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Nonaxial octupole deformations in light NÄZ nuclei at high spins
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High spin states of32S and56Ni are investigated by means of the cranking Hartree-Fock method with the
Gogny interaction without imposing a restriction on the axial reflection symmetry. It is found that a nonaxial
octupole deformation of theY31 type becomes important in the yrast states of32S. A similar effect is predicted
for the nucleus56Ni.
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I. INTRODUCTION

One of the most important concepts in the many-bo
theory of finite Fermi systems is the mean field approa
Many phenomena observed in nuclei can be explained wi
this approach by means of a spontaneous symmetry brea
mechanism. As a result, we obtain a mean field solution
does not obey symmetries of the original many-body Ham
tonian @1,2#. For instance, a spontaneous breaking of
spherical symmetry for a nucleus with a partially filled hig
est shell gives rise to a deformed shape. Coriolis and c
trifugal forces may cause a similar effect for a nucleus t
has a near spherical shape in the ground state. In particu
strong coupling of normal and intruder states near the Fe
surface at large rotational frequencies can lead to a supe
formed or to an octupole deformed shape for certain com
nations of protons and neutrons@3#. The most practical way
for the analysis of nuclear shapes is a phenomenolog
macroscopic-microscopic method. This approach comb
the liquid drop model describing the macroscopic~bulk!
properties of nuclear matter and the Strutinsky shell corr
tion method providing the description of quantum shell
fects of phenomenological mean field potentials@2#. The
more fundamental approach is based on self-consis
Hartree-Fock~HF! calculations, once a particular choice
nucleon-nucleon interaction has been made. A commo
used internucleon force is that of Skyrme. Although the
1Skyrme approach describes major features of nuclei q
well, it does not completely take the pairing correlations in
account. In addition, various sets of parameters for Sky
forces may not provide a definite answer in some cases.
Hartree-Fock-Bogoliubov~HFB! method with the Gogny
forces resolves these problems quite effectively. Furth
more, it has the same predictive power as the macrosco
microscopic method@4#.

In recent years, many experimental and theoretical eff
have been devoted to the analysis of superdeformed~SD!
bands in different mass regions@3,5–8#. On the other hand
the study of octupole degrees of freedom is also a top
subject in the nuclear structure physics@9,10#. It turns out
that octupole deformations are significant for superdeform
nuclei as well as for normal-deformed~ND! ones. Most of
these studies were restricted to the axial octupole defor
tion proportional to theY30 term in the octupole family. The
reason for this is primarily computational complications ar
0556-2813/2001/63~3!/034309~11!/$15.00 63 0343
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ing as a result of the extra degree of freedom introduced
nonaxial octupole deformations. However, during the l
few years, some remarkable results have been reporte
was found thatY31 andY32 components resulted in the low
est energy octupole vibrations for oblate and prolate sup
deformed shapes and therefore could be essential for o
pole instability @11,12,9#. Analysis based on the generato
coordinate method with the Skyrme effective interaction@13#
confirmed that octupole excitations withK50 and 2 could
be strong for nonrotating SD nuclei in the Pb-Hg regio
Calculations by the macroscopic-microscopic method w
the Woods-Saxon potential predicted the importance of
banana-typeY31 deformation for highly deformed nucle
@14#, while theY32 deformation was found to be important i
the 222Ra nucleus@15#. The self-consistent HF1Skyrme cal-
culations @16# suggest that the oblate states in nuclei w
A;80 are soft against theY33 deformation in the ground
states. The self-consistent cranking HF1Skyrme approach
@17# predicts that theY31 deformation is important for a cor
rect description of the yrast band of32S. Moreover, the study
of octupole deformations sheds light on the interplay b
tween a classical chaos and a quantum spectrum of fi
Fermi systems@18–20#. In the present paper, guided by th
results of @21#, we analyze how symmetries break at hig
spins in the cranking HFB approach with the Gogny inter
tion. In accordance with the octupole instability suggested
particle numberN516 and 28@21#, we choose twoN5Z
nuclei, viz. 32S and 56Ni. In Sec. II, we review the main
features of our model. The discussion of main results is p
sented in Sec. III and the conclusion in Sec. IV.

