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The problem of experimental confirmation of deformed shapes of superheavy nuclei situated in the neigh-
borhood of?"™Hs is discussed. Measurement of the endfgy of the lowest 2+ state in even-even species of
these nuclei is considered as a method for this confirmation. The energy is calculated in the cranking approxi-
mation for heavy and superheavy nuclei. Branching najio/p, . betweenx decay of a nucleus to this lowest
2+ state and to the ground state-0of its daughter is also calculated for these nuclei. The results indicate that
a measurement of the enerffy, for some superheavy nuclei by electronm@ispectroscopy is a promising
method for the confirmation of their deformed shapes.
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[. INTRODUCTION because cross sections to synthesize them are very low and
the effectiveness ofy spectroscopy is relatively small. A
There is a fast progress in synthesis of superheavy nuclghore promising way is to see the first excited state @ an
(SHN) (cf. the reviewq 1-3]). Two regions of these nuclei even-even nucleus ia decay or electron spectra. If the en-
have been predicted theoretically: one around the sphericairgy of such a state is found to be of about 40-50 keV, as is
doubly magic nucleug®®114 [4] and the other around de- expected, the state cannot be of any other nature than rota-
formed nuclei withZ=108-110 andN=162-164 (e.g., tional. An indication of this kind for deformation of the
[5-10]). A detailed analysis of the ground-state energy ofnucleus?®Rf [22] was the observation of two close lines in
these nuclei and their single-particle spectra in a multidimenthe a-decay spectrum of®°Sg[23].
sional deformation spadd0] has led t0°’°108 (*’™Hs) as to The objective of this paper is to give help for such experi-
a doubly magic deformed nucleus. For spherical SHN, a posnents by mainly calculating the equilibrium deformations,
sibility of other proton closed shells @&=120[11] or Z energies of the first 2 states, and the probabilities of
=126[12,11 has been also discussed. decay to these states for even-even superheavy nuclei in the
The region of deformed SHN appears closer to experideformed region. Some results of the study have been pre-
mentally investigated nuclei than that of spherical SHN. Itsented earlief24].
was easier then to reach it, including also nuclei which are This paper is organized as follows. Shell structure of su-
close to its center{°Hs). perheavy nuclei is illustrated in Sec. Il and the method of
Large shell effects in deformed nuclei were not expectedanalysis is described in Sec. Ill. Section IV gives the results
because of less symmetry in their shapes and, consequentff, the calculations and Sec. V presents a discussion of vari-
of a more uniform distribution of energy levels in their spec-ous effects. Finally, the conclusions drawn from the study
tra, as compared to spherical nuclei. Due to this, it was beare given in Sec. VI.
lieved for a long time that only spherical SHN might exist
(e.9., Refs[13-13). , Il. ILLUSTRATION OF THE SHELL STRUCTURE
Presently, although a number of SHN in the “deformed” OF SHN
region have been already observed, there is no experimental
evidence for their deformed shapes. All indications are only Figure 1 shows a contour map of the ground-state shell
of a theoretical nature. It is very important then to demon-correction,Egy,, calculated for a large region of nuclei with
strate experimentally that they are really deformed. Thigoroton number Z=82-120 and neutron numbeiN
would show that a creation of a large energy gap of about 1.4-126-190[25]. One can see that the shell correction has
MeV [10] and, in consequence, a big increase of about 1%hree minima in the considered region. One14.3 MeV)
orders of magnitude or mor®,16,17 in fission half-lives is obtained for the experimentally well-known doubly magic
are also possible in deformed heavy nuclei. It is because sucipherical nucleug®Pb. The second7.2 MeV) appears
huge shell effects are needed for the already observed exiat the nucleug’®Hs, predicted to be doubly magic deformed
tence of these nuclei. Without this strong shell structurenucleus[10]. The third (—7.2 MeV) is obtained for the
these nuclei would immediately decay. nucleus 2°®114, which is close to the nucleus®114 pre-
The simplest way to confirm deformation of a nucleus isdicted to be doubly magic spherical nucldds. It is inter-
to observe a rotational band in its spectra. Presently, thesting to note that the minima obtained for deform&dHs)
heaviest nuclei for which such bands have been observed aamd spherical{®®114) nuclei are of comparable, here almost
254.25¢m[18]. Very recently, a rotational band has been alsothe same, depths.
seen for?®No [19,20 and ?°No [21]. There is, however, a  Single-particle spectra calculated for these three doubly
small chance to observe such a band for superheavy nuclenagic nuclei are shown in Figs. 2 and 3, for protons and
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FIG. 1. Contour map of the ground-state shell correction energy 162 g7 d5
Eg,. Crosses denote nuclei already synthes{2z5]. ol — ?; g 9°7* 3¢ t64) . |
= {152) . —J
_i13 =t L ™
neutrons, respectively. One can see in Fig. 2 large energy ol =13 } — i
gaps atZ=82 (in the spectrum of?°%b), atZ=108 (in — 126)
2"%Hs) and atZz=114 (in 2°®114). For neutrons, besides a [ o |
large energy gap aN=162 in the spectrum of’™Hs, a -2p \ \ .

smaller gap alN=152 is also seen. All this finds its reflec- o
tion in the shell correctiol,, shown in Fig. 1. FIG. 3. Same as in Fig. 2, but for neutrons.
exponential mode]26] is taken for the macroscopic part of
the energy and the Strutinski shell correction is used for the
A. Energy (mas9 of a nucleus microscopic part. The Woods-Saxon single-particle poten-
jial, with the universal variant of its parameters found in Ref.
27], and also specified explicitly in Ref10] is taken as the
basis for the shell correction.

