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Problem of ‘‘deformed’’ superheavy nuclei
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The problem of experimental confirmation of deformed shapes of superheavy nuclei situated in the neigh-
borhood of270Hs is discussed. Measurement of the energyE21 of the lowest 21 state in even-even species of
these nuclei is considered as a method for this confirmation. The energy is calculated in the cranking approxi-
mation for heavy and superheavy nuclei. Branching ratiop21 /p01 betweena decay of a nucleus to this lowest
21 state and to the ground state 01 of its daughter is also calculated for these nuclei. The results indicate that
a measurement of the energyE21 for some superheavy nuclei by electron ora spectroscopy is a promising
method for the confirmation of their deformed shapes.
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I. INTRODUCTION

There is a fast progress in synthesis of superheavy nu
~SHN! ~cf. the reviews@1–3#!. Two regions of these nucle
have been predicted theoretically: one around the sphe
doubly magic nucleus298114 @4# and the other around de
formed nuclei with Z5108–110 andN5162–164 ~e.g.,
@5–10#!. A detailed analysis of the ground-state energy
these nuclei and their single-particle spectra in a multidim
sional deformation space@10# has led to270108 (270Hs) as to
a doubly magic deformed nucleus. For spherical SHN, a p
sibility of other proton closed shells atZ5120 @11# or Z
5126 @12,11# has been also discussed.

The region of deformed SHN appears closer to exp
mentally investigated nuclei than that of spherical SHN
was easier then to reach it, including also nuclei which
close to its center (270Hs).

Large shell effects in deformed nuclei were not expect
because of less symmetry in their shapes and, conseque
of a more uniform distribution of energy levels in their spe
tra, as compared to spherical nuclei. Due to this, it was
lieved for a long time that only spherical SHN might ex
~e.g., Refs.@13–15#!.

Presently, although a number of SHN in the ‘‘deformed
region have been already observed, there is no experime
evidence for their deformed shapes. All indications are o
of a theoretical nature. It is very important then to demo
strate experimentally that they are really deformed. T
would show that a creation of a large energy gap of about
MeV @10# and, in consequence, a big increase of about
orders of magnitude or more@9,16,17# in fission half-lives
are also possible in deformed heavy nuclei. It is because s
huge shell effects are needed for the already observed
tence of these nuclei. Without this strong shell structu
these nuclei would immediately decay.

The simplest way to confirm deformation of a nucleus
to observe a rotational band in its spectra. Presently,
heaviest nuclei for which such bands have been observed
254,256Fm @18#. Very recently, a rotational band has been a
seen for254No @19,20# and 252No @21#. There is, however, a
small chance to observe such a band for superheavy nu
0556-2813/2001/63~3!/034306~12!/$15.00 63 0343
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because cross sections to synthesize them are very low
the effectiveness ofg spectroscopy is relatively small. A
more promising way is to see the first excited state 21 of an
even-even nucleus ina decay or electron spectra. If the en
ergy of such a state is found to be of about 40–50 keV, a
expected, the state cannot be of any other nature than
tional. An indication of this kind for deformation of the
nucleus256Rf @22# was the observation of two close lines
the a-decay spectrum of260Sg @23#.

The objective of this paper is to give help for such expe
ments by mainly calculating the equilibrium deformation
energies of the first 21 states, and the probabilities ofa
decay to these states for even-even superheavy nuclei in
deformed region. Some results of the study have been
sented earlier@24#.

This paper is organized as follows. Shell structure of
perheavy nuclei is illustrated in Sec. II and the method
analysis is described in Sec. III. Section IV gives the resu
of the calculations and Sec. V presents a discussion of v
ous effects. Finally, the conclusions drawn from the stu
are given in Sec. VI.

II. ILLUSTRATION OF THE SHELL STRUCTURE
OF SHN

Figure 1 shows a contour map of the ground-state s
correction,Esh, calculated for a large region of nuclei wit
proton number Z582–120 and neutron numberN
5126–190@25#. One can see that the shell correction h
three minima in the considered region. One (214.3 MeV)
is obtained for the experimentally well-known doubly mag
spherical nucleus208Pb. The second (27.2 MeV) appears
at the nucleus270Hs, predicted to be doubly magic deforme
nucleus @10#. The third (27.2 MeV) is obtained for the
nucleus 296114, which is close to the nucleus298114 pre-
dicted to be doubly magic spherical nucleus@4#. It is inter-
esting to note that the minima obtained for deformed (270Hs)
and spherical (296114) nuclei are of comparable, here almo
the same, depths.

Single-particle spectra calculated for these three dou
magic nuclei are shown in Figs. 2 and 3, for protons a
©2001 The American Physical Society06-1
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A. SOBICZEWSKI, I. MUNTIAN, AND Z. PATYK PHYSICAL REVIEW C 63 034306
neutrons, respectively. One can see in Fig. 2 large ene
gaps atZ582 ~in the spectrum of208Pb), at Z5108 ~in
270Hs) and atZ5114 ~in 298114). For neutrons, besides
large energy gap atN5162 in the spectrum of270Hs, a
smaller gap atN5152 is also seen. All this finds its reflec
tion in the shell correctionEsh, shown in Fig. 1.

III. METHOD OF THE CALCULATIONS

A. Energy „mass… of a nucleus

The ground-state energy of a nucleus is calculated i
macroscopic-microscopic approach. The Yukawa-pl

FIG. 1. Contour map of the ground-state shell correction ene
Esh. Crosses denote nuclei already synthesized@25#.