II. THE MODEL

The present self-consistent cranking HFB calculatio
have been performed with the effective Gogny D1S inter
tion @22–25#. This interaction provides a good description
many nuclear properties over the nuclide chart, e.g., gro
state energies, odd-even energy differences, electron sca
ing data@23#, and fission barriers@25#. Also, a good descrip-
tion is obtained for bulk properties of rotating nuclei in th
actinide region@26#, mercury region@27#, andfp-shell region
@28#. Our numerical code has been used for the analysi
microscopic dynamics in light rotating nuclei@29–31#. In
these calculations, however, the signature symmetry
©2001 The American Physical Society09-1
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conserved~see a discussion about different symmetries
rotating nuclei in@10,32#!. The present calculations are pe
formed without assuming the axial and signature symmet
a priori. In addition, our Hamiltonian includes the Coulom
interaction and the center of mass correction up to the
change terms exactly.

The z axis is taken as a rotational axis in our code.
save the CPU time in numerical calculations, we impose
P̂e2 ip Ĵz (z-simplex! and the P̂e2 ip Ĵyt̂ (Ŝy

T) symmetries

@32#, where P̂ is the parity operator,e2 ip Ĵi is the rotation
operator around thei axis (i 5y,z) by anglep, and t̂ is the
time-reversal operator. Due to thez-simplex andŜy

T symme-
tries, the mass asymmetry of a nucleus is allowed only al
the x axis. Thus, we solve numerically the following cran
ing HFB equations:

d^f~v!uĤ2lpẐ2lnN̂2v Ĵz

1mx^f~v!ux̂uf~v!&x̂uf~v!&50, ~1a!

^f~v!uẐuf~v!&5Z, ^f~v!uN̂uf~v!&5N, ~1b!

^f~v!uĴzuf~v!&5I , ~1c!

^f~v!ux̂uf~v!&50, ~1d!

where the Lagrange multiplierslp andln are the chemica
potentials of proton and neutron fields, respectively~the op-
eratorsẐ and N̂ are proton and neutron number operator!;
the Lagrange multiplierv is the angular frequency of a co
lective rotation around thez axis andĴz is thez component
of the angular momentum operatorĴ. To keep the center o
mass motion fixed, we also impose the quadrupole constr
operatormx^f(v)ux̂uf(v)&x̂ @33# on the RouthianR̂5Ĥ

2lpẐ2lnN̂2v Ĵz in the x-axis direction.
The quasiparticle~qp! operators

â i
†5(

k
Ukiĉk

†1Vkiĉk , ~2!

where the stateuk& is a single-particle basis state, obey t
equation of motion

@R̂,â i
†#5e i~v!â i

† ~3!

which defines the quasiparticle energiese i(v) and quasipar-
ticle amplitudesUki and Vki as functions of the rotationa
frequencyv.

We choose they axis as the quantization axis of deform
tion. Consequently, the quadrupole,b2 andg, and octupole,
b3m , deformation parameters are defined as

b2 cosg[
4p

5

^r 2Y20~u,w!&

AR0
2

5Ap

5

^~3y22r 2!&

AR0
2

, ~4!
03430
n
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b2 sing[
4p

5

^r 2~Y22~u,w!1Y222~u,w!!&

A2AR0
2

,

5A3p

5

^~x22z2!&

AR0
2

, ~5!

b30[
4p

3

^r 3Y30~u,w!&

AR0
3

5A7p

9

^y~5y223r 2!&

AR0
3

, ~6!

b31[
4p

3

^r 3@Y31~u,w!2Y321~u,w!#&

A2AR0
3

,

52A21p

18

^x~5y22r 2!&

AR0
3

, ~7!

b32[
4p

3

^r 3@Y32~u,w!1Y322~u,w!#&

A2AR0
3

,

5A105p

9

^y~x22z2!&

AR0
3

, ~8!

b33[
4p

3

^r 3@Y33~u,w!2Y323~u,w!#&

A2AR0
3

,

52A35p

18

^x~x223z2!&

AR0
3

, ~9!

where (r ,u,w) are spherical coordinates related to the C
tesian coordinates in the rotating frame (x,y,z) as

~x,y,z![~r sinu cosw,r cosu,r sinu sinw!. ~10!

