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A consistent generalization of the random phase approximaBs»?) for odd nuclei is suggested. The
derivation is based on the Green function method using the equation for the three-particle Green function. The
model developed combines properties of both the standard RPA, and the particle-vibration coupling model.
This gives a possibility to describe both the single-particle and collective parts of the excitation spectrum
including giant resonances in the continuum and splitting of discrete collective [giatésle(hole) ® phonon
multiplets] on a common basis. In the framework of this model, where the single-particle continuum is taken
into account exactly, thE1 photoabsorption cross section and the isosdalaresonance ift’O are calcu-
lated. The comparative RPA calculations of the sadfiemodes in*®0 nucleus are presented. The results
obtained are compared with experiment for Btk resonance int®0 and*’O. For the isoscaldE1 strength in
1’0 we obtained an additional and noticeable low-lying contribution below 12.5 MeV caused by the odd
neutron only.
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I. INTRODUCTION tions from the odd nucleus ground state into continusee,
e.g., Ref[7]), but it does not produce any multiplet splitting
One of the first realistic approaches, developed for thén view of averaged treatment of the ground state.
description of odd nuclei excitations, was the particle- This makes one consider attempting to construct a model
vibration coupling model of Bohr and Mottelsdi]. The whiqh wo_uld (_:ombine r_nerits of both standard RPA and the
following problem is solved in this model and its further Particle-vibration coupling model. Here we suggest such a
modifications and varianfg,3]: how is the excitation energy Model which is termed the RPA for odd nuclei or, for brev-
and the transition density of the isolated state of even-evelfy; ©dd RPA(ORPA). Our derivation is based on the Green
core(i.e., of the phononchanged under the influence of the function (GF) method. The exact formula for the response
odd particle or hole. This is the so-called problem of thefunction of the odd nucleus is derived. The model is con-
particle-vibration multiplets splitting in odd nuclei. Another Structed on the base of this exact formula allowing control of
approach to the same question was worked out (st Ref. the realization of Pgull pr|nC|pIe.fl_JI.f|IIment and. related is-
[4]) within a self-consistent variant of the theory of finite SUeS. The ORPA gives a possibility to describe both the
Fermi systemsTFFS [5]. smgle_—parthle a_nd collective parts of the .excnatlon spec-
However, this statement of the problem has at least twdfum. including giant resonances in the continuum, on a com-
shortcomings. First, the state of the even-even core is sy basis. In addition, the splitting of partidleole) © pho-
posed to be discrete, i.e., to have the normalizable wavBon multiplets appears in the model both for discrete
function. This assumption limits application of the theory in collective states and for the collective states lying in the con-
the region of giant resonances and other states lying in thBhuum, which is especially important for exotic nuclei. The
continuum. Second, if we take from the very beginning theF1 phqtolr;lbsorptlon cross section and the isosdalareso-
single-particle states and the phonons as basis elements nce in~‘O have been calculated in the ORPA framework.
the configurational space formed by the odd nucleus states, [f1€ results obtained are compared with the experimental
is difficult to control the realization of the basis completenesdlata a\{allgble and with the RPA calculations of the same
and the Pauli principle fulfilmentsee Ref[6], and refer- modes in*%0 nucleus.
ences therein where this problem is solved in the framework

of the quasiparticle-phonon modgel Il. THEORY

Formally these shortcomings are absent in the variant of A. Description of the odd nucleus excitations
the TFFS[5] which treats the degenerate ground state of an in the Green function method: general relations
odd nucleus on the average. Essentially this model is equiva- _ ) _
lent to the random phase approximati6RPA) with the 1. Basic formula for the three-particle Green function

changed occupation number of the valence level. This makes Our consideration is based on the general form of the
it possible to calculate the strength function for the transiuclear many-body Hamiltonian
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ot 1 ot N wherel/ is the irreducible kernel of this equatiotr. has a
H:% hia;a,+ 4 12234W12,34611f'izf'i4f'ia+W , sense of an irreducible amplitude of the effective nucleon-
2.1) nucleon interaction in the-h channel and is defined by the
' ansatz

WhereaI anda; are creation and annihilation operators of
nucleons,h®=p?/2m is free single-particle Hamiltonian,
Wi, 34 IS @n antisymmetrized matrix element of the two-
nucleon interaction, and the ter™N contains the contri-
and others The figures i Subscrpts hereinatter mclude, USiNG EGS.2.7-(2:9 we get fom Eq2.9 the follow-
b f the sinale-particle wave functions 0gng formuIa} for the three-particle Green function which is

guantum numbers o gle-p i . one of basic formulas of our approach:
some complete basis set or single-particle variables of the
coordinate representatidim the latter case, %{rl,al,rl}, 6332)3,45626(132)3,2435604‘ G(l%zggq G(l32)3‘fsPe+ G(l’o;)sjzrle;g’
where g, and 7, are the spin and isospin variables, respec- (2.10
tively, and summation over 1 includes integration oxgr.

The one-, two-, and three-particle Green functions wewhere
shall need are defined by

. 5234_. 0%

Z/{12’34=| E—I m, (29)

whereX is the exact single-particle mass operator.

G(l?éé,ggsec: —G36G14Gos— G14R63,25_ GZSR41,361
Gao=—i(0| Ty} ]0), (2.2 (2.1)
(3) core_ __
G2~ —i%(0| Tyl 0), 2.3 Gi73.456 = ~ GasRar 25 (212
G a5 —1%(0| Tyl |0), (2.4 G 5P — f d1'd5' Ry 5rGy .k, Res 2

where 1 =exp(Ht,) 8, exp(—iHt,) is the time-dependent

Heisenberg operator corresponding dg (for brevity we —J d2'd4' Ry 466G, 4 Rorzs (2,13
shall not write out the time arguments of the Green functions

and related quantities explicitly except when necessary; it

will not lead to confusion because the time arguments areeggé'z‘é%‘:if d1'd2'd3'd4'd5 d6' Ry 41 Rorsr o
numbered by the same figures as the single-particle vari-

ables. X (Gl Tarzr 36+ Gyra Tsrnr g
The above definitions are only formal ones. Practically (Crs Lazs 21477 514130
the quantitiess andG(® are defined in the framework of the +BS), 56 216') Gaw Gere- (2.14