FIG. 2. Proton single-particle energy levels calculated for
doubly magic nuclei: 208Pb, 270Hs, and 298114. Spectroscopic
symbol for the orbital angular momentuml and total spin~multi-
plied by two! 2 j are given at each level of the spherical nuclei208Pb
and 298114. Projection of spin on the symmetry axis of a nucle
~multiplied by two! 2V and parityp are shown at each level of th
deformed nucleus270Hs.
03430
gy

a
-

exponential model@26# is taken for the macroscopic part o
the energy and the Strutinski shell correction is used for
microscopic part. The Woods-Saxon single-particle pot
tial, with the universal variant of its parameters found in R
@27#, and also specified explicitly in Ref.@10# is taken as the
basis for the shell correction.

B. Equilibrium deformations

Equilibrium deformation of a nucleus is calculated b
minimization of its energy in a multidimensional deform
tion space @28#. The seven-dimensional space$bl%, l
52,3, . . . ,8, istaken. Here,bl are the usual deformation
parameters, appearing in the expression for nuclear radiu~in
the intrinsic frame of reference! in terms of spherical har-
monics ~e.g., Ref.@28#!. One can add here that, present
besides the macroscopic-microscopic method~e.g., Refs.
@25,29,30#!, self-consistent approaches such as Hartree-Fo
Bogoliubov ~e.g., Refs.@12,31#! and relativistic mean field
~e.g., Ref.@32#! approximations are also used in the calcu
tions of deformations of superheavy nuclei.

C. Moment of inertia

Moment of inertia of a nucleus is calculated in the cran
ing approximation@33#. It has been shown in a number o
papers~e.g., Refs.@34–38#! that this approach allows for a
good description of the ground-state moments of inertia
well deformed nuclei, especially of heavy ones@38#. In this
paper, a multidimensional deformation space, particula
important for heaviest nuclei, is used for the calculation
moments of inertia. Also a final-depth~Woods-Saxon!
single-particle potential is used instead of an infinite~modi-
fied oscillator! one, taken in older studies~e.g., Refs.@34–
38#!.
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FIG. 3. Same as in Fig. 2, but for neutrons.
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PROBLEM OF ‘‘DEFORMED’’ SUPERHEAVY NUCLEI PHYSICAL REVIEW C63 034306
D. Probability of a decay to rotational states

Observation ofa decay to the first rotational state 21,
besides electron transitions, seems to be the most prom
way to measure the energy of this state for heaviest nu
As cross section for synthesis of these nuclei is very sma
is very important to estimate, in a possibly realistic way,
probability of this decay,p21 , to have an idea of a chance
observe it.

As a matter of fact, we are only interested in the bran
ing ratio p21 /p01 , wherep01 is the probability of decay to
the ground state 01 of a nucleus, asp01 , itself ~more ex-
actly half-lives!, has been already calculated for superhea
nuclei in a number of papers~e.g., Refs.@10,12,25,30,31#!
and also measured for some of these nuclei. More gener
we can consider the ratiopI 1 /p01 . One should mention tha
the probabilitiespI 1 have been studied for already a lon
time ~e.g., Ref.@39#!.

The probabilitypI 1 is usually considered as

pI 15wI 1•PI 1 , ~1!

wherewI 1 is the reduced decay probability andPI 1 is the
probability to penetrate the potential-energy barrier bya par-
ticle with angular momentumI. Thus

pI 1 /p015~wI 1 /w01!•~PI 1 /P01!. ~2!

The penetration probabilityPI 1 is calculated in the qua
siclassical WKB approximation

PI 1~Z,N!5expH 2
2

\
A2maE

R

r T
@V~r !2E#1/2drJ , ~3!

whereV(r ) is the potential energy as a function of the d
tancer between the centers of thea particle and the nucleus
andE is the decay energy of the parent nucleus to the s
I 1 of the considered nucleus (Z,N), i.e.,
03430
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E~Z,N!5Qa~Z12,N12!2EI 1~Z,N![Qap2EI 1 ,
~4!

where EI 1 is the rotational energy of theI 1 state of a
nucleus (Z,N) andQap is thea-decay energy of the paren
nucleus. The potential energy is

V~r !5
2Ze2

r
1

\2I ~ I 11!

2mar 2
, ~5!

i.e., it is a superposition of the Coulomb and centrifugal e
ergies. In Eq.~3!, ma is reduced mass ofa particle,R is the
value of r at the entrance point ofa particle to the barrier,
andr T is the value ofr at the exit point from the barrier. The
entrance point is assumed to appear atR5r 0A1/3, i.e., at the
radius of the nucleus, whereA is its mass number andr 0
51.4 fm.

For low values ofI, i.e., in the case of a low centrifuga
barrier with respect to the Coulomb barrier, the integrand
Eq. ~3! may be, in a good approximation, written as

F S 2Ze2

r
2QapD1S \2I ~ I 11!

2mar 2
1EI 1D G 1/2

.S 2Ze2

r
2QapD 1/2F11

1

2 S \2I ~ I 11!

2mar 2

1EI 1D Y S 2Ze2

r
2QapD G , ~6!

because the second term in the first squared bracket is
erally much smaller than the first term. This leads to t
approximate equation
PI 1~Z,N!.P01~Z,N!•expH 2
A2ma

\ E
R

r TS \2I ~ I 11!

2mar 2
1EI 1D S 2Ze2

r
2QapD 21/2

drJ
5P01~Z,N!•expH 2

A2ma

\ F S \2I ~ I 11!