IIl. METHOD OF THE CALCULATIONS

The ground-state energy of a nucleus is calculated in
macroscopic-microscopic approach. The Yukawa-plus

Lk g B. Equilibrium deformations
protons
Equilibrium deformation of a nucleus is calculated by
ol 208pp 27014g 29811, - minimization of its energy in a multidimensional deforma-
tion space[28]. The seven-dimensional spades,}, \
2 0% 2] =2,3,...,8, istaken. Here,3, are the usual deformation
or " . parameters, appearing in the expression for nuclear rédius
—m ot ) | the intrinsic frame of referengan terms of spherical har-
% ol 14) _ ?‘1'. _ 211 1 mor_1ics (e.g., Ref.[28]). Qne can add_ here that, presently,
> m 108 m besides the macroscopic-microscopic methedy., Refs.
~ g — 5 _— [25,29,30), self-consistent approaches such as Hartree-Fock-
o -4} — 9 i Bogoliubov (e.g., Refs[12,31]) and relativistic mean field
— " =77 1 ] (e.g., Ref[32]) approximations are also used in the calcula-
— _ 7 tions of deformations of superheavy nuclei.
6F g = i’
(92) . C. Moment of inertia
8Fr — 313 — Moment of inertia of a nucleus is calculated in the crank-
o (82) g ing approximation[33]. It has been shown in a number of
- papers(e.g., Refs[34-39) that this approach allows for a
e L 1 good description of the ground-state moments of inertia of

FIG. 2. Proton single-particle energy levels calculated for the?Vell deformed nuclei, especially of heavy or{@8]. In this

doubly magic nuclei:2%Pb, 2"%Hs, and 2%®114. Spectroscopic Paper, a multidimensional deformation space, particularly
symbol for the orbital angular momentulrand total spin(multi- important for heaviest nuclei, is used for the calculation of
plied by two 2j are given at each level of the spherical nuéfPb ~ moments of inertia. Also a final-deptfiWwoods-Saxoh
and 2%8114. Projection of spin on the symmetry axis of a nucleussingle-particle potential is used instead of an infiriiteodi-
(multiplied by twog 2Q and parityr are shown at each level of the fied oscillatoj one, taken in older studie®.g., Refs[34—
deformed nucleug’™Hs. 38)).
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D. Probability of « decay to rotational states

Observation ofa decay to the first rotational statet2

PHYSICAL REVIEW C63 034306

E(Z,N)=Qu(Z+2N+2)—E|(Z,N)=Q,p—E,,
@

besides electron transitions, seems to be the most promising

way to measure the energy of this state for heaviest nucleivhere E, . is the rotational energy of thé+ state of a
As cross section for synthesis of these nuclei is very small, ihucleus Z,N) andQ,;, is the a-decay energy of the parent
is very important to estimate, in a possibly realistic way, thenucleus. The potential energy is

probability of this decayp,.. , to have an idea of a chance to
observe it.

As a matter of fact, we are only interested in the branch-

ing ratiop,, /pg. , wherepg. is the probability of decay to
the ground state ® of a nucleus, ap,, , itself (more ex-

actly half-liveg, has been already calculated for superheav3{ e

nuclei in a number of paper®.g., Refs[10,12,25,30,3))

and also measured for some of these nuclei. More generall

we can consider the ratig ; /pg.. . One should mention that
the probabilitiesp,, have been studied for already a long
time (e.g., Ref[39]).

The probabilityp, . is usually considered as

)

wherew, , is the reduced decay probability af, is the
probability to penetrate the potential-energy barrientyar-
ticle with angular momenturh Thus

Pi+=w Py,

)

The penetration probabilit?, .. is calculated in the qua-
siclassical WKB approximation

P.+(Z.N>=ex% - §¢2maJrT[V(r>— E]”Zdr] )
R

Pi+/Po+ = (Wit /Woi)- (P4 /Poy).

whereV(r) is the potential energy as a function of the dis-

tancer between the centers of theparticle and the nucleus,

2Z€? A2(1+1)
= +

V(r)=

®)

r 2m,r?

it is a superposition of the Coulomb and centrifugal en-
ergies. In Eq(3), m, is reduced mass af particle,R is the

Yralue ofr at the entrance point ot particle to the barrier,

andrt is the value of at the exit point from the barrier. The
entrance point is assumed to appeaRatr,A'”, i.e., at the
radius of the nucleus, wher is its mass number ang,
=1.4 fm.

For low values ofl, i.e., in the case of a low centrifugal
barrier with respect to the Coulomb barrier, the integrand in
Eqg. (3) may be, in a good approximation, written as

o)
" Qup 2m,r

1/2| 1
_Qap) 1+ E(
27
(T _Qap>

because the second term in the first squared bracket is gen-

A2(1+1) v

2 I+

#21(1+1)
2m,r?

