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Random phase approximation for odd nuclei and its application to the description
of the electric dipole modes in17O
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A consistent generalization of the random phase approximation~RPA! for odd nuclei is suggested. The
derivation is based on the Green function method using the equation for the three-particle Green function. The
model developed combines properties of both the standard RPA, and the particle-vibration coupling model.
This gives a possibility to describe both the single-particle and collective parts of the excitation spectrum
including giant resonances in the continuum and splitting of discrete collective states@particle~hole! ^ phonon
multiplets# on a common basis. In the framework of this model, where the single-particle continuum is taken
into account exactly, theE1 photoabsorption cross section and the isoscalarE1 resonance in17O are calcu-
lated. The comparative RPA calculations of the sameE1 modes in16O nucleus are presented. The results
obtained are compared with experiment for theE1 resonance in16O and 17O. For the isoscalarE1 strength in
17O we obtained an additional and noticeable low-lying contribution below 12.5 MeV caused by the odd
neutron only.

DOI: 10.1103/PhysRevC.63.034304 PACS number~s!: 21.60.Jz, 24.30.Cz, 27.20.1n
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I. INTRODUCTION

One of the first realistic approaches, developed for
description of odd nuclei excitations, was the partic
vibration coupling model of Bohr and Mottelson@1#. The
following problem is solved in this model and its furth
modifications and variants@2,3#: how is the excitation energy
and the transition density of the isolated state of even-e
core~i.e., of the phonon! changed under the influence of th
odd particle or hole. This is the so-called problem of t
particle-vibration multiplets splitting in odd nuclei. Anothe
approach to the same question was worked out later~see Ref.
@4#! within a self-consistent variant of the theory of fini
Fermi systems~TFFS! @5#.

However, this statement of the problem has at least
shortcomings. First, the state of the even-even core is
posed to be discrete, i.e., to have the normalizable w
function. This assumption limits application of the theory
the region of giant resonances and other states lying in
continuum. Second, if we take from the very beginning
single-particle states and the phonons as basis elemen
the configurational space formed by the odd nucleus state
is difficult to control the realization of the basis completene
and the Pauli principle fulfillment~see Ref.@6#, and refer-
ences therein where this problem is solved in the framew
of the quasiparticle-phonon model!.

Formally these shortcomings are absent in the varian
the TFFS@5# which treats the degenerate ground state of
odd nucleus on the average. Essentially this model is equ
lent to the random phase approximation~RPA! with the
changed occupation number of the valence level. This ma
it possible to calculate the strength function for the tran
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e
-

n

o
p-
e

e
e

of
, it
s

rk

of
n
a-

es
i-

tions from the odd nucleus ground state into continuum~see,
e.g., Ref.@7#!, but it does not produce any multiplet splittin
in view of averaged treatment of the ground state.

This makes one consider attempting to construct a mo
which would combine merits of both standard RPA and
particle-vibration coupling model. Here we suggest suc
model which is termed the RPA for odd nuclei or, for bre
ity, odd RPA~ORPA!. Our derivation is based on the Gree
function ~GF! method. The exact formula for the respon
function of the odd nucleus is derived. The model is co
structed on the base of this exact formula allowing contro
the realization of Pauli principle fulfillment and related i
sues. The ORPA gives a possibility to describe both
single-particle and collective parts of the excitation sp
trum, including giant resonances in the continuum, on a co
mon basis. In addition, the splitting of particle~hole! ^ pho-
non multiplets appears in the model both for discre
collective states and for the collective states lying in the c
tinuum, which is especially important for exotic nuclei. Th
E1 photoabsorption cross section and the isoscalarE1 reso-
nance in17O have been calculated in the ORPA framewo
The results obtained are compared with the experime
data available and with the RPA calculations of the sa
modes in16O nucleus.

II. THEORY

A. Description of the odd nucleus excitations
in the Green function method: general relations

1. Basic formula for the three-particle Green function

Our consideration is based on the general form of
nuclear many-body Hamiltonian
©2001 The American Physical Society04-1
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H5(
12

h12
0 a1

†a21
1

4 (
1234

w12,34a1
†a2

†a4a31WMN,

~2.1!

wherea1
† and a1 are creation and annihilation operators

nucleons,h05p2/2m is free single-particle Hamiltonian
w12,34 is an antisymmetrized matrix element of the tw
nucleon interaction, and the termWMN contains the contri-
butions of the many-nucleon interactions~three-nucleon one
and others!. The figures in subscripts hereinafter inclu
quantum numbers of the single-particle wave functions
some complete basis set or single-particle variables of
coordinate representation~in the latter case, 15$r1 ,s1 ,t1%,
wheres1 andt1 are the spin and isospin variables, resp
tively, and summation over 1 includes integration overr1).

The one-, two-, and three-particle Green functions
shall need are defined by

G1252 i ^0u Tc1c2
† u0&, ~2.2!

G12,34
(2) 52 i 2^0u Tc1c2c3

†c4
† u0&, ~2.3!

G123,456
(3) 52 i 3^0u Tc1c2c3c4

†c5
†c6

† u0&, ~2.4!

where c15exp(iHt1) a1 exp(2iHt1) is the time-dependen
Heisenberg operator corresponding toa1 ~for brevity we
shall not write out the time arguments of the Green functio
and related quantities explicitly except when necessary
will not lead to confusion because the time arguments
numbered by the same figures as the single-particle v
ables!.

The above definitions are only formal ones. Practica
the quantitiesG andG(2) are defined in the framework of th
GF method by the well-known equations of motion, name
by the Dyson and the Bethe-Salpeter equations~see Refs.
@5,8# for more details!. As a starting point for the practica
definition of the three-particle Green functionG(3) let us take
the following ansatz~see Ref.@8# and also Ref.@9# where the
GF formalism for the fermion systems with many-partic
interactions was developed!

G123,456
(3) 5G36G12,54

(2) 1E d 7 d 8 R63,78

dG12,54
(2)

dG78
. ~2.5!

Here and further the integrals mean

E d 15(
1
E

2`

`

d t1 , ~2.6!

quantityR is the particle-hole (p-h) response function

R12,345G23,14
(2) 2G21G34. ~2.7!

It satisfies the Bethe-Salpeter equation

R12,3452G31G242 i E d 5 d 6 d 7 d 8 G51G26 U56,78R78,34,

~2.8!
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whereU is the irreducible kernel of this equation.U has a
sense of an irreducible amplitude of the effective nucle
nucleon interaction in thep-h channel and is defined by th
ansatz

U12,345 i
dS34

dG12
5 i

dS21

dG43
, ~2.9!

whereS is the exact single-particle mass operator.
Using Eqs.~2.7!–~2.9! we get from Eq.~2.5! the follow-

ing formula for the three-particle Green function which
one of basic formulas of our approach:

G123,456
(3) 5G123,456

(3) disc1G123,456
(3) core1G123,456

(3) SP1G123,456
(3) rest,

~2.10!

where

G123,456
(3) disc52G36G14G252G14R63,252G25R41,36,

~2.11!

