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E2 transitions and quadrupole moments in the E„5… symmetry
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E2 transitions and quadrupole moments are studied in the recently proposed E~5! symmetry by using the
intrinsic state formalism. It is shown that the values of these magnitudes can be obtained for the different bands
to higher order in the boson numberN by projecting the intrinsic state ong andb variables. The formalism
allows to find easily the dependence of those magnitudes on the structure parameter of the quadrupole operator,
x.
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I. INTRODUCTION

Recently a new class of dynamic symmetry has been
posed by Iachello@1#. This symmetry is expected to be o
use when analyzing systems undergoing phase transition
tween traditional dynamic symmetries. In particular, the
ample presented in Ref.@1# considers the Bohr Hamiltonia
@2# and discusses the case in which the potential isg inde-
pendent and in addition theb dependence of the potential
modeled by a five-dimensional infinite well. This seems
be applicable in nuclear spectroscopy when nuclei are at
critical point in a transition from spherical tog-unstable
shape. The E(5) symmetry is discussed in@1# in connection
with the interacting boson model~IBM ! @3#. Energy levels
are given and transition probabilities for selected states
calculated by using the following quadrupole operator
pending linearly onb:

Tm
(E2)5tbFD m0

(2)~u i ! cosg1
1

A2
„D m2

(2)~u i !

1Dm22
(2) ~u i !…singG , ~1!

wheret is a scale factor. Experimental examples of this n
class of symmetry have already been proposed@4#.

Within the geometrical model the case ofg independent
potential surface was discussed some time ago by Wilets
Jean@5#, while the equivalent situation within the IBM i
known as the O~6! limit and was discussed first in Ref.@6#.
In both cases the energy surface has a definite equilibr
value for b, being otherwiseg independent. On the othe
hand, the vibrational Bohr Hamiltonian@2# and the corre-
sponding SU~5! limit in IBM @7# provide with a situation in
which the energy surface has equilibrium valueb50 and is
g independent too. As mentioned above, the newly propo
E~5! symmetry seems to be appropriate when discussing
tentials with flat behavior as a function of some coordina
as it could be the case of theb coordinate in a SU~5!-O~6!
transition.

First, in Sec. II a brief review of the example of E~5!
symmetry presented in Ref.@1# is given. In Sec. III the for-
malism used is developed, including the intrinsic state
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scription and the projection onto the laboratory frame. R
sults are presented in Sec. IV. Finally, Sec. V is devoted
summary.

II. THE E „5… SYMMETRY

Consider the Bohr Hamiltonian

H52
\2

2B F 1

b4

]

]b
b4

]

]b
1

1

b2 sin 3g

]

]g
sin 3g

]

]g

2
1

4b2 (
k

Qk
2

sin2~g2 1
3 pk!

G1V~b,g!, ~2!

whereb,g are the shape variables and theQk’s are the com-
ponents of the angular momentum written in terms of Eu
angles. In cases in which the potential depends only onb,
V(b,g)5U(b), the wave function can be factorized as

C~b,g,u i !5 f ~b!F~g,u i !, ~3!

whereu i stands for the three Euler angles, and the Sch¨-
dinger equation can be split into two equations,

F2
1

sin 3g

]

]g
sin 3g

]

]g
1

1

4 (
k

Qk
2

sin2~g2 2
3 pk!

GF~g,u i !

5t~t13!F~g,u i !; t50,1,2, . . . , ~4!

and

F2
\2

2B S 1

b4

]

]b
b4

]

]b
2

t~t13!

b2 D 1U~b!G f ~b!5E f~b!.

~5!

If U(b) can be modeled as a five dimensional infinite we
the problem is exactly solvable and the corresponding s
metry is called E~5!. The solutions of the Schro¨dinger equa-
tions in b and (g,u i) with the appropriate boundary cond
tions are known@1#. The wave functions onb are

f j,t~b!5Cj,tb
23/2Jt13/2S xj,t

bw
b D , ~6!
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where t is the label associated to the O~5! algebra,j is a
label that enumerates the zeros of the relevant Bessel f
tion, xj,t is the jth zero of the Bessel functionJt13/2(x),
Cj,t are normalization constants, andbw is the range of the
potential in theb variable.

