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Nonaxial octupole deformations in light N=2Z nuclei at high spins
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High spin states of?S and®Ni are investigated by means of the cranking Hartree-Fock method with the
Gogny interaction without imposing a restriction on the axial reflection symmetry. It is found that a nonaxial
octupole deformation of th¥3, type becomes important in the yrast states?. A similar effect is predicted
for the nucleus*®Ni.
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[. INTRODUCTION ing as a result of the extra degree of freedom introduced by

One of the most important concepts in the many-bodynonaxial octupole deformations. However, during the last
theory of finite Fermi systems is the mean field approachfew years, some remarkable results have been reported. It
Many phenomena observed in nuclei can be explained withivas found that''3; and Y3, components resulted in the low-
this approach by means of a spontaneous symmetry breaki@$t energy octupole vibrations for oblate and prolate super-
mechanism. As a result, we obtain a mean field solution thadéformed shapes and therefore could be essential for octu-
does not obey symmetries of the original many-body Hamilole instability[11,12,9. Analysis based on the generator-
tonian [1,2]. For instance, a spontaneous breaking of thecoordinate method with the Skyrme effective interacfib8]
spherical symmetry for a nucleus with a partially filled high- confirmed that octupole excitations with=0 and 2 could
est shell gives rise to a deformed shape. Coriolis and cer?® strong for nonrotating SD nuclei in the Pb-Hg region.
trifugal forces may cause a similar effect for a nucleus thafc@lculations by the macroscopic-microscopic method with
has a near spherical shape in the ground state. In particular fe Woods-Saxon potential predicted the importance of the
strong coupling of normal and intruder states near the Fernffanana-typeYs, deformation for highly deformed nuclei
surface at large rotational frequencies can lead to a superdEl4], while theY 3, deformation was found to be important in
formed or to an octupole deformed shape for certain combithe *Ra nucleug15]. The self-consistent HFSkyrme cal-
nations of protons and neutrof3]. The most practical way culations[16] suggest that the oblate states in nuclei with
for the analysis of nuclear shapes is a phenomenologic#l~80 are soft against th¥3; deformation in the ground
macroscopic-microscopic method. This approach combinestates. The self-consistent cranking HSkyrme approach
the liquid drop model describing the macroscogbulk)  [17] predicts that thers; deformation is important for a cor-
properties of nuclear matter and the Strutinsky shell correctect description of the yrast band #S. Moreover, the study
tion method providing the description of quantum shell ef-of octupole deformations sheds light on the interplay be-
fects of phenomenological mean field potentif®. The tween a classical chaos and a quantum spectrum of finite
more fundamental approach is based on self-consisteftermi system$18-2@. In the present paper, guided by the
Hartree-Fock(HF) calculations, once a particular choice of results of[21], we analyze how symmetries break at high
nucleon-nucleon interaction has been made. A commonlgpins in the cranking HFB approach with the Gogny interac-
used internucleon force is that of Skyrme. Although the HFtion. In accordance with the octupole instability suggested at
+Skyrme approach describes major features of nuclei quitgarticle numbeMN=16 and 28[21], we choose twdN=Z
well, it does not completely take the pairing correlations intonuclei, viz. %S and *®Ni. In Sec. Il, we review the main
account. In addition, various sets of parameters for Skyrméeatures of our model. The discussion of main results is pre-
forces may not provide a definite answer in some cases. Thgented in Sec. Ill and the conclusion in Sec. IV.
Hartree-Fock-BogoliubovHFB) method with the Gogny

forces resolves these problems quite effectively. Further-
. . . Il. THE MODEL
more, it has the same predictive power as the macroscopic-
microscopic method4]. The present self-consistent cranking HFB calculations

In recent years, many experimental and theoretical efforthave been performed with the effective Gogny D1S interac-
have been devoted to the analysis of superdeforf®  tion[22—25. This interaction provides a good description of
bands in different mass regiof3,5—8. On the other hand, many nuclear properties over the nuclide chart, e.g., ground
the study of octupole degrees of freedom is also a topicadtate energies, odd-even energy differences, electron scatter-
subject in the nuclear structure physi®&10]. It turns out ing data[23], and fission barrierg25]. Also, a good descrip-
that octupole deformations are significant for superdeformedion is obtained for bulk properties of rotating nuclei in the
nuclei as well as for normal-deformdtiD) ones. Most of  actinide regiorf26], mercury regiori27], andfp-shell region
these studies were restricted to the axial octupole deformd28]. Our numerical code has been used for the analysis of
tion proportional to theY;, term in the octupole family. The microscopic dynamics in light rotating nuclg29-31. In
reason for this is primarily computational complications aris-these calculations, however, the signature symmetry was
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conserved(see a discussion about different symmetries in
rotating nuclei in[10,32). The present calculations are per-

PHYSICAL REVIEW C 63 034309

4 <r2(Y22( 6! 90) +Y2—2( 0!90)))

ﬂz sin V==
formed without assuming the axial and signature symmetries ° ‘EAR(Z)
a priori. In addition, our Hamiltonian includes the Coulomb 37 ((x2—22))
interaction and the center of mass correction up to the ex- == ——, (5)
change terms exactly. > ARcz)
The z axis is taken as a rotational axis in our code. To
save the CPU time in numerical calculations, we impose the

Am (r*Yao(0,0)) |77 (y(5y*~3r?))

