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E2 transitions and quadrupole moments in the E5) symmetry
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E2 transitions and quadrupole moments are studied in the recently prop@SesyEmetry by using the
intrinsic state formalism. It is shown that the values of these magnitudes can be obtained for the different bands
to higher order in the boson numbkrby projecting the intrinsic state op and 8 variables. The formalism
allows to find easily the dependence of those magnitudes on the structure parameter of the quadrupole operator,
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[. INTRODUCTION scription and the projection onto the laboratory frame. Re-
sults are presented in Sec. IV. Finally, Sec. V is devoted to a
Recently a new class of dynamic symmetry has been prosummary.
posed by lachelld1]. This symmetry is expected to be of
use when analyzing systems undergoing phase transitions be- Il. THE E (5) SYMMETRY
tween traditional dynamic symmetries. In particular, the ex- ) o
ample presented in Reffl] considers the Bohr Hamiltonian ~ Consider the Bohr Hamiltonian
[2] and discusses the case in which the potentigt inde-

pendent and in addition th@ dependence of the potential is _ ﬁ_z 1 iﬁ4i+ 1 isin 3 9
modeled by a five-dimensional infinite well. This seems to 2B| g4 dB" B BZsin3y Iy 7(97
be applicable in nuclear spectroscopy when nuclei are at the

critical point in a transition from spherical tg-unstable 1 Qi

shape. The E(5) symmetry is discussedlihin connection +V(B,7), (2
with the interacting boson mod¢IBM) [3]. Energy levels
are given and transition probabilities for selected states are . !
calculated by using the following quadrupole operator de_vvhereﬂ,y are the shape variables and.tbes_ are the com-
pending linearly ong: ponents of the an_gular_momentum w_ntten in terms of Euler
angles. In cases in which the potential depends only3pn

V(B,v)=U(B), the wave function can be factorized as

‘P(B7710|)=f(ﬁ)¢(7!al)a (3)

where 6; stands for the three Euler angles, and the Schro
, (1)  dinger equation can be split into two equations,

_4_[32 K Sinz(y—%ﬂ'lc)

1
DB(6,) cosy+ —=(DB(6)

V2

T =tp

+D?,(6))siny

2

wheret is a scale factor. Experimental examples of this new | — — isin 3yi+ 1 2 L D(y,6)
class of symmetry have already been propd€ad sin3y dy dy A% sif(y— § k)

Within the geometrical model the case pfindependent
potential surface was discussed some time ago by Wiletsand ~ ~ (r+3)@(y.6:); 7=012..., )
Jean[5], while the equivalent situation within the IBM is and
known as the @) limit and was discussed first in RdB].
In both cases the energy surface has a definite equilibriu 5201 g 0 (143
value for 8, being otherwisey independent. On the other ’-1_ _(__ 4 >+U(,8) f(B)=Ef(B).
hand, the vibrational Bohr Hamiltoniaf2] and the corre- 2B\ g*dB" B B?

sponding SUb) limit in IBM [7] provide with a situation in 6)
which the energy surface has equilibrium vae 0 and is _ i i L
y independent too. As mentioned above, the newly proposel] U(8) can be modeled as a five dimensional infinite well,

E(5) symmetry seems to be appropriate when discussing p(;he problem is exactly solvable and the corresponding sym-

tentials with flat behavior as a function of some coordinate MetrY is called E5). The solutions of the Schdinger equa-

as it could be the case of the coordinate in a S(B)-0(6)  Uons in B and (y, 6;) with the appropriate boundary condi-
tions are knowrj1]. The wave functions o are

transition.

First, in Sec. Il a brief review of the example of & x
symmetry presented in Réfl] is given. In Sec. Il the for- fe (B)=Ce.B % 1 5'73), (6)
malism used is developed, including the intrinsic state de- Buw
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where 7 is the label associated to the(%) algebra,¢ is a
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expected to be rather flat in ti2variable and the symmetry

label that enumerates the zeros of the relevant Bessel fun&(5) seems to be appropriate. When calculati®) transi-

tion, X, , is the éth zero of the Bessel functiod,, 3/x(X),
C,, . are normalization constants, agy, is the range of the
potential in theB variable.

