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Point-form analysis of elastic deuteron form factors
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Point-form relativistic quantum mechanics is applied to elastic electron-deuteron scattering. The deuteron is
modeled using relativistic interactions that are scattering-equivalent to the nonrelativistic Arggnaed
Reid '93 interactions. A point-form spectator approximatid®~SA is introduced to define a conserved
covariant current in terms of single-nucleon form factors. The PFSA is shown to provide an accurate descrip-
tion of data up to momentum transfers of 0.5 GeYut falls below the data at higher momentum transfers.
Results are sensitive to the nucleon form factor parametrization chosen, particularly to the neutron electric
form factor.
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I. INTRODUCTION U(A,a)d*(x)UT(A,a)=(A"H*, I (Ax+a). (3

Electron scattering is considered to be an ideal tool tCHereU(A,a) is the unitary representation of the inhomoge-

study the electromagnetic structure of hadronic systemsyeqys Lorentz group, whose existence is required by relativ-
Relativity cannot be ignored for momentum transfers that

provide information about the structure of the hadrons at théStIC |nvar|%nce[3]. P# s the four-momentum operator, with
scale of a few tenths of a fermi. In order to understand had¥(! ,a)=e_' ‘a_- )

ronic systems at this scale, consistent relativistic models of N applications there are essentially two approaches used
both the hadronic dynamics and the hadronic electromad® cOmpute the hadronic current matrix elements. These are
netic current operator are required. If the dynamics and th&he covarianf4—8] and direct interactiof9—17] approaches.
current operator satisfy cluster propert[ds2], then the in- Each approach has its own advantages and dlsad\_/antages.
formation learned about the structure of the simplest two- COvariant approaches assume that the underlying theory

and three-body systems provides the essential components igfa local quantum field theory. For the case of the deuteron

models needed to treat complex targets. the input is a covariant current vertex of the form
Elastic electron-deuteron scattering is the simplest reac- . .
tion that must be accurately modeled in order to constrain the (O] T(W(X1)W(X0)I*(X)W (y1)¥(Y2))|0), (4)

dynamical generators and current operators that are needed
to model complex systems. Because the deuteron is an isoghich is the vacuum expectation value of a time-ordered
calar target, it might be expected that it can be accuratelproduct of nucleon and current fields. Assuming the exis-
described by a pure impulse approximation. Unfortunatelyfence of an underlying quantum theory, Mandelstgif]
pure impulse approximations are not consistent with currenshowed how to extract the desired current matrix elements
covariance and current conservation. An important goal is térom the vertex. The Fourier transform of the vertex has pole
find a physically motivated extension of the impulse approxi-terms on the deuteron mass shell. The residue includes a pair
mation that is consistent with current conservation and covaef Bethe-Salpeter amplitudes and a current matrix element.
riance and is also qualitatively consistent with experiment. The Bethe-Salpeter normalization condit{d®] can be used
In the one-photon-exchange approximation the experiwith the solution of the homogeneous Bethe-Salpeter equa-
mental observables can be expressed in terms of matrix elion to remove the amplitudes from the residue. What re-
ments of the hadronic electromagnetic current operator bemains is the desired current matrix element.
tween the initial and final eigenstates of the hadronic Quasipotential equatiorigl—6] are based on these same
Hamiltonian. The general form of these matrix elements is concepts, but they introduce constraints designed to preserve
the physical singularities. Current matrix elements are ex-
(p’,j’,Mj’|f]l‘(o)|p,j,ﬂj>, (1)  tracted using the constrained amplitudes and vertex func-
tions.
Where|p’,j’,uj’) and|p,j,u;) are eigenstates of the four-  Covariant methods are appealing because of their formal
momentum, spin, and three-component of the spin, in refereonnection to a quantum field theory; however in most ap-
ence frames related by a boost with momentum tran@fer plications it is necessary to model the vertex and Bethe-