2ma

AQap

Ze2
1

EI 1

AQap

RD S BC

Qap
21D 1/2

1
2Ze2EI 1

Qap
3/2

arccos~Qap /BC!1/2G J
~7!

and, thus, to

PI 1 /P01.expH 2
A2ma

\ F S \2I ~ I 11!

2ma

AQap

Ze2
1

EI 1

AQap

RD S BC

Qap
21D 1/2

1
2Ze2EI 1

Qap
3/2

arccos~Qap /BC!1/2G J , ~8!
e-

al-
whereP01 is the probability of the penetration ofa particle
through the barrier with angular momentumI 50 and BC

52Ze2/R is height of the Coulomb barrier fora particle. A
direct numerical check shows that the values ofPI 1 /P01
obtained from Eqs.~8! and~3! are close to each other, esp
cially for I 52. For example, the valuesP21 /P01 and
P41 /P01 calculated by Eq. ~8! for the nucleus
260106 (260Sg) are 50.41 and 10.19, respectively, while c
6-3
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A. SOBICZEWSKI, I. MUNTIAN, AND Z. PATYK PHYSICAL REVIEW C 63 034306
culated with the use of the unapproximated WKB formu
Eq. ~3!, they are 51.01 and 10.90, respectively. Thus
value obtained by analytic formula of Eq.~8! deviates from
that of Eq.~3! by only about 1% forP21 /P01 and by about
7% for P41 /P01 , for the nucleus260Sg.

The reason to derive the analytic formula of Eq.~8! is
certainly not of the computational nature. The formula
derived to see explicitly the role of various quantities
Qap , BC, atomic numberZ, or spinI in the ratioPI 1 /P01 .
To calculatePI 1 in our analysis, Eq.~3! has been used.

The ratio of reduced probabilitieswI 1 /w01 is treated
phenomenologically. Limiting ourselves to the lowest sp
I 52, we find that the ratio may be well described by
two-parameter formula

w21 /w01510(aA1b) ~9!

and, thus, the ratio of the total probabilities is

p21 /p01510(aA1b)
•~P21 /P01!, ~10!

whereA is the mass number of a nucleus.
Adjustment of the parametersa and b to experimental

results forp21 /p01 , obtained for 26 nuclei@18# and shown
in Table I, withP21 /P01 calculated with the use of Eq.~3!,
leads to the following values:

a520.02687, b56.3608, ~11!

and reproduces the experimental values ofp21 /p01 with
rms deviations equal to 0.027.

E. Pairing interaction

The residual pairing interaction is treated in the BCS
proximation. Its strengthGl , of the monopole and the
isospin-dependent type, is taken in a rather usual form

A•Gl5g0l1g1l I , ~12!

whereA is the mass number of a nucleus,I 5(N2Z)/A is its
relative neutron excess, andl stands forn ~neutrons! or p
~protons!. To calculate potential energy of a nucleus an
consequently, its equilibrium deformation, mass, and qua
ties derived from them, we have taken the same values o
parametersg0l andg1l as those of the paper@10#, where they
have been fitted to odd-even mass differences of heavy
clei. They are@10#

g0n519.86 MeV, g1n5221.4 MeV,

for l 5n ~neutrons!, ~13!

g0p517.98 MeV, g1p526.0 MeV,

for l 5p ~protons!.

However, as the moment of inertia of a nucleus is a s
sitive function of the pairing strength~e.g., Ref.@35#!, we
have checked if the agreement between the calculated
ments of inertia and experimental ones could be still i
proved by a small change of this strength. We have re
03430
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found that a renormalization of the parametersg0l andg1l ,
given in Eq. ~13!, by a factor of 1.0529~this is a slightly
larger factor than that of 1.0485, used by us in earlier cal
lations @24#! improves the agreement significantly. Thus t
moments of inertia of all nuclei studied in this paper a
calculated with the strength parameters,

g0n520.91 MeV, g1n5222.5 MeV,

for l 5n ~neutrons!, ~14!

g0p518.93 MeV, g1p527.4 MeV,

for l 5p ~protons!.

A discussion of the sensitivity of the calculated mome
of inertia to the pairing strength is presented in Sec. V B

IV. RESULTS

A. Equilibrium deformations

As stated in Sec. III, all componentsbl
0 , l52,3, . . . ,8

of the equilibrium deformation of the considered nuclei a
studied. It is found, however, in accordance with Re
@10,25,28# that the odd-multipolarity componentsbl

0 , l
53,5,7, are different from zero only for a very few of them
Due to this, only even-parity deformationsbl

0 , l52,4,6,8,
are shown in our figures and tables. However, whenever
sults for nuclei with nonvanishing odd-parity deformatio
are presented, a remark on those deformations is done.

Contour maps of the deformationsbl
0 , l52,4,6,8, plot-

ted as functions of protonZ and neutronN numbers are
shown in Fig. 4. One can see that the main, quadrup
componentb2

0 is the biggest one and it is positive in th
whole considered region of deformed nuclei. It is lar
(bl

0'0.25) andnearly constant in a big part of the regio
around the nucleus254No, and then outside of this part,
decreases rather fast with increasingN. The higher-
multipolarity components are smaller and they change si
as one moves across the region. Still, even the deformat
of so high multipolarity asl56 and 8 play a significant role
in the properties of the nuclei, as will be illustrated
Sec. V A.