G123,456
(3) core52G36R41,25, ~2.12!

G123,456
(3) SP52E d 18 d 58 R41,318G1858

21 R658,25

2E d 28 d 48 R41,486G2848
21 R283,25, ~2.13!

G123,456
(3) rest5 i E d 18 d 28 d 38 d 48 d 58 d 68 R41,4818 R2858,25

3~G1858
21 G4828,38681G2848

21 G5818,3868

1B4818,2858;3868
(3)

! G338 G686 . ~2.14!

Quantity G(3) disc is the disconnected part ofG(3), quantity
G(3) core contains the contributions of the even-even co
quantityG(3) SP is the single-particle part, quantityG(3) rest

contains the rest~correction! terms. The quantityG in Eq.
~2.14! is the exact two-particle scattering amplitude~in terms
of TFFS, Ref.@5#! which is defined by the relation

R12,3452G31G241 i E d 5 d 6 d 7 d 8 G51G26G56,78G37G84.

~2.15!

QuantityB(3) is the effective three-particle interaction amp
tude defined by the ansatz

B12,34;56
(3) 5

dU12,34

dG65
2 i E d 38 d 48 d 58 d 68

dU12,34

dG6858

3G3858 G6848 G3848,56. ~2.16!

The block of the diagrams corresponding to the amplitu
B12,34;56

(3) is reducible in the channel ‘‘1234→ 56.’’ The
diagrams corresponding to the terms from Eqs.~2.11!–~2.14!
are presented in Figs. 1–3. The numbering of indices
been changed in conformity with Eq.~2.28! of the next sub-
4-2
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FIG. 1. Diagrammatic representation of the disconnected
G235,146

(3) disc ~a!–~c! of the three-particle Green function, defined by E
~2.11!.

FIG. 2. Diagrammatic representation of the ‘‘core’’ pa
G235,146

(3) core~a! and of the ‘‘single-particle’’ partG235,146
(3) SP ~b!, ~c! of the

three-particle Green function which are defined by E
~2.12!,~2.13!.
03430
section. It should be noted that the formula~2.10! can be
derived also by solving Eq.~15.4! from Ref. @8#.

2. Projection onto the states of the odd nucleus

In what follows we suppose thatu0& in Eqs.~2.2!–~2.4! is
the ground state of the even-even nucleus, which containN
nucleons. Let us introduce notations:us& is the eigenstate o
the exact many-body HamiltonianH @Eq. ~2.1!# correspond-
ing to the odd nucleus~more precisely: to the odd-eve
nucleus! which containsN1ss nucleons, wheress561 is
index of the stateus&. un& is arbitrary eigenstate ofH corre-
sponding to the nucleus~even-even or odd-odd one! which
containsN nucleons. In particular it may beun&5u0&. En
[En(N) and Es[Es(N1ss) are eigenvalues ofH in the
statesun& and us&:

H un&5En un&, H us&5Es us&. ~2.17!

Further,

h1
s5dss ,11^0u a1 us&1dss ,21^su a1 u0&, ~2.18!

r12
ss85^su a1

†a2 us8&, r12
nn85^nu a1

†a2 un8&, ~2.19!

«s5ss@Es~N1ss!2E0~N!#, vn5En~N!2E0~N!.
~2.20!

Let us define using these notations

rt
.

.

FIG. 3. Diagrammatic representation of the ‘‘rest’’ partG235,146
(3) rest

~a!–~c! of the three-particle Green function, defined by Eq.~2.14!.
4-3
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G12,34
(3)ss852dss ,11 dss8 ,11 ^s8u T c1

† c2 c4
† c3 us&

2dss ,21 dss8 ,21 ^su T c1
† c2 c4

† c3 us8&.

~2.21!

The next step of our derivation is to extract the quan

G12,34
(3)ss8 from the three-particle Green function. It will b

shown that the Fourier transform of this quantity defines
response function of the odd nucleus we are interested in
this subsection we present the projection technique whic
most suitable for the extraction of the above quantity in o
case and which is similar to the technique described in R
@10#.

Let us define the projection operator acting in the spac
the time variables

Q t~ t1 , t2 , t3 , t4!5u~ t2ut1u! u~ t2ut2u!

3u~ t2ut3u! u~ t2ut4u!, ~2.22!

whereu is the step function. Let us introduce the notation

G123,456
(3)t ~a, a8; s!5Q t~ t1 , t2 , t4 , t5!

3G123,456
(3) ~ t35a8st, t652ast !,

~2.23!

wherea>1, a8>1, s561. Then using the definitions o
Eqs.~2.4!, ~2.17!, ~2.18!, ~2.20!, and~2.21! and introducing a
complete set of intermediate states of the odd nucleus we

G123,456
(3)t ~a, a8; s!5Q t~ t1 , t2 , t4 , t5! i

3(
ss8

dss ,s dss8 ,s ss h6
s* h3

s8 G41,25
(3)ss8

3exp@2 i ~a «s1a8 «s8!st#. ~2.24!

Now let us note that the function

f ~v, t !5E
1

2

da eiavt5
2

vt
sinS vt

2 D ei (3/2)vt ~2.25!

has the properties

f ~0, t !51, ; t ,

f ~v, t ! →
v t→6`

0. ~2.26!

Then from Eq.~2.24! and from the obvious property

Q t~ t1 , t2 , t3 , t4! →
t→1`

1, ~2.27!

we get the final projection formula
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e
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G12,34
(3)ss85ss~ i ^hsu hs&^hs8u hs8&!21(

56
h6

s h5
s8* lim

t→1`

3E
1

2

da da8 ei (a «s 1 a8 «s8) ss t G235,146
(3)t ~a, a8; ss!.

~2.28!

Here

^hsu hs8&5(
1

h1
s* h1

s8 ~2.29!

and we adopt the natural assumption that the overlap i
grals^hsu hs8& for the states with«s5«s8 form the diagonal
matrix with indicess, s8.

3. Exact formula for the response function of the odd nucleus

Applying the projection technique of the previous subs
tion, namely, Eq.~2.28!, to both parts of Eq.~2.10! we obtain

the formula for quantityG12,34
(3)ss8 in the time representation

Further we putt15t210, t45t310, t11t350, t5t32t1
and carry out Fourier transformation according to the follo
ing definition:

G12,34
(3)ss8~v!52 i E

2`

`

dt

3expF i S v1
1

2
~«s2«s8! D tGG12,34

(3)ss8~t!.