The solutions of the (g,u i) part were studied in Ref.@5#
and tabulated in Ref.@12#, whereFt,L,M(g,u i) are written in
terms ofD functions as

Ft,L,M~g,u i !5(
r

gt,L,r~g!D Mr
(L) ~u i !. ~7!

The intrinsic functionsgt,L,r(g) are explicitly given in@12#
and only even values ofr appear in the sum.

The E~5! states are labeled byuN;jtLM &. N is the boson
number,j is a label related to the solution of the Schro¨dinger
equation in theb variable as mentioned above,t is the label
associated to the O~5! algebra,L is the total angular momen
tum, andM its projection on one axis.

III. THE FORMALISM

In this work it is shown that the values of theE2 transi-
tions and quadrupole moments in the E~5! dynamic symme-
try can be obtained by using the intrinsic state formalism
IBM @8–10# and projecting on the appropriate variables. T
starting point is that theE2 transition operator in IBM is
written as

Tm
(E2)5qQm

(sd) , ~8!

whereq is a scale factor andQ(sd) is the IBM quadrupole
operator,

Qm
(sd)5~s†d̃1d†s!m

(2)1x~d†d̃!m
(2) . ~9!

The parameterx is its structure constant. The operatorsd̃m
5(21)md2m are introduced so as to have tensors with
appropriate properties under spatial rotations.

The basic idea of the intrinsic frame formalism is to co
sider that the pure quadrupole states are globally descr
by a boson condensate of the form

ug&5
1

AN!
~Gg

†!Nu0&, ~10!

where the basic boson is given by

Gg
†5

1

A11b2 Fs†1b cosgd0
†1

1

A2
b sing~d2

†1d22
† !G ,

~11!

which depends on theb andg shape variables. The equilib
rium values forb and g are obtained by minimizing the
energy surface in the boson condensate~10!. In the SU~5!
and O~6! limits of IBM this minimization leads to definite
values ofb (b050 andb051, respectively! and the energy
surface isg independent in both cases. At the critical point
the phase transition from SU~5! to O~6! the energy surface is
03430
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expected to be rather flat in theb variable and the symmetry
E~5! seems to be appropriate. When calculatingE2 transi-
tions and moments in the traditional@SU~5! or O~6!# IBM
limits, the b variable is fixed in Eqs.~10! and ~11! to its
equilibrium value and integration ong has to be performed
In the E~5! case, since the behavior of the energy surface
flat in bothb andg variables, integration on both variable
has to be done.

ElectromagneticE2 transition rates and quadrupole m
ments are evaluated by taking matrix elements of the qu
rupole operator~8! and ~9!. These matrix elements in th
boson condensateug&,^guQm

(sd)ug&[Qm
(sd)(b,g), have al-

ready been calculated@11#,

Q0
(sd)~b,g!5

N

11b2 F2b cosg2A2

7
xb2 cos 2gG ,

~12!

Q2
(sd)~b,g!5Q22

(sd)~b,g!

5
1

A2

N

11b2 F2b sing1A2

7
xb2 sin 2gG .

~13!

The matrix elements ofQ(sd) not specified are zero. In th
O~6! limit the IBM E2 transition operator is usually define
with x50 since in that case it is a generator of O~6! and
definite selection rules appear. This approximation h
proved to be good for studying nuclei at the O~6! limit, but
for transitional SU~5!-O~6! nuclei at the critical point the
quadrupole operator could depend onx. Thus, in the follow-
ing the general form in Eqs.~12! and ~13! will be kept.

With the help of Eqs.~6! and~7!, states in the laboratory
can be obtained from the boson condensate~10! and~11! as

uN;jtLM &5 f j,t~b!Ft,L,M~g,u i !ug&. ~14!

Thus, the matrix elements of the quadrupole operator
given by

^N;jtLM uQm
(sd)~ lab!uN;j8t8L8M 8&

5^N;jtLM u(
m

Qm
(sd)~ int!D mm

(2) ~u i !uN;j8t8L8M 8&

5E dVE b4dbE usin 3gudg f j,t* ~b!Ft,L,M* ~g,u i !