B. Rotational energies

1. The lowest state 21

Before calculating the rotational energiesE21 for super-
heavy nuclei, we would like to test our calculations for n
clei, for which these energies have been measured. To
aim, the nuclei, which are good rotors, are taken. By go
rotors, we mean the nuclei withE41 /E21>3.00. The results
are given in Table I. To make the table more complete,
also included theoretical results for few nuclei, in which t
experimental energyE21 is not known yet but may be mea
sured in a not too distant future.

The deformation energyEdef, given in Table I, is defined
as the difference between the energy of a nucleus at
6-4
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TABLE I. Ground-state equilibrium deformationsbl
0 , l52,4,6,8, deformation energyEdef , moment of

inertiaJ ~multiplied by 2/\2), and energy of the lowest 21 state,E21 , calculated for nuclei specified in th
first three columns.

Z N A b2
0 b4

0 b6
0 b8

0 Edef 2J/\2 E21 E21
exp E41

exp

E21
exp

p21
exp

p01
exp

MeV MeV21 keV keV

88 138 226 0.151 0.087 0.017 20.012 3.2 100.1 59.9 67.7 3.13 0.30
88 140 228 0.170 0.091 0.016 20.013 3.9 107.8 55.6 63.8 3.21 0.28
88 142 230 0.188 0.093 0.011 20.020 4.6 110.6 54.2 57.4 ~3.25!
88 144 232 0.202 0.087 20.001 20.023 5.2 115.4 52.0

90 136 226 0.145 0.080 0.012 20.011 3.5 97.0 61.8 72.2 3.14 0.47
90 138 228 0.176 0.108 0.032 20.012 4.4 122.8 48.9 57.8 3.23 0.46
90 140 230 0.188 0.105 0.022 20.015 5.4 122.7 48.9 53.2 3.27 0.39
90 142 232 0.199 0.100 0.012 20.019 6.2 126.9 47.3 49.4 3.28 0.35
90 144 234 0.210 0.093 0.001 20.022 6.8 128.0 46.9 49.6 3.29 0.26
90 146 236 0.221 0.085 20.010 20.024 7.1 129.2 46.5

92 134 226 0.138 0.073 0.011 20.006 2.9 90.3 66.5
92 136 228 0.179 0.113 0.036 20.008 4.3 134.0 44.8 59.
92 138 230 0.189 0.113 0.029 20.012 5.7 136.2 44.0 51.7 3.28
92 140 232 0.199 0.109 0.020 20.016 6.7 135.9 44.1 47.6 3.29 0.44
92 142 234 0.208 0.104 0.010 20.019 7.6 139.1 43.1 43.5 3.30 0.40
92 144 236 0.217 0.097 0.000 20.022 8.1 138.1 43.5 45.2 3.30 0.37
92 146 238 0.225 0.088 20.011 20.024 8.4 137.2 43.7 44.9 3.30 0.28
92 148 240 0.229 0.075 20.018 20.019 8.4 133.8 44.9 45. 0.241
92 150 242 0.232 0.056 20.026 20.008 8.1 125.0 48.0

94 138 232 0.196 0.104 0.022 20.013 6.3 127.9 46.9
94 140 234 0.207 0.102 0.012 20.016 7.5 131.1 45.8
94 142 236 0.215 0.095 0.002 20.019 8.4 135.3 44.4 44.6 3.30 0.40
94 144 238 0.223 0.091 20.006 20.022 9.1 137.9 43.5 44.1 3.31 0.33
94 146 240 0.231 0.083 20.015 20.023 9.5 140.0 42.9 42.8 3.31 0.30
94 148 242 0.233 0.070 20.022 20.017 9.5 136.1 44.1 44.5 3.31 0.21
94 150 244 0.235 0.054 20.029 20.007 9.3 129.0 46.5 46.0 0.220
94 152 246 0.239 0.037 20.036 0.001 8.9 127.1 47.2
94 154 248 0.239 0.026 20.037 0.006 8.1 122.8 48.9

96 144 240 0.228 0.081 20.014 20.018 9.8 135.8 44.2 38. 0.33
96 146 242 0.235 0.074 20.022 20.019 10.3 140.0 42.9 42.1 3.28 0.26
96 148 244 0.237 0.064 20.027 20.014 10.5 138.1 43.4 43.0 3.31 0.22
96 150 246 0.240 0.049 20.033 20.006 10.3 133.0 45.1 42.9 3.31 0.17
96 152 248 0.242 0.035 20.039 0.001 10.0 132.6 45.3 43.4 3.31 0.18
96 154 250 0.242 0.024 20.040 0.006 9.2 128.0 46.9 43. 0.20

98 146 244 0.239 0.065 20.029 20.015 10.8 138.0 43.5 40. 0.25
98 148 246 0.241 0.055 20.035 20.011 11.1 137.3 43.7
98 150 248 0.243 0.042 20.040 20.004 11.1 134.8 44.5 41.5 3.32 0.17
98 152 250 0.246 0.029 20.045 0.002 10.8 137.7 43.6 42.7 3.32 0.16
98 154 252 0.246 0.020 20.045 0.007 10.1 133.2 45.1 45.7 3.32
98 156 254 0.244 0.008 20.044 0.013 9.1 124.6 48.2
98 158 256 0.240 20.005 20.041 0.017 8.0 118.2 50.8

100 150 250 0.248 0.033 20.046 20.002 11.5 136.8 43.9
100 152 252 0.250 0.022 20.051 0.004 11.4 143.0 42.0
100 154 254 0.249 0.013 20.051 0.009 10.7 138.2 43.4 45.0 3.32
100 156 256 0.247 0.001 20.049 0.015 9.7 129.3 46.4 48.2 3.31
100 158 258 0.243 20.012 20.044 0.019 8.7 122.6 48.9
100 160 260 0.235 20.026 20.034 0.019 7.8 119.3 50.3
a
a

the
ui-
ith

n-
spherical and equilibrium shapes, i.e.,

Edef[E~0!2E~bl
0!. ~15!