Pe ™ (z-simple and the Pe ™7 (S)) symmetries Pao=3 AR ~ Vo AR : (®
[32], whereP is the parity operatore™'™i is the rotation
operator around theaxis (i=y,z) by angler, and 7 is the _ 47 (r¥[Ys1(6,0)—Y3_1(6,0)1)
time-reversal operator. Due to tesimplex andS; symme- 173 2AR ’
tries, the mass asymmetry of a nucleus is allowed only along
the x axis. Thus, we solve numerically the following crank- _ 217 (x(5y?—r?))
ing HFB equations: ~ " V18 ARg ' @)
S(¢(@)|H=N\pZ=NN=0], 47 (r3[Ya2(0,0)+Y3_5(60,0)1)
~ ~ 32= 5 3 ’
+ i pl) X p(0)X $(w))=0,  (1a) 3 V2AR]
. . 1057 (y(x*-2°))
(d(w)|Z]p(w))=2Z, (Pp(w)IN|p(w))=N, (1b) = 9 AR 8
Ro
(d(w)|I]Pp(w))=1, (19 47 (r¥[Ya3(0,0)— Ya_3(6,9)])
A 33T 3 SARS )
($(w)] X $())=0, (1) V2ARg
o _ B 357 (x(x2—32%)) o
where the Lagrange multipliers, and\, are the chemical = 18 T 9

potentials of proton and neutron fields, respectivihe op-

eratorsZ andN are proton and neutron number operaors \yhere ¢4, ) are spherical coordinates related to the Car-
the Lagrange multiplietv is the anguAIar frequency of a col- tasian coordinates in the rotating framey(,z) as
lective rotation around the axis andJ, is the z component

of the angular momentum operatdr To keep the center of

mass motion fixed, we also impose the quadrupole constrai%l def i tional o the odd ¢
operator u( ¢(w)|x| p(w))x [33] on the RouthianR=H eformations proportional to the odd power of teo-

_)\pz_)\nN_wjz in the x-axis direction. grigicneate a;re]dforbidden in ou: codletdL:E to (?T;jstymmetry.

The quasiparticléqp) operators Bso and s, are proportional to the odg” terms, we

use B3, and B33 to represent the degree of the nonaxial oc-

tupole deformation, when thg axis is the largest axis of a
prolate nucleus. We recall that according to Refl] we
should expect strong nonaxial octupole deformationsfér
and *Ni. Notice that the octupole deformation with a mass
where the staték) is a single-particle basis state, obey theasymmetry like a pear shape is also represented by the com-
equation of motion bination of B3; and B33 when thex axis is the largest axis of
a prolate nucleuss’,= V6/483,— V10/4853. The s.p. wave
functions have been expanded in a three-dimensional har-
monic oscillator basis up to the principal quantum number
N=8 for 2S and up tdN=10 for **Ni. The basis has been
ticle amplitudesU,; and V,; as functions of the rotational SYmmetrized with respect to thesimplex operation, and
frequencyw. eigenfunctions are eigenstates of EB;Feoperator(the Good-

We choose thg axis as the quantization axis of deforma- man basig34]). Since the ground state shapes of the chosen

tion. Consequently, the quadrupof@, andy, and octupole, nuclei are a normal-deformed one S and a spherical one
Bam, deformation parameters are defined as for 5®Ni, we use a spherical Cartesian basis with the same

range parameters of the Hermite polynomials for all axes.
47 (12 ,4(6,9)) 7 ((3y?—r2)) The range parameters have been optimized to reproduce the
Bacosy= ¢ —— = \/; — > 4
ARy ARy

(X,¥,2)=(r sinfcose,r cosé,r sinfsing).  (10)

CAYiT:Ek UyiCh+ ViiCi, (2

[Rall=€(w)af (3)

which defines the quasiparticle energitw) and quasipar-

largest binding energy of each ground state. The same pa-
rameters have been used for all configurations discussed be-
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low. The variation of the range parameters may lower the

o . . —+—Cal. : ND
binding energy of an excited band, however, it could lead to ey | —x—cal:SD
the effective mixing of different configurations. On the other 2104 | m  Exp.:Parity+ & Even
hand, the use of the fixed range parameters allows one tt 2153 ' O Exp. : Parity- & Even
trace the evolution of the ground state configuration at dif- 220 A Exp. : Parity+ & Odd
ferent rotational frequencies. In addition, it makes transpars iiii v Exp. : Parity- & Odd

ent the single-particle level-crossing and simplifies the analy-g, 2 235
sis related to a parity mixing discussed below. It is well z -2401