~2.30!

Then we transfer quantityG(3) disc to the left-hand side
~LHS! of the transformed Eq.~2.10! and obtain the following
equality:

R12,34
odd (ss8)~v!5R12,34

core (ss8)~v!1R12,34
SP (ss8)~v!1R12,34

rest (ss8)~v!.
~2.31!

Here quantityR12,34
odd (ss8)(v) is the result of subtracting the

transformed disconnected partG(3) disc from G12,34
(3)ss8(v). The

physical sense ofR12,34
odd (ss8)(v) is clarified from the spectra

expansion of this quantity which is obtained by the meth
being analogous with the usual methods of the GF formal
~see Refs.@5,8#!. After cumbersome transformations we g

R12,34
odd (ss8)~v!5ss(

s9

3S r̄21
s8s9*

r̄43
ss9

v1«s9s82 i ss930

2
r̄12

ss9r̄34
s8s9*

v2«s9s1 i ss930
D , ~2.32!
4-4
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r̄12
ss85dss , ss8

ss ~dss ,11r12
s8s1dss ,21r12

ss82dss8 r12
00!,
~2.33!

«ss85«s2«s8 . ~2.34!

Actually, R12,34
odd (ss8)(v) is the matrix response function of th

odd nucleus, the matrix indices of this function being t
indicess, s8 marking the eigenstates of the exact many-bo

HamiltonianH. The quantitiesr̄12
ss8 in Eq. ~2.32! are the rela-

tive transition densities of the odd nucleus.
In the application of this formalism to description of th

odd nuclei excitations it is sufficient to consider the respo

functionR12,34
odd (ss8)(v) with the indicess, s8 corresponding to

the ~degenerate! ground state of the given odd nucleus.
this case«s5«s8 and, according to Eq.~2.32! the poles of the

function R12,34
odd (ss8)(v) coincide with the excitation energies

while the residues determine the transition probabiliti
Thus in the following text we put«s5«s8 in all terms of Eq.
~2.31!.

Further, the quantityRcore (ss8)(v) in Eq. ~2.31! is defined
by the equality

R12,34
core (ss8)~v!5dss8 R12,34~v!, ~2.35!

whereR(v) is the usual particle-hole response function
the even-even nucleus which was defined by Eq.~2.7!. Its
spectral expansion is as follows:

R12,34~v!5 (
nÞ0

S r21
n0* r43

n0

v1vn2 i 30
2

r12
n0r34

n0*

v2vn1 i 30
D .

~2.36!

It is convenient to write other quantities in Eq.~2.31! by
introducing the~exact! vertex operatorT in accordance with
the definition of Ref.@11#. Namely, in the time representa
tion we put
03430
y

e

.

f

R12,3452E d 5 d 6 G51G26T56,34. ~2.37!

The energy representation~Fourier transformation! of T is
defined as

T12,34~v, «!5E
2`

`

d t1 d t2 ei (vt11«t2)T12,34~t1 , t2!,

t15t32t1 , t25t22t1 , t45t310, ~2.38!

T 12,34
T ~v, «!5T43,21~2v, «1v!. ~2.39!

In addition, we define the Fourier transforms of the quan
ties G andB(3) as

G12,34~v, «, «8!5E
2`

`

d t1 d t2 d t3 ei (vt11«t21«8t3)

3G12,34~t1 , t2 , t3!, ~2.40!

B12,34;56
(3) ~v, «, «8, «9, v8!5 i E

2`

`

d t1 d t2 d t3 d t4 d t5

3ei (vt11«t21«8t31«9t41v8t5)

3B12,34;56
(3) ~t1 , t2 , t3 , t4 , t5!,

t15t32t1 , t25t22t1 , t35t32t4 ,

t45t52t6 , t55t12t5 . ~2.41!

With these definitions we have («s5«s8):
R12,34
SP (ss8)~v!52ss (

18283848
h38

s h18
s8*

G2848~«s2v!T 12,1828
T

~v, «s2v! T3848,34~v, «s2v!

2ss (
18283848

h28
s h48

s8*
G3818~«s1v!T 12,1828

T
~v, «s! T3848,34~v, «s!, ~2.42!

R12,34
rest (ss8)~v!52ss(

56
h6

s h5
s8

*

(
18283848

H E
2`

` d «

2p i
T 12,1828

T
~v, «! T3848,34~v, «! (

5868
„G5868,56~0,«1v, «s!

3G3868~«1v! G5818~«1v! G2848~«!1G5868,56~0,«, «s! G3818~«1v! G2868~«! G5848~«!…

1E
2`

` d « d «8

~2p i !2
T 12,1828

T
~v, «! T3848,34~v, «8! (

58687888
B5868,7888;56

(3)
~v, «, «8, «s , 0!

3G5818~«1v! G2868~«! G3878~«81v! G8848~«8!J . ~2.43!
4-5
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Single-particle Green functionG(«) entering these formula
is Fourier transform of the quantity defined by Eq.~2.2! ~see,
for example, Ref.@5#!. It can be represented as the soluti
of the Dyson equation

G12~«!5G̃12~«!1(
34

G̃13~«!S34
e ~«!G42~«!. ~2.44!

HereG̃(«) is the Green function which describes the moti
of the nucleon in some mean field~nonlocal in general case!.
It satisfies the equation

G̃12~«!5G12
0 ~«!1(

34
G13

0 ~«!S̃34G̃42~«!, ~2.45!

where G0(«)5(«2h0)21 is the free Green function,S̃ is
the energy-independent part of the exact mass operato~in
particular it can have the form of the phenomenological
Hartree-Fock potential!. In terms of the eigenfunction
wl(1) and eigenvalues«l of the single-particle Hamiltonian

h125h12
0 1S̃12, the spectral expansion ofG̃(«) reads

G̃12~«!5(
l

wl~1!wl* ~2!

«2«l1 i sl30
, ~2.46!

wheresl5122nl , nl5 0 or 1 is the occupation numbe
QuantitySe(«) in Eq. ~2.44! is the energy-dependent part
the exact mass operatorS @entering Eq.~2.9!# which de-
scribes the coupling of the single-particle and collective m

tions. In these notations,S(«)5S̃1Se(«). It is important to
note thatSe(«) is the quantity of the second order in th
interaction.