GF method by the well-known equations of motion, namely,

by the Dyson and the Bethe-Salpeter equatitsee Refs. Quantity G 9Cis the disconnected part &, quantity
[5,8] for more details As a starting point for the practical G(3) ¢°'® contains the contributions of the even-even core,
definition of the three-particle Green functi@i® let us take quantity G® SPis the single-particle part, quantig® st
the following ansatzsee Ref[8] and also Refl9] where the  contains the restcorrection terms. The quantity” in Eq.
GF formalism for the fermion systems with many-particle (2.14) is the exact two-particle scattering amplitu@eterms

interactions was developgd of TFFS, Ref[5]) which is defined by the relation
3) (2) 3G 5s4
G123,456= G3eG12,54 f d7d8 R63,78T78- (29 Rypz=— Gy Gosti f d5d6d7d8GsGodl 56 76537Cs4-
(2.15

Here and further the integrals mean
QuantityB®) is the effective three-particle interaction ampli-

f d1=> f dty, 2.6 tude defined by the ansatz
1 —
ou oU
(3) _ 12,34 . , , , , 12,34
guantityR is the particle-hole [§-h) response function B12,34;56 5Ges 'J d3'd4’d5'd6 —66,5,
I:212,34: G(Zé),14_ 621G34' (27) X G3r5r Ger4f F3r4r’56. (21@
It satisfies the Bethe-Salpeter equation The block of the diagrams corresponding to the amplitude

B{344.56is reducible in the channel “1234- 56.” The

B : diagrams corresponding to the terms from Eg@sl1)—(2.14)
R12v34__G31G24_'f d5d6d7d8Gs1Gos Use7eR7a34: are presented in Figs. 1-3. The numbering of indices has
(2.8)  been changed in conformity with E(2.28 of the next sub-
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FIG. 1. Diagrammatic representation of the disconnected part
GE I (@)—(c) of the three-particle Green function, defined by Eq. (c)

(2.11.

FIG. 3. Diagrammatic representation of the “rest” p@$3; 152
(a)—(c) of the three-particle Green function, defined by Ef14).

section. It should be noted that the formy&10 can be

1 " 3 derived also by solving Eq15.4) from Ref.[8].
2 4
. 6 2. Projection onto the states of the odd nucleus
(a) In what follows we suppose thid) in Eqgs.(2.2—(2.4) is
a the ground state of the even-even nucleus, which conbdins
nucleons. Let us introduce notations) is the eigenstate of
the exact many-body Hamiltoniat [Eqg. (2.1)] correspond-
1 3 ing to the odd nucleugmore precisely: to the odd-even
R \ / R nucleug which containsN+ o nucleons, whererg=*1 is

2 4 index of the statés). |n) is arbitrary eigenstate dfi corre-
/ \ sponding to the nucleu@ven-even or odd-odd ope&vhich
S 6 containsN nucleons. In particular it may bp)=|0). E,

(b) =E(N) and Eg=E¢{(N+ o) are eigenvalues off in the
stategn) and|s):

. 5 H[n)=E,[n), H[s)=E|s). (2.17)
R R Further,
2 4
5 . 71= 6, +1(0lar[s)+ 9, —1(s|a;[0), (2.18
(c) pis=(slalarls'), pi'=(nlafa,|n’), (219
FIG. 2. Diagrammatic representation of the “core” part es=0d Eq(N+ 09 —Eg(N)], w,=En(N)—E(N).

GE 59 (a) and of the “single-particle” parG53; $1s(b), (c) of the (2.20
three-particle Green function which are defined by Egs.
(2.12,(2.13. Let us define using these notations

034304-3



S. P. KAMERDZHIEV, R. J. LIOTTA, AND V. I. TSELYAEV PHYSICAL REVIEW C63 034304

(3)ss _ ’ T T
Gi2aa = 5os,+1505,,+1<5 | T g1 2 ha Y3 S) GR)ss = oi(n% °)7° |7] >) 12 n 772* lim

12,34 =
— 34, -10s, ~1(s| T Lo s |S').

t— 4+
2 _ )
(22]) XJ’I dada’ € (aeg+ a’ &gr) USIG(23;)5I’14éa’a/; O-S)'

The next step of our derivation is to extract the quantity (2.28

GY)s; from the three-particle Green function. It will be
shown that the Fourier transform of this quantity defines théiere
response function of the odd nucleus we are interested in. In
this subsection we present the projection technique which is S B *
most suitable for the extraction of the above quantity in our (nl 7 >_; M (2.29
case and which is similar to the technique described in Ref.
[10].

Let us define the projection operator acting in the space of
the time variables

and we adopt the natural assumption that the overlap inte-

grals{»° »* ) for the states withe;=¢4, form the diagonal
matrix with indicess, s'.
t — _ —
O'(t1, ta, ts, ta) = O(t—[ta]) 6(t—ta]) 3. Exact formula for the response function of the odd nucleus
X O(t—|ts]) 6(t—[ta]), (222 Applying the projection technique of the previous subsec-
tion, namely, Eq(2.28), to both parts of Eq2.10 we obtain

a Further we putt;=t,+0, t,=t3+0, t;+t3=0, 7=t3—1t;
G5 usha, a's 0)=0 (11, 1y, 1y, ts) and carry out Fourier transformation according to the follow-

ing definition:
X G sshts=a' at, te= — aot), g

(2.23
G{Y5: (@)= dT
wherea=1, a’'=1, o= *1. Then using the definitions of

Egs.(2.4), (2.17), (2.18, (2.20, and(2.21) and introducing a % exp{'

(3)s¢’
complete set of intermediate states of the odd nucleus we get 7|G12.34 (7).

1
w+ E(ss—ss,)

2.3
G usha, a@'; ) =0ty 1y, 1y, tg) i (2:30
, Then we transfer quantita(® 9¢ to the left-hand side
X O .0 00y 00 7 621)32 (LHS) of the transformed Eq2.10 and obtain the following
s¢ equality:
Xexd —i(aesta’ eg)at]. (2.29
RS54 (0) =RE35:F (@) + R §7(w) + RS (w).