All deformations proportional to the odd power of they co-
ordinate are forbidden in our code due to theŜy

T symmetry.
Sinceb30 andb32 are proportional to the oddyn terms, we
useb31 andb33 to represent the degree of the nonaxial o
tupole deformation, when they axis is the largest axis of a
prolate nucleus. We recall that according to Ref.@21# we
should expect strong nonaxial octupole deformations for32S
and 56Ni. Notice that the octupole deformation with a ma
asymmetry like a pear shape is also represented by the c
bination ofb31 andb33 when thex axis is the largest axis o
a prolate nucleus:b30

x 5A6/4b312A10/4b33. The s.p. wave
functions have been expanded in a three-dimensional
monic oscillator basis up to the principal quantum numb
N58 for 32S and up toN510 for 56Ni. The basis has been
symmetrized with respect to thez-simplex operation, and
eigenfunctions are eigenstates of theŜy

T operator~the Good-
man basis@34#!. Since the ground state shapes of the cho
nuclei are a normal-deformed one for32S and a spherical one
for 56Ni, we use a spherical Cartesian basis with the sa
range parameters of the Hermite polynomials for all ax
The range parameters have been optimized to reproduce
largest binding energy of each ground state. The same
rameters have been used for all configurations discussed
9-2
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NONAXIAL OCTUPOLE DEFORMATIONS IN LIGHT N5Z . . . PHYSICAL REVIEW C 63 034309
low. The variation of the range parameters may lower
binding energy of an excited band, however, it could lead
the effective mixing of different configurations. On the oth
hand, the use of the fixed range parameters allows on
trace the evolution of the ground state configuration at
ferent rotational frequencies. In addition, it makes transp
ent the single-particle level-crossing and simplifies the an
sis related to a parity mixing discussed below. It is w
known that for increasing shell number the optimal para
eters change and then become rather stable@33#. The good
agreement between our results and those obtained with m
larger basis~see below! gives the reliability to our procedure

To understand the relation between s.p. degrees of f
dom and collective effects due to the rotation, we calcul
three moments of inertia, the static moment of iner
J (1)(v)[I /v, the dynamical moment of inertiaJ (2)(v)
[dI/dv, and the Inglis-Belyaev~IB! moment of inertia

JIB~v!52(
i . j

uJi j ~v!u2

e i~v!1e j~v!
. ~11!

Here Ji j (v) is a matrix element of the angular momentu
operatorĴz

Ji j ~v!5^f~v!u@â j â i ,Ĵz#uf~v!&. ~12!

Since the angular momentumI 5vJ (1)(v), the static and
dynamical moments of inertia are not independent

J (2)~v!5J (1)~v!1v
dJ (1)~v!

dv
. ~13!

As a consequence, the dynamical moment of inertiaJ (2)(v)
is very sensitive to structural rearrangements in the unde
ing nuclear structure like level crossings and shift in def
mations. On the other hand, at a small rotational frequen
the total moment of inertia can be approximated as@35#

J5JIB1JM1(
i

]I

]b i

]b i

]v
. ~14!

The first term,JIB , neglects a residual two-body interactio
between quasiparticles. The second termJM is a Migdal mo-
ment of inertia,@36#, resulting from the effect of rotation on
the residual two-body interaction and, in particular, on
pairing interaction. The third term describes the variation
the self-consistent mean field, namely, the change of de
mations under rotation. Although the calculation of t
Migdal moment of inertia is a tractable task for simple se
rable forces@37#, it is a nontrivial problem for density de
pendent realistic nonseparable interactions. Notice, tha
three terms in Eq.~14! are included into the Thouless
Valatin moment of inertia@38# which can be calculated, fo
example, in the random phase approximation. In our an
sis, the Thouless-Valatin moment of inertia is approxima
by the dynamical moment of inertiaJ (2). The rotation influ-
ences quasiparticle~single-particle! wave functions which
define the density dependent two-body interaction. Con
quently, it leads to a rearrangement of the two-body inter
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tion and affects theJ (2). We also use the quantityJ (2)

2JIB to analyze the correlation between theJ (2) and struc-
tural changes of the self-consistent mean field~see below!. In
addition, we analyze different contributions to the IB m
ment of inertia, Eq.~11!,

JIB~v!5(
t,s

Jt,s~v![Jp,11~v!1Jp,21~v!1Jn,11~v!

1Jn,21~v!, ~15!

where (t,s) denote the isospin (t5p,n) and thez-simplex
quantum number (s561 characterizing different sub
spaces!, respectively. The comparison of different comp
nents ofJIB(v) could provide the information about the su
space in which the qp degrees of freedom mainly affect
bulk properties of the nuclei.

The cranking HFB equations~1a! are solved in an itera-
tive way. As the convergence condition for each HFB sta
we impose the condition

(
i

ue i
(n)~v!2e i

(n21)~v!u<0.1@keV#, ~16!

wheren is the number of iterations in the course of solvin
the cranking HFB equations.