27 ¢
2( :

+E , (6)

I+

andE is the decay energy of the parent nucleus to the staterally much smaller than the first term. This leads to the

| + of the considered nucleuZ(N), i.e.,

J
#21(1+1)
2m,r?

o

P|+(Z,N)2P0+(Z,N)~exp[ -

approximate equation

27¢ e
E|+)(T—Qap) df]

v2m, | (#%1(1+1) VyQ,, E B V2 27e’E
=P0+(Z,N)~exp{— - ( 2(m ) Q2p+ R (—C—l) + = arcco$Q,, /Bo) 2
a Ze \/Qap Qap ap
(7)
and, thus, to
J2m, <ﬁ2|(|+1) VQup  Eis ( Be )1’2 27€%E,,
P, /Py .=exp — + R - + ————arcco$Q,,/Bo)Y?| {, (8)
o p{ h 2m,  z& Q. |\Qup Q¥ prme

wherePg, is the probability of the penetration of particle
through the barrier with angular momentuns0 and B¢
=2Z€?/R is height of the Coulomb barrier far particle. A
direct numerical check shows that the valuesPof /P

obtained from Eqs(8) and(3) are close to each other, espe-
cially for 1=2. For example, the valueP,, /Py, and
P,. /Py, calculated by Eq. (8) for the nucleus
260106 (?%%sQ) are 50.41 and 10.19, respectively, while cal-
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culated with the use of the unapproximated WKB formula,found that a renormalization of the parametggs and gy, ,

Eq. (3), they are 51.01 and 10.90, respectively. Thus thegiven in Eq.(13), by a factor of 1.0529this is a slightly

value obtained by analytic formula of EB) deviates from larger factor than that of 1.0485, used by us in earlier calcu-

that of Eq.(3) by only about 1% foiP,, /Py, and by about lations[24]) improves the agreement significantly. Thus the

7% for P4, /Py, for the nucleus?®’Sg. moments of inertia of all nuclei studied in this paper are
The reason to derive the analytic formula of Ef) is  calculated with the strength parameters,

certainly not of the computational nature. The formula is

derived to see explicitly the role of various quantities as 9on=20.91 MeV, g;,=—22.5 MeV,
Qup» Bc, atomic numbeg, or spinl in the ratioP, , /Pq, .
To calculateP, . in our analysis, Eq(3) has been used. for I=n (neutrong, (14
The ratio of reduced probabilities/, , /wy, is treated
phenomenologically. Limiting ourselves to the lowest spin Jop=18.93 MeV, g;,=27.4 MeV,
=2, we find that the ratio may be well described by a
two-parameter formula for |=p (protons.
Wa . /Wo, = 10@ATD) ©) A discussion of the sensitivity of the calculated moments

. e of inertia to the pairing strength is presented in Sec. VB.
and, thus, the ratio of the total probabilities is nert pairing gihisp !

P2+ [Pos =10@ATE (P, [Py, ), (10 IV. RESULTS

whereA is the mass number of a nucleus. A. Equilibrium deformations

Adjustment of the parametes and b to experimental
results forp,, /pg, , obtained for 26 nucldil8] and shown
in Table I, withP,, /P, calculated with the use of E(3),
leads to the following values:

As stated in Sec. Ill, all componeng), =23, ...,8
of the equilibrium deformation of the considered nuclei are
studied. It is found, however, in accordance with Refs.
[10,25,2§ that the odd-multipolarity componentg?, \
a=—0.02687, b=6.3608, (11) =3,5,7, are different from zero only for a very few of them.
Due to this, only even-parity deformatiomﬁ, N=2,4,6,8,
and reproduces the experimental Valuesp@i /pO+ with are shown in our figures and tables. However, whenever re-

rms deviations equal to 0.027. sults for nuclei with nonvanishing odd-parity deformations
are presented, a remark on those deformations is done.
E. Pairing interaction Contour maps of the deformatioml‘{, N=2,4,6,8, plot-

. o L ) ted as functions of protoZz and neutronN numbers are
The rQS|duaI pairing interaction is treated in the BCS apnown in Fig. 4. One can see that the main, quadrupole,
proximation. lts strengthG,, of the monopole and the ¢,y 50nentg? is the biggest one and it is positive in the
isospin-dependent type, is taken in a rather usual form whole considered region of deformed nuclei. It is large
A-G=go+9yl, (12) (B§~0.25) andnearly constant in a big part of the region
around the nucleu$®No, and then outside of this part, it
whereA is the mass number of a nuclelis; (N—Z)/Aisits  decreases rather fast with increasitg The higher-
relative neutron excess, andstands forn (neutron$ or p multipolarity components are smaller and they change signs
(protony. To calculate potential energy of a nucleus and,as one moves across the region. Still, even the deformations
consequently, its equilibrium deformation, mass, and quantiof so high multipolarity as.=6 and 8 play a significant role
ties derived from them, we have taken the same values of th@ the properties of the nuclei, as will be illustrated in
parameterg)y andg;, as those of the pap€t0], where they Sec. VA.
have been fitted to odd-even mass differences of heavy nu-

clei. They ard10] B. Rotational energies
Jon=19.86 MeV, g;,=-21.4 MeV, 1. The lowest state 2
for I=n (neutrons, (13) Before calculating the rotational energigs, for super-

heavy nuclei, we would like to test our calculations for nu-
clei, for which these energies have been measured. To this
Gop=17.98 MeV, g;,=26.0 MeV, aim, the nuclei, which areggood rotors, are taken. By good
for 1=p (protons. rotors, we mean the nuclei witg, , /E,, =3.00. The results
are given in Table I. To make the table more complete, we
However, as the moment of inertia of a nucleus is a senalso included theoretical results for few nuclei, in which the
sitive function of the pairing strengtte.g., Ref.[35]), we  experimental energi,, is not known yet but may be mea-
have checked if the agreement between the calculated meured in a not too distant future.
ments of inertia and experimental ones could be still im- The deformation energi e, given in Table I, is defined
proved by a small change of this strength. We have reallyas the difference between the energy of a nucleus at its

034306-4



PROBLEM OF “DEFORMED” SUPERHEAVY NUCLEI PHYSICAL REVIEW C63 034306

TABLE I. Ground-state equilibrium deformatiorg) , A =2,4,6,8, deformation enerdyges, moment of
inertiaJ (multiplied by 2£2), and energy of the lowest2 state,E,. , calculated for nuclei specified in the
first three columns.