Now let us note that the function (2.31)
2 2 [ot) . Here quantityR3%5%)(w) is the result of subtracting the
f(w, t):f da e'““"=—sin(—) gl®at (2 25 quantityRy sq () 3 d (3)s¢ ?
1 ot 2 transformed disconnected p@t®) ¢from G{}3; (w). The
_ physical sense oR%3%,%)(w) is clarified from the spectral
has the properties expansion of this quantity which is obtained by the method
being analogous with the usual methods of the GF formalism
f(0,t)=1, Vt, (see Refs[5,8]). After cumbersome transformations we get
f(w,t 0. 2.2
el L 220 Rt 9(0)=0,3)
Then from Eq.(2.24) and from the obvious property y pgls"*;fé"
@t(tl,tz,ts,t4) _ 1, (227) 0)+SSHSI_| O'SHXO
t—+x — gr—/ n*
B Piz 934S ) (2.32
we get the final projection formula w—egstioeX0)’ '
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[t =00, 0y Us(5as,+1pizs+ 505,—1Pi§ — dss P19 R1234:_j d 5 d 6 GgG 6756 34- (2.37
(2.33 ’ '
sy = €5 &g/ - (234 The energy representatidirourier transformationof 7 is
defined as

Actually, R334 %) (w) is the matrix response function of the

odd nucleus, the matrix indices of this function being the "

indicess, s’ marking the eigenstates of the exact many-body  7;, ./ w, &)= f drid e @t e, o 1, 1)),
HamiltonianH. The quantities)ﬁ' in Eq.(2.32 are the rela- o

tive transition densities of the odd nucleus.

In the application of this formalism to description of the Ti=t3—ty, m=t,—t;, t4=t3+0, (2.39
odd nuclei excitations it is sufficient to consider the response
functionR?9%,°°)(w) with the indicess, s’ corresponding to Thyad@,8)= Ty — 0,6+ ). (2.39

the (degenerateground state of the given odd nucleus. In

this Cases%jdsé's/?nd’ according to Eq2.32 the poles of the In addition, we define the Fourier transforms of the quanti-

function R15 3, /(w) coincide with the excitation energies, tiesT" andB® as
while the residues determine the transition probabilities.
Thus in the following text we put,= e in all terms of Eq.

(231) F12’34w,8,8,):f d’Tld Tzd T3ei(wrl+a7'2+a’7'3)
Further, the quantitR°®® ©5)(w) in Eq.(2.31) is defined -
by the equality XT 123471, 72, T3), (2.40
R$35:%)(0) =859 Rizad @), (2.39

(3) I N h
whereR(w) is the usual particle-hole response function of Bizassé@. €, &",&", ') 'f,xd ndndrydrdrs

the even-even nucleus which was defined by &g7). Its

spectral expansion is as follows: x gl(@nteryte’ rgte" iyt 0’ 15)
R > P P PIoP5e XB{s456 71, 720 73, T4, 75),
12’3‘(0))_#0 wt+tw,—iX0 w—w,+iX0/’
(2.39 n=l3—t, m=t—t, 3=l 1y,
It is convenient to write other quantities in E@.31) by _ B
introducing the(exac) vertex operatofl in accordance with 7=t~ le,  Ts=l s, (249
the definition of Ref[11]. Namely, in the time representa-
tion we put With these definitions we have {=¢):
J !* T
RS N @)=—05 2 13 1] Goales—0)T1, 5(0, 65— ) Tya s 0, 65— o)
11213/4!
s s T
—0s E M5 Ny Garr(est w)le,lrzr(w’ &s) Tarar 3d( @, €6), (242
1!2!3!4!

’ P * ds T
RELE N (w)=—0> mgnd 2 f 2 T 10 10/(0,8) Tyrar g0, 8) 2, (U6 560, 8+ o, &)
56 1'2'3'4' — Tl ’ 56/

XG3/6[(8+ (1)) GSIl!(8+w) Gzr4r(8)+r5767156(0,8, 85) G3!1/(8+ (1)) G2/6/(8) 65147(8))

»dede’ . 3
+f —.2712‘1727((”;8)7;3’4’,34(('018,) 2 B(57)67'7r87;56(w18;8,18510)
— (2ri) 5'6'7'8’

XGSrlr(8+ (U) Gzrﬁr(s) G3r7r(8,+(U) Ggr4r(8,)] . (243)
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Single-particle Green functioG(e) entering these formulas in the related quantitie§; I', and B®). So, we adopt the
is Fourier transform of the quantity defined by E2.2) (see,  following approximations within the accuracy of the first or-
for example, Ref[5]). It can be represented as the solutionder in the interaction:

of the Dyson equation (i) The exact single-particle Green functi@nis replaced

by the Green functios, exact amplitudes;; and energies
GiAe)=Gye)+ >, Giy(e)35(e)Gusle). (2.44 &4 are replaced by single-particle wave functiang1) and
34 energies, . So in the following we shall use single-particle
~ ) ) ) ) . index\ as the index of the odd nucleus stéiestead ofs).
HereG(¢) is the Green function which describes the motion (i) The response functioR and the vertex operataFare
of the nucleon in some mean fiefidonlocal in general cage  yefined within the RPA: functionR and 7 are replaced by

It satisfies the equation functionsR and7; whereR is the solution of the RPA equa-
- tion
Giaoe)=Gle) + 2 Glye)2abudz), (249

_ Ri23d w) =Ap3fw)— 562;8 A1z 54 ) Fs6,78R78,34 w),
where G%(&)=(e—h% ! is the free Green functiors, is (2.47)
the energy-independent part of the exact mass ope(ator '
particular it can have the form of the phenomenological ofT is defined by the formulas
Hartree-Fock potential In terms of the eigenfunctions
¢, (1) and eigenvalues, of the single-particle Hamiltonian

hy,=h%,+3,,, the spectral expansion &(¢) reads

ex(1)ex(2) ~ -
— =~ : , (2.49 T 1p3d @)= 813024~ > Rizsd ®) Fogas (249
e—g\tioX0 56

Tip3d @)= 813024~ % FrossRssad ©),  (2.48

612(8):2)\:

whereo,=1-2n,, n,= 0 or 1 is the occupation number. Quantity A(w) in Eq. (2.47) is the particle-hole propagator
Quantity>¢(&) in Eq. (2.44) is the energy-dependent part of in the RPA. It is defined by the ansatz
the exact mass operatd [entering Eq.(2.9)] which de- d
. . o . ) % de 5
scribes the coupling of the single-particle and collective mo Arpad )= f —i631(8+ ©) Goule)

tions. In these notation§,(s)=§+29(a). It is important to w2
note thatX®(e) is the quantity of the second order in the

interaction. =2 oF (L)ey (2)en(3) ¢}, (4)