III. RESULTS AND DISCUSSION

A. 32S

The results for the yrast line states and deformations
functions of the rotational frequency are presented in Fig

FIG. 1. The total binding energy in32S as a function of the
angular momentum. The calculated points indicated by symbol1
and3 for ND and SD states, respectively, are connected by s
lines. Experimental values for states with different parities a
spins are indicated by symbols: filled square is used for the pos
parity and even values ofI; open square is used for the negati
parity and even values ofI; filled triangle is used for the positive
parity and odd values ofI; open triangle is used for the negativ
parity and odd values ofI. The experimental values of the tota
binding energy and excited levels from Refs.@39,40#, respectively.
The values of the quadrupole deformationsb2 andg are given for
each band atI 50.
9-3
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and 2. We found that the contribution from the pairing inte
action terms to the total binding energy is almost negligib
The energy gaps between qp energies near the Fermi e
gies are large, about 4 MeV, both in the proton and neut
fields. Therefore, the calculations for the ND and SD ba
have been done within the cranking HF approximation w
the same parameter set as for the HFB calculations.
though there are differences in details between our calc
tions and those with Skyrme forces@17#, our main results for
the ND and SD bands are similar. In Fig. 2 one can se
good agreement between our results and ones from Ref.@17#
for the evolution ofb2—deformations in the ND and SD
bands. However, in our calculations with eight shells
excitation energy of the SD minimum relative to the grou
state is 10.2 MeV in comparison with 12 MeV from Re
@17#. Calculations with ten shells get reduced by 100 K
(;1% effect! the excitation energy of the SD minimum. It
slightly different from the results of the HFB calculations
Rodriguez-Guzman, Egido, and Robledo@41# who, using the
Gogny interaction as well, obtained 9.85 MeV with ten she
and 9.54 MeV with 18 shells. They found similar deform
tions for the ground state and SD HFB minima (b250.19
andb250.73, respectively!. However, our estimation for the
ground state binding energy is lower for32S than in@41#
(2267.03 MeV compared to2261 MeV!, since the Cou-
lomb exchange term has been included self-consistentl
our model. The ground state energy becomes2260.7 MeV
and 2261.0 MeV with eight and ten shells, respective
without the contribution of the Coulomb exchange ter
Similar calculations with 10 shells give 9.9 MeV for th
excitation energy of the SD minimum. These results are in
excellent agreement with the HFB calculations@41# in which
the Coulomb exchange term was neglected. In order to
prove the results the authors of@41# used the angular mo
mentum projected generator method~AMP-GCM! and ob-
tained only the22.5 MeV shift with respect to the HFB

FIG. 2. b2 deformation in 32S and 56Ni as a function of the
rotational frequencyv. The following symbols are used: filled
square and filled circle are used for ND and SD states, respecti
for 32S; open square and open circle are used for ND and SD st
respectively, for56Ni; 1 and 3 are used for the results of calcu
lations with the Skyrme III interaction@17#.
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minimum @the binding energy becomes2263.5 MeV, see
Fig. 2~a! in @41##. Taking into account the Coulomb ex
change energy in the AMP-GCM calculations@41#, the addi-
tional shift 27.37 MeV has been obtained and the grou
state binding energy becomes2270.87 MeV. All these facts
confirm the importance of the Coulomb exchange te
which is usually neglected in most HFB calculations due
its complication~see also discussion in Ref.@42#!. Except for
the binding energy, our results are also consistent with th
of SLy4-HF calculations@43#, in which theb deformations
areb250.16 andb250.7 in the ground state and SD min
mum state, respectively. The SD band becomes the yrast
for I>12\. Since we concentrate our analysis upon the
tupole instability near the transition region from the ND ba
to the SD band, the description of the SD band is go
enough for our purposes. In comparison with the results
the Skyrme III calculations@17#, the finite values of the non
axial octupole deformationY31 in the ND yrast band are
obtained at larger rotational frequencyv>1.5 @MeV/\# in
our approach. As is seen in Fig. 3~a!, the value of the non-
axial octupole deformationub31u increases suddenly atv
;1.5 @MeV/\#, where the pseudo level-crossing occurs b
tween s.p. orbits in the subspaces withs511 @Fig. 4~a!#,