Thus it is the gain in energy of a nucleus due to its deform
tion. This quantity tells us how well the deformation of
03430
-

nucleus is established or, in other words, how small are
zero-point fluctuations of its shape with respect to its eq
librium shape. One can say, in practice, that nuclei w
Edef*2 MeV are well deformed~e.g., Ref.@36#!. It is seen
in Table I that, according to the calculations, all nuclei co
sidered in it are well deformed.
6-5
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FIG. 4. Contour maps of the equilibrium deformationsbl
0 , l52,4,6,8, plotted as functions of protonZ and neutronN numbers in the

region:Z594–114, N5146–168. Numbers at the contour lines give the values of the deformations.
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The rotational energy in theI 1 state,EI 1 , is connected
with the moment of inertiaJ by the usual formula

EI 15~\2/2J!I ~ I 11!. ~16!

For the ideal rotor, i.e., withJ independent ofI, which we
assume here, the quantitiesJ andEI 1 are equivalent and the
specification of bothJ and E21 in Table I is done only for
the reason of convenience, as both quantities are use
various studies. The ratioE41

exp/E21
exp, specified in the last bu

one column, tells us how good rotor is a given nucleus. T
last column gives experimental values for the branching r
p21 /p01 . All experimental values given in Table I are take
from Ref. @18#.

One can see in Table I that 27 experimental values ofE21

~those with all three digits given! are reproduced very wel
~rms54.1 keV!. They are particularly well reproduced for 1
especially good rotors~with E41 /E21>3.30); the value of
the rms deviations for them is 1.4 keV.

For complete knowledge on the calculated deformati
of nuclei presented in Table I, one should add that only th
03430
in
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e

of them, 226Ra, 226Th, and226U, have the odd-multipolarity
deformationsbl

0 , l53,5,7, different from zero. The value
of the deformations for these three nuclei are (b3

0 ,b5
0 ,b7

0)
5(0.079,0.027,0.009), (0.102,0.037,0.010), and~0.105,
0.037, 0.011!, respectively.

In a graphic form, the relation between theoretical a
experimental values ofE21 is illustrated in Fig. 5. One can
see that for nuclei heavier than234U, which are especially
good rotors, the agreement between theory and experime
really very good.

Contour map of the energyE21 calculated for a wide
region of nuclei withZ594–114 andN5146–168 is shown
in Fig. 6 @24#. One can see that two minima ofE21 are
obtained for the considered nuclei. One of them~41.6 keV!
is obtained for the nucleus254No and the other~40.2 keV!
for 270Hs. ~One can note that the calculated value 41.6 k
for 254No is close to the value 44 keV, deduced from rece
measurements@19,20#.! The two minima ofE21 make the
view of the map of this quantity rather unusual, specific
the superheavy region. Usually, such a map has only
6-6
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minimum for each region of deformed nuclei, and is simi
to the map of the main~quadrupole! component of the equi
librium deformation,b2

0, of the nuclei. This similarity is
rather natural due to the strong dependence of the mome
inertia J on b2

0. Both these usual properties of theE21 map
can be seen, e.g., for the regions of light-barium and als
rare-earth nuclei, studied in Ref.@36#.

The dissimilarity of the maps ofE21 and ofb2
0 for super-

heavy nuclei, which can be seen by comparing Figs. 4 an
has two main reasons. One is that deformations of hig
multipolarities are more important in very heavy nuclei@28#,
like considered in this paper, than in lighter deformed nuc
The other, more important reason is the exceptional s
structure of the nuclei studied, or more particularly, the
pearance of strongdeformedshells ~closed atN5162 and
Z5108) and a weaker shell~closed atN5152) in this struc-
ture ~e.g., Ref.@10#! not observed in lighter deformed nucle
These two reasons are connected, one with the other, a
formations of higher multipolarities contribute to the creati
of these shells and thus to creation of these minima ofE21 .

FIG. 5. Comparison between theoretical and experimental
ues of the energyE21 of the first rotational state 21. For each
element, values of neutron numberN of the considered isotopes ar
specified below the symbol of the element.

FIG. 6. Contour map of calculated energyE21 of the first rota-
tional state 21.
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The role of deformations of various multipolarities in th
moment of inertia and thus inE21 is discussed in Sec. V A

It is interesting to see the single-particle structure of
nuclei 254No and 270Hs, in which the minima ofE21 have
been obtained in Fig. 6. The structure is shown in Figs. 7
8 for protons and neutrons, respectively. One can see ra
large energy gaps atN5162 ~about 1.5 MeV! and Z5108
~about 1.3 MeV! for the nucleus270Hs, and a slightly smaller

l-

FIG. 7. Proton single-particle energy levelsep calculated for the
nuclei: 254No and270Hs. Projection of spin on the symmetry axis o
a nucleus~multiplied by two! 2V and parityp are shown at each
level.

FIG. 8. Same as in Fig. 7, but for neutrons.
6-7
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gap atN5152 ~about 1.2 MeV! in the nucleus254No. Only
a rather small gap~about 0.6 MeV! appears in the latte
nucleus atZ5102, even smaller than that atZ5100 ~about
0.8 MeV!.