AN

B. Random phase approximation for odd nuclei s —n

X A . (2.50
(l)_S)\"FS}\/"" 0')\'0

1. Approximation for the response function of the odd nucleus

Now let us consider approximations. As has been noted in _ _ ] o

the Introduction, one of the aims of this work is to constructEnergy-independent amplitudg is the approximation for
the model which would take into account specific features othe energy-dependent amplitutieand will be specified in
the odd nucleus on one hand and which would be similar téhe following.
the RPA for even-even nuclei, on the other. The main prob- (iii) The exact scattering amplitudé is replaced by its
lem is that the straightforward application of the RPA to theapproximation in thep-h channell':
description of odd nuclei excitations faces some difficulties
due to the fact that the ground state of the odd nucleus is ~
degeneratéif we give up its averaged treatmérnd is not I'123d0)=F1234 56278 F12,56Rs6,74 @) 78,34
particle-hole phonon vacuum. In this connection it is impor- (2.51)
tant that the above-obtained exact formulas take into account
these circumstances completely. On the other hand, it is im- (iv) The functional derivativeSi{;, 34/ 6Ges in Eq. (2.16)
portant that RPA in fact is the first order theory. This meangor the amplitudeB® is replacedin the energy representa-
that only the first order contributions in the interaction aretion) by the quantitydF;, 34/ Spes, Wherep,, is the approxi-
taken into account correctly in the RPA. The higher ordemation for the ground-state density matrix:
contributions are incorporated only in part. We will use this

roperty of the RPA as the main principle in the construction .= _ _ *
gf opur %odel. The equations of tr?e prgceding subsection en- P12~ 161 tl’tz_tﬁo)_; M (L) (2).
able us to do it because all of the first order contributions can (2.52
be easily extracted from the terms in these equations. Nev-
ertheless, we retain all higher order contributions of the RPAT0gether with the approximatiorts) and(iii) it leads to the
type in the response function of the even-even nudkeaad  following approximationB® for the quantityB(®:
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0F 12,34

e, 0')=2 Tesgs (')

5'6’

=(3
B(lz),34;5éwv e, e,
Pe’5

(2.53

Making use of these approximations and carrying out the

integrations in Eq(2.43 we obtain from Eq(2.31) the for-

mula for the response function of the odd nucleus within this

PHYSICAL REVIEW C 63 034304

;ggd34(>\>x )( w)= (1)(1"2’,‘32 - 56278 f12,5eA§§,7%” )( ) F7g 34,
(2.65
r T
(D(ﬁ)\snz = q)(m\ ) E Q12 56]:56 34T Fio, 56Q56)\ ).

(2.66

approach. After a series of algebraic transformations it can

be brought to the following ansatz:

ﬁodd (N7 )( ) RCOTB (19N )(w)-i—RSP O’ )( )

12,34 12,34
+RSEM (o), (2.54
wheree, =¢,, and
ﬁig&o‘)‘,)(w) =S\ Ri23d @), (2.59
f’zpsg\x )(w) 2 leséw)Asms (wﬁ?s,sz(w),
(2.56

Nt~
RELM ) (w)= 2 [T osd @) Q%3 Rigad )

+Ryp5d @) QU4 Trg 34 @)

- R12 54 ©) (I)5>é R78 dw)], (2.57

AZE ANV (0)=— 0y [on(2) ¢}, (8)Gay(e\ + @)

+o0(3)¢} (1)Goyey—w)], (2,58

Q(l)\ZT\Sz%Zésl[Pv POdd o )]24_ 624l p, POdd o )]31,
(2.59

(2.60

)T A
Q(lZ,SA% = _Q(lz,azv

O0F12 34—, '
ogp1-3, 2 o)

5 56 +(2P_1)31Eg?1d )
56 P56

+3380 O\ (2p—1),,, 2.61)
3.0 ‘“”=§ P33T M) Foy 1o, (2.62
p3ye ‘“’>=q§ ox(3) 0}, (4)T34140). (263

In the symbolic notations Eq2.54) can be rewritten in the
following form:

RY=R+ Q'R+ R Q+ASP—R FASP— ASPFR—R IR,
(2.64

where

Despite our formal limitation of the first order in the in-

teraction, the functiorR®{w) contains the higher order
contributions owing to the diagram summation within the
RPA in the right-hand sid€RHS) terms of Eq.(2.64). Fur-

ther, it is easy to see that functid®’{ ») defined by Eq.
(2.64) contains second-order poles in teR7°“R. One can

get rid of these poles, that have no physical sense, by means
of shifting the poles of functioR(w) which has the spectral
expansion analogous to E@.36). This shift remains within

the accuracy of the first order in the interaction and is deter-
mined by the matrix

dd (' 0 dd (\\' n'o
f?\n’( )= %4 n*f(i234(A )(wn)p34,

(2.67)

wherew,= o, is the energy of the excitatiofphonon, p79
is its transition density. In the case of spherical symmetry of
the core, the angular momentum coupling in the states
®n and\'®n’ leads to different shifts for different multip-
let members in the odd nucleus. A similar method of the
multiplet splitting evaluation was developed and used in Ref.
[4] with a different technique. However, the said method, if
considered as that for the second order poles removal, is not
suitable for the description of giant resonances, primarily due
to presence of continuum. So we will consider another model
in the following subsections.

Let us note that formul#2.67) coincides with the result
for the multiplet splitting of Ref.[4]. The result of the
particle-vibration coupling model is obtained from E}.67)

if we put&)zo in Eqg.(2.65. The meaning of the corrections

introduced by the additional quant@ (contributions of the
many-particle diagramss discussed in Ref4].