=p'—p. jﬂ(o) is the hadronic current density &t 0. Salpeter kernel, and to replace the two-point Green’s func-
The dynamical constraints on the current are current contion with the free two-point function. Quasipotential methods
servation, lead to simpler calculationis7] than the full Bethe-Salpeter
approach8], but the reductions complicate cluster proper-
[P,..3"(0)]=0, @ e _
Direct interaction approaches attempt to construct consis-
and current covariance, tent models olU(A,a) andJ#(x) directly. The transforma-
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tion properties require that both(A ,a) andf]“(x) have an ing the momentum generators free of interactions, while in
interaction dependence. Dirf20] addressed the problem of the point form the additional interactions are in the momen-
constructingU (A ,a) by including interactions in some of tum generators, with the boost generators free of interac-
the infinitesimal generators df(A,a). He introduced the tions. The front form puts interactions in a mixture of Lor-
notion of forms of dynamics which minimize the number of €Ntz and momentum generators. _ _
interaction-dependent generators. The three main forms are: Even though all forms of dynamics are scattering equiva-
the instant form, where the interactions are in the Hamil-l€nt, each has certain advantages that are useful for specific
tonian and Lorentz boost generators; the point form, wheré@pplications. The goal of this paper is to analyze elastic deu-
the interactions are in the four-momentum; and the fronferon form factors using the point form. The point form has a
form, where interactions appear in the operators that generaféimber of features that set it aside from the other forms.
transformations transverse to a fixed light frofat three- First, all of the interactions are in the Hamiltonian and mo-
dimensional hyperplane tangent to the light coBait while ~ Mentum generators, that is, the four-momentum operator.
Dirac identified the different possibilities for putting interac- Since there are no interactions in the boost or angular mo-
tions in selected generators, he did not show how to actuallj’€ntum generators, the Lorentz generators are all kinematic
construct the Poincargenerators with interactions. and the theory is manifestly Lorentz covariant. It is conve-
The first exact construction of Poincagenerators with nient to write the Poincareommutation relations not in
interactions was due to Bakamijian and Thorfia$] using  f€rms of the ten generators, but rather in terms of the four-
Dirac’s instant form. There are Bakamjian-Thomas-like con-momentum operators that contain the interactions, and global
structions in each of the forms of dynam[&?], and they are ~ kinematic Lorentz transformations:
scattering equivalent.

While explicit dynamical models of current operators are [P,.P,]=0; ©)
difficult to construct, consistent current matrix elements can
be obtained by prescriptions that evaluate selected indepen- UAISMUXIZ(A_l)MVISV; (6)

dent matrix elements using single nucleon currents. The re-
maining current matrix elements can then be determined bWhereUAEUA(A 0) is a unitary operator representing the
using covariance, current conservation and discrete SYmme«rentz transformation . These rewritten Poincarelations

tries. These generate the needed dynamical contributions {gi pe called the point-form equations, and are the funda-

the current matrix elements. mental equations that have to be satisfied for the system of

Direct interaction approaches provide an exact treatment . ~ =
bp b nterest. The mass operator is givenMy= \P- P and must

ave a spectrum that is bounded from below.

Since the interactions are all in the four-momentum op-
rators, which are the generators of space-time translations,
he nonrelativistic Schidinger equation can be generalized
_to a Lorentz covariant relativistic Schtimger equation,

of the symmetries associated with special relativity, but ar
not directly related to an underlying field theory. A number
of direct interaction applications to elastic electron-deuteron
scattering exist in the literature. To date most application
have used Dirac’s instanf17] or front-forms[23,15,24—26
of the dynamics. The point form of relativistic quantum me
chanics has important simplifying features that are useful irpamely

modeling electron scattering. The purpose of this paper is to i .

investigate the hadronic current operator in Dirac’s point oWy loxt=P W, @)
form of dynamics. . . .

In Sec. Il we discuss some of the features of point-formwherex=x* is the four-vector space-time point. If the four-
dynamics and construct a mass operator for the deuteroflomentum operator does not depend explicitly on space-
Section Il deals with current operators, their relation to ob-time, this equation becomes the eigenvalue equation
servables, and the point-form spectator approximation. Then, R
in Sec. IV the numerical results are discussed and compared P, o=p,P. 8
with other methods. Section V presents our conclusions.

Finally, as will be shown in the following paragraphs, it is
possible to define states with the property that angular mo-
mentum can be coupled in exactly the same way as is done
in nonrelativistic quantum mechanics.

Unlike nonrelativistic quantum mechanics, where all the The simplest example of a system satisfying the point
interactions can be put in the Hamiltonian operator, for relaform equations is a one-particle system with masand spin
tivistic quantum mechanics it is necessary that at least threle If |p,o) is an eigenstate of four-momentum(with p-p
generators contain interactions. This can already be seen bym?) and spin projectionr, then
examining the commutator of the Lorentz boost generators
with the momentum generators. Such a commutator pro- |5#|p'o'>=p,u|p,o'>, (9)
duces the Hamiltonian; if the Hamiltonian contains interac-
tions, then some combination of boost and momentum gen-

erators must also contain interactions. In the instant form UA|p,g>=z |Aan'>Di,/(,(Rw) \/E, (10)
additional interactions are put in the boost generators, leav- o’ Vo

II. POINT-FORM RELATIVISTIC QUANTUM
MECHANICS
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with Ry a Wigner rotation defined by Ry  however that even though there is only one operator contain-
=B '(Av)AB(v), andB(v) a canonical spirfrotationlesy  ing interactions, namely the mass operator, that nevertheless
boost(see Ref[27]) with argument = p/m. D](rfa(Rw) isa there are interactions in all four components of the four-

Wigner D function, and the eigenstates are normalized to Momentum operator. _
In order that the four-momentum operator satisfy the

(p',o'|p,ocy=8%p —pP) S,y (11 point-form equations, Eqg5) and (6), the interacting mass
o N operator must satisfy certain conditions. To satisfy &),
relativity requiring theyv /v, factor. the mass operator must commute with the four-velocity op-