ESP pge
z N A BB B 5 Ew 27 B BP0 O
2+ Po+
MeV MeV™! keV keV
88 138 226 0.151 0.087 0.017 —0.012 3.2 100.1 59.9 67.7 3.13 0.307
88 140 228 0.170 0.091 0.016 —0.013 3.9 107.8 55.6 63.8 321 0.284
88 142 230 0.188 0.093 0.011 —0.020 4.6 1106 542 57.4(3.2H
88 144 232 0.202 0.087 —0.001 -0.023 5.2 1154 52.0
90 136 226 0.145 0.080 0.012 —0.011 35 97.0 61.8 722 314 0475
90 138 228 0.176 0.108 0.032 —0.012 4.4 122.8 489 57.8 3.23 0.466
90 140 230 0.188 0.105 0.022 —0.015 5.4 122.7 489 532 3.27 0.398
90 142 232 0.199 0.100 0.012 —0.019 6.2 1269 473 494 328 0.351
90 144 234 0.210 0.093 0.001 —0.022 6.8 128.0 469 49.6 3.29 0.265
90 146 236 0.221 0.085 —-0.010 —-0.024 7.1 129.2 465
92 134 226 0.138 0.073 0.011 —0.006 2.9 90.3 66.5
92 136 228 0.179 0.113 0.036 —0.008 4.3 134.0 448 59.
92 138 230 0.189 0.113 0.029 —0.012 5.7 136.2 44.0 517 3.28
92 140 232 0.199 0.109 0.020 —0.016 6.7 1359 441 476 3.29 0.441
92 142 234 0.208 0.104 0.010 —0.019 7.6 139.1 431 435 3.30 0.409
92 144 236 0.217 0.097 0.000 —0.022 8.1 138.1 435 452 330 0.372
92 146 238 0.225 0.088 —0.011 -0.024 8.4 137.2 437 449 3.30 0.289
92 148 240 0.229 0.075 —-0.018 —-0.019 8.4 133.8 44.9 45. 0.241
92 150 242 0.232 0.056 —0.026 —0.008 8.1 125.0 48.0
94 138 232 0.196 0.104 0.022 —0.013 6.3 1279 46.9
94 140 234 0.207 0.102 0.012 —0.016 7.5 131.1 458
94 142 236 0.215 0.095 0.002 —0.019 8.4 1353 444 446 3.30 0.408
94 144 238 0.223 0.091 —-0.006 —0.022 9.1 1379 435 441 331 0.338
94 146 240 0.231 0.083 —0.015 —-0.023 95 140.0 429 428 3.31 0.309
94 148 242 0.233 0.070 —0.022 -0.017 95 136.1 441 445 331 0.217
94 150 244 0.235 0.054 —-0.029 -0.007 9.3 129.0 46.5 46.0 0.220
94 152 246 0.239 0.037 —0.036 0.001 8.9 127.1  47.2
94 154 248 0.239 0.026 —0.037 0.006 8.1 122.8 48.9
96 144 240 0.228 0.081 —0.014 -0.018 9.8 135.8 44.2 38. 0.33
96 146 242 0.235 0.074 —-0.022 -0.019 103 140.0 429 421 3.28 0.260
96 148 244 0.237 0.064 —0.027 —0.014 105 138.1 434 43.0 331 0.222
96 150 246 0.240 0.049 —-0.033 —-0.006 103 133.0 451 429 331 0.179
96 152 248 0.242 0.035 —-0.039 0.001 10.0 1326 453 434 331 0.186
96 154 250 0.242 0.024 —0.040 0.006 9.2 128.0 46.9 43. 0.207
98 146 244 0.239 0.065 —0.029 -0.015 108 138.0 435 40. 0.25
98 148 246 0.241 0.055 —0.035 —-0.011 111 137.3 43.7
98 150 248 0.243 0.042 —-0.040 —-0.004 111 1348 445 415 332 0.179
98 152 250 0.246 0.029 —0.045 0.002 10.8 137.7 43.6 427 3.32 0.167
98 154 252 0.246 0.020 —0.045 0.007 10.1 133.2 451 457 3.32
98 156 254 0.244 0.008 —0.044 0.013 9.1 124.6  48.2
98 158 256 0.240 —0.005 -0.041 0.017 8.0 118.2 50.8
100 150 250 0.248 0.033 —0.046 —0.002 115 136.8 43.9
100 152 252 0.250 0.022 —0.051 0.004 11.4 143.0 42.0
100 154 254 0.249 0.013 —0.051 0.009 10.7 138.2 434 450 3.32
100 156 256 0.247 0.001 —0.049 0.015 9.7 129.3 464 48.2 331
100 158 258 0.243 —0.012 —-0.044 0.019 8.7 122.6  48.9
100 160 260 0.235 —0.026 —0.034 0.019 7.8 119.3 50.3
spherical and equilibrium shapes, i.e., nucleus is established or, in other words, how small are the
zero-point fluctuations of its shape with respect to its equi-
EdefEE(O)—E(ﬂg). (15 librium shape. One can say, in practice, that nuclei with

Eger=2 MeV are well deformede.g., Ref[36)). It is seen
Thus it is the gain in energy of a nucleus due to its deformain Table | that, according to the calculations, all nuclei con-
tion. This quantity tells us how well the deformation of a sidered in it are well deformed.
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FIG. 4. Contour maps of the equilibrium deformatiq&%, N=2,4,6,8, plotted as functions of prot@hand neutrorN numbers in the
region:Z=94-114, N=146-168. Numbers at the contour lines give the values of the deformations.

