indeed needed since they account for the diffe/dients for a successful comparison with experimental data.
ences of the three Faddeev compone@®. The relation One of these ingredients is a proper description of the cou-
between the usual Faddeev components for a given physicB[N9 Of S.p. motion to low-lying collective modes that are
or spurious state can be inferred from the basis €8. present in the system. Recent calculations ¥ [10], for
There it is shown that all the Faddeev componeditsof a example, only include a TDA description of these collective
stateYpp, Or Y, are equal up to a sign. As a consequence, nmodes. A new method is propos_,ed here to study the influ-
a general solution is a pure physical statg,, all its Fad- ence of pp anq ph .R.PA correlations on the S-p. propagator
deev components cannot differ from each other in a signififOf & System with a finite number of fermions. This method is
cant way. Having a mixing between physical and Spuriougormulated in the context of SCGF theory by evaluating the
states allows the possibility of obtaining two independenlnUCIeon self-energy in terms of the 2p1h and 2hip propaga-

Faddeev components. This result corresponds to the physic%gg'ngf di?a?jsg”psg)ig Otfhg"e: a2 dpdlt(ah:er\/zfgrlrgaﬁ)s(?r:ta\j\ll?w?csh ri];iisu-
ingredients that involve identical ph phonons for the compo-aII applied to iolve gthe three-bodv problem 'The Faddeey
nentsx® andx(® but a pp phonon for®, Yy app yPp :

When all the Faddeev components are summed to gene@rmalism is necessary since we cor_15ilder the collective pp
ate the fullx in Eq. (21), the contribution of the spurious and ph RPA phonons as the basic building blocks to describe

states cancels out. Thus, for any nonspurious solution of thg‘e_l_ﬁplh motu:nt._ | sch ted h | |
Faddeev equations, only the contribution from physical 1€ computational scheme presented heré empioys only
statesYp;, is needed to determine the 2plh propagator. B wo-time propagators, thus Ieadmg to a tractable set of equa-
looking at Eq.(35), it is easy to see that these contributionst'ons' At the same time the contributions of pp and ph RPA

. . : L .iPhonons have been consistently summed to all orders,
Ela:)nckbe directly obtained by diagonalizing the upper Ieﬂthereby including the physical effects that appear to be rel-

evant for the study of thé®0 nucleus. Unlike previous cal-
culations in which ph phonons have been included, the
present formalism takes the Pauli exchange correlations
, ) ) properly into account up to the 2pl1h level.
wherem is usgd to label the ;oluuons. The solutions of Eq." |, deriving the set of Faddeev equations, a formulation
(37) are sufficient to determine the 2plh propagator. FOl,q heen chosen that involves only a single diagonalization
sone applications one may need the individual componentg, i 511 fragments. The appearance of spurious solutions
x. In that case, the contribution from spurious stafes  has also been discussed in some detail, showing that the
can be determined by solving the remaining part of the Fad,cysion of the contribution of certain diagrams is necessary
deev equations to separate such spurious solutions from the physically
" " " meaningful ones. When this separation occurs, it is straight-
wnYgp=(SPFIPh)YE,+(SPF|SPYs,. (38 forward to project out the physical eigenstates from the Fad-

onYpr=(Ph|F|[Ph)YE,, (37)
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deev equations, thereby eliminating the spurious ones. terms of Eq.(Al). This implies that all three diagrams of

The Faddeev formalism has been used to include specifieig. 3 are included. The main problem encountered when
correlations corresponding to pp and ph phonons in a naturalorking with dressed propagators is that the contribution of
way. Extensions to the inclusion of more complicated exci-these three diagrams do not factorize in an expression of the
tations like the extended DRPP80] can be obtained in a form G°”TI'G®> whenG° is represented by a propagator of
convenient way by starting from the formalism presented irnthe form

Sec. Il.