2. Self-consistent approach

The response function of the odd nuclédR®% (o)
and other quantities in Eq%2.59—(2.66 are determined

completely if quant|t|e§ 12 and Fy, 34 are specified in some

way. Let us remind the reader that the mass operatde-
termines single-particle basisp, , £,}. Quantity F is the
amplitude of the effective nucleon-nucleon interaction in the
p-h channel. The simplest and at the same time reasonable

way to defineX, and F is a phenomenological one. It is used

in the standard variant of TFHS] and in the applications of

our model to be represented in the following section.
However, from a theoretical point of view, the self-

consistent definition oE and F is more preferable. Let us
consider the main features of this approach. First of all we
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suppose that an energy functioridlp] is given which de- 3. Strength function and the analysis of approximations

Sendsbon the density n;?trjrxlz [de_fineq byrl]Eq(2-52)Land Let us come back to the exact response function
escribes in a reasonable approximation the ground-state efjzqq (ss) . .
ergies of even-even nuclei. It may be for example the &12 34 '(w) defined by Eqgs(2.31), (2.32, and introduce

Skyrme-type functiona[12] or the energy functional of a the dlfference response function depending on two variables

more general typgl3,14]. », o'
In this case we can define quantiti®s and F by the Dgczldsél(ss’)(w, w/):Rggdsél(ss’)(w)_Rtitzjdsll(ss’)(w/).
following relations: , , ,
(2.74
SE[p] S2E[ p] This quantity determines the strength funct®&? © of odd

212, Flos W (2.68 nucleus which describes the strength distribution of excita-
P43 tions caused by an external field). In the case of spherical

symmetry we have
where h® is free single-particle Hamiltonian of Eq2.1).

These definitions imply a self-consistency procedure in ., © 1 23+1
which density matrixp is defined by Eq.2.52 with the S (B, 4)= 27 2j+1
eigenfunctionsp, of the Hamiltonianh from Eq. (2.69.
Let us suppose that functiong| p] is invariant under the XE E (0)* odd (9
ms

*11/(0)
following transformation of density matrix: D234 (@, @™)Vag,

(2.79

wherew=o4(E+iA), o4=+1 for odd nucleus with added

wherea is a real numberg is some single-particle operator nucleon,os=—1 for odd nucleus with removed nucleqa,

and q'=q. In particular, Eq.(2.69 must be satisfied for andm; are the angular momentum and its projection for odd

operatorg of any conserving quantity, for examplegjfs the ~ nucleus groun(%)stai;ks), J is the angular momentum of an

component of the momentum operaporDifferentiating Eq. ~ €xternal fieldv'™, A is the smearing parameter. Making use

(2.69 with respect tow and puttingar=0, we obtain of the spectral expansiof2.32), it is easy to verify that at
A—+0 andE>0 Eqgs.(2.74), (2.75 coincide with the usual

oE[p]
SP([CL el 3p >=0, Vop. (2.70

definition of the strength function
Functional differentiation of this identity with respect to o
leads to the following equalities in the equilibrium point with WhereB,, and(}, are the reduced probabilities and the ener-

E[e '“pe *9=E[p], V «, (2.69

S(E)=2>, B, 8(E-Q,), (2.7

account of Eqs(2.68: gies of excitations.
The aim of this and the next subsections is to obtain a
formula for the functionggf’M(SS')(w, ') and consequently
% F12344, plaz=[4d, h]a1, (2.7 for the strength function of odd nucleus within the aboveas-

sumed approximations. As has been already mentioned
above, the direcg d(substitution for functi®t?®{ w) instead of
_ _ exact functiorR°®q w) in Eq.(2.74 is impossible because of
%‘ 1123 ;‘ A2z 71234 ?‘ Fr2340s3 the second-order poles problem. It can be shown that the
5}_ strength function can take negative values in the vicinity of
i — 12,34 _ these poles. Nevertheless it appears easier to solve this prob-
2 Fraaatea= 2, [p Use- (272 lem just for the difference response functib?® ©s) than
for self-response functioR%! ©%) Before writing the re-
Making use of Eqs(2.58—(2.63, (2.65, (2.66), (2.71), sulting formulas, some notes should be made.
(2.72, we obtain, after a lengthy series of transformations, (i) All of the quantities both in Eq(2.64 and in the
the following important result for any single-particle opera- following similar equations are supposed to be the matrix
torsg andq’ which satisfy the conditiori2.69: functions with the matrix multi-indicesM,M’, where M
={12)\}. The quantitieRk and F depend or\ asé,, . The
dd ) production of the quantities implies the summatiartegra-
E [a', pliF25 (0)[a, plas=0. (273 tion) over intermediate multiindei including indexx.
(i) Let us divide quantityASPin Eq. (2.64) into two parts:

The fulfillment of this equality is necessary for the absence ASP= A(+)SP A(-)SP (2.77
of spurious states energy splitting and shift in the multiplets
calculations in odd nucldisee Eq.(2.67) and Ref[4]]. where E,=¢€,)
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ALETN ) (w) = % P Ass ad ) = g Appsd @) PSS,
(2.78

pAN)

12,34~ _[531#’)\(2)@;(4) + 524<P>\(3)<P:r(1):|,

(2.79

quantityA is p-h propagator defined by E2.50), propaga-
tor A(ISP is defined as the differenceA(™)SP=ASP
—A)SP using Egs.(2.58, (2.78. As is seen from Egs.
(2.78), functionA(")Sq w) contains onlyp-h poles being the
part of the poles ofp-h propagatorA(w). The function

PHYSICAL REVIEW C 63 034304

After a series of transformations one can prove that the func-
tion D w, w') differs from the result of the direct substi-
tution for functionR°{w) in Eq. (2.74 by the terms which
are beyond accuracy of above-mentioned approximations. In

this sense the method of the constructing of functsii®is
based on the same ideology as the method of matrix Pade
approximations. The meaning of introducing the function

DY w, w') is as follows: it does not have second-order
poles and leads to the positive-definite strength function. We
shall consider the quantit°? as the approximation to the
exact difference response function in our model. Since all

A(*)Sp(w) contains only particle-particle poles of the type preceding considerations have been based on the RPA for

w:i(S)\n_S)\), I’l)\=n>\n=0
and contains only hole-hole poles of the type= = (&,

—&,), Ny=n,»=1 if the odd nucleon is removed. Using

these definitions and Eq&2.47), (2.64), one can show that
the functionR°®(w) contains the poles of only two types:
the poles of response functit{ »), which coincide with the

core excitation energies and represent the collective branc

of excitations, and the poles of the propagatdf)SHw),

which coincide with the single-particle transitions energies
and represent the single-particle branch of excitations. The

poles of the propagatok!~)SH(w) disappear in the function

R w). In fact the propagatoA(~)SF(w) is a correction to
the p-h propagatoA in Eq. (2.47) caused by the Pauli prin-

ciple. This correction is characterized by the small parameter
1/N, whereN is the number of particles in the fermion sys-
tem. So further we shall neglect the Pauli principle correc-,

tions of the higher order IW? in the response function part

describing the collective branch of the odd nucleus excita-

tions.