B. Random phase approximation for odd nuclei

1. Approximation for the response function of the odd nucleus

Now let us consider approximations. As has been note
the Introduction, one of the aims of this work is to constru
the model which would take into account specific features
the odd nucleus on one hand and which would be simila
the RPA for even-even nuclei, on the other. The main pr
lem is that the straightforward application of the RPA to t
description of odd nuclei excitations faces some difficult
due to the fact that the ground state of the odd nucleu
degenerate~if we give up its averaged treatment! and is not
particle-hole phonon vacuum. In this connection it is imp
tant that the above-obtained exact formulas take into acc
these circumstances completely. On the other hand, it is
portant that RPA in fact is the first order theory. This mea
that only the first order contributions in the interaction a
taken into account correctly in the RPA. The higher ord
contributions are incorporated only in part. We will use th
property of the RPA as the main principle in the construct
of our model. The equations of the preceding subsection
able us to do it because all of the first order contributions
be easily extracted from the terms in these equations. N
ertheless, we retain all higher order contributions of the R
type in the response function of the even-even nucleusR and
03430
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in the related quantitiesT, G, and B(3). So, we adopt the
following approximations within the accuracy of the first o
der in the interaction:

~i! The exact single-particle Green functionG is replaced
by the Green functionG̃, exact amplitudesh1

s and energies
«s are replaced by single-particle wave functionswl(1) and
energies«l . So in the following we shall use single-partic
index l as the index of the odd nucleus state~instead ofs).

~ii ! The response functionR and the vertex operatorT are
defined within the RPA: functionsR andT are replaced by
functionsR̃ andT̃, whereR̃ is the solution of the RPA equa
tion

R̃12,34~v!5A12,34~v!2 (
5678

A12,56~v! F56,78R̃78,34~v!,

~2.47!

T̃ is defined by the formulas

T̃12,34~v!5d13d242(
56

F12,56R̃56,34~v!, ~2.48!

T̃ 12,34
T ~v!5d13d242(

56
R̃12,56~v! F56,34. ~2.49!

Quantity A(v) in Eq. ~2.47! is the particle-hole propagato
in the RPA. It is defined by the ansatz

A12,34~v!52E
2`

` d «

2p i
G̃31~«1v! G̃24~«!

5(
ll8

wl* ~1!wl8~2!wl~3!wl8
* ~4!

3
nl2nl8

v2«l1«l81 i sl•0
. ~2.50!

Energy-independent amplitudeF is the approximation for
the energy-dependent amplitudeU and will be specified in
the following.

~iii ! The exact scattering amplitudeG is replaced by its

approximation in thep-h channelG̃:

G̃12,34~v!5F12,342 (
5678

F12,56R̃56,78~v! F78,34.

~2.51!

~iv! The functional derivativedU12,34/dG65 in Eq. ~2.16!
for the amplitudeB(3) is replaced~in the energy representa
tion! by the quantitydF12,34/dr65, wherer12 is the approxi-
mation for the ground-state density matrix:

r1252 i G̃12~ t1 , t25t110!5(
l

nl wl~1!wl* ~2!.

~2.52!

Together with the approximations~i! and ~iii ! it leads to the
following approximationB̃(3) for the quantityB(3):
4-6
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B̃12,34;56
(3) ~v, «, «8, «9, v8!5 (

5868
T̃65,6858~v8!

dF12,34

dr6858

.

~2.53!

Making use of these approximations and carrying out
integrations in Eq.~2.43! we obtain from Eq.~2.31! the for-
mula for the response function of the odd nucleus within t
approach. After a series of algebraic transformations it
be brought to the following ansatz:

R̃12,34
odd (ll8)~v!5R̃12,34

core (ll8)~v!1R̃12,34
SP (ll8)~v!

1R̃12,34
rest (ll8)~v!, ~2.54!

where«l5«l8 and

R̃12,34
core (ll8)~v!5dll8R̃12,34~v!, ~2.55!

R̃12,34
SP (ll8)~v!5 (

5678
T̃ 12,56

T ~v!A56,78
SP (ll8)~v!T̃78,34~v!,

~2.56!

R̃12,34
rest (ll8)~v!5 (

5678
@ T̃ 12,56

T ~v! Q56,78
(ll8)†

R̃78,34~v!

1R̃12,56~v! Q56,78
(ll8) T̃78,34~v!

2R̃12,56~v! F56,78
(ll8) R̃78,34~v!#, ~2.57!

A12,34
SP (ll8)~v!52sl@wl~2!wl8

* ~4!G̃31~«l1v!

1wl~3!wl8
* ~1!G̃24~«l2v!#, ~2.58!

Q12,34
(ll8)5d31@r, r̄odd (ll8)#242d24@r, r̄odd (ll8)#31,

~2.59!

Q12,34
(ll8)†

52Q12,34
(ll8) , ~2.60!

F12,34
(ll8)5(

56

dF12,34

dr56
r̄56

odd (ll8)1~2r21!31S24
odd (ll8)

1S31
odd (ll8)~2r21!24, ~2.61!

S12
odd (ll8)5(

34
r̄34

odd (ll8) F34,12, ~2.62!

r̄12
odd (ll8)5sl (

34
wl~3!wl8

* ~4!T̃34,12~0!. ~2.63!

In the symbolic notations Eq.~2.54! can be rewritten in the
following form:

R̃odd5R̃1Q†R̃1R̃ Q1ASP2R̃FASP2ASPFR̃2R̃ F̃oddR̃,

~2.64!

where
03430
e
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F̃12,34
odd (ll8)~v!5F̃12,34

(ll8)2 (
5678

F12,56A56,78
SP (ll8)~v!F78,34,

~2.65!

F̃12,34
(ll8)5F12,34

(ll8)1(
56

~Q12,56
(ll8)F56,341F12,56Q56,34

(ll8)†
!.

~2.66!

Despite our formal limitation of the first order in the in
teraction, the functionR̃odd(v) contains the higher orde
contributions owing to the diagram summation within t
RPA in the right-hand side~RHS! terms of Eq.~2.64!. Fur-
ther, it is easy to see that functionR̃odd(v) defined by Eq.
~2.64! contains second-order poles in termR̃ F̃oddR̃. One can
get rid of these poles, that have no physical sense, by m
of shifting the poles of functionR̃(v) which has the spectra
expansion analogous to Eq.~2.36!. This shift remains within
the accuracy of the first order in the interaction and is de
mined by the matrix

F̃nn8
odd (ll8)

5 (
1234

r̃12
n0* F̃12,34

odd (ll8)~vn!r̃34
n80 , ~2.67!

wherevn5vn8 is the energy of the excitation~phonon!, r̃12
n0

is its transition density. In the case of spherical symmetry
the core, the angular momentum coupling in the statel
^ n andl8^ n8 leads to different shifts for different multip
let members in the odd nucleus. A similar method of t
multiplet splitting evaluation was developed and used in R
@4# with a different technique. However, the said method
considered as that for the second order poles removal, is
suitable for the description of giant resonances, primarily d
to presence of continuum. So we will consider another mo
in the following subsections.