ly,
es,

FIG. 3. The nonaxial octupole deformation:~a! in the ND yrast
band of 32S and~b! in the ND excited band of56Ni—as a function
of the rotational frequencyv. The calculated values connected b
solid lines are indicated by symbols: filled square is used forub31u;
open square is used forub33u. SIII means the results of Ref.@17#.
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NONAXIAL OCTUPOLE DEFORMATIONS IN LIGHT N5Z . . . PHYSICAL REVIEW C 63 034309
both in the proton and neutron fields. The labels of the m
important orbits are given in Fig. 4~a! at v50@MeV/\#.
Hereafter, the asymptotic Nilsson quantum numbers are u
only for convenience, since they are not good quantum n
bers when the reflection symmetry is absent. With the
crease of the angular frequency the interaction between
orbits associated with the principal quantum numbersN52
andN53, increases as well. In particular, the coupling b
tween the orbit@330#1/2 and the@211#1/2 near the Ferm
surface is essential for the mean field in the region 1.2<v
<2.5 @MeV/\#. As a result, theY31 deformation becomes
favorable atv;2.2 @MeV/\#, for 32S with a finite value
b3150.13. The density distribution projected on the pla
perpendicular to the rotation axis is shown in Fig. 5~a! for
the yrast state atv;2.2 @MeV/\# where theb31 deformation
has a maximal value.

From the analysis of Figs. 3~a! and 6, it follows that there
is a correlation between the behavior of the dynamical m
ment of inertiaJ (2)(v) and the magnitude of the octupo

FIG. 4. Neutron single-particle energies near the Fermi surf
versus the rotational frequencyv: ~a! in 32S and~b! in 56Ni. The
occupied states with different simplex quantum numbers connected
by lines are indicated by symbols: filled square and open square
used for thes511 ands521 states, respectively. The unocc
pied states with the simplexs511 ands521 are connected by
solid and dotted lines, respectively.
03430
st
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deformation. Similar to the behavior ofub31u, the dynamical
moment of inertiaJ (2)(v) begins to increase atv;1.5
@MeV/\#, and both quantities show local maxima arou
v;2 @MeV/\#. Due to the strong octupole interaction, th
quasicrossing between s.p. levels is smooth@Fig. 4~a!#. The
static moment of inertiaJ (1)(v) is less sensitive to the qua
sicrossing of s.p. levels and it changes smoothly with
increase of the rotational frequencyv. The quantity
J (2)(v)2JIB nicely correlates with the change of the no
axial octupole deformationdb31/dv for 32S ~see Fig. 6!
caused by the rearrangement of the two-body interaction
der the rotation. On the other hand, the IB moment of ine
also reflects the structural changes in the mean field sim
to the dynamical moment of inertiaJ (2)(v). It begins to
increase atv;1.5 @MeV/\# and shows a local maximum a
v;2.2 @MeV/\#. The correlation between the IB mome

e

re

FIG. 5. The density distribution:~a! in the ND yrast band of32S
at v52.2 @MeV/\#; ~b! in the ND excited band of56Ni at v
51.4 @MeV/\#.
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of inertia and the magnitude of the octupole deformat
ub31u may be understood within a simple two-level mod
described below.

Let us consider the situation when the high-lying intrud
s.p. orbitm is coming down to the highest last occupied or
n due to the Coriolis term2v Ĵz . They have the same sim
plex quantum number. For the sake of simplicity, we rest
our discussion to the 232 subspace. We assume that~i! our
states are eigenstates of the parity operatorP̂ at v50 and
~ii ! there are no changes in the subspace expanded by
simplex partners ofm andn at vÞ0.

For 0<v<vc , the eigenstates can be written

S un~v!&

um~v!&
D 5US un~v50!&

um~v50!&
D

U5S cosc~v! sinc~v!

2sinc~v! cosc~v!
D , ~17!

where uc(v)u is a monotonic function ofv.1 The function
uc(v)u is defined such that~a! 0<uc(v)u< p/2 and ~b!
c(v50)50, uc(vc)u5p/2, wherevc is the largest rota-
tional frequency. Using the unitary transformationU, Eq.
~17!, one can find the density matrix

r~v!5US 1 0

0 0DU21

at vÞ0. Taking into account that atv50 the matrix ele-
ments of the octupole operatorQ̂3 have the following struc-
ture

q[S qnn qnm

qmn qmm
D 5S 0 q

q 0D , ~18!

where q is a finite real number, we obtainu^Q̂3&u
5utr@qr(v)#u5uqsin2c(v)u, due to the assumption~ii !.
Since atv50 matrix elements of the angular momentu
operatorĴz are defined as

j[S j nn j nm

j mn j mm
D 5S j 0

0 j 8
D ,
e

03430
n
l

r
t

t

the

using the unitary transformationU, Eq. ~17!, we obtain for
the matrix elements ofj at vÞ0