3(
m

^guQm
(sd)~ int!ug&D mm

(2) ~u i ! f j8,t8~b!

3Ft8,L8,M8~g,u i !, ~15!

where the IBM quadrupole operator in the laboratory h
been transformed to the intrinsic frame by usingD functions.
The intrinsic matrix elementŝguQm

(sd)( int)ug& are those
given in Eqs.~12! and ~13!.
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IV. RESULTS

Within the scheme presented in the preceding section,
calculation of matrix elements of the quadrupole opera
implies integration on the variablesb and g, as well as on
the Euler anglesu i , in addition to the relevant matrix ele
ments in the intrinsic frame, Eqs.~12! and ~13!.

Thus, the quadrupole matrix elements are given by

^N;jtLM uQm
(sd)~ lab!uN;j8t8L8M 8&

5
8p2

2L11
^2mL8M 8uLM & (

mrr8
^2mL8r8uLr&

3E usin 3gudggt,L,r~g!

3F E b4db f j,t~b!Qm
(sd)~b,g! f j8,t8~b!Ggt8,L8,r8~g!,

~16!

where the integration on the Euler angles has already b
done. Only even values ofm, r, andr8 appear in the sum
With this expression it is straightforward to calculateE2
transition and moments since the integrals inb andg can be
easily evaluated.

The quadrupole moments of the different states (j,t,L)
are given by@q is the scale factor in Eq.~8!#

Q~j,t,L !

5A16p

5
^N;jtLM5LuqQ0

(sd)~ lab!uN;jtLM5L&.

~17!

The corresponding quadrupole moments for some sele
states are

Q~j51,t51,L52!50.1425Nxq, ~18!

Q~j51,t52,L52!520.0514Nxq, ~19!

Q~j51,t52,L54!50.2400Nxq, ~20!

Q~j51,t53,L56!50.3112Nxq, ~21!
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Q~j51,t53,L54!50.0751Nxq, ~22!

Q~j52,t51,L52!50.1202Nxq, ~23!

Q~j52,t52,L52!520.0428Nxq, ~24!

Q~j52,t52,L54!50.1998Nxq. ~25!

The calculation ofE2 transition probabilities can be don
straightforward from

B~E2;j,t,L→j8,t8,L8!

5
1

2L11
u^N;jtLuuqQ(sd)~ lab!uuN;j8t8L8&u2.

~26!

The correspondingB(E2) transition rates for some se
lected transitions are

B~E2;j51,t51,L52→j51,t50,L50!50.1459N2q2,
~27!

B~E2;j51,t52,L52→j51,t50,L50!50.0044N2x2q2,
~28!

B~E2;j51,t52,L52→j51,t51,L52!50.2282N2q2,
~29!

B~E2;j51,t52,L54→j51,t51,L52!50.2282N2q2,
~30!

B~E2;j51,t53,L56→j51,t52,L54!50.2806N2q2,
~31!

B~E2;j52,t50,L50→j51,t51,L52!50.0710N2q2,
~32!

B~E2;j52,t50,L50→j51,t52,L52!50.0082q2N2x2,
~33!

B~E2;j51,t53,L50→j51,t51,L52!50.0090N2x2q2,
~34!

B~E2;j51,t53,L50→j51,t52,L52!50.2806N2q2.
~35!
e
TABLE I. Comparison of someB(E2) ratios in 134Ba with the E~5! symmetry. Experimental data ar
from Ref. @14#.

B~E2;41,2
1 →21,1

1 !

B~E2;21,1
1 →01,0

1 !

B~E2;02,0
1 →21,1

1 !

B~E2;21,1
1 →01,0

1 !

B~E2;02,0
1 →21,2

1 !

B~E2;02,0
1 →21,1

1 !

B~E2;01,3
1 →21,1

1 !

B~E2;01,3
1 →21,2

1 !