- . - _245_.
known that for increasing shell number the optimal param-2 1

eters change and then become rather stg@#¢ The good 25545 73 7=0§

Ener

agreement between our results and those obtained with muc 260 : o
larger basigsee belowgives the reliability to our procedure. piale REPR T2

To understand the relation between s.p. degrees of free T 3 S A S A
dom and collective effects due to the rotation, we calculate

. . . . . Angular Momentum [k ]

three moments of inertia, the static moment of inertia
I Nw)=llw, the dynamical moment of inert_ia7(2)_(w) FIG. 1. The total binding energy if?S as a function of the
=dl/dw, and the Inglis-BelyaeyiB) moment of inertia angular momentum. The calculated points indicated by symbols

and X for ND and SD states, respectively, are connected by solid
lines. Experimental values for states with different parities and
spins are indicated by symbols: filled square is used for the positive
parity and even values df open square is used for the negative
Here J;; (w) is a matrix element of the angular momentum Parity and even values df filled triangle is used for the positive
operatorJ parity and odd values df, open triangle is used for the negative

z parity and odd values of. The experimental values of the total

Aan binding energy and excited levels from Ref39,40, respectively.

Jij(@)=(d(0)|lajai ;]| ¢(w)). (12 The values of the quadrupole deformatighsand y are given for
each band at=0.

B Jij(@)]?
«7|B(w)—2i2>j m (11

Since the angular momentut= 0 7(w), the static and

dynamical moments of inertia are not independent . .
y P tion and affects the7(®?.. We also use the quantity®

47D (w) — Jig to analyze the correlation between & and struc-
o (13 tural changes of the self-consistent mean fiskk below. In

addition, we analyze different contributions to the IB mo-
ment of inertia, Eq(11),

TP w0)=TD(w)+w

As a consequence, the dynamical moment of ineft&(w)
is very sensitive to structural rearrangements in the underly-
ing nuclear structure like level crossings and shift in defor- Jg(w)= 2 Tes(@)=Tp 1 1(0)+ Ty (@) + T 4 1(w)
mations. On the other hand, at a small rotational frequency,

the total moment of inertia can be approximated 3 + 7 (o) (15)
Jl 53. where (r,s) denote the isospin7=p,n) and thez-simplex
J= jB+‘7M+Z a,BI (14 quantum number §=*1 characterizing different sub-

spacey respectively. The comparison of different compo-
The first term,Jg , neglects a residual two-body interaction nents of 7,g(w) could provide the information about the sub-
between quasiparticles. The second tefinis a Migdal mo-  space in which the gp degrees of freedom mainly affect the
ment of inertia[36], resulting from the effect of rotation on bulk properties of the nuclei.
the residual two-body interaction and, in particular, on the The cranking HFB equationda) are solved in an itera-
pairing interaction. The third term describes the variation oftive way. As the convergence condition for each HFB state,
the self-consistent mean field, namely, the change of defoiwe impose the condition
mations under rotation. Although the calculation of the
Migdal moment of inertia is a tractable task for simple sepa- z |€(n)(w)
rable forceq37], it is a nontrivial problem for density de- T
pendent realistic nonseparable interactions. Notice, that all
three terms in Eqg.14) are included into the Thouless- wheren is the number of iterations in the course of solving
Valatin moment of inertig38] which can be calculated, for the cranking HFB equations.
example, in the random phase approximation. In our analy-
sis, the Thouless-Valatin moment of inertia is approximated [ll. RESULTS AND DISCUSSION
by the dynamical moment of inerti@®). The rotation influ-
ences quasiparticlésingle-particleé wave functions which
define the density dependent two-body interaction. Conse- The results for the yrast line states and deformations as
quently, it leads to a rearrangement of the two-body interacfunctions of the rotational frequency are presented in Figs. 1

— " Y(w)|<0.1keV], (16)

A. %5
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—8— ND in ¥S: Calc. ] (a)
‘om —e— 5D in ¥S: Cale. .o
07 —0— ND in ®Ni: Calc. *%®| —=—|B,, | : Calc. ./.
094 —0—S8Din :Ni:CaIc. 1| —0— 1| By, | : Calc.
x-Som.a oot oI By | 1S
5 0.7_- R R Eye —g
g ool TR -
g 0.5
3 ]
o 041 0.00
ofo ofs 1.'0 1?5 2?0 2.'5
T v T v T T T T T v T 1 (O] [MeV/ h ]
0.0 0.5 1.0 15 2.0 25 3.0 35
o [MeV/ 1] (b)
FIG. 2. B, deformation in®?S and >®Ni as a function of the 0109
rotational frequencyw. The following symbols are used: filled 1
square and filled circle are used for ND and SD states, respectively 0.08
for 32S; open square and open circle are used for ND and SD states 1
respectively, for®®Ni; + and X are used for the results of calcu- 0.06
lations with the Skyrme Il interactiofil 7]. - 1
m‘_"’ 0.04