FIG. 6. The nucleus32S. On~a!: the static,J (1)(v) ~open dia-
mond!, the dynamical,J (2)(v) ~open circle!, the Inglis-Belyaev,
JIB(v), ~filled square! moments of inertia, and the differenc
J (2)(v)2JIB(v) ~filled circle! versus the rotational frequencyv;
on ~b! the derivatives of deformations versus the rotational f
quency:db31/dv ~filled square!; db33/dv ~filled circle!; db2 /dv
~diamond!; dg/dv (1). See the definition of different moments o
inertia in the text.
S j nn~v! j nm~v!

j mn~v! j mm~v!
D 5S j cos2 c~v!1 j 8 sin2 c~v! ~ j 82 j !sin 2c~v!/2

~ j 82 j !sin 2c~v!/2 j 8cos2 c~v!1 j sin2 c~v!
D . ~19!
ns.
t

One can see that u^Q̂3&u and u j mn(v)u25( j 8
2j)2 sin2 2c(v)/4 have a maximum atuc(v)u5p/4, where

1A sign of c(v) is not important for the absolute value of th
octupole deformation.
there is a strong mixing of the unperturbed eigenfunctio
Therefore, themn component of the Inglis-Belyaev momen
of inertia

2u j mn~v!u2

em~v!1en~v!
5

~ j 82 j !2 sin2 2c~v!

2@em~v!1en~v!#
~20!
9-6
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NONAXIAL OCTUPOLE DEFORMATIONS IN LIGHT N5Z . . . PHYSICAL REVIEW C 63 034309
may be large enough to affect the total value of the mom
of inertia, because the denominatorem(v)1en(v) becomes
small at this rotational frequency. Correspondingly, the t
rotation-aligned single-particle states with a strong octup
coupling near the Fermi surface may give a large contri
tion to the value of the IB moment of inertia.

From Fig. 7~a!, it follows that the magnitudes o
Jp,11(v) andJn,11(v) @see Eq.~15!# are smaller than thos
from thes521 subspaces which play dominant roles in t
collective rotation at low spins, in the regionv,1.5 @MeV/
\#. However, forv.1.5 @MeV/\#, Jp,11(v) andJn,11(v)
begin to increase rapidly and they show local maxima av
;2.2 @MeV/\# whereub31u also shows the maximum. Sinc
Jp,21(v) andJn,21(v) are almost unchanged in this regio
the Y31 deformation occurs mainly due to the s.p. qua
crossing in thes511 subspaces. To justify this stateme
we calculate the quantity cos2 c(v). Using the identity of the
intruder orbitsm which have odd parity atv50@MeV/\#,
we evaluate the cos2c(v) approximately as

cos2 c~v!' (
nx1ny1nz5odd

u^nx ,ny ,nz ;sum~v!&u2,

~21!

where a s.p. vectorunx ,ny ,nz ;s& is a component of the
Goodman basis in thes511 subspace andnx , ny, andnz

FIG. 7. Components of the Inglis-Belyaev,JIB(v), moment of
inertia as a function of the rotational frequencyv: ~a! in 32S and~b!
in 56Ni. The notation of components is given in Eq.~15!.
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are the number of quanta on thex, y, andz axes, respectively
As is shown in Fig. 8~a!, the evaluated value of cos2 c(v)
51/2 or equivalently uc(v)u5p/4 at v;2.2 @MeV/\#.
Within the two-level model at this value ofuc(v)u, the mix-
ing of s.p. states with opposite parities is the strongest o

Similar to the results in Ref.@17#, our calculations show
rather shallow minima for theb31 deformation @see Fig.
9~a!#. The contribution of the ground state octupole corre
tions may improve the mean field prediction. For examp
recent analysis@44,45# clearly demonstrates the improve
ment of the mean field results by taking into account
correlations caused by the pairing vibrations. The contri
tion of octupole vibrations may be estimated in the rand
phase approximation as is given in@46# according to the
prescription@47#.

As is seen in Fig. 6~a!, both the moments of inertia
J (2)(v) and JIB(v), begin to increase again atv;2.5
@MeV/\#. This is apparently due to the quasicrossings in
s521 subspaces at this point. There are also level-cross
between s.p. orbits with different simplex numbers@Fig.
4~a!#, which suggest the instability of thez-simplex symme-
trized state at high spins. We may speculate that the brea
of the z-simplex symmetry due to the tilted or the chir
rotation @10# may lead to a better description of high sp
states in32S atv>2.5 @MeV/\#.

FIG. 8. The degree of mixing of intruder orbits, cos2 c(v), in the
region of quasicrossing:~a! in 32S and~b! in 56Ni. The quantity
cos2c(v) is defined in the text.
9-7
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B. 56Ni

Our calculations reproduce the binding energies and
charge radii of ground states in56260Ni quite well. In this
chain, which includes closed and open shell nuclei, we c
centrate our attention on56Ni.