Let us note that formula~2.67! coincides with the result
for the multiplet splitting of Ref.@4#. The result of the
particle-vibration coupling model is obtained from Eq.~2.67!

if we put F̃50 in Eq.~2.65!. The meaning of the correction

introduced by the additional quantityF̃ ~contributions of the
many-particle diagrams! is discussed in Ref.@4#.

2. Self-consistent approach

The response function of the odd nucleusR̃12,34
odd (ll8)(v)

and other quantities in Eqs.~2.54!–~2.66! are determined

completely if quantitiesS̃12 andF12,34 are specified in some

way. Let us remind the reader that the mass operatorS̃ de-
termines single-particle basis$wl , «l%. Quantity F is the
amplitude of the effective nucleon-nucleon interaction in t
p-h channel. The simplest and at the same time reason

way to defineS̃ andF is a phenomenological one. It is use
in the standard variant of TFFS@5# and in the applications o
our model to be represented in the following section.

However, from a theoretical point of view, the sel

consistent definition ofS̃ and F is more preferable. Let us
consider the main features of this approach. First of all
4-7
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suppose that an energy functionalE@r# is given which de-
pends on the density matrixr12 @defined by Eq.~2.52!# and
describes in a reasonable approximation the ground-state
ergies of even-even nuclei. It may be for example
Skyrme-type functional@12# or the energy functional of a
more general type@13,14#.

In this case we can define quantitiesS̃ and F by the
following relations:

h125
dE@r#

dr21
5h12

0 1S̃12, F12,345
d2E@r#

dr12dr43
, ~2.68!

where h0 is free single-particle Hamiltonian of Eq.~2.1!.
These definitions imply a self-consistency procedure
which density matrixr is defined by Eq.~2.52! with the
eigenfunctionswl of the Hamiltonianh from Eq. ~2.68!.

Let us suppose that functionalE@r# is invariant under the
following transformation of density matrix:

E@e2 iaqreiaq#5E@r#, ; a, ~2.69!

wherea is a real number,q is some single-particle operato
and q†5q. In particular, Eq.~2.69! must be satisfied for
operatorq of any conserving quantity, for example, ifq is the
component of the momentum operatorp. Differentiating Eq.
~2.69! with respect toa and puttinga50, we obtain

SpS @q, r#
dE@r#

dr D50, ; r. ~2.70!

Functional differentiation of this identity with respect tor
leads to the following equalities in the equilibrium point wi
account of Eqs.~2.68!:

(
34

F12,34@q, r#435@q, h#21, ~2.71!

(
18

q181F182,342(
28

q228F128,342(
38

F12,384q338

1(
48

F12,348q4845(
56

dF12,34

dr56
@r, q#56. ~2.72!

Making use of Eqs.~2.58!–~2.63!, ~2.65!, ~2.66!, ~2.71!,
~2.72!, we obtain, after a lengthy series of transformatio
the following important result for any single-particle oper
tors q andq8 which satisfy the condition~2.69!:

(
1234

@q8, r#12F̃12,34
odd (ll8)~0!@q, r#4350. ~2.73!

The fulfillment of this equality is necessary for the absen
of spurious states energy splitting and shift in the multipl
calculations in odd nuclei@see Eq.~2.67! and Ref.@4##.
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3. Strength function and the analysis of approximations

Let us come back to the exact response funct

R12,34
odd (ss8)(v) defined by Eqs.~2.31!, ~2.32!, and introduce

the difference response function depending on two variab
v, v8:

D12,34
odd (ss8)~v, v8!5R12,34

odd (ss8)~v!2R12,34
odd (ss8)~v8!.

~2.74!

This quantity determines the strength functionSodd (s) of odd
nucleus which describes the strength distribution of exc
tions caused by an external fieldV(0). In the case of spherica
symmetry we have

Sodd (s)~E, D!5
1

2p i

2J11

2 j s11

3(
ms

(
1234

V21
(0)* D12,34

odd (ss)~v, v* !V43
(0) ,

~2.75!

wherev5ss(E1 iD), ss511 for odd nucleus with added
nucleon,ss521 for odd nucleus with removed nucleon,j s
andms are the angular momentum and its projection for o
nucleus ground stateus&, J is the angular momentum of a
external fieldV(0), D is the smearing parameter. Making u
of the spectral expansion~2.32!, it is easy to verify that at
D→10 andE.0 Eqs.~2.74!, ~2.75! coincide with the usual
definition of the strength function

S~E!5(
n

Bn d~E2Vn!, ~2.76!

whereBn andVn are the reduced probabilities and the en
gies of excitations.

The aim of this and the next subsections is to obtain

formula for the functionD12,34
odd (ss8)(v, v8) and consequently

for the strength function of odd nucleus within the above
sumed approximations. As has been already mentio
above, the direct substitution for functionR̃odd(v) instead of
exact functionRodd(v) in Eq. ~2.74! is impossible because o
the second-order poles problem. It can be shown that
strength function can take negative values in the vicinity
these poles. Nevertheless it appears easier to solve this p
lem just for the difference response functionDodd (ss8), than
for self-response functionRodd (ss8). Before writing the re-
sulting formulas, some notes should be made.

~i! All of the quantities both in Eq.~2.64! and in the
following similar equations are supposed to be the ma
functions with the matrix multi-indicesM ,M 8, where M

5$12,l%. The quantitiesR̃ andF depend onl asdll8 . The
production of the quantities implies the summation~integra-
tion! over intermediate multiindexM including indexl.

~ii ! Let us divide quantityASP in Eq. ~2.64! into two parts:

ASP5A(1)SP1A(2)SP, ~2.77!

where («l5«l8)
4-8
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A12,34
(2)SP(ll8)~v!5(

56
P12,56

(ll8)A56,34~v!5(
56

A12,56~v!P56,34
(ll8) ,

~2.78!