E~5! a 1.68 0.86 0 0
E~5! b 1.56 0.49 0.12 0.032
Expt. 1.56(18) 0.42(12) 0.18(8) 0.037(3)

aE~5! as calculated in Ref.@1# with operator~1!.
bE~5! from this work with the IBM quadrupole operator~8! and ~9! andx51.
8-3
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FIG. 1. Level schemes andB(E2) values~in
W.u.! for 134Ba in the E~5! symmetry with x
51 ~left! and corresponding experimental da
@14# ~right!. The scale factorq in Eq. ~8! has been
adjusted to match the experimentalB(E2;21,1

1

→01,0
1 ) value. For the decay from the state 01 at

1.761 MeV to the states 22
1 and 21

1 only the
branching ratio (27/1) is known.
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It has been checked that these results converge to kn
results in simpler situations. On the one hand, the O~6! val-
ues@13# are obtained if the integral inb, between brackets in
Eq. ~16!, is substituted byQm

(sd)(1,g) (b51). On the other
hand, these results reduce to those presented in Ref.@1#,
where theE2 operator~1! is used, ifx is taken as zero in the
IBM quadrupole operator~8! and ~9! and the normalization
factor 2/(11b2) in Eqs. ~12! and ~13! is substituted by 1.
With these changes the IBM quadrupole operator used
reduces to theE2 transition operator used in@1#.

134Ba has been proposed@4# as a first evidence in nuclea
physics of the E~5! symmetry. In Table I some importantE2
branching ratios for this nucleus are compared with the
sults obtained in the E~5! symmetry. Experimental data ar
taken from Ref.@14#. The notation used for denoting th
states isLj,t

p . Two kinds of E~5! results are shown. The
results E~5! labeled with~a! are those taken from Ref.@1#.
Due to the form of the transition quadrupole operator u
there, Eq.~1!, transitionsB(E2;02,0

1 →21,2
1 ) and B(E2;01,3

1

→21,1
1 ) are forbidden. The results E~5! labeled with~b! are

those obtained in this work in which theE2 transition op-
erator is Eqs.~8! and ~9! with x51. It is observed in Table
I that the formalism presented here allows for even a be
description of the134Ba when comparing to the newly pro
posed E~5! symmetry. This improvement comes from th
two differences the IBM quadrupole operator, Eqs.~8!,~9!
and Eqs.~12!,~13!, introduces with respect to the usual
used quadrupole operator~1!. On the one hand, the inclusio
of the term depending onb2 (x) in Eqs.~8! and~9! is crucial
to describe the ratiosB(E2;02,0

1 →21,2
1 )/B(E2;02,0

1 →21,1
1 )

andB(E2;01,3
1 →21,1

1 )/B(E2;01,3
1 →21,2

1 ). On the other hand
the normalization factor 2/(11b2) in Eqs. ~12! and ~13!
improves the description of the ratiosB(E2;41,2

1

→21,1
1 )/B(E2;21,1

1 →01,0
1 ) and B(E2;02,0

1 →21,1
1 )/B(E2;21,1

1

03430
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→01,0
1 ). Therefore, the IBM transition operator~8! and ~9!,

with intrinsic matrix elements~12! and ~13!, seems to pro-
vide a better description of the experimental data than
operator~1!.

One important point as a signature of E~5! symmetry in
comparison with the O~6! case is the transitionB(E2;02,0

1

→21,1
1 ). This is forbidden in the O~6! limit even if one con-

siders the general form of the quadrupole operator includ
the x term, while it gives the correct ratioB(E2;02,0

1

→21,1
1 )/B(E2;21,1

1 →01,0
1 ) in the E~5! limit with x51.

In Fig. 1 the observedB(E2) transition rates in134Ba
@14# are compared with the results obtained in this wo
assumingx51. Units are given in W.u. For the decay from
the state 01 at 1.761 MeV to the states 22

1 and 21
1 only the

branching ratio is known 27/1. This branching ratio is nice
reproduced in the calculation.

V. SUMMARY

In this paper it has been presented how to use the intri
state formalism to evaluate electromagnetic transition ra
and quadrupole moments in the recently proposed E~5! sym-
metry. It has been shown that dealing withb andg depen-
dent objects in the intrinsic frame can be done easily. T
same technique can be used to calculate expectation va
of other observables. In addition, it has been shown that
IBM E2 operator provides a better description of the d
than the operator~1! used in Ref.@1#.
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