The solutions of the ¢, 6,) part were studied in Ref5]
and tabulated in Ref12], where® . (v, 6;) are written in
terms of D functions as

<I>T,L,M<y,ei>=§ 9., (NDG6). (7

The intrinsic functiong, () are explicitly given in[12]
and only even values gf appear in the sum.

The H5) states are labeled BiN; £7LM). N is the boson
number ¢ is a label related to the solution of the Sotlirmer
equation in thes variable as mentioned abovejs the label
associated to the (®) algebral is the total angular momen-
tum, andM its projection on one axis.

Ill. THE FORMALISM

In this work it is shown that the values of tli2 transi-
tions and quadrupole moments in th€6Edynamic symme-

try can be obtained by using the intrinsic state formalism in

tions and moments in the traditiongBU(5) or O(6)] IBM
limits, the B variable is fixed in Eqs(10) and (11) to its
equilibrium value and integration op has to be performed.

In the E5) case, since the behavior of the energy surface is
flat in both 8 and y variables, integration on both variables
has to be done.

ElectromagneticE2 transition rates and quadrupole mo-
ments are evaluated by taking matrix elements of the quad-
rupole operator(8) and (9). These matrix elements in the
boson condensatég),(g|Q%?g)=Q%?(B,7), have al-
ready been calculatdd 1],

QLI (B,y)= 2 cosy— \ﬁ 2cos 2
0 ,3:7—1+Bz B cosy ZXB Y|
(12
QCY(B,7)=Q%9(8.7)
_ 1 N H \/E 2 oi
_El‘l‘—ﬂz 2Bsiny+ ?)(,3 sin 2y|.
(13

IBM [8—10] and projecting on the appropriate variables. The

starting point is that th&2 transition operator in IBM is
written as
TED=qQ?, 8

whereq is a scale factor an@®? is the IBM quadrupole
operator,
QY= (s'd+d"s)P+ x(d'd){. (9)

The parametey is its structure constant. The operatoks

=(—1)"d_,, are introduced so as to have tensors with the

appropriate properties under spatial rotations.

The basic idea of the intrinsic frame formalism is to con-
sider that the pure quadrupole states are globally describ

by a boson condensate of the form

lg)=—=(T})"o) (10
YNE9
where the basic boson is given by
= ! ST+,BCOSydT+i,BSin’y(dT+dT )
(13)

which depends on thg andy shape variables. The equilib-
rium values forB and y are obtained by minimizing the
energy surface in the boson condengdt®. In the SU5)

and Q6) limits of IBM this minimization leads to definite
values of3 (Bo=0 andB,=1, respectivelyand the energy

s
g

The matrix elements dD9 not specified are zero. In the
O(6) limit the IBM E2 transition operator is usually defined
with =0 since in that case it is a generator of6Pand
definite selection rules appear. This approximation has
proved to be good for studying nuclei at thé6Dlimit, but
for transitional SW5)-O(6) nuclei at the critical point the
quadrupole operator could depend pnThus, in the follow-
ing the general form in Eq$12) and(13) will be kept.

With the help of Eqs(6) and(7), states in the laboratory
can be obtained from the boson condensat® and(11) as

IN;ErLM)=f, (B)D . m(7.6)]9). (14

the matrix elements of the quadrupole operator are
iven by

(N;€rLM|Q9(lab)[N; &' 7'L'M )

=(N;£7LM| Y QE(in) D@ (6)IN; ¢ 7'L'M")
- [ a0 [ sas | Isinayldxtz (8197, (300

X% (91Q%(int) | gy D A8 F s 11 (B)
X(DT’,L’,M’(’Yiai)! (15)

where the IBM quadrupole operator in the laboratory has
been transformed to the intrinsic frame by usipdunctions.

surface isy independent in both cases. At the critical point in The intrinsic matrix elementgg|Q%9(int)|g) are those

the phase transition from $8) to O(6) the energy surface is

given in Eqgs.(12) and (13).