and 2. We found that the contribution from the pairing inter-
action terms to the total binding energy is almost negligible.
The energy gaps between gp energies near the Fermi ene
gies are large, about 4 MeV, both in the proton and neutron
fields. Therefore, the calculations for the ND and SD bands o0 ' s ' o ' s

have been done within the cranking HF approximation with ®[MeV/h]

the same parameter set as for the HFB calculations. Al-

though there are differences in details between our calcula- FIG. 3. The nonaxial octupole deformatigi@ in the ND yrast
tions and those with Skyrme forcgk7], our main results for  band of %S and(b) in the ND excited band of®Ni—as a function

the ND and SD bands are similar. In Fig. 2 one can see af the rotational frequencw. The calculated values connected by
good agreement between our results and ones from[ Rgf.  solid lines are indicated by symbols: filled square is usedfay;

for the evolution of 3,—deformations in the ND and SD ©open square is used fpBsg. Slll means the results of RefL7].
bands. However, in our calculations with eight shells the

excitation energy of the SD minimum relative to the groundminimum [the binding energy becomes263.5 MeV, see
state is 10.2 MeV in comparison with 12 MeV from Ref. Fig. 2(a) in [41]]. Taking into account the Coulomb ex-
[17]. Calculations with ten shells get reduced by 100 KeVchange energy in the AMP-GCM calculatide&l], the addi-
(~1% effec) the excitation energy of the SD minimum. Itis tional shift —7.37 MeV has been obtained and the ground
slightly different from the results of the HFB calculations of state binding energy becomes270.87 MeV. All these facts
Rodriguez-Guzman, Egido, and Roblddd] who, using the confirm the importance of the Coulomb exchange term
Gogny interaction as well, obtained 9.85 MeV with ten shellswhich is usually neglected in most HFB calculations due to
and 9.54 MeV with 18 shells. They found similar deforma- its complication(see also discussion in R¢f2]). Except for
tions for the ground state and SD HFB minimg,&0.19  the binding energy, our results are also consistent with those
andB,=0.73, respectively However, our estimation for the of SLy4-HF calculationg43], in which the8 deformations
ground state binding energy is lower fé¢S than in[41] are 8,=0.16 andB,=0.7 in the ground state and SD mini-
(—267.03 MeV compared te-261 MeV), since the Cou- mum state, respectively. The SD band becomes the yrast one
lomb exchange term has been included self-consistently ifor 1=124. Since we concentrate our analysis upon the oc-
our model. The ground state energy become®60.7 MeV  tupole instability near the transition region from the ND band
and —261.0 MeV with eight and ten shells, respectively, to the SD band, the description of the SD band is good
without the contribution of the Coulomb exchange term.enough for our purposes. In comparison with the results of
Similar calculations with 10 shells give 9.9 MeV for the the Skyrme Il calculation§17], the finite values of the non-
excitation energy of the SD minimum. These results are in amxial octupole deformatiorYs; in the ND yrast band are
excellent agreement with the HFB calculatigd4] in which ~ obtained at larger rotational frequeney=1.5[MeV/#] in

the Coulomb exchange term was neglected. In order to imeur approach. As is seen in Fig(ap the value of the non-
prove the results the authors pfl] used the angular mo- axial octupole deformationBs, increases suddenly ab
mentum projected generator methGdMP-GCM) and ob- ~1.5[MeV/#], where the pseudo level-crossing occurs be-
tained only the—2.5 MeV shift with respect to the HFB tween s.p. orbits in the subspaces with +1 [Fig. 4(a)],

0.02

0.00
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(a) (a)

—m—s=+1:Occ.
0 8=-1 : OCC.
s=+1: Unocc.
s §=21 7 UNOCE.

1821 3/2 -
€330 1727

s.p. energies [MeV]

y-axis

T T T T
0.0 0.5 1.0 1.5 2.0 25

®[MeV/h]

(b) —B—s=+1: Occ.

431 82— | et :Oco, X-axis
440 172! s=+1: Unocc.

312 32} " e 8=-1  Unoce. (b)

104310 1/2

@

303 7/2

s.p. energies [MeV]

14

-16

—TT J
-0.2 0.0 02 04 0.6 0.8 1.0 12 14 1.6

®[MeV/h]

y-axis

FIG. 4. Neutron single-particle energies near the Fermi surface
versus the rotational frequeney. (a) in 32S and(b) in *Ni. The
occupied states with different simplex quantum nunsesnnected
by lines are indicated by symboils: filled square and open square are
used for thes=+1 ands=—1 states, respectively. The unoccu-
pied states with the simples=+1 ands=—1 are connected by
solid and dotted lines, respectively.