The formalism presented here appears practical for de- (xMx"2ykyx N2k
scribing the spectroscopic strengthifO in a similar space G (w)= pv N @ BT
as was employed ifL0]. This implementation is currently in urhaby ek w=(gy ten —e)Tin
progress and will be reported elsewhere. (A2)
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This difficulty can be overcome with a slight reformula-
tion of the problem. We no longer regafd® andG°> only
as functions of the model space indices 8, y), but instead
assign an additional dependence on the particle and hole in-
dices. Thus promoting then(n’,k) quantum numbers to ex-
ternal indices, the Lehmann representatiorG8f™ (17) will
T(pp) (@)=V +2 contain at most one pole for every matrix element. As a
pwy.ap prap L w—seT+in © w—el—iy conseqguence, all the componefit§) appearing in the Fad-
deev equations have to be reformulated in the same way. The
=V,apt AFZV ap(@) +A1~“;V wp(©) (A1)  original propagators can then be retrieved at the end by sum-
’ ’ ming the solutions over all the particle and hole fragments.
in whichn+ (k—) label the forward-goingbackward-going  With this procedure it becomes possible to write the sum of
contributions. In obtaining thE® vertex given by Eq(13b)  the three diagrams in Fig. 3 in terms of a matrix product of
we want to keep both the forward- and backward-goingtwo G°~ (17) propagators and the following vertex:

APPENDIX A: INTERACTION BOXES

The T'°P) matrix (148 obtained by solving the DRPA
equation has the following Lehmann representation:

v

+ + k= A k—
(AL)" A S A (Bap)”

+ +
re (w)—l—ak“'ky Vit S, — ) B
n,vn Ak, ,an,Bngyk 5 nv,aB T _ .
ot ne ah 22 |yk)\|2 n+ w_(sni_sk}\)—i_ln
a
g

+ bt o o= Teak— Ak
[w—e, —€5 —&p _8n5+8k)\+8k_]Aﬂv(Aaﬁ)*

y v a
+Z r-_ _+_ _+ r-_ _+_ _+ ! (A3)
K (Sk— €n €n )(Sk— €n €n
2 v a M
|
which corresponds to the expression for the pp interaction APPENDIX B: DRESSED RPA EQUATIONS

box (13b). With this prescription, we are able to write an
eannsign thﬁt Sums fdiagrams Iiks thosef O:] Fig 3. This is clarify the notations used in the paper, we give here a
achieved at the cost of an increased size of the matrices to he. : . ' . i
dealt with. After further manipulation, it is possible to avoid Wiief overview of the DRPA equation for the pp interaction

this complication by dropping the dependence on the moderpat_rix. We also give the_explicit expressions for the normal-
space indicesd, B, y), as explained in Sec. Il B. The ad- (}(z)?rt:](ylsamnd closure relations used in the development of the
vantage of the present procedure lies in the possibility t ISm. L .

diagonalize the Faddeev amplitudes in one step instead of The_‘ pp—(DI)?PA equation '_S denved. from E(ﬂ.4a) by
solving the equations with energy-dependent vertex funcCNOOSINGK P ;=V 4,5 and is shown in Fig. 5. Using the
tions as discussed in Sec. Il C. The expressions for the phehmann representatiogh1) and extracting the poles, |
interaction boxed"®) and ' are derived in a completely (e}_) from the DRPA equation, we get the usual eigenvalue
analogous way. problem
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F(PP)
F(PP)

FIG. 5. DRPA equation for th& (PP matrix.

1
N+ (k=) — A n+(k—)~(0) = -
Aaﬂ _A'yé gy&,ep(w)zVEp,aﬁ|w=s£I(s£_) ’
(B1)
where n+ (k—) refers to the forward-goindbackward-
going) solutions. It is useful to introduce the following nota-

tion, in analogy to the convention introduced in E2Q) for
the Faddeev components:

XA

n+
= : (B2a)
" B(ehl —er,— o)
x"tx"2Ak
_ a ap
HE = — , (B2b)
" Bk —edy ey
k1 kz n+\+
P L (B29)
v \/§(8n+_8k1_8k2)
k k Kk—
(Viaykexak
k= R (B2d)

Vk K = — — — .
1 ﬁ(s{,—ekl—sk)

2
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whereU, H, J, andV are the matrices containing the ele-
ments of Eq.(B2). In dealing with the formalism for the
Faddeev equations, it is also useful to introduce the follow-
ing two matrices:

1
_ _Xr;lX;z(AZE)*1

Tg:,nz_\/z (853)
W, = = (el (B5b)
kq ko \/E av' B aB’

which are ftrivially related to the componen{82a and
(B2d).

The matrix elements given in Eq$B2a—(B2d) and
(B5a),(B5b) correspond to the matricé$®®), U®) and T
introduced after Eq.24) for the 2p1h Faddeev expansiah (

V, andW being the corresponding ones for the 2h1p expan-
sion).