The energy gaps~closed shells or subshells! influence the
values of moments of inertia and thus ofE21 of nuclei by
weakening the pairing correlations, to which moments of
ertia are very sensitive~e.g., Ref.@35#!. To illustrate this, we
plot in Fig. 9 the map of the pairing energy gap,Dn , for
neutrons. One can see that the shell closures atN5152 and
162 result in small values~local minima! of Dn , which lead
to large values of the moment of inertia and, this way,
small values ofE21 .

To see more clearly, than in Fig. 6, the dependence
E21 on neutron numberN around the shell closures atN
5152 and 162, this energy is plotted in Fig. 10 as a funct
of N for Z5102–112. One can see clear effects of the
formed shells atN5152 and 162. Numerical values ofE21 ,
as well as those of equilibrium deformations, deformat
energies, moments of inertia, and transition energies f
41 to 21 states~to be possibly measured by electron spe
troscopy!, E42, for nuclei with Z5102–112, are given in
Table II.

FIG. 9. Same as in Fig. 6, but for the neutron pairing-energy
parameterDn .

FIG. 10. Dependence of the energyE21 on neutron numberN,
calculated for elements with proton numberZ5102–112. For each
element, values of consideredN are specified below the value ofZ.
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2. Higher states

As the objective of this paper is to describe only the e
ergy of the lowest rotational state 21 in the heaviest even
even nuclei, we do not study higher states. It is still wo
noting that the calculated ground-state moments of ine
well describe the rotational energies of also higher states
to spin 8, 10, and even 14. In particular, all transition en
gies up to spin 8 in all 15 good rotors (E41

exp/E21
exp>3.30),

shown in Table I, are described by our moments of ine
with the accuracy better than 10 keV. In the recently stud
nucleus254No @19,20#, all measured transition energies up
that of 141→121 are reproduced with a better accura
than 8 keV~i.e., the absolute value of the discrepancy b
tween calculated and measured values does not exce
keV!.

C. Branching ratio p2¿ Õp0¿

The branching ratiop21 /p01 calculated for the nucle
with Z588298, i.e., for these nuclei in which experiment
values of it are known, is shown in Fig. 11. It is obtaine
with the use of Eq.~10! with the parameters of Eq.~11!. One
can see that the calculated values reproduce the experim
data quite well. In particular, a rather strong isotopic dep
dence ofp21 /p01 is well reproduced.

The ratiop21 /p01 calculated for heavier nuclei withZ
5102–112 is shown in Fig. 12. One can see that a ra
strong dependence of it on the neutron number also app
for these nuclei. It has important implication for plannin
experiments for the observation of the 21 state. In particu-
lar, to have a reasonable chance to observe this state
heavy element, one should take for this as light an isotop
it as possible. Numerical values ofp21 /p01 are given in
Table II. Thea-decay energies of the parent nuclei to giv
ones are also presented in the table.

To see the role of the phenomenological term 10(aA1b) in
the branching ratios presented in Figs. 11 and 12 and
Table II, let us specify a few values of it. For the lighte
nucleus considered in Fig. 11,226Ra, it is equal to 1.94; and
for the heaviest one,250Cf, its value is 0.440. Thus it de
creases by a factor of 4.4 between these two nuclei. Betw
the lightest,248No, and the heaviest,278112, nuclei consid-
ered in Fig. 12 and Table II, it decreases by a factor of 6
This way, this term decides the rather fast decrease of
branching ratio with the increasing mass numberA.

V. DISCUSSION OF VARIOUS EFFECTS

A. Role of deformations of various multipolarities in the
moment of inertia

To illustrate the importance of using a multidimension
deformation space for the calculations of the moments
inertia of nuclei, let us show the dependence of them on
dimension of the space used. As in earlier discussion, ins
of the moment of inertiaJ itself, we use the equivalent to i
and directly measurable quantityE21 . For the illustration,
we take the nuclei, for whichE21 are smallest, i.e., the nu
clei 254No and 270Hs.

p

6-8
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TABLE II. Ground-state equlibrium deformationsbl
0 , l52,4,6,8, deformation energyEdef , moment of

inertia J ~multiplied by 2/\2), energy of the lowest 21 state, E21 , energy of the transition 41
→21, E42, a-decay energy of the parent nucleusQap , and branching ratiop21 /p01 , calculated for
nuclei specified in the first three columns.

Z N A b2
0 b4

0 b6
0 b8

0 Edef 2J/\2 E21 E42 Qap
p21

p01

MeV MeV21 keV keV MeV %

102 146 248 0.245 0.043 20.039 20.010 10.6 130.0 46.1 108 9.85 24.
102 148 250 0.247 0.033 20.044 20.005 11.2 131.4 45.7 107 9.43 20.
102 150 252 0.249 0.022 20.049 0.002 11.5 134.8 44.5 104 9.10 18.
102 152 254 0.252 0.013 20.054 0.007 11.5 144.1 41.6 97 9.20 16.
102 154 256 0.251 0.003 20.053 0.013 10.9 139.2 43.1 101 8.84 14.
102 156 258 0.249 20.009 20.051 0.018 10.0 131.0 45.8 107 8.26 11.
102 158 260 0.245 20.021 20.045 0.022 9.1 125.4 47.9 112 7.70 9.7
102 160 262 0.236 20.034 20.034 0.020 8.3 122.6 48.9 114 7.15 8.0
102 162 264 0.228 20.049 20.023 0.020 7.5 129.8 46.2 108 7.64 7.7
102 164 266 0.218 20.048 20.016 0.014 6.0 117.2 51.2 119 7.40 6.3