Though the shape of the ground state in56Ni is spherical,
we also found two shape isomers with the ND and SD c
figuration atv50 @MeV/\#, which are;5 MeV and;18
MeV above the ground state, respectively~see Fig. 10!. The
yrast nonrotating states observed in56Ni are related to vibra-
tional excitations. In fact, their properties can be stud
within the self-consistent cranking approach with the rotat
around a symmetry axis@50# and we will discuss this subjec
in a forthcoming paper. The calculations for the ground st
ND and SD bands have been done in a manner simila
those of32S in the HF approximation, since the contributio
of the pairing interaction terms to the total bin
ing energies are almost negligible. At low spins the S
minimum is formed by the 4p-4h configuration
p@(3)22(4)2#n@(3)22(4)2# with respect to the ground stat
in 56Ni. This SD configuration has a prolate shape with t
quadrupole deformationb250.6 ~Fig. 2!. It is also 4h con-
figuration with respect to the SD state in60Zn due to theN

FIG. 9. The potential energy curve along theb31 direction: ~a!
in 32S atv52.2 @MeV/\# and~b! in 56Ni at v51.4 @Mev/\#. The
calculated values of theb31 indicated by symbols are connected b
a solid line.
03430
e

-

-

d
n

e,
to

e

530 SD gap in the Zn isotopes@51#, which is also seen in
Fig. 11. The macroscopic-microscopic calculations@52,53#
also predict the SD shape at large rotational frequencies.
restricted our analysis of the SD band, however, to the reg
of v50.020.4 @MeV/\#, since at larger rotational frequen
cies the contribution of higher shells (N.10) becomes im-
portant.

By using the decomposition of the axial harmonic osc
lator into the isotropic ones, the relation between mu
clusters and mean field results has been discussed in
@54#. For SD shapes in the axial harmonic oscillator, o
symmetric and one asymmetric combinations of spher
oscillators are expected~see also Ref.@12#!. Within this
model the SD states in56Ni should correspond to the asym
metric combination of two spherical oscillators with mag
numbers 40 and 16. The density distribution brought ab
by the Gogny interaction for the SD state~see Fig. 12! does

FIG. 10. The total binding energy in56Ni as a function of the
angular momentum. The calculated points indicated by symbol1
and3 for SD and ND states, respectively, are connected by s
lines. The values of the quadrupole deformationsb2 and g are
given for each band atI 50. Experimental values for differen
states are indicated by symbols: open square is used for the
states; filled triangle up is used for rotational states with even sp
filled triangle down is used for rotational states with odd spi
Experimental values of the total binding energy, excited levels,
rotational states are from Refs.@39,48,49#, respectively.

FIG. 11. Neutron single-particle energies of56Ni along the SD
band near the Fermi surface. The symbols used here are defin
Fig. 4.
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not show such a multicluster structure atv50 @MeV/\#.
Our configuration space is too small for us to reach a defi
conclusion. On the other hand, the harmonic oscillator
useful only for predicting a general tendency towards m
asymmetry, for a certain particle number for SD shapes.
tice that the SD minimum could be related to the resona
state in the 28Si128Si collision at high excitation energ
Ec.m.* 565–70 MeV and high angular momentaI 534–42\,
as reported in Refs.@55–57#. A thorough study of56Ni as
well as of 32S at high spins may help to understand the li
between the tendency for nuclei to create strongly deform
shapes and the tendency to develop the cluster structure

A prolate deformationb250.35 is found for the ND mini-
mum atv50.0 @MeV/\# ~Fig. 2!. As is seen in Fig. 10, the
calculated energies agree well with experimental data@48#.
In many details, our results are similar to the ones obtai
in the calculations based on the shell model and the HF~B!1
Skyrme forces@48#. In addition, in our calculations the non
axial octupole deformationY31 arises in the ND band with
the increase of the rotational frequency. As is seen in F
3~b!, the value of the nonaxial octupole deformation i
creases rapidly aroundv;0.9 @MeV/\#. It corresponds to
I;10@\#, where the pseudo-level-crossing occurs betw
s.p. orbits with the principal quantum numbersN53 andN
54 @Fig. 4~b!#. A coupling between the@440#1/2 orbit and
the @321#1/2 orbit take place near the Fermi surface in t
region 0.8<v<1.6 @MeV/\#. The maximal value of theY31
deformation,b3150.09, is approached atv;1.4 @MeV/\#
@Fig. 3~b!#. As is seen in Fig. 7~b!, Jp,11(v) andJn,11(v)
increase rapidly aroundv;0.9 @MeV/\# and approach the
maximal value atv;1.3 @MeV/\#. Using the two-level
model and similar arguments as for the case of32S, we may
conclude the following: – sinceJp,21(v) andJn,21(v) are
decreasing in this region of the rotational frequency, it
most likely that the octupole deformation is caused by
quasicrossing of s.p. levels in thes511 subspaces. The
function cos2 c(v) of the intruder orbits with the positive