P12,34
(ll8)52@d31wl~2!wl8

* ~4!1d24wl~3!wl8
* ~1!#,

~2.79!

quantityA is p-h propagator defined by Eq.~2.50!, propaga-
tor A(1)SP is defined as the difference:A(1)SP5ASP

2A(2)SP using Eqs.~2.58!, ~2.78!. As is seen from Eqs
~2.78!, functionA(2)SP(v) contains onlyp-h poles being the
part of the poles ofp-h propagatorA(v). The function
A(1)SP(v) contains only particle-particle poles of the typ
v56(«l92«l), nl5nl950 if the odd nucleon is added
and contains only hole-hole poles of the typev56(«l

2«l9), nl5nl951 if the odd nucleon is removed. Usin
these definitions and Eqs.~2.47!, ~2.64!, one can show tha
the functionR̃odd(v) contains the poles of only two types
the poles of response functionR̃(v), which coincide with the
core excitation energies and represent the collective bra
of excitations, and the poles of the propagatorA(1)SP(v),
which coincide with the single-particle transitions energ
and represent the single-particle branch of excitations.
poles of the propagatorA(2)SP(v) disappear in the function
R̃odd(v). In fact the propagatorA(2)SP(v) is a correction to
the p-h propagatorA in Eq. ~2.47! caused by the Pauli prin
ciple. This correction is characterized by the small param
1/N, whereN is the number of particles in the fermion sy
tem. So further we shall neglect the Pauli principle corr
tions of the higher order 1/N2 in the response function pa
describing the collective branch of the odd nucleus exc
tions.

4. Model

Taking into account these notes let us come back to
~2.74! and define the following function:

D̃odd~v, v8!5T (2)T
~v!@A(2)~v!2A(2)~v8!#T (2)~v8!

1T (1)T
~v!@A(1)~v!2A(1)~v8!#T (1)~v8!,

~2.80!

where

A(2)5A1A(2)SP, A(1)5A(1)SP, ~2.81!

T (2)5~11L!21~11Q2FA(1)SP!, ~2.82!

T (2)T
5~11Q†2A(1)SPF!~11LT!21, ~2.83!

L5~F1F̃2FA(1)SPF!A1FA(2)SP, ~2.84!

LT5A~F1F̃2FA(1)SPF!1A(2)SPF, ~2.85!

T (1)512FAT (2), ~2.86!

T (1)T
512T (2)T

AF. ~2.87!
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After a series of transformations one can prove that the fu
tion D̃odd(v, v8) differs from the result of the direct subst
tution for functionR̃odd(v) in Eq. ~2.74! by the terms which
are beyond accuracy of above-mentioned approximations
this sense the method of the constructing of functionD̃odd is
based on the same ideology as the method of matrix P´
approximations. The meaning of introducing the functi
D̃odd(v, v8) is as follows: it does not have second-ord
poles and leads to the positive-definite strength function.
shall consider the quantityD̃odd as the approximation to the
exact difference response function in our model. Since
preceding considerations have been based on the RPA
even-even core which is corrected owing to adding of
odd particle~hole!, we shall denote this model as the od
random phase approximation~ORPA!.

Let us make two notes. First, it is easy to prove after so
algebra that if we neglect the influence of the odd particle~or

hole! putting the quantitiesA(1)SP, A(2)SP, Q andF̃ equal to
zero in Eqs.~2.81!–~2.87!, then Eq.~2.80! yields the RPA
result for the difference response function:

D̃12,34
odd (ll8)~v, v8!5dll8@R̃12,34~v!2R̃12,34~v8!#.

~2.88!

Second, substituting Eq.~2.78! into definition~2.84! of quan-
tity L we get

L~v!5@F1F odd~v!#A~v!, ~2.89!

where

F odd~v!5F̃1FP2FA(1)SP~v!F. ~2.90!

Making use of the equation for the transition densities
RPA: r̃n052A(vn)Fr̃n0, we obtain the following equality
from Eqs.~2.65!, ~2.67!, ~2.78!, and~2.90!:

F̃nn8
odd (ll8)

5F nn8
odd (ll8)

5 (
1234

r̃12
n0* F 12,34

odd (ll8)~vn!r̃34
n80 ,

vn5vn8 . ~2.91!

This means that in the first order in the interaction amplitu
F odd the ORPA yields the same result for the multiplet sp
ting as the self-consistent TFFS@4#.

The strength function of odd nucleusS̃odd (l)(E, D) is
defined in ORPA according to Eq.~2.75! with the substitu-
tion for function D̃odd instead of exact functionDodd. The
principal equation which we have to solve for calculating t
strength function in ORPA is that for the effective extern
field Vodd(v)5T (2)(v)V(0). It follows from the definition
~2.82! that

Vodd~v!5@11Q2FA(1)SP~v!#V(0)2L~v!Vodd~v!.
~2.92!

Making use of the definition~2.89! one can see that excep
ing ‘‘odd corrections,’’ introduced by the quantitiesQ,
A(1)SP, andF odd, this equation coincides with that for effec
4-9
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tive field in TFFS @5# describing excitations in even-eve
nuclei. But in contrast to TFFS equation, Eq.~2.92! is more
complex because it is written in the extended configuratio
space$p^ h^ l% determined by the multi-indexM5$12,l%
wherel is the index of the subspace of odd nucleus grou
state wave functions with the fixed«l .

In case of spherical symmetry we have to solve Eq.~2.92!
and to calculate strength functionS̃odd (l) separately for each
total angular momentj * of the odd nucleus excitation, whic
satisfies the selection rules for a given external fieldV(0).
The total strength function as defined by Eq.~2.75! is a sum
of partial components. This results in a splitting of core e
cited states in odd nucleus, i.e., to the multiplet appeara

On the other hand, the enlarging of the configuratio
space in Eq.~2.92! leads to the coupling of different chan
nels of the corep-h excitations characterized by a differe
total angular momentL of the p-h pair which satisfies the
triangle rulen(L j 0 j * ), wherej 0 is the total angular momen
of the odd nucleus ground state. So in the case of sphe
symmetry the dimension of the equation system~2.92! is
increased compared to TFFS in the number of times equ
the number of incorporated channels of core excitations.

III. CALCULATIONS OF THE E1 RESONANCES IN 17O
AND 16O

A. Numerical details

As a demonstration of the ORPA application we will co
sider the calculation ofE1 excitations in17O. TheE1 pho-
toabsorption cross section in16O being the even-even cor
for the nucleus17O was calculated within the self-consiste
RPA, i.e., with a complete account for the single-parti
continuum, in Refs.@15,16# ~see also references therein!. But
to our knowledge, a consistent account for this continu
and other effects associated with the odd nucleon for17O is
realized here for the first time. It is of interest to calculate
E1 photoabsorption cross section for light nuclei17O and
16O where the role of the continuum is very important. It
also of great interest to do it in the framework of the sa
calculational scheme, particularly because, as was notice
the recent detailed experimental study of theE1 resonance in
17O @17#, the relatively low (g, tot) strength for17O remains
unexplained„the authors@17# obtained thes(g, tot) as the
sum of partial cross sections…. See also references and oth
information dealing with experimental and theoretical stu
ies of theE1 resonance in the17O nucleus in Ref.@17#.