X-axis

FIG. 5. The density distributior(a) in the ND yrast band of?S

both in the proton and neutron fields. The labels of the mosgt @=2.2 [MeV/#]; (b) in the ND excited band of™Ni at w
important orbits are given in Fig.(# at o=0[MeV/#].  =14[MeV/i].
Hereafter, the asymptotic Nilsson quantum numbers are used
only for convenience, since they are not good quantum numdeformation. Similar to the behavior §83,|, the dynamical
bers when the reflection symmetry is absent. With the inmoment of inertia.7(?(w) begins to increase ab~1.5
crease of the angular frequency the interaction between s.pMeV/%], and both quantities show local maxima around
orbits associated with the principal quantum numbées2 w~2 [MeV/#]. Due to the strong octupole interaction, the
andN=3, increases as well. In particular, the coupling be-quasicrossing between s.p. levels is smdétig. 4(a)]. The
tween the orhif 330]1/2 and the[211]1/2 near the Fermi static moment of inertia7!)(w) is less sensitive to the qua-
surface is essential for the mean field in the region<kw2  sicrossing of s.p. levels and it changes smoothly with the
<2.5[MeV/#]. As a result, theYs; deformation becomes increase of the rotational frequency. The quantity
favorable atw~2.2 [MeV/#], for %°S with a finite value J®(w)— Jg nicely correlates with the change of the non-
B3;=0.13. The density distribution projected on the planeaxial octupole deformatioml;,/dw for 32S (see Fig. 6
perpendicular to the rotation axis is shown in Figa)5for ~ caused by the rearrangement of the two-body interaction un-
the yrast state ab~2.2[MeV/# ] where theB;; deformation  der the rotation. On the other hand, the IB moment of inertia
has a maximal value. also reflects the structural changes in the mean field similar

From the analysis of Figs(& and 6, it follows that there to the dynamical moment of inertig®(w). It begins to
is a correlation between the behavior of the dynamical moincrease ato~1.5[MeV/% ] and shows a local maximum at
ment of inertia.7®’(w) and the magnitude of the octupole w~2.2 [MeV/#]. The correlation between the 1B moment
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of inertia and the magnitude of the octupole deformation
| B3 may be understood within a simple two-level model

described below.

Let us consider the situation when the high-lying intruder
s.p. orbitu is coming down to the highest last occupied orbit

v due to the Coriolis term- wJ,. They have the same sim-

plex quantum number. For the sake of simplicity, we restrict

our discussion to the22 subspace. We assume tliatour
states are eigenstates of the parity oper&at w=0 and

(i) there are no changes in the subspace expanded by tt

simplex partners ofx andv at w#0.
For O<w=uw., the eigenstates can be written
|v<w>>): |v<w=o>>>
(@) |u(0=0))
cosf(w)  siny(w) )
—siny(w) cosp(w))’

where|(w)| is a monotonic function ofs.> The function
|#(w)| is defined such thata) 0<|y¥(w)|< w/2 and (b)
#(w=0)=0, |Y(w)|=m/2, wherew, is the largest rota-

7

tional frequency. Using the unitary transformatith Eq.
(17), one can find the density matrix
o oy
p(w)=U 0 0 U

at w#0. Taking into account that ab=0 the matrix ele-
ments of the octupole operat@3 have the following struc-

ture
9w | (0 4
Quv Ouu/ 10 O

where q is a finite real number, we obtaif(Qs)|
=|tr{gp(w)]|=|gsin2(w)|, due to the assumptionii).

PHYSICAL REVIEW C 63 034309

-
N
J

© ®
—=— Inglis-Belyaev

o Static 55“‘?2%

-0~ Dynamical o Po."
------- e—Dyn. - IB

-
o
1

®
1

Moment of Inertia [/MeV]
[+>]
L

0.0 0.5 ' 1.0 ' 1?5 ' 2.0 ' 25 ' 3.0
®[MeV/h]

(b)

0.4+

0.34

024

dp/de

0.1 4

0.04

-0.1 T T T T T T
® [MeV/h]

FIG. 6. The nucleus?S. On(a): the static,7*(w) (open dia-
mond, the dynamical,7®(w) (open circlg, the Inglis-Belyaev,
Je(w), (filled squar¢g moments of inertia, and the difference
J(w)— Jig(w) (filled circle) versus the rotational frequenay;
on (b) the derivatives of deformations versus the rotational fre-
quency:dB;;/dw (filled squarg; dB;;3/dw (filled circle); dB,/dw
(diamond; dy/dw (+). See the definition of different moments of

Since atw=0 matrix elements of the angular momentum inertia in the text.

operatorJ, are defined as

_=<1W ijj 0>
= i) o)

(J’W(w) J'V,L(w))_(i00§¢(w)+i’sinz¢(w) (1" =)sin 2y(w)/2
L (' -Dsin2p(w)2 j'cod Yw)+] sirt g(w)]

Ju(®)  juu(w)

One can see that [(Qs)) and |[j,,(w)|?>=(’
—j)?sir? 2y{w)/4 have a maximum gt(w)|= /4, where

IA sign of (w) is not important for the absolute value of the
octupole deformation.

using the unitary transformatiod, Eq. (17), we obtain for
the matrix elements gfat w # 0

(19

there is a strong mixing of the unperturbed eigenfunctions.
Therefore, thewv component of the Inglis-Belyaev moment
of inertia

2j(@I? ("= )?sir? 24(w)
ed0)te(w)  2e,(w)Tew)]

(20
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FIG. 7. Components of the Inglis-Belyaeyz(w), moment of
inertia as a function of the rotational frequensy (a) in *2S and(b)
in 56Ni. The notation of components is given in E45).