The rotational energy in the+ state,E, , , is connected of them, ??®Ra, 2?°Th, and??®U, have the odd-multipolarity
with the moment of inertia by the usual formula deformations8?, A=3,5,7, different from zero. The values
of the deformations for these three nuclei agg (32,39
=(0.079,0.027,0.009), (0.102,0.037,0.010), an@.105,
0.037, 0.01}, respectively.

In a graphic form, the relation between theoretical and
experimental values d&,, is illustrated in Fig. 5. One can
fee that for nuclei heavier thaf?U, which are especially
good rotors, the agreement between theory and experiment is

E . =(R22)1(1+1). (16)

For the ideal rotor, i.e., witll independent of, which we
assume here, the quantiti#gandE, , are equivalent and the
specification of both) andE,, in Table | is done only for
the reason of convenience, as both quantities are used
various studies. The ratig§/E5?", specified in the last but
one column, tells us how good rotor is a given nucleus. ThéeaIIy very good. ,
last column gives experimental values for the branching ratio C°ntour map of the energf, calculated for a wide
Py /Po. . All experimental values given in Table | are taken r€9ion of nuclei withz=94-114 andN=146-168 is shown
from Ref.[18]. in Fig. 6 [24]. One can see that two minima &,. are

One can see in Table | that 27 experimental valugs,of ~ obtained for the considered nuclei. One of thetf.6 keV)
(those with all three digits givérare reproduced very well is obtained for the nucleu$®No and the othef40.2 keV)
(rms=4.1 keV). They are particularly well reproduced for 15 for ?’Hs. (One can note that the calculated value 41.6 keV
especially good rotoréwith E,.. /E,, =3.30); the value of for ?*No is close to the value 44 keV, deduced from recent
the rms deviations for them is 1.4 keV. measurementfl9,20.) The two minima ofE,. make the

For complete knowledge on the calculated deformationsiew of the map of this quantity rather unusual, specific for
of nuclei presented in Table I, one should add that only thre¢he superheavy region. Usually, such a map has only one
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FIG. 5. Comparison between theoretical and experimental val- 3 — 7" 5- i
ues of the energ¥,, of the first rotational state 2. For each - r -
element, values of neutron numke¢iof the considered isotopes are i (100) - —_ 9 |
specified below the symbol of the element. - - 7+ 7-
_5 | —— 1* 5, 3‘ = 13: ]’ 50 |
minimum for each region of deformed nuclei, and is similar 1 30 yp-
to the map of the maiquadrupolé component of the equi- €t J
librium deformation,,Bg, of the nuclei. This similarity is Y S R S W S W

rather natural due to the strong dependence of the moment of
inertiaJ on ,83. Both these usual properties of thg, map

can be seen, e.g., for the regions of light-barium and also oz
rare-earth nuclei, studied in Rg¢B6].

The dissimilarity of the maps dt,, and ofﬂg for super-
heavy nuclei, which can be seen by comparing Figs. 4 and . . . L
has two main reasons. One is that deformations of highe he role Of. def_ormanons O.f various multlpol_antles in the
multipolarities are more important in very heavy nug¢@3], moment of inertia and thush'ﬁzf ISI dISCU§S|ed In Sec. Vf"h
like considered in this paper, than in lighter deformed nuclei. I '_Sz'g‘ﬁes“”%}g; see the single-particle structure of the
structure of the nuclei studied, or more particularly, the ap—8 for protons and ne.ut;ons respectivelv. One can seé rather
pearance of strongeformedshells (closed atN=162 and large penergy gaps =162 (abgut 15 I)\//.Ie\] and 7= 108
Z=108) and a weaker shdltlosed atN=152) in this struc- - 7 : . ~
ture (e.g., Ref[10]) not observed in lighter deformed nuclei. (@°0ut 1.3 MeVfor the nucleus”Hs, and a slightly smaller

These two reasons are connected, one with the other, as de-

FIG. 7. Proton single-particle energy levelscalculated for the
uclei: 2*No and?"®Hs. Projection of spin on the symmetry axis of
nucleugmultiplied by two 2Q) and paritys are shown at each

level.

formations of higher multipolarities contribute to the creation , . r T T T
of these shells and thus to creation of these minimg.of . neutrons
T T T T T -2 i 7
15 | . 254 270
Es. (keV) 7 b No Hs |
20°% 2Q*
1ot 1 4} -
—_— 13
> — s = L5y
© '5 B 1 —_— 1 . 3: 1 -1
N1 T 1 = — 9 — Y5,
mc -6 | — 17+ 1M 3+ 13- o
100 | 1 -7F 162 162 ]
9T g* o+
8 — 7' — &l
B . . / T = I'"7 (152)
1 1 1 L L 9F — 5_ ¥ ES 9: ey .
145 150 156 160 165 170 — %r = 75
N -10 | .
FIG. 6. Contour map of calculated energy, of the first rota- I I ' ' I I ' I
tional state 2-. FIG. 8. Same as in Fig. 7, but for neutrons.
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T T T T T 2. Higher states