Here we use a calculation scheme with ‘‘forced cons
tency.’’ The variant of this approach intended for RPA c
culations in even-even nuclei was developed in Ref.@18#. In
ORPA we put in the previous formulas~2.82!–~2.85!: Q

50,F̃5F rest, whereF rest is a restoring amplitude which i
taken in the separable form, adjusted in order to set the
rious state in the even-even core at exactly zero energy~see
Ref. @18# for more details!. The ‘‘forced consistency’’ en-

ables one to define the mass operatorS̃ and interaction am-
plitude F as independent quantities keeping zero energy
the spurious state.
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In our calculations the mass operatorS̃ was taken in the
form of a realistic Woods-Saxon potential@19# ~plus spin-
orbital potential, plus Coulomb potential for protons!. The
fitting procedure was applied in order to obtain agreem
between the experimental single-particle energies and
calculated levels that lie near the Fermi surface in
nucleus 16O. The procedure consists of changing the w
depthU jl so that to get«l5«l

exp for the given quantum num
bersj ,l and for«l

exp determined by Eq.~2.20! with quantities
E0(16O), El(16O61 nucleon) taken from experiment.

The Landau-Migdal interaction@5# was taken asF with
parameters

f ex522.373, f in520.002, f ex8 52.30, f in8 50.76,

g50.05, g850.96, C05300 MeV fm3. ~3.1!

This parameter set coincides with that used in our previ
calculations~see, e.g., Refs.@20,21,18#! except for paramete
f ex which was obtained from fitting the energy of the 31

2

level in 16O to the experimental value of 6.13 MeV. Th
fitted value f ex522.373 also gives complete coincidenc
between the theoretical and the experimental value
B(E3)51.53103 e2 fm6 for this level. The characteristics o
the 31

2 level were calculated within the continuum RPA u
ing the coordinate representation technique@22,15#. The
ground state nuclear density in the interpolation formula
the interaction@5# was obtained making use of our Wood
Saxon single-particle wave functions which turned to be i
portant for light nuclei~see Ref.@21#!. It should be pointed
out that the interaction parameter set~3.1! and the standard
parameters of the Woods-Saxon potential@19# were used in
all calculations. In addition, the above-described fitting p
cedure for single-particle levels was applied.

B. Results and discussion

1. Isovector E1 resonance

With the definitions described above we have calcula
within ORPA the strength functionS̃odd (l)(E, D) for is-
ovectorE1 excitations in17O and theE1 photoabsorption
cross sectionsE1 according to the formula

sE1~E!5
16p3

9

e2

\c
ES̃odd (l)~E, D!. ~3.2!

The external field operator in the case under consideratio
defined by

V12
(0)5et1

ds1 , s2
dt1 , t2

d~r12r2!r 1Y1 mS r1

r 1
D , ~3.3!

whereet are the nucleon effective charges in the center-
mass reference frameep5N/A, en52Z/A. Equation~2.92!
for the effective fieldVodd(v) was solved in the coordinat
representation so as to take into account the single-par
continuum completely. In order to simulate the experimen
resolution the nonzero value of the smearing parameteD
should be used in the calculations~in addition, this paramete
4-10
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imitates contribution of complex configurations and its intr
duction decreases strongly the numerical difficulties!. In all
calculations of the isovectorE1 excitations we took the
value D5300 keV which is approximately equal to the e
perimental resolution used in the measurements of17O @17#.

Because the quantum numbersj p of the 17O ground state
are 5

2
1 ~single-particle orbital 1d5/2), there exist three partia

components ofE1 strength function3
2

2, 5
2

2, and 7
2

2. Con-
sequently there are the following possible channels of c
excitations with normal parity which satisfies the triang
rule n(L j 0 j * ): 12 and 32 for 3

2
2 component, 12, 32 and

52 for 5
2

2 and 7
2

2 components. Two cases were compared
the calculations:~i! full calculation with incorporating of all
three possible channels of electric type,~ii ! calculation with
incorporating of only entrance channel 12. The result is pre-
sented in Fig. 4. The effect of channel coupling turns to
negligible for this calculation. But this is a consequence
the isovector nature of the external field because the a
tional channels 32 and 52 are important mainly for isoscala
excitations~see below!. Partial decomposition of the calcu
lated total photoabsorption cross section in17O is shown in
Fig. 5. In fact there is triplet of the giant resonances but
members of this triplet cannot be resolved in the total cr
section in view of its large widths.

The available experimental data forE1 photoabsorption
in 17O are presented also in Fig. 4@the experimental curve is
sketched using Fig. 6~b! of Ref. @17##. As can be seen, th
discrepancy between our theory and the experiment is v
large. Mainly this concerns the value ofsmax because the
positions of the resonance centroids are close. In orde
achieve a better understanding of the situation we carried
the calculation of theE1 photoabsorption cross section
16O nucleus within the RPA making use of the above d
scribed calculation scheme. The result is shown in Fig
The experimental data in this figure is the result of mu
Lorentzian parametrization of the cross section from R
@23#. In this case the agreement with the experiment is m
more satisfactory than for17O. It can be seen that RPA
cannot yield a fine structure in the region of giant resona

FIG. 4. TheE1 photoabsorption cross section for17O nucleus
calculated in ORPA with three channels of core excitations 12, 32,
and 52 ~solid line! and with one entrance channel 12 ~dotted line!.
The smearing parameterD is equal to 300 keV. The dashed lin
presents experimental data from Ref.@17#.
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caused by the complex configurations but on the average
envelope is reproduced fairly well. So one can think that
improvement of the ORPA by means of taking into accou
additional complex configurations will not change the pictu
radically, especially as our results show that the effect
channel coupling in ORPA is small for isovector excitatio
in 17O.

So, we suppose that the reason for a large discrepa
between the ORPA and the experiment in the case un
consideration can be in the experimental technique use
Ref. @17#. In Ref. @23# it was pointed out that the method o
partial cross sections summing, which was used in Ref.@17#,
yields systematically smaller integrated cross sections
compared with other methods~see Table I from Ref.@23#!.
The results, related with our discussion, are represente
Table I of our paper. In this table elastic photon scatter
data for 16O nucleus from Ref.@23# is represented. Thes
data are in a reasonable agreement with our calculati
Unfortunately, we do not know any analogous data for17O
nucleus. The situation might be clarified by further expe
menting.

2. Isoscalar E1 resonance

The results presented show that the influence of odd n
tron in 17O appears to be relatively small for isovectorE1

FIG. 5. Same as Fig. 4, but the dashed line presents the7
2

2

partial component of the calculated cross section, dash-dotted
5
2

2, and dotted line,32
2.