FIG. 8. The degree of mixing of intruder orbits, ég4w), in the
region of quasicrossinga) in 32S and(b) in ®Ni. The quantity
cogy(w) is defined in the text.

may be large enough to affect the total value of the moment
of inertia, because the denominaigy(w) + €,(w) becomes are the number of quanta on tkey, andz axes, respectively.
small at this rotational frequency. Correspondingly, the twoAs is shown in Fig. &), the evaluated value of cog(w)
rotation-aligned single-particle states with a strong octupole=1/2 or equivalently|y(w)|=n/4 at w~2.2 [MeV/#].
coupling near the Fermi surface may give a large contribuwithin the two-level model at this value f(w)|, the mix-
tion to the value of the IB moment of inertia. ing of s.p. states with opposite parities is the strongest one.
From Fig. 7a), it follows that the magnitudes of  Similar to the results in Ref17], our calculations show
Tp,+1(@) andJ, ;1) [see Eq(15)] are smaller than those yather shallow minima for thess; deformation[see Fig.
from thes=—1 subspaces which play dominant roles in thega)]. The contribution of the ground state octupole correla-
collective rotation at low spins, in the regien<1.5[MeV/  ions may improve the mean field prediction. For example,

f]. However, foro>1.5[MeV/#i], 7, 1(w) andJ, +1(®)  yecent analysi§44,45 clearly demonstrates the improve-
begin to increase rapidly and they show local maximaat ment of the mean field results by taking into account the

~2.2[MeV/fi] where| B3 also shows the maximum. Since cqrelations caused by the pairing vibrations. The contribu-
Jp,~1(@) andJ, —1(w) are almost unchanged in this region, tjon of octupole vibrations may be estimated in the random

the Y3, deformation occurs mainly due to the s.p. quasi-phase approximation as is given [46] according to the
crossing in thes= +1 subspaces. To justify this statement prescription[47].

we calculate the quantity cog{w). Using the identity of the As is seen in Fig. @), both the moments of inertia,
intruder orbitsu which have od_d parity ai»=0[MeV/#], J@(w) and Jg(w), begin to increase again ai~2.5
we evaluate the cég{(w) approximately as [MeV/#]. This is apparently due to the quasicrossings in the
s=—1 subspaces at this point. There are also level-crossings
~ . 2 between s.p. orbits with different simplex numbémg.
cos y(w) nx+ny§12=odd Knny Nzl (@))% 4(a)], which suggest the instability of thesimplex symme-
(21)  trized state at high spins. We may speculate that the breaking
of the zsimplex symmetry due to the tilted or the chiral
where a s.p. vectofn,,n,,n,;o) is a component of the rotation[10] may lead to a better description of high spin
Goodman basis in the= +1 subspace and,, n,, andn, states in®S atw=2.5[MeV/#].
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(a)

-460
g5 B0

-470 -

-249.6
-249.8 4

-250.0

-250.2
1 * Cal. (Sph.)
1 —x— Cal. (ND)
-475 : —+—Cal. (SD)
{B~.35 =0 O Exp. (Yrast)
-250.8 4 480 : o —A— Exp. (Rot. even)
-251.0 ] —v— Exp. (Rot. odd)

-250.4 4

Energy [MeV]

-250.6

Energy [MeV]

-485

T T J
5 10 15 20 25

Angular Momentum [h]

omx- -

-251.24

-251.4 T T T
0.08 0.10 0.12 0.14 0.16 0.18

| By | FIG. 10. The total binding energy ifPNi as a function of the
angular momentum. The calculated points indicated by symbols

b and X for SD and ND states, respectively, are connected by solid
4607 ( ) lines. The values of the quadrupole deformatighsand y are
given for each band at=0. Experimental values for different
] states are indicated by symbols: open square is used for the yrast
-460.9 1 states; filled triangle up is used for rotational states with even spins;

1 filled triangle down is used for rotational states with odd spins.

-461.0 Experimental values of the total binding energy, excited levels, and
1 rotational states are from Ref89,48,49, respectively.