15 | .
As the objective of this paper is to describe only the en-
ergy of the lowest rotational statet2in the heaviest even-
1o . even nuclei, we do not study higher states. It is still worth
noting that the calculated ground-state moments of inertia
well describe the rotational energies of also higher states, up
NS ] to spin 8, 10, and even 14. In particular, all transition ener-
gies up to spin 8 in all 15 good rotorE{/ESP=3.30),
shown in Table I, are described by our moments of inertia
100 ’ with the accuracy better than 10 keV. In the recently studied
nucleus?>No [19,20, all measured transition energies up to
95k 1 that of 14+ —12+ are reproduced with a better accuracy
than 8 keV(i.e., the absolute value of the discrepancy be-
L 1 L L L tween calculated and measured values does not exceed 8
145 150 156 160 165 170 keV).
N C. Branching ratio ps4/po+
FIG. 9. Same as in Fig. 6, but for the neutron pairing-energy gap The branching ratiap, . /po. calculated for the nuclei
parameter\ .

with Z=88-98, i.e., for these nuclei in which experimental
gap atN=152 (about 1.2 MeV in the nucleus®No. Only  values of it are known, is shown in Fig. 11. It is obtained

a rather small gagabout 0.6 MeV appears in the latter with the use of Eq(10) with the parameters of E¢11). One
nucleus aZ=102, even smaller than that At=100 (about  can see that the calculated values reproduce the experimental

0.8 MeV). data quite well. In particular, a rather strong isotopic depen-
The energy gap&losed shells or subshellmfluence the  dence ofp,. /py. is well reproduced.
values of moments of inertia and thus Bf, of nuclei by The ratiop,. /po. calculated for heavier nuclei wit&

weakening the pairing correlations, to which moments of in-=102-112 is shown in Fig. 12. One can see that a rather

plot in Fig. 9 the map of the pairing energy gap,, for  for these nuclei. It has important implication for planning
neutrons. One can see that the shell closuréé=al52 and  gyneriments for the observation of the-2state. In particu-

162 result in small valuedocal minimg of A, which lead
to large values of the moment of inertia and, this way,
small values of,, .

lar, to have a reasonable chance to observe this state in a
toheavy element, one should take for this as light an isotope of
O}F as possible. Numerical values @b, /poy, are given in

To see more clearly, than in Fig. 6, the dependence : . .
able Il. Thea-decay energies of the parent nuclei to given
E,. on neutron numbeN around the shell closures &t :
ones are also presented in the table.

=152 and 162, this energy is plotted in Fig. 10 as a function . b) ;
of N for Z=102-112. One can see clear effects of the de- To see the role of the phenomenological terr?40° in

formed shells aN =152 and 162. Numerical values Bf . , the branching ratios presented in Figs. 11 and 12 and in

as well as those of equilibrium deformations, deformation!@b!e Il, let us specify a few values of it. For the lightest

energies, moments of inertia, and transition energies frorffucleus considered in Fig. 1#%Ra, it is equal to 1.94; and

troscopy, E4,, for nuclei with Z=102-112, are given in creases by a factor of 4.4 between these two nuclei. Between

Table II. the lightest,?*8No, and the heavies£’®112, nuclei consid-
ered in Fig. 12 and Table I, it decreases by a factor of 6.4.
80 [T T T T T T T T T This way, this term decides the rather fast decrease of the
70 . branching ratio with the increasing mass numher
60 | i H 4
% 50 L . 9"9 ’9,' jl . °\t€ E i V. DISCUSSION OF VARIOUS EFFECTS
=< of ™ NN e S Voo ] A. Role of deformations of various multipolarities in the
+ L moment of inertia
Ly 30 . . : . - .
L Z= 102 104 108 w8 1o nz To illustrate the importance of using a multidimensional
20 N ue-et w865 150-168 15470 156168 156-166 ] deformation space for the calculations of the moments of
10} g inertia of nuclei, let us show the dependence of them on the
ol e dimension of the space used. As in earlier discussion, instead

of the moment of inertid itself, we use the equivalent to it

FIG. 10. Dependence of the enerBy, on neutron numbe,  and directly measurable quantiBs. . For the illustration,
calculated for elements with proton numizes 102—-112. For each we take the nuclei, for whick,, are smallest, i.e., the nu-
element, values of considerétiare specified below the value 8f  clei ?>No and 2"*Hs.
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TABLE II. Ground-state equlibrium deformatiorg) , A=2,4,6,8, deformation enerdyye;, moment of
inertia J (multiplied by 2k?), energy of the lowest 2 state, E,,, energy of the transition 4
—2+, Es, a-decay energy of the parent nucleQs,,, and branching rati@,, /py, , calculated for
nuclei specified in the first three columns.

p
z N A B B3 B2 BY  Esx 2JH2 Ey; Eg o Qup pi
0+

MeV MeV™! kevV keV MeV %

102 146 248 0.245 0.043 —0.039 —-0.010 10.6 130.0 46.1 108 9.85 242
102 148 250 0.247 0.033 —0.044 -0.005 11.2 131.4 457 107 9.43 209
102 150 252 0.249 0.022 —0.049 0.002 115 1348 445 104 910 183
102 152 254 0.252 0.013 —0.054 0.007 11.5 1441 416 97 9.20 16.6
102 154 256 0.251 0.003 —0.053 0.013 10.9 139.2 431 101 8.84 142
102 156 258 0.249 —0.009 —-0.051 0.018 10.0 131.0 458 107 8.26 118
102 158 260 0.245 —-0.021 -—-0.045 0.022 9.1 1254 479 112 7.70 9.7
102 160 262 0.236 —0.034 —0.034 0.020 8.3 1226 489 114 7.15 80
102 162 264 0.228 —0.049 -0.023 0.020 7.5 129.8 46.2 108 7.64 7.7
102 164 266 0.218 —0.048 —-0.016 0.014 6.0 117.2 512 119 7.40 6.3