034308-2



E2 TRANSITIONS AND QUADRUPOLE MOMENTS IN . .. PHYSICAL REVIEW C 63 034308

IV. RESULTS Q(é=1,7=3,L=4)=0.075Nyq, (22)
Within the scheme presented in the preceding section, the

calculation of matrix elements of the quadrupole operator Q(§=2,7=1L=2)=0.120Nxq, (23
implies integration on the variablgs and y, as well as on P
the Euler angle®;, in addition to the relevant matrix ele- Q(§=2r=2L=2)=—0.0428\xq, (24)
ments in the intrinsic frame, Eq&l2) and(13).

GEl2) and(13 Q(é=2,r=2L=4)=0.1998\xq. (25

Thus, the quadrupole matrix elements are given by

The calculation oE2 transition probabilities can be done

(N;£rLMIQE(lab)|N; €' 7' L' M) straightforward from

8 2 . i ! !

=S (2ul'M'[LM) 3, (2mL'p'|Lp) B(E2;¢,mL—€7 L)
2L+1 =
= [(N;€7L|qQu(lab)[[N; &' 7'L")|2.
Xf |sin3y|dyg ,(¥) 2L+1
(26)
X f,34d,3fg,r(,3)Q$d)(,31Y)fgf,rf(ﬂ) 9L (7)), The correspondind3(E2) transition rates for some se-

lected transitions are

(16)
B(E2;é=1,7r=1L=2—¢=1,7=0L=0)=0.145N?%q?,

where the integration on the Euler angles has already been (27
done. Only even values @fi, p, andp’ appear in the sum.
With this expression it is straightforward to calculd®  B(E2;é=1,r=2L=2—¢&=1,r=0L=0)=0.004N2y2q?,
transition and moments since the integralgiandy can be (29
easily evaluated.

The quadrupole moments of the different statésr(L) B(E2;¢é=1r=2L=2—-¢=17r=1L=2)=0.228N?q?,

are given by q is the scale factor in Eq8)] (29
Q(¢,7,L) B(E2;¢é=17=2L=4—¢=17=1L=2)=0.228N?q?
(30)
= \/1677 N;£rLM =L|qQF?(lab)|N; é7LM =L
= Vg (N M=L]aQe (lab)|N;grLM =L). B(E2;¢=1,r=3L=6—¢=1,7=2L=4)=0.2808°q,
17 (31)
e _ _ _ — — — 2~2
The corresponding quadrupole moments for some selectedP(F2:6=2,7=0L=0—¢=1,7r=1L=2)=0.071N q3,2
states are ( )
e _ _ _ _ _ _ 2N12,,2
Q(é=1,r=1L=2)=0.1423Nxq, (1g B(EZ¢=27=0L=0-§=17=21L=2)=0.008Z"N 5
Q(¢=1r=2L=2)=-0051Nxq, (19 B(E2;§=1,7'=3,L=O—>§=1,T=1,L=2)=O.0090\12x2(q2,)
34
Q(é=1,r=2L=4)=0.2400Nxq, (20)
B(E2;é=1,7=3L=0—¢=1,7=2L=2)=0.2806\°g>.
Q(¢é=1,r=3L=6)=0.311Nyq, (21) (35

TABLE I. Comparison of som&(E2) ratios in **Ba with the E5) symmetry. Experimental data are
from Ref.[14].

B(E2:4; 27 ) B(E2;0§ 5211 B(E2;05 521 B(E2;0; 521 ,)
B(E2;2{,—05 ) B(E2;2{,—0;0) B(E2;0;¢—21 ) B(E2;0; 3—27))
E(5) @ 1.68 0.86 0 0
E(5)° 1.56 0.49 0.12 0.032
Expt. 1.56(18) 0.42(12) 0.18(8) 0.037(3)

3E(5) as calculated in Refl] with operator(1).
bE(5) from this work with the IBM quadrupole operat@) and(9) and y=1.
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FIG. 1. Level schemes arBi(E2) values(in
W.u) for ¥Ba in the E5) symmetry with y
=1 (left) and corresponding experimental data
[14] (right). The scale factoqg in Eg. (8) has been
adjusted to match the experimentE(EZ;Zlf 1
—0; o value. For the decay from the staté @t
1.761 MeV to the states;2and Z only the
branching ratio (27/1) is known.