-460.8

-461.1 4

Energy [MeV]

4612 =30 SD gap in the Zn isotopd$1], which is also seen in
1 Fig. 11. The macroscopic-microscopic calculatig62,53
] also predict the SD shape at large rotational frequencies. We
4614 , : : : — restricted our analysis of the SD band, however, to the region
0.07 0.08 0.0 0.10 o1 of w=0.0-0.4 [MeV/#], since at larger rotational frequen-
| By | cies the contribution of higher shelldN{10) becomes im-
portant.
~ FIG. 9. The potential energy curve along thg, direction: (&) By using the decomposition of the axial harmonic oscil-
in *S atw=2.2[MeV/#] and(b) in *Niat w=1.4[Mev/h]. The  |at0f into the isotropic ones, the relation between multi-
calculated values of thes, indicated by symbols are connected by ¢)sters and mean field results has been discussed in Ref.
a solid line. [54]. For SD shapes in the axial harmonic oscillator, one
symmetric and one asymmetric combinations of spherical
B. 5oNi oscillators are expectetsee also Ref[12]). Within this
pmodel the SD states iA™Ni should correspond to the asym-

Our calculations reproduce the binding energies and t goae - : . X .
charge radii of ground states i~ Ni quite well. In this metric combination of two spherical oscillators with magic

chain, which includes closed and open shell nuclei, we c:On[lumbers 40 and 16. The density distribution brought about
centrate our attention offNi. by the Gogny interaction for the SD stdieee Fig. 12does

Though the shape of the ground state’tNi is spherical,

-461.34

we also found two shape isomers with the ND and SD con- 81 : - O6C.:5=+1
figuration atw=0 [MeV/#], which are~5 MeV and~ 18 GOV mm——— G- OcC.:5=-1
MeV above the ground state, respectivédge Fig. 10 The 308 772 Unoce.:s=+1
yrast nonrotating states observedfiNi are related to vibra- s 0431 32—————————— Unoce. :s=-1
tional excitations. In fact, their properties can be studiedg ] ;

within the self-consistent cranking approach with the rotation§ ]

around a symmetry ax{$0] and we will discuss this subject 127

in a forthcoming paper. The calculations for the ground state,% 13 :

ND and SD bands have been done in a manner similar tcae 12521

those of3%S in the HF approximation, since the contribution 440 1,25W\W

of the pairing interaction terms to the total bind- 154321 1728l

ing energies are almost negligible. At low spins the SD y i
minimum is formed by the p@g-4h configuration

[ (3)72(4)?]v[(3) ?(4)?] with respect to the ground state
in **Ni. This SD configuration has a prolate shape with the  FiG. 11. Neutron single-particle energies $Ni along the SD

quadrupole deformatioB,=0.6 (Fig. 2). It is also 4 con-  band near the Fermi surface. The symbols used here are defined in
figuration with respect to the SD state $izn due to theN  Fig. 4.

o [MeV/h]
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(a)
2819

—a— Inglis-Belyaev
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5
[}
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" 8 ¢ o
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-é E 12 ©°°
N 5 10 0000000000
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= 21
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o[MeV/h]
X-axis (b)
FIG. 12. The density distribution of the SD minimum at 0 ; .
[MeV/A] in SNi. —=—dp, /do u

—e—df,/do

0.2 4

not show such a multicluster structure @at=0 [MeV/#].
Our configuration space is too small for us to reach a definites
conclusion. On the other hand, the harmonic oscillator is2
useful only for predicting a general tendency towards masso
asymmetry, for a certain particle number for SD shapes. No-
tice that the SD minimum could be related to the resonance
state in the?®Si+28Sj collision at high excitation energy
E’,,=65-70 MeV and high angular momernita 34—42%, T o2 o oe o8 1o 1z 12 1%
as reported in Refd55-57. A thorough study of*®Ni as o [MeV/1]
well as of %S at high spins may help to understand the link . _
between the tendency for nuclei to create strongly deformed /G- 13- The nucleus®™Ni. The symbols used here are defined
shapes and the tendency to develop the cluster structure. n Fig. 6.

A prolate deformatior8,=0.35 is found for the ND mini- )
mum atw=0.0[MeV/4] (Fig. 2. As is seen in Fig. 10, the parity at o=0 [MeV/#] for both the proton and neutron
calculated energies agree well with experimental {l4&. fields,
In many details, our results are similar to the ones obtained

0.0 4

in the calculations based on the shell model and théByF cog Y(w)~ > [(ne.ny N, ol u(w))|?,
Skyrme forceg48]. In addition, in our calculations the non- Ny FNy+nz=even
axial octupole deformatiolYs,; arises in the ND band with (22)

the increase of the rotational frequency. As is seen in Fig.

3(b), the value of the nonaxial octupole deformation in-have maximal values atv~1.3[MeV/A] and w~1.35
creases rapidly around~0.9 [MeV/#]. It corresponds to [MeV/#], where the components of the IB moment of iner-
|~107%], where the pseudo-level-crossing occurs betweettia, 7, s— 1(®) and J,s-1(w), show maxima, respec-
s.p. orbits with the principal quantum numbéis-3 andN tively [Fig. 8 (b)].