4. Model

if the odd nucleon is added. €vVen-even core which is corrected owing to adding of the

odd particle(hole), we shall denote this model as the odd
random phase approximatig@RPA).

Let us make two notes. First, it is easy to prove after some
algebra that if we neglect the influence of the odd particte
hole) putting the quantitieA()SP A()SP @ and® equal to
ero in Egs.(2.81)—(2.87), then EQq.(2.80 yields the RPA

sult for the difference response function:

5‘{2%4(“‘ N, 0= Sun[Rizad @) —Ripadw)].

(2.88

Second, substituting EQR.78) into definition(2.84) of quan-
tity A we get
Aw)=[F+ Fqw)]A(w), (2.89

where

FOUY ) =D + FP— FAMSA o) F. (2.90

Making use of the equation for the transition densities in
RPA: p"0= — A(w,) Fp"°, we obtain the following equality

Taking into account these notes let us come back to Edrom Egs.(2.65), (2.67), (2.79, and(2.90:

(2.74 and define the following function:
B w, 0) =T (0)[A) (@)~ A (&) T (w')

+ T (@) [AD (@)~ AN ()T (),

(2.80

where
A=A+ ACISP - A(H) = A(T)SP (2.82)
TO=(1+A)"Y(1+Q—FAMISH, (2.82
TOT=(14QT=AMSPE (1+AT)"L,  (2.83
A=(F+®—FADSPHA+ FAOSP (284
AT=A(F+®— FANISPR) + AOISPE (2,85
TH=1-FAT), (2.86
T =17 AF, (2.87)

~odd (\\' dd (\\' ~n0* ~odd (\\' ~n'0
fﬁn, ( )=f2nr @ ):E P22 7'—22,340\ )(wn)pg4 )
1234
W= Wy . (2.91

This means that in the first order in the interaction amplitude
F°%the ORPA yields the same result for the multiplet split-
ting as the self-consistent TFF8].

The strength function of odd nucle®% ®M(E, A) is
defined in ORPA according to E¢R.75 with the substitu-

tion for function D instead of exact functio° The
principal equation which we have to solve for calculating the
strength function in ORPA is that for the effective external
field V99 w) =7 ) (w)V©. It follows from the definition
(2.82 that

VO ) =[1+Q— FAISR ) VO - A (0) V™Y w).
(2.92
Making use of the definitiori2.89 one can see that except-

ing “odd corrections,” introduced by the quantitie®,
AMISP and 7044 this equation coincides with that for effec-
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tive field in TFFS[5] describing excitations in even-even | our calculations the mass operaﬁnrwas taken in the

nuclei. But in contrast to TFFS equation, E8.92 is more  form of a realistic Woods-Saxon potenti@9] (plus spin-
complex because it is written in the exte.n.ded configurationagypital potential, plus Coulomb potential for protonhe
space{poh@\} determined by the multi-inded ={12\} fitting procedure was applied in order to obtain agreement
whereN is the index of the subspace of odd nucleus grounthetween the experimental single-particle energies and the
state wave functions with the fixe, . calculated levels that lie near the Fermi surface in the
In case of spherical symmetry we have to solve P2  nucleus °0. The procedure consists of changing the well
and to calculate strength functi@® ®) separately for each depthU;, so that to get, = ¢ for the given quantum num-
total angular momerjt* of the odd nucleus excitation, which bersj,| and fOI’siXp determined by Eq2.20 with quantities
satisfies the selection rules for a given external fig®. Eo(*%0), E, (**0+ 1 nucleon) taken from experiment.
The total strength function as defined by E2.79 is a sum The Landau-Migdal interactiof6] was taken asF with
of partial components. This results in a splitting of core eX-parameters
cited states in odd nucleus, i.e., to the multiplet appearance.
On the other hand, the enlarging of the configurational fe~=—-2.373, f,,=-0.002, f,=2.30, f;=0.76,
space in Eq(2.92 leads to the coupling of different chan-
nels of the corg-h excitations characterized by a different g=0.05, g’'=0.96, C,=300 MeVfnf. (3.1

total angular moment of the p-h pair which satisfies the , . . . .
triangle ruleA (Ljoj*), wherej, is the total angular moment This parameter set coincides with that used in our previous

of the odd nucleus ground state. So in the case of sphericqRlculations(see, e.g., Ref$20,21,18) except for parameter
symmetry the dimension of the equation systé9? is fox whlcqswas obtained f_rom fitting the energy of thg 3
increased compared to TFFS in the number of times equal t§Vel in O to the experimental value of 6.13 MeV. The

the number of incorporated channels of core excitations. fitted value fe,=—2.373 also gives complete coincidence
between the theoretical and the experimental value of

B(E3)=1.5x 10° e? fm® for this level. The characteristics of

IIl. CALCULATIONS OF THE E1 RESONANCES IN 70 the 3, level were calculated within the continuum RPA us-
AND 160 ing the coordinate representation technig2,15. The

ground state nuclear density in the interpolation formula of

A. Numerical details the interaction[5] was obtained making use of our Woods-

As a demonstration of the ORPA application we will con- Saxon singlg-particle wave functions which turned to be im-
sider the calculation oE1 excitations in'’O. TheE1 pho-  Portant for light nuc!el(see Ref[21]). It should be pointed
toabsorption cross section #fO being the even-even core out that the interaction parameter $8t1) and the standqrd
for the nucleust’0 was calculated within the self-consistent Parameters of the Woods-Saxon poter{ied] were used in
RPA, i.e., with a complete account for the single-particlea” calculatlo_ns. In adqlltlon, the above-de_scrlbed fitting pro-
continuum, in Refs[15,16 (see also references thergiBut ~ cedure for single-particle levels was applied.
to our knowledge, a consistent account for this continuum
and other effects associated with the odd nucleon'fer is B. Results and discussion
realized here for the first time. It is of interest to calculate the
E1 photoabsorption cross section for light nuclD and ] o .
160 where the role of the continuum is very important. It is With the definitions described above we have calculated
also of great interest to do it in the framework of the samewithin ORPA the strength functiors®® M (E, A) for is-
calculational scheme, particularly because, as was noticed vectorE1 excitations in'’O and theE1 photoabsorption
the recent detailed experimental study of Eieresonance in  cross sectiorrg,; according to the formula
170 [17], the relatively low @, tot) strength fort’O remains
unexplained(the authord17] obtained thes (v, tot) as the oel(E) =
sum of partial cross sectionsSee also references and other El
information dealing with experimental and theoretical stud- i ) ) -
ies of theE1 resonance in thé’O nucleus in Ref[17]. The_ external field operator in the case under consideration is