E (MeV)

It has been checked that these results converge to known»olf o). Therefore, the IBM transition operat¢) and (9),
results in simpler situations. On the one hand, thi€)®@al-  with intrinsic matrix element$12) and (13), seems to pro-
ues[13] are obtained if the integral iB, between brackets in vide a better description of the experimental data than the
Eq. (16), is substituted byQ$?(1,y) (B8=1). On the other operator(1).
hand, these results reduce to those presented in [REf. One important point as a signature of5Esymmetry in
where theE2 operator(1) is used, ify is taken as zero in the comparison with the ®) case is the transitioB(EZ;Oz*,0
IBM quadrupole operatof8) and(9) and the normalization _>21+‘]), This is forbidden in the @) limit even if one con-
factor 2/(1+ 5%) in Egs.(12) and(13) is substituted by 1. siders the general form of the quadrupole operator including
With these changes the IBM quadrupole operator used hefge y term, while it gives the correct rati®(E2;0;,
reduces to th&2 transition operator used [1]. — 27 )IB(E2;2{ 05 o in the E5) limit with y=1. '

**Ba has been propos¢d] as a first evidence in nuclear  |n"Fig. 1 the observe®(E2) transition rates in“*Ba
physics of the E5) symmetry. In Table | some importaB2  [14] are compared with the results obtained in this work
branching ratios for this nucleus are compared with the rezggmingy=1. Units are given in W.u. For the decay from
sults obtained in the B) symmetry. Experimental data are (na state 0 at 1.761 MeV to the states;2and 2 only the

taken f_rorrJT Ref.[14]._ The notation used for denoting the branching ratio is known 27/1. This branching ratio is nicely
states isL7 . Two kinds of E5) results are shown. The reproduced in the calculation.

results E€5)’Iabeled with(a) are those taken from Ref1].
Due to the form of the transition quadrupole operator used
there, Eq.(1), transitionsB(E2;05,—~2;,) and B(E2;0;, V. SUMMARY

—2; ;) are forbidden. The results(& labeled with(b) are In this paper it has been presented how to use the intrinsic
those obtained in this work in which tHe2 transition op-  state formalism to evaluate electromagnetic transition rates
erator is EC]S(B) and (9) with x=1. It is observed in Table and quadrupole moments in the recently propos@ &/m-

| that the formalism presented here allows for even a bette,rnetry_ It has been shown that dealing wjshand y depen-
description of the'*Ba when comparing to the newly pro- dent objects in the intrinsic frame can be done easily. The
posed E5) symmetry. This improvement comes from the same technique can be used to calculate expectation values
two differences the IBM quadrupole operator, E(®).(9)  of other observables. In addition, it has been shown that the

and Egs.(12),(13), introduces with respect to the usually |BM E2 operator provides a better description of the data
used quadrupole operatr). On the one hand, the inclusion than the operatofl) used in Ref[1].

of the term depending 082 (x) in Eqgs.(8) and(9) is crucial
to describe the ratioB(E2;0;,—2;,)/B(E2;05,—21 )
andB(E2;0; 5— 21 )/B(E2;0; 5~21 ;). On the other hand,
the normalization factor 2/(% 8%) in Egs. (12) and (13) This work was supported in part by the Spanish DGICYT
improves the description of the ratiosB(E2;4/, under Project No. PB98-1111. | acknowledge continuous
—2;)/B(E2;2{,—079 and B(E2;0,,—~2,,)/B(E2;2;, collaboration with C.E. Alonso and A. Vitturi.
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