FIG. 12. The density distribution of the SD minimum atv50
@MeV/\# in 56Ni.
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parity at v50 @MeV/\# for both the proton and neutro
fields,

cos2 c~v!' (
nx1ny1nz5even

u^nx ,ny ,nz ;sum~v!&u2,

~22!

have maximal values atv;1.3 @MeV/\# and v;1.35
@MeV/\#, where the components of the IB moment of ine
tia, Jp,s511(v) and Jn,s511(v), show maxima, respec
tively @Fig. 8 ~b!#.

The dynamical and IB moments of inertia also increase
v;0.9 @MeV/\# and exhibit maxima aroundv;1.2
@MeV/\# ~Fig. 13!. It is slightly different from the result
@48# predicting the maximum ofJ (2) at v;1.5 @MeV/\#.
Similar to the case of32S, there is a correspondence betwe
the behavior of quantityJ (2)(v)2JIB and the evolution of
the octupole deformation of the self-consistent mean fi
with the rotation and the maximum inJ (2) is correlated with
the maximum ofdb31/dv. However, the behavior of the
J (2)(v) andJIB(v) moment of inertia is less correlated
larger values of the rotational frequency. The pseudocros
is much sharper in56Ni in comparison with the one in32S
~Fig. 4!, i.e., the octupole interaction is expected to

FIG. 13. The nucleus56Ni. The symbols used here are define
in Fig. 6.
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weaker. The function cos2c(v) for both the fields decrease
rapidly atv.1.55 @MeV/\# @see Fig. 8~b!#. Due to the ter-
mination of the parity mixing of the s.p. levels, the matr
elementJi j (v) between mixed states, given by Eq.~12!, falls
rapidly. As a result, the IB moment of inertia,JIB(v), also
decreases. On the other hand, the dynamical moment o
ertia,J (2)(v), reflects variations of the self-consistent me
field. In particular, the changes of theg and b2 deforma-
tions, db2 /dv and dg/dv, give rise to the change of th
J (2)(v). A quadrupole interaction leads to the qua
crossing between occupied levels@321#1/2 and@312#5/2 and
causes the increase of theJ (2)(v) as well. Due to the rear
rangement of the two-body interaction under the rotation,
high intruder unoccupied state (s51) contributes to the
sudden increase of the dynamical moment of inertia
served at high rotational frequenciesv.1.5 @MeV/\#. Fi-
nally, we note that the octupole minimum in56Ni is much
more shallow in comparison with the one in32S @Fig. 9~b!#.

IV. SUMMARY

It was expected from various calculations based on
macroscopic-microscopic method that octupole deformati
would arise in rotating nuclei@3#. Using the cranking HF~B!
approach with the effective Gogny interaction, we found t
the nonaxial octupole deformation associated with theY31
term in the octupole family becomes important in the yr
band of 32S at the angular momentaI>5@\#. The primary
mechanism behind the occurrence of the octupole defor
tion is related to the strong mixing via octupole interaction
cl

c

c

o

ye
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s.p. orbits with a positive simplex quantum number. Simi
phenomena have been observed in the nucleus56Ni, where
we predict the octupole softness in the excited ND band
high spinsI>10@\#.

In conclusion, an exploration of the octupole phenomen
certainly could deepen our understanding of different asp
of the spontaneous symmetry breaking mechanism in fi
Fermi systems like nuclei. In particular, the breaking of t
intrinsic reflection symmetry could be related to unexpec
strong electric dipole and octupole transitions in rotatio
bands and to a formation of multicluster structures
strongly deformed nuclei. It seems that the nonaxial octup
deformations may often accompany the onset of the su
deformation. The results for32S support this idea. Further
more, shell effects caused by the nonaxial octupole defor
tions in combination with normal quadrupole deformatio
mimic the superdeformed shell structure@21#. Measurements
with new generations of modern detectors could test the
dictions made within the HF~B! approach and lead to new
insights regarding effective nucleon-nucleon interactions
their properties.
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