Here we use a calculation scheme with “forced consis-defined by
tency.” The variant of this approach intended for RPA cal- .
culations in even-even nuclei was developed in [RES]. In V@=e, 8, ,.8. ,.8(r1—r)rY, (_1) (3.3
ORPA we put in the previous formula®.82—(2.85: Q 1o T2 iy

:qu)_:}-reSt’ whereF'*is a restoring amplitude which is \yheree, are the nucleon effective charges in the center-of-
tgken in the_ separable form, adjusted in order to set the spyyass reference frameg,=N/A, e,=—Z/A. Equation(2.92

rious state in the even-even core at exactly zero en&s8§ oy the effective fieldV°'{w) was solved in the coordinate
Ref. [18] for more details The “forced consistency” en-  rgpresentation so as to take into account the single-particle
ables one to define the mass oper&oand interaction am- continuum completely. In order to simulate the experimental
plitude F as independent quantities keeping zero energy ofesolution the nonzero value of the smearing paraméter
the spurious state. should be used in the calculatiofis addition, this parameter

1. Isovector E1 resonance

Se? _
T%ES"‘“ M(E, A). (3.2
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50 50
40 — —
40 7y E1 _ 70, E1
30 — )
E E
520 —] 520 —
10 10 =
0 0
0 20 0
Energy (MeV)
. . 7
FIG. 4. TheE1 photoabsorption cross section f50 nucleus FIG. 5. Same as Fig. 4, but the dashed line presents;the
calculated in ORPA with three channels of core excitations 3™ partial component of the calculated cross section, dash-dotted line,
! 5-— : 3-
and 5 (solid line) and with one entrance channel 1dotted ling. 37, and dotted lineg .

The smearing parametér is equal to 300 keV. The dashed line

presents experimental data from RE7]. caused by the complex configurations but on the average the

envelope is reproduced fairly well. So one can think that an
improvement of the ORPA by means of taking into account
imitates contribution of complex configurations and its intro- additional complex configurations will not change the picture
duction decreases strongly the numerical difficujtiés all  radically, especially as our results show that the effect of
calculations of the isovectoE1l excitations we took the channel coupling in ORPA is small for isovector excitations
value A=300 keV which is approximately equal to the ex- in *'O.
perimental resolution used in the measurementS©f[17]. So, we suppose that the reason for a large discrepancy
Because the quantum numbgfsof the 'O ground state between the ORPA and the experiment in the case under
are3™ (single-particle orbital dis,), there exist three partial consideration can be in the experimental technique used in
components oE1 strength functiors ~, 37, and%~. Con-  Ref.[17]. In Ref.[23] it was pointed out that the method of
sequently there are the following possible channels of cor@artial cross sections summing, which was used in Réf,
excitations with normal parity which satisfies the triangleyields systematically smaller integrated cross sections as
rule A(Ljoj*): 1~ and 3 for 2~ component, I, 3~ and  compared with other methodsee Table | from Ref(23]).
5~ for 3~ and%~ components. Two cases were compared inThe results, related with our discussion, are represented in
the calculationsi) full calculation with incorporating of all Table I of our paper. In this table elastic photon scattering
three possible channels of electric tygig) calculation with ~ data for *°0 nucleus from Ref[23] is represented. These
incorporating of only entrance channel 1The result is pre- data are in a reasonable agreement with our calculations.
sented in Fig. 4. The effect of channel coupling turns to beJnfortunately, we do not know any analogous data ¥t
negligible for this calculation. But this is a consequence ofnucleus. The situation might be clarified by further experi-
the isovector nature of the external field because the addmenting.
tional channels 3 and 5 are important mainly for isoscalar
excitations(see below. Partial decomposition of the calcu-
lated total photoabsorption cross sectionl® is shown in The results presented show that the influence of odd neu-
Fig. 5. In fact there is triplet of the giant resonances but thdron in 'O appears to be relatively small for isovect®t
members of this triplet cannot be resolved in the total cross

2. Isoscalar E1 resonance

| i \ \

section in view of its large widths. 50
The available experimental data f&rl photoabsorption
in 1’0 are presented also in Fig[the experimental curve is 40 7 6. E1 | B
sketched using Fig.(B) of Ref.[17]]. As can be seen, the \
discrepancy between our theory and the experiment is very =30 7 b
large. Mainly this concerns the value of,,, because the =
positions of the resonance centroids are close. In order to 520
achieve a better understanding of the situation we carried out
the calculation of theE1l photoabsorption cross section in 10 —
160 nucleus within the RPA making use of the above de-
scribed calculation scheme. The result is shown in Fig. 6. 0 - ‘
The experimental data in this figure is the result of multi- 0 10 Energ;O (V) 30 40

Lorentzian parametrization of the cross section from Ref.

[23]. In this case the agreement with the experiment is much FiG. 6. TheE1 photoabsorption cross section fiO nucleus
more satisfactory than fot’O. It can be seen that RPA calculated in RPASolid line, A=300 keV) as compared with the
cannot yield a fine structure in the region of giant resonancexperimental datédashed lingfrom Ref.[23].
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! | of the single-particle continuum. The results presented indi-
1.4