104 148 252 0.245 0.019 20.041 20.001 10.6 122.2 49.1 115 10.19 18.
104 150 254 0.247 0.009 20.045 0.005 11.1 127.9 46.9 109 9.90 16.
104 152 256 0.249 0.001 20.050 0.009 11.3 138.2 43.4 101 9.96 15.
104 154 258 0.249 20.009 20.049 0.015 10.8 134.8 44.5 104 9.60 13.
104 156 260 0.248 20.020 20.048 0.021 10.1 129.3 46.4 108 9.06 11.
104 158 262 0.244 20.032 20.044 0.025 9.3 126.8 47.3 110 8.54 9.3
104 160 264 0.238 20.042 20.034 0.024 8.6 127.1 47.2 110 8.05 7.9
104 162 266 0.231 20.055 20.024 0.023 7.9 135.5 44.3 103 8.66 7.5
104 164 268 0.221 20.055 20.017 0.017 6.4 122.4 49.0 114 8.46 6.3
104 166 270 0.209 20.058 20.009 0.012 4.9 109.2 54.9 128 8.11 5.1

106 150 256 0.246 20.005 20.043 0.009 10.5 123.9 48.4 113 10.97 15
106 152 258 0.247 20.012 20.046 0.013 10.8 134.1 44.7 104 11.02 13
106 154 260 0.247 20.021 20.046 0.019 10.5 133.4 45.0 105 10.69 12
106 156 262 0.247 20.032 20.045 0.025 9.9 130.8 45.9 107 10.20 10.
106 158 264 0.245 20.041 20.042 0.029 9.3 131.5 45.6 106 9.65 8.9
106 160 266 0.239 20.051 20.034 0.027 8.7 133.4 45.0 105 9.13 7.7
106 162 268 0.232 20.062 20.024 0.028 8.0 143.1 41.9 98 9.79 7.2
106 164 270 0.224 20.064 20.016 0.020 6.5 129.0 46.5 109 9.58 6.1
106 166 272 0.214 20.066 20.008 0.015 5.0 115.9 51.8 121 9.22 5.1
106 168 274 0.199 20.067 20.001 0.011 3.7 105.2 57.0 133 8.77 4.2

108 154 262 0.244 20.031 20.039 0.018 9.6 129.9 46.2 108 12.17 11.
108 156 264 0.242 20.043 20.037 0.024 9.2 128.7 46.6 109 11.76 9.8
108 158 266 0.240 20.053 20.033 0.028 8.7 131.1 45.8 107 11.24 8.5
108 160 268 0.236 20.061 20.027 0.028 8.2 136.6 43.9 102 10.80 7.5
108 162 270 0.232 20.070 20.020 0.028 7.8 149.4 40.2 94 11.39 6.9
108 164 272 0.224 20.073 20.013 0.020 6.3 134.8 44.5 104 11.03 5.9
108 166 274 0.216 20.075 20.005 0.017 4.8 122.2 49.1 115 10.52 4.9
108 168 276 0.204 20.077 0.003 0.012 3.5 111.6 53.8 125 9.84 4.
108 170 278 0.177 20.070 0.007 0.007 2.4 97.4 61.6 144 8.86 3.

110 156 266 0.234 20.043 20.029 0.020 7.5 117.5 51.1 119 12.59 8.8
110 158 268 0.231 20.055 20.023 0.022 7.1 118.5 50.6 118 12.07 7.6
110 160 270 0.227 20.066 20.019 0.022 6.7 125.8 47.7 111 11.67 6.7
110 162 272 0.227 20.076 20.012 0.026 6.4 141.8 42.3 99 12.13 6.2
110 164 274 0.217 20.080 20.003 0.019 5.2 128.5 46.7 109 11.83 5.3
110 166 276 0.207 20.082 0.005 0.014 3.9 117.0 51.3 120 11.36 4.
110 168 278 0.198 20.085 0.012 0.010 2.8 109.6 54.7 128 10.65 3.

112 158 270 0.219 20.056 20.015 0.017 5.3 107.1 56.0 131 12.76 6.7
112 160 272 0.218 20.069 20.009 0.020 5.1 116.6 51.5 120 12.41 6.0
112 162 274 0.221 20.081 20.005 0.024 4.9 134.3 44.7 104 12.75 5.5
112 164 276 0.208 20.084 0.007 0.018 3.9 122.5 49.0 114 12.54 4.
112 166 278 0.202 20.089 0.013 0.013 2.8 114.6 52.4 122 12.13 4.
034306-9
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Figure 13 shows the dependence ofE21 on the maximal
multipolarity lmax included in the used deformation spa
$bl%, l52,4, . . . ,lmax, for the nucleus254No. One can see
that the energyE21 is rather large~50.6 keV! at the equilib-
rium shape of this nucleus, when only one-dimensional sp
(lmax52) is used. It is only slightly decreased~to 50.1 keV,
i.e., by about 1%! when the second dimension (l54) is
included, but is essentially lowered~to 41.7 keV, i.e., by
about 17%! when the third dimension (l56) is added. The
inclusion of the fourth dimension (l58) lowersE21 to 41.6
keV only very little. Thus the analysis ofE21 in the four-
dimensional space givesE21541.6 keV, instead ofE21

550.6 keV obtained in a one-dimensional space. Figure
shows similar dependence ofE21 for 270Hs. One can see
here that the inclusion of the deformationb4 decreasesE21

from 59.9 keV to 44.2 keV; i.e., by about 26%, the inclusi
of b6 further lowers it to 42.7 keV and the addition ofb8
decreases it to 40.2 keV. Thus, for the nucleus270Hs, the
inclusion ofb4 is very important, but addition of very high
multipolarity asl58 is also significant.