FIG. 6. TheE1 photoabsorption cross section for16O nucleus
calculated in RPA~solid line,D5300 keV! as compared with the
experimental data~dashed line! from Ref. @23#.
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resonance. So it is of interest to study this influence for
citations of isoscalar type. The corresponding external fi
operator is written as

V12
(0)5

1

2
ds1 , s2

dt1 , t2
d~r12r2! f IS~r 1!Y1 mS r1

r 1
D , ~3.4!

where f IS(r ) is the radial form-factor for isoscalarE1 exci-
tations (E1IS). It is reasonable to determine functionf IS(r )
so as to obtain the spurious state probabilityB0(E1IS) equal
to zero. In order to fulfill this condition we use the form

f IS~r !5r S 12
r 2

RIS
2 D . ~3.5!

ParameterRIS is determined within the ‘‘forced consis
tency’’ scheme by formulas

RIS5AI 3

I 1
, I k5E

0

`

dr r k12@j0n~r !1j0p~r !#, ~3.6!

where functionsj0n(r ) andj0p(r ) are defined in Ref.@18#.
Actually, these functions are proportional to the neutron a
proton components of the spurious state radial transition d
sity. These definitions ensure the equalityB0(E1IS)50 in
our approach at least for the even-even nucleus16O. The
value ofRIS calculated by this method appeared to be clo
to that of R51.24A1/353.12 fm for 16O nucleus which is
used in the Woods-Saxon potential parametrization@19#.
Namely, we have obtainedRIS.1.04R. Let us note that the
method of the spurious state suppression described is sim
to that in Ref.@24# @see also Ref.@25# where a form-factor
similar to Eq.~3.5! was used in the RPA calculations of th
isoscalar resonances#.

In Fig. 7 we show theE1IS strength functions for17O
calculated in ORPA and for16O, calculated in RPA, with the
isoscalar external field defined above in both cases. In
ORPA calculation two channels of core excitations ha
been incorporated 12 and 32. The small value of smearing
parameterD530 keV was taken in order to exhibit the ro

FIG. 7. The isoscalar~IS! E1 strength in17O nucleus calculated
in ORPA with two channels of core excitations 12 and 32 ~solid
line! as compared with theE1IS strength in16O calculated in RPA
~dashed line!. The smearing parameterD is equal to 30 keV.
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of the single-particle continuum. The results presented in
cate thatE1IS strength in 17O nucleus below 12.5 MeV is
completely determined by the odd neutron contribution.

The nature of the resonances in this energy region is c
fied from the analysis of partial decomposition. Here a
three relatively wide peaks. The first peak with the maximu
at 5.1 MeV comes fromp3/2 single-particle resonance. Th
second peak, strongly overlapping with the third one a
having the maximum at 6.5 MeV, corresponds to the3

2
2

state of the$d5/2^ 32% sextuplet which contributes owing t
the channel coupling in ORPA~this peak is absent in the
strength function calculated with incorporating of only 12

channel!. Let us note that the52
2 and 7

2
2 states of this sex-

tuplet have too smallE1IS strengths and are absorbed b
background. And, finally, the third peak with the maximu
at 10.3 MeV comes fromf 7/2 single-particle resonance. It i
important that the strengths of all these resonances are re
malized due to the interaction between the odd neutron
the core.

The relative contribution of these three resonances
the energy-weighted momentm1(Emax), defined by

mk~Emax!5E
0

Emax
dE Ek S̃odd (l)~E, D!, ~3.7!

turns out to be considerable also. For the strength functio
Fig. 7 we obtain

m1~11.3 MeV!/m1~40 MeV!50.15, ~3.8!

where the value of 11.3 MeV is the energy of the minimu
following the third resonance peak.

At the excitation energies above 12.5 MeV the forms
the E1IS strength functions of17O and 16O nuclei are simi-
lar. This reminds one of the situation with isovector streng
in these nuclei. It should be noted that in view of the sm
value of the smearing parameterD530 keV used in the cal-
culations, the widths of the most resonances shown in Fi
~except for several discrete states embedded into continu!
are formed predominantly by decay of excited states into
single-particle continuum.

TABLE I. Integrated photonuclear cross sections for16O and
17O ~percentage with respect to the corresponding Thomas-Rei
Kuhn value 59.74NZ/A MeV mb!. The integration up to 30 MeV.
The partial cross sections data are taken from Ref.@17#: n denotes
(g, sn) cross section,p denotes the (g, p) one. The elastic photon
scattering~EPS! data are taken from Ref.@23#.

Experiment Theory
n p n1p EPS

16O 24 44 68 88 84
17O 38 9 47 85
4-12
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IV. CONCLUSION

A model has been developed describing both the sin
particle and collective parts of the odd nucleus excitat
spectrum including splitting of particle~hole! ^ phonon
multiplets on a common basis. The model takes into acco
the single-particle continuum including the giant resona
continuum, i.e., the source of the escape width, which
important for light and medium mass nuclei. In other wor
it corresponds to the continuum RPA for even-even nu
and, in addition, consistently accounts for the specificity
the odd nucleus under consideration. These properties o
model are of great interest for the odd nuclei without pair
which have the nucleon binding energy close to zero.

The model developed is self-consistent~see Sec. II B 2!
although in the calculations presented we have used a
pler variant. The self-consistency allows us to use the mo
also to calculate very unstable nuclei for which there is
information for fitting parameters of the particle-hole inte
action.

In the framework of the simplified variant of the mod
the isovectorE1 photoabsorption cross section and the is
calar dipole strength function in17O have been calculated
Also, in order to clarify the role of odd neutron the sam
quantities for16O have been calculated within the continuu
RPA. We obtained the following results.

~i! The isovectorE1 photoabsorption cross section in16O
s

a-

d

s.

03430
e-
n

nt
e
is
,
i
f
he

m-
el
o

-

obtained in elastic photon scattering has been described
sonably by our model. The main reason is that the role of
single-particle continuum in the light16O nucleus is very
significant. However, our calculations in17O did not give an
agreement with the experimental data available, obtaine
(g, sn) and (g, p) cross section measurements. Thus, o
can hope that future experiments for17O will give a better
agreement with our calculations. The calculations predic
reasonable value of 85% of the TRK sum rule in the inter
up to 30 MeV, which is almost the same as for16O. Theo-
retically, it is difficult to imagine any mechanism whic
would reduce strongly the total isovectorE1 strength in17O
as compared with that in16O.

~ii ! In contrast to the case of the isovectorE1 resonance,
for the isoscalarE1 resonance our calculations have given
very noticeable difference between the17O and 16O nuclei.
Consistent accounting for the odd neutron in17O resulted in
appearance of an additional low-lying contribution of t
isoscalar strength below 12.5 MeV induced by the odd n
tron only. This part of the strength gives about 15% of t
energy-weighted momentm1 integrated up to 40 MeV, and i
can be measured in experiment.
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