= cate thatE1l,g strength in1’O nucleus below 12.5 MeV is
. El, L completely determined by the odd neutron contribution.
N The nature of the resonances in this energy region is clari-
E 107 B fied from the analysis of partial decomposition. Here are
17g . . . ) ’ )
2 08 | - three relatively wide peaks. The first peak with the maximum
‘% at 5.1 MeV comes fronp,, single-particle resonance. The
5 067 _wg [ second peak, strongly overlapping with the third one and
5 04 — — having the maximum at 6.5 MeV, corresponds to the
2 s | state of the{ds,® 37} sextuplet which contributes owing to
= ' A the channel coupling in ORP#Athis peak is absent in the
0.0 - strength function calculated with incorporating of only 1
0 1 20 30 40 channel. Let us note that thé ~ and 4~ states of this sex-
Energy (MeV)

tuplet have too smalEl,g5 strengths and are absorbed by
FIG. 7. The isoscalailS) E1 strength in*’O nucleus calculated background. And, finally, the third peak with the maximum
in ORPA with two channels of core excitations &and 3~ (solid  at 10.3 MeV comes fronii,, single-particle resonance. It is
line) as compared with thE1,5 strength in'®O calculated in RPA  important that the strengths of all these resonances are renor-
(dashed ling The smearing parametdr is equal to 30 keV. malized due to the interaction between the odd neutron and
the core.
resonance. So it is of interest to study this influence for ex- The relative contribution of these three resonances into
citations of isoscalar type. The corresponding external fieldhe energy-weighted moment; (E,,.,), defined by
operator is written as

1 Ifl Emax ~
V(lg):zé‘ol,azé.,lyTz&(rl—rz)ﬁs(rl)YlM r_l), (34) mk(EmaX):f m dE Eksodd ()\)(E,A)’ (37)
0
wheref,g(r) is the radial form-factor for isoscal&1 exci-
tations E1,g). It is reasonable to determine functidp(r) b iderable al h h . ¢
so as to obtain the spurious state probabifE1,<) equal turns out to be considerable also. For the strength function o

to zero. In order to fulfill this condition we use the form  F19- 7 e obtain

r2

f|s(r)=r(1—R—2>. (3.5 m;(11.3 MeV)/m;(40 MeV)=0.15, (3.8
IS

ParameterR,g is determined within the “forced consis-

tency” scheme by formulas where the value of 11.3 MeV is the energy of the minimum

following the third resonance peak.
I - At the excitation energies above 12.5 MeV the forms of
Ris= \/I: Isz dr r**2[&o,(r)+ &op(r)], (3.6)  the Elg strength functions of 'O and *°O nuclei are simi-

1 0 lar. This reminds one of the situation with isovector strength
in these nuclei. It should be noted that in view of the small
a/alue of the smearing parametkr=30 keV used in the cal-
Culations, the widths of the most resonances shown in Fig. 7
n(except for several discrete states embedded into continuum
are formed predominantly by decay of excited states into the
esingle-particle continuum.

where functionsto,(r) and &y,(r) are defined in Refl18].
Actually, these functions are proportional to the neutron an
proton components of the spurious state radial transition de
sity. These definitions ensure the equalBy(ELs)=0 in
our approach at least for the even-even nucléi®. The
value of Rjg calculated by this method appeared to be clos
to that of R=1.24AY*=3.12 fm for %0 nucleus which is
used in the Woods-Saxon potential parametrizafiaf]. TABLE I. Integrated photonuclear cross sections t8® and
Namely, we have obtained,s=1.04R. Let us note that the 170 (percentage with respect to the corresponding Thomas-Reiche-
method of the spurious state suppression described is simil&uhn value 59.7NZ/A MeV mb). The integration up to 30 MeV.

to that in Ref.[24] [see also Ref[25] where a form-factor The partial cross _sectlons data are taken from R&f}: n _denotes
similar to Eq.(3.5) was used in the RPA calculations of the (¥ S0 cross sectionp denotes the {, p) one. The elastic photon
isoscalar resonances scattering(EPS data are taken from Reff23].

In Fig. 7 we show theE1,s strength functions for'’O

calculated in ORPA and fof?0, calculated in RPA, with the Experiment Theory
isoscalar external field defined above in both cases. In the n P n+p EPS

ORPA calculation two channels of core excitations havelép 24 44 68 88 84
been incorporated 1 and 3°. The small value of smearing 179 38 9 47 85

parameterA = 30 keV was taken in order to exhibit the role
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IV. CONCLUSION obtained in elastic photon scattering has been described rea-
A model has been developed describing both the Single§onab|y by our model. The main reason is that the role of the

particle and collective parts of the odd nucleus excitationSlngle particle continuum in the light’0 nucleus is very

. . e . significant. However, our calculations O did not give an
spectrum including splitting of particl¢hole) ® phonon : . : . .
. . / greement with the experimental data available, obtained in
multiplets on a common basis. The model takes into accou

the single-particle continuum including the giant resonanc cg'nsrr% in?hg’fﬁgugo;f Seer}i(r:;lgr:]tsmfebfnlosuv:/?llmei\r;teS.aTtTeuttse’rone
continuum, i.e., the source of the escape width, which is P b 9

important for light and medium mass nuclei. In other Wordslagreement with our calculations. The calculations predict a

: : reasonable value of 85% of the TRK sum rule in the interval
it corresponds to the continuum RPA for even-even nuclei b t0 30 MeV, which is almost the same as f60. Theo-

and, in addition, consistently accounts for the specificity Oﬁgtically, it is difficult to imagine any mechanism which

the odd nucleus under consideration. These properties of t . 17
model are of great interest for the odd nuclei without pairingWOUICI reduce st.rongly t.“% total isovectBl strength in™0
as compared with that iA®O.

which have the nucleon binding energy close to zero. C .
g 9y (i) In contrast to the case of the isovectt resonance,

The model developed is self-consistéaee Sec. || B 2 . g .
although in the calculations presented we have used a sinfor the isoscalaE1 resonance our calculations have given a
ery noticeable difference between th&® and 0 nuclei.

pler variant. The self-consistency allows us to use the mode . ina for the odd 170 lted i
also to calculate very unstable nuclei for which there is no onsistent acc]:countlngdp_rt el Cl) Fgutron .lr)es.u te fmh
information for fitting parameters of the particle-hole inter- 2PP€arance of an additional low-lying contribution of the

action. isoscalar strength below 12.5 MeV induced by the odd neu-
In the framework of the simplified variant of the mode

| tron only. This part of the strength gives about 15% of the
the isovectolE1 photoabsorption cross section and the isos_energy-welghted momeml'lntegrated up to 40 MeV, and it
calar dipole strength function iA’O have been calculated. Can P& measured in experiment.
Also, in order to clarify the role of odd neutron the same
quantities for'®0 have been calculated within the continuum
RPA. We obtained the following results. This work was supported by the grant of the Swedish
(i) The isovectoiE1 photoabsorption cross sectionf0  Institute within The Visby Programme.
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