104 148 252 0.245 0.019 —-0.041 -0.001 106 122.2 49.1 115 10.19 189
104 150 254 0.247 0.009 —0.045 0.005 111 1279 469 109 9.90 16.6
104 152 256 0.249 0.001 —0.050 0.009 11.3 138.2 434 101 996 151
104 154 258 0.249 —0.009 —0.049 0.015 10.8 1348 445 104 9.60 13.0
104 156 260 0.248 —0.020 —0.048 0.021 10.1 129.3 464 108 9.06 11.0
104 158 262 0.244 -0.032 —-0.044 0.025 9.3 126.8 47.3 110 854 93
104 160 264 0.238 —0.042 -—-0.034 0.024 8.6 1271 472 110 8.05 79
104 162 266 0.231 —0.055 —-0.024 0.023 7.9 1355 443 103 866 7.5
104 164 268 0.221 —0.055 -0.017 0.017 6.4 1224 490 114 8.46 6.3
104 166 270 0.209 —0.058 —0.009 0.012 4.9 109.2 549 128 811 51

106 150 256 0.246 —0.005 -—0.043 0.009 10.5 1239 484 113 1097 154
106 152 258 0.247 —-0.012 —-0.046 0.013 10.8 1341 447 104 11.02 13.9
106 154 260 0.247 —0.021 -—-0.046 0.019 10.5 1334 450 105 10.69 121
106 156 262 0.247 —0.032 —-0.045 0.025 9.9 130.8 459 107 10.20 10.4
106 158 264 0.245 —0.041 -—0.042 0.029 9.3 1315 456 106 9.65 89
106 160 266 0.239 —0.051 -—-0.034 0.027 8.7 1334 450 105 913 7.7
106 162 268 0.232 —0.062 —0.024 0.028 8.0 1431 419 98 979 7.2
106 164 270 0.224 —-0.064 -—-0.016 0.020 6.5 129.0 465 109 958 6.1
106 166 272 0.214 -0.066 —0.008 0.015 5.0 1159 518 121 9.22 51
106 168 274 0.199 —0.067 —0.001 0.011 3.7 1052 57.0 133 8.77 4.2

108 154 262 0.244 —-0.031 —-0.039 0.018 9.6 1299 46.2 108 12.17 113
108 156 264 0.242 —0.043 -—-0.037 0.024 9.2 128.7 46.6 109 11.76 9.8
108 158 266 0.240 —0.053 —0.033 0.028 8.7 131.1 458 107 1124 85
108 160 268 0.236 —0.061 —0.027 0.028 8.2 136.6 439 102 10.80 75
108 162 270 0.232 -0.070 —0.020 0.028 7.8 1494 402 94 1139 6.9
108 164 272 0.224 —-0.073 —-0.013 0.020 6.3 1348 445 104 11.03 59
108 166 274 0.216 —0.075 —-0.005 0.017 4.8 1222 491 115 1052 49
108 168 276 0.204 —0.077 0.003 0.012 3.5 1116 53.8 125 9.84 41
108 170 278 0.177 —0.070  0.007 0.007 2.4 97.4 61.6 144 886 3.2

110 156 266 0.234 —0.043 —-0.029 0.020 7.5 1175 511 119 1259 8.8
110 158 268 0.231 —0.055 —-0.023 0.022 7.1 1185 50.6 118 12.07 7.6
110 160 270 0.227 —0.066 —0.019 0.022 6.7 125.8 47.7 111 11.67 6.7
110 162 272 0.227 —0.076 —0.012 0.026 6.4 1418 423 99 1213 6.2
110 164 274 0.217 —0.080 —0.003 0.019 5.2 1285 46.7 109 11.83 53
110 166 276 0.207 —0.082  0.005 0.014 3.9 1170 513 120 1136 45
110 168 278 0.198 —0.085 0.012 0.010 2.8 109.6 547 128 10.65 3.8

112 158 270 0.219 -0.056 —-0.015 0.017 53 1071 56.0 131 1276 6.7
112 160 272 0.218 —0.069 —0.009 0.020 5.1 116.6 515 120 1241 6.0
112 162 274 0.221 —-0.081 —-0.005 0.024 4.9 1343 447 104 1275 55
112 164 276 0.208 —0.084 0.007 0.018 3.9 1225 49.0 114 1254 48
112 166 278 0.202 —0.089 0.013 0.013 2.8 1146 524 122 1213 41
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FIG. 11. Comparison between calculated and experimental val-
ues of the branching ratip,, /pg, for nuclei of the elements
Ra-Cf, with neutron numberhl specified below the symbol of

each element.
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254\ 1

1

l max

FIG. 13. Dependence of the enerBy, on the maximal multi-
polarity N\ included in the used deformation spagg,}, \
=24,... Amax, fOr the nucleus®No.

Figure 13 shows the dependencekf, on the maximal
multipolarity \,ax included in the used deformation space

{B\}, A=2,4, ... Amax. for the nucleus®No. One can see
that the energ¥,, is rather largg50.6 ke\j at the equilib-

Concerning the highest, which should be taken into
account, the analysis of the binding energy of heavy nuclei

rium shape of this nucleus, when only one-dimensional spacg 0] has shown that the multipolaritiés= 10 may already be

(Amax=2) is used. It is only slightly decreasém 50.1 keV,

i.e., by about 1% when the second dimension€4) is
included, but is essentially loweredo 41.7 keV, i.e., by
about 17% when the third dimension\(=6) is added. The

inclusion of the fourth dimension\(=8) lowersk,, to 41.6
keV only very little. Thus the analysis d&,, in the four-
dimensional space giveg,,=41.6 keV, instead of,,

disregarded.