Figures 13 and 14 show the importance of using a mu
dimensional deformation space in the analysis of nuc
moments of inertia. The significance of a given multipolar
is, however, the individual property of a nucleus. For so
nuclei, certain multipolarities are important; for other on
other multipolarities are of the largest significance.

FIG. 11. Comparison between calculated and experimental
ues of the branching ratiop21 /p01 for nuclei of the elements
Ra– Cf, with neutron numbersN specified below the symbol o
each element.

FIG. 12. Same as in Fig. 10, but for the branching ra
p21 /p01 .
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Concerning the highestl, which should be taken into
account, the analysis of the binding energy of heavy nu
@10# has shown that the multipolaritiesl>10 may already be
disregarded.

B. Sensitivity to strength of pairing interaction

To discuss the sensitivity of our results for the ener
E21 to the pairing interaction strengthGl , Eq. ~12!, we
change this quantity in a wide region: (0.80–1.20)Gl and
look at the resulting changes in six important quantities: p
ton and neutron pairing-energy gap parameters,Dp andDn ;
proton and neutron contribution to the moment of inertia,Jp
and Jn ; and total moment of inertiaJ and the rotational
energy E21 . For the illustration, we choose the nucle
260Sg, which is one of candidates for the measuremen
E21 .

Figure 15 shows the dependence ofDp and Dn on c,
where c is a multiplication factor ofG. Thus c51 corre-
sponds to not changedG given by Eq.~13!, i.e., to G ad-
justed to odd-even mass differences of heavy nuclei@10# and
c51.0529 corresponds toG given by Eq. ~14!, with

l-

FIG. 13. Dependence of the energyE21 on the maximal multi-
polarity lmax included in the used deformation space$bl%, l
52,4, . . . ,lmax, for the nucleus254No.

FIG. 14. Same as in Fig. 13, but for the nucleus270Hs.
6-10
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which moments of inertia of all nuclei studied in this pap
are calculated. One can see in Fig. 15 that both valuec
51 ~with which equilibrium deformations, masses, a
quantities connected with them are calculated! and c
51.0529~with which moments of inertia are calculated! are
far from the critical valueccr at which the BCS approxima
tion collapses. Thus, with the pairing strength used by
this approximation is good. It is seen in Fig. 15 thatccr
50.87 for protons andccr,0.80 for neutrons, for the studie
nucleus260Sg. One can also see that the increase ofc by 5%
from c51 changesDp from 0.64 MeV to 0.89 MeV, i.e., by
about 36% andDn from 0.63 MeV to 0.82 MeV, i.e., by
about 29%. Figure 16 illustrates the dependence of pro
Jp , and neutron,Jn , contributions to the total moments o
inertiaJ, as well as ofJ itself. The increase ofc by 5% from
c51 decreases 2Jp /\2 from 59.4 MeV21 to 52.1 MeV21,
i.e., by about 12%, 2Jn /\2 from 95.9 MeV21 to
82.5 MeV21, i.e., by about 14% and 2J/\2 from
155.3 MeV21 to 134.6 MeV21, i.e., by about 13%. Finally
Fig. 17 shows the dependence of the energyE21 on c. One
can see that the increase ofc by 5% fromc51 results in the

FIG. 15. Dependences of the proton and neutron pairing-en
gap parametersDp and Dn , respectively, on the pairing strengt
factor c, calculated for the nucleus260Sg.

FIG. 16. Same as in Fig. 15, but for the total~tot! moment of
inertiaJ and the proton (p), Jp , and neutron (n), Jn , contributions
to it, all multiplied by a factor of 2/\2.
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increase ofE21 from 38.6 keV to 44.6 keV, i.e., by abou
16%.

VI. CONCLUSIONS

The following conclusions may be drawn from our stud
~1! A very good description of energy of the lowest rot

tional states 21 of heaviest even-even nuclei is obtaine
within the cranking approximation. In particular, the energ
of 15 nuclei of the elements from uranium to fermium, whi
are very good rotors (E41 /E21>3.30), are described with
the average accuracy~rms! of 1.4 keV.

~2! Higher states are also quite well described. For
ample, all transition energies, including the one of 141
→121, measured recently in the rotational band of254No
@19,20# agree with the calculated ones with a better accur
than 8 keV.

~3! Sufficiently large deformation space is needed fo
proper description of rotational energies~moments of inertia!
of heaviest nuclei. For example, inclusion of the deformat
of so high multipolarity asl56 changes the moment o
inertia of the nucleus254No by so much as 17%.

~4! Shell structure of deformed superheavy nuclei
clearly reflected in their rotational properties. In particul
the rotational energyE21 is lowest~i.e., moment of inertia is
highest! for nuclei with closed deformed shells~see Fig. 6!.
The mechanism is that pairing correlations are weakene
closed shells and, as a result, moment of inertia is increa
~i.e., moving in the direction to its rigid body limit!, so the
rotational energy is decreased.

~5! Branching ratio p21 /p01 between a decay of a
nucleus to the first rotational state 21 and to the ground
state 01 of its daughter has a strong isotopic dependen
The dependence mainly comes from the behavior of the r
of reduced probabilitiesw21 /w01 . To have the ratio
p21 /p01 sufficiently large, one should take in experiment
light isotope of a given element as possible.
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