=4 [Fig. 4b)]. A coupling between th§440]1/2 orbit and The dynamical and IB moments of inertia also increase at
the [321]1/2 orbit take place near the Fermi surface in thew~0.9 [MeV/A] and exhibit maxima aroundw~1.2
region 0.8&<w=<1.6[MeV/A]. The maximal value of th¥5;  [MeV/A] (Fig. 13. It is slightly different from the result
deformation,83,;=0.09, is approached ai~1.4[MeV/4]  [48] predicting the maximum of/® at w~1.5 [MeV/#].
[Fig. 3(b)]. As is seen in Fig. (b), Jp +1(w) and J;, 1 1(w) Similar to the case of?S, there is a correspondence between
increase rapidly arouné~0.9 [MeV/#4] and approach the the behavior of quantity7(®)(w) — 7z and the evolution of
maximal value atw~1.3 [MeV/#]. Using the two-level the octupole deformation of the self-consistent mean field
model and similar arguments as for the casé®®f, we may  with the rotation and the maximum fi(?) is correlated with
conclude the following: — sincg, _1(») andJ, —1(w) are  the maximum ofdgs;/dw. However, the behavior of the
decreasing in this region of the rotational frequency, it is7®(w) and Jjz(») moment of inertia is less correlated at
most likely that the octupole deformation is caused by thdarger values of the rotational frequency. The pseudocrossing
quasicrossing of s.p. levels in thee=+1 subspaces. The is much sharper ir®Ni in comparison with the one if?S
function cod y{w) of the intruder orbits with the positive (Fig. 4), i.e., the octupole interaction is expected to be
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weaker. The function cég(w) for both the fields decreases S-p. orbits with a positive simplex quantum number. Similar
rapidly atw>1.55[MeV/# ] [see Fig. &)]. Due to the ter- Phenomena have been observed in the nuchég where
mination of the parity mixing of the s.p. levels, the matrix We predict the octupole softness in the excited ND band at
element);; () between mixed states, given by Ej2), falls ~ Nigh spins=10#]. _
rapidly. As a result, the IB moment of inertigz(w), also In conclusion, an exploration of the octupole phenomenon
decreases. On the other hand, the dynamical moment of ifE"tainly could deepen our understanding of different aspects
ertia, 7?)(w), reflects variations of the self-consistent mean?f te spontanepkus syrlnmetry brgakllng r;]wecbhanllfm in ff'?]'te
field. In particular, the changes of the and B8, deforma- 'Fer'ml'systems' like nuclei. In particular, the breaking of the
. ; ) h intrinsic reflection symmetry could be related to unexpected
}0(2)?’&?)'3 waqsgc?rsg(/) (Ijew’ingttlavr(;crtlif)?] tcl)eg]des C?oant%i O(;L}a:i strong electric dipole and octupole transitions in rotational
L : “bands and to a formation of multicluster structures in
g;C:JS;'Zgﬂ?:ti‘:]vceg;ggc(;pt't%jzl)?ﬁaisl] \Ilvgzllagd&:ﬁ]fﬁ ?g:r strongly deformed nuclei. It seems that the nonaxial octupole
. i : " deformations may often accompany the onset of the super-
Laigﬁeimfﬁg: tﬂsgngzzys'?;?;agf; zgﬂfrzgﬂfe?tg'?ﬁéth%eformation. The results fot?S support this idea. Further-
. . L more, shell effects caused by the nonaxial octupole deforma-
suddedn mcr:]r_eﬁse Of. thel ?y”am'ca?' moment of/ﬁmerl'il_a Ob’tions in combination with normal quadrupole deformations
i‘;ﬁf wztn(;?e tgﬂ'ﬁg%ﬂfgjg”ﬁﬁn t.ri[ﬁl\gﬁ?/is ]muclh mimic the superdeformed shell structfizd]. Measurements

. ; ) . with new generations of modern detectors could test the pre-
more shallow in comparison with the one S [Fig. Ab)].  ictions made within the HB) approach and lead to new

insights regarding effective nucleon-nucleon interactions and
IV. SUMMARY their properties.

It was expected from various calculations based on the
macroscopic-microscopic method that octupole deformations
would arise in rotating nucldi3]. Using the cranking HB) We are thankful to F. Sakata, Y. Hashimoto, and Y.
approach with the effective Gogny interaction, we found thatKanada-En’yo for their support in numerical calculations.
the nonaxial octupole deformation associated with Yag ~ We are also grateful to K. Matsuyanagi for illuminating
term in the octupole family becomes important in the yrasicommunications. We appreciate discussions with A. Titov
band of 3’S at the angular momenta5[#4]. The primary and A. Wagner. This work was supported in part by the
mechanism behind the occurrence of the octupole deformaRussian Foundation for Basic Research under Grant No. 00-
tion is related to the strong mixing via octupole interaction 0f02-17194.
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