B. Sensitivity to strength of pairing interaction
To discuss the sensitivity of our results for the energy

E,, to the pairing interaction strengt®,, Eq. (12), we
change this quantity in a wide region: (0.80-1@p)and

=50.6 keV obtained in a one-dimensional space. Figure 1400k at the resulting changes in six important quantities: pro-
shows similar dependence & for Z’%Hs. One can see (On and neutron pairing-energy gap parametagsandA,;

here that the inclusion of the deformatig) decrease&,

proton and neutron contribution to the moment of inedja,

from 59.9 keV to 44.2 keV; i.e., by about 26%, the inclusion@nd Jn; and total moment of inertid and the rotational

of Be further lowers it to 42.7 keV and the addition 8§
decreases it to 40.2 keV. Thus, for the nucléd®s, the

inclusion of B, is very important, but addition of very high Ez+ -
Figure 15 shows the dependence &f and A, on c,

Figures 13 and 14 show the importance of using a multiwhere c is a multiplication factor ofG. Thusc=1 corre-
dimensional deformation space in the analysis of nucleapPOnds to not change@ given by Eq.(13), i.e., to G ad-
moments of inertia. The significance of a given multipolarity justed to odd-even mass differences of heavy nidiej and
is, however, the individual property of a nucleus. For somec=1.0529 corresponds t& given by Eg. (14), with
nuclei, certain multipolarities are important; for other ones,

multipolarity asA =8 is also significant.

other multipolarities are of the largest significance. 60
0.40 | - — 65 F
B i >
0.36 ()
X
L Z= 102 104 106 108 1m0 n2 =
5 0.30 N=146-164 148-166 150-168 154-170  156-168 158-166 + 50 B
Q026 . 1 L
S o0r N 1 5
ALY A U 1
& . y
0.10 | ; 2, k N . L
qt’“\o >, ", no% Boa 9 40
0.05 | > N T Py T o i
0.00 | I Y | U T I N PR S 1 el
FIG. 12. Same as in Fig. 10, but for the branching ratio
P2+ /Po+ - FIG.
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energy E,, . For the illustration, we choose the nucleus
26059, which is one of candidates for the measurement of

270HS

14

l max

. Same as in Fig. 13, but for the nucléd®s.
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FIG. 15. Dependences of the proton and neutron pairing-energy FIG. 17. Same as in Fig. 15, but for the enerfy, of the
gap parameterd, and A, respectively, on the pairing strength lowest rotational state 2.
factorc, calculated for the nucleu®%sg.

increase ofE,, from 38.6 keV to 44.6 keV, i.e., by about

0,
which moments of inertia of all nuclei studied in this paper16 %.

are calculated. One can see in Fig. 15 that both valces,
=1 (with which equilibrium deformations, masses, and
quantities connected with them are calculateahd c The following conclusions may be drawn from our study:
=1.0529(with which moments of inertia are calculajegte (1) A very good description of energy of the lowest rota-
far from the critical valuec,, at which the BCS approxima- tional states 2 of heaviest even-even nuclei is obtained
tion collapses. Thus, with the pairing strength used by uswithin the cranking approximation. In particular, the energies
this approximation is good. It is seen in Fig. 15 tlwt  of 15 nuclei of the elements from uranium to fermium, which
=0.87 for protons and<0.80 for neutrons, for the studied are very good rotorsH,, /E,, =3.30), are described with
nucleus?®°Sg. One can also see that the increaselnf 5%  the average accuradyms) of 1.4 keV.

from c=1 changes\, from 0.64 MeV to 0.89 MeV, i.e., by (2) Higher states are also quite well described. For ex-
about 36% and\,, from 0.63 MeV to 0.82 MeV, i.e., by ample, all transition energies, including the one of+14
about 29%. Figure 16 illustrates the dependence of protons 12+, measured recently in the rotational bandZfNo

Jp, and neutron,),,, contributions to the total moments of [19,2( agree with the calculated ones with a better accuracy
inertiaJ, as well as ofl itself. The increase of by 5% from  than 8 keV.

c=1 decreases\%/ﬁ2 from 59.4 MeV !t052.1 MeV !, (3) Sufficiently large deformation space is needed for a
i.e., by about 12%, 2,/A4% from 95.9 MeV'! to  proper description of rotational energi@soments of inertip
82.5 MeV'!, ie., by about 14% and B%2> from  of heaviest nuclei. For example, inclusion of the deformation
155.3 MeV 't0 134.6 MeV'!, i.e., by about 13%. Finally, of so high multipolarity as\=6 changes the moment of
Fig. 17 shows the dependence of the endfgy onc. One inertia of the nucleu$>No by so much as 17%.

can see that the increasemlby 5% fromc= 1 results in the (4) Shell structure of deformed superheavy nuclei is
clearly reflected in their rotational properties. In particular,
the rotational energi,, is lowest(i.e., moment of inertia is

VI. CONCLUSIONS

23/K% (MeV™)

200

150

100

50

tot

2(:308g

0.80 0.85 0.90 0.95 1.00 1.05 110
C

115 120

highesj for nuclei with closed deformed shellsee Fig. .

The mechanism is that pairing correlations are weakened at
closed shells and, as a result, moment of inertia is increased
(i.e., moving in the direction to its rigid body limjtso the
rotational energy is decreased.

(5) Branching ratiop,, /py. betweena decay of a
nucleus to the first rotational statet2and to the ground
state O+ of its daughter has a strong isotopic dependence.
The dependence mainly comes from the behavior of the ratio
of reduced probabilitiesw,, /wy,. . To have the ratio
po. /pg. sufficiently large, one should take in experiment as
light isotope of a given element as possible.
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