APPENDIX C: PROPERTIES OF SPURIOUS STATES

The set of solutionsX_; (31) that satisfy the Pauli re-
quirements can be divided in to two subsets of physiGal
and spurious stateés,. Orthogonal basis sets for these two
spaces are given by

u—u®* -u
th: u_ueX EVph and YSp: +uex EVSp,
u_uex u_uex
(Cy

where theu represent unit vectors that belong to the space
(22). Their components are given by

l-’lnlnzk: 5n1,n' 5n2,n”5k,k' (C2

with n’, n”, andk’ fixed fragmentation indices that label all
the possibleu. The vectorsu®*=1%*u are given by the ex-
change of the two particle indicey andn,. The physical
statesYp;, are characterized by the fact that they do not
produce vanishing spectroscopic amplitudes while the spuri-

These represent the generalization to dressed propagatorsifs state¥ s, do. ThusVs, represents the kernel of EQ1).

the usual RPA componentthe \J2 has been inserted only in
the pp case for conveniencdn Eg. (B2) the quantitiesY

It is clear from Eq.(C1) that theYp,, states span a space
equivalent to the space of antisymmetric vectof21), thus

()) ande, (s ) represent the spectroscopic amplitudes and/p,=V,. Analogously, theYs, states depend on both the

the poles of the forward-goin(backward-goiny part of the
one-body propagator, whilegi((k__)) are the eigenvalues of
the DRPA equatior{B1).

The normalization condition for the DRPA solutions,
given in terms of the componenB82), is the generalization
of the normalization for the usual RAA6] and can be put in

matrix notation as
ut J7
while the closure relations are given by

| -1
%=1 |

(B4)

I Uu H

J VvV

Al e

JT
VT

UT
HT

u H
J V

I 1

2

symmetric and the antisymmetric parts of thevectors,
which implies Vg =V,®Vg. Therefore, the vectoréCl)
form a basis for the full antisymmetric Faddeev spage
(34).

In general, the physical and spurious stai€$) defined
here are not solutions of the Faddeev equati@®, they
simply define a basis over which these solutions can be ex-
panded. Nevertheless, for both the normal three-body Fad-
deev equations and the expansion proposed in this paper, it
can be seen that the spurious stateg, (and only thosg
diagonalize the Faddeev Hamiltonian. The eigenvalues cor-
respond to the poles of the three freely propagating lines
=e. +&,,—¢c (17). This feature serves as a sum rule on
the solutions of the Faddeev equations &mdlike the case
of three-body systemss not always satisfied when applying
the formalism to particle and hole excitations. Instead this
property depends on the diagrams included in the expansion
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and a proper set of diagrams needs to be employed in ordeame indicesr{(’,n”,k’). Indeed, only in that case the de-

to apply the Faddeev formalism. For the particular Faddeeyominatorm— D will be equal to the one in EqB2a). On

expansion described here, this constraint is achieved by ithe other hand, we see from B§2) that the components of
cluding the backward-going terms of DRPA phonons in theﬂ are nonzero only for the same indices. This allows the
I'D matrices and by using the closure relatigBg), which

: ; substitution of the— in Eq. (C3) by an equal sign when

turn out to play an important role. In the following, the proof ~ = o .
that theYg, states of Eq(C1) actually represent a set of acting on the vector's,,. Supsututmg Eq(C3) into Eq.(25)
spurious solutions of the present Faddeev formalism is 0ut‘§lnd using the closure relations of the DRPA, we obtain the
lined. This also clarifies the relationship between the correcEauation
behavior of the spurious solutions and the backward-going
DRPA diagrams. Ysp=—MYsg,, (C4)

Consider a spurious statés, of the form (C1), with u

given by Eq.(C2) and eigenvalugs. We now observe that which is valid only for the specific stafés,, labeled by the
the matriced) (B2a andT (B5a) differ from each other only jngices f1’,n”,k’). The last equation is satisfied for a spuri-

by an energy denominator. In particular, we have ous state of the form(C1) but not for the corresponding
1 physical staté/ p,. Thus, we have obtained a set of spurious
E— ] (c3)  solutions of the Faddeev equations that form an orthogonal
w—D basis ofVg,.

i ) . ) In this proof, we note that the closure relati@®¥) can be
wereU, T~ andD are defined in Sec. lll. If the eigenvalue is applied to derive Eq(C4) because of the presence of the
given byw:srf, +s;,,— &y , the equivalence of the left- and backward-going terntiHT in Eq. (25), which comes directly
right-hand side holdsnly for the matrix elements having the from the last diagram of Fig. 3.
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