States of many noninteracting particles are tensor proderator, defined in Eq(15):
ucts of one-particle states; however, a problem arises when
such many-particle states are Lorentz transformed. As can be [|\7| ,\“/M]zo_ (16)
seen from Eq(10) each state is Lorentz transformed by its
own Wigner rotation, which in general are different. This This has the consequence that mass and four-velocity can be
means that these multiparticle states cannot be directlgimultaneously diagonalized. Eigenstates of the four-
coupled together as is the case nonrelativistically. Such emomentum operator can thus be written as the mass times
problem is resolved by tensoring the single-particle states itthe four-velocity. Since the four-velocity is purely kinematic,
the overall rest frame and boosting. It is convenient to labelt can be factored from the wave function leaving the cova-
the state by the system’s four-velocity riant Schralinger equation, E¢8), to become a mass opera-

tor eigenvalue equation,
|U1ki 'IL'(’i>:=UB(D)(|k1’M1> re |kn !Mﬂ))
Md=\D. (17)
:2 VO1) ... N
<|P1 % [Pn- o) Moreover, even though the four-momentum is conserved in
reactions, the total four-momentum is not the sum of the
) (12) four-momenta of the individual particles. Rather what is con-

(v{)o

(vi)o served is the overall four-velocity of the individual particles,
and the mass is then “off-shell,” not unlike the situation

where pi=B(v)k;, >k;=0, and Rw, with Feynman diagrams. This is to be contrasted with the

=B~ *(p;/m)B(v)B(k; /m). Under Lorentz transformations, instant form, where the three-momentum of all the individual

using the definition, Eq(12), such velocity states transform particles gives the total three-momentum of the system,

<11 [Di,ii,mmwi)

as while the energy is “off-shell.”
The mass operator must also satisfy the other point form
i (v])o equation, Eq(6), implying the mass operator is a Lorentz
Ualv ki) =[Av,Ruki, w1 DM'_, L (Rw) ol scalar. On velocity states this means the kernel of the mass
' H ! (()13) operator must be rotationally invariant and independent of

v2, exactly the condition put on nonrelativistic Hamiltonians

where the Wigner rotatioRy,=B~*(Av)AB(v) is the same in order that they be Galilei invariant.
in all the arguments of the D functions and all the internal _For a two-body system such as the deuteron, the relevant
momentum vectork;. That means all the spins as well as Hilbert space is the tensor product of proton and neutron
the orbital angular momenta can be coupled together exacthfilbert spacesH=H,@H,. In that case the velocity states
as is done nonrelativistically. This property will be used incan be written agv,k, wp,itn), Wherek=k,=—k,, andu,
the following paragraphs for coupling the nucleon spins to-and u, are the eigenvalues of the three-components of the
gether with the relative orbital angular momentum to get thecanonical spins of the proton and neutron, respectively. Be-
spin of the deuteron. From the relation between external angause with velocity states the angular momenta can all be
internal momenta, it follows that the velocity states definedcoupled together, these states can also be written as
in Eq. (12) are eigenstates of the noninteracting mass operdv.|k|,j,x;,!,s), as in the nonrelativistic case. The mass of
tor My and free four-velocity operatdr, : the two particle state, from Eq14), is 2ym?+k?; j is the
total angular momentum, whileand s are the orbital and
- spin angular momentum, respectively.
Mpedv,Ki i) =20 M7 k7o, ki, mi); (14 Itis advantageous to express the interacting mass operator
' in terms of a mass squared operator with matrix elements:
Valoki ) =v,lo.Ke ) A 0,y S0 ] 1S
The Bakamjian-ThPma§ Qrocedure is imrglemented in the =8v-v")5, , 5J],<k,l,s||(m{)2||k’,l’,s’). (18)
point form by writingP, =MV, where nowM is the sum !

of free and interacting mass operatois= M ee+ Mg '\Aﬂ A mass operator with a kernel of the form E@.8) will
takes the place of the center of momentum Hamiltornan satisfy Eq.(16) and thus the Poincamommutation relations,

=H-P2/2M in nonrelativistic quantum mechanics; note Egs.(5) and(6). The kernel ofViZ is taken to be
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(k,1s|(mh2[k" 17,8y s=am(k, |, sl JIk",17,s"), (19 3#(x) =P X3#(0)e 1P X, (26)

wherev!,, is a nucleon-nucleon interaction. The mass is the

itvJ~ i -
defined by Mhe densityJ#(0) is assumed to transform as a four-vector

[14,2g with respect to the free Lorentz transformations.
We now want to define the model current operator in
M := \/W; M2:=4(k2+m?)+ M2, (200  terms of measured one-body current operators. This is done
as follows. The deuteron matrix elementsJf(0) are de-
Denoting the eigenvalue of the interacting mass operator bjneq in terms of their Breit-frame values witd in the z

\?, the equation direction:

M2® = (4m?+ 4k?+ 4mul )& =\2D (21) (Q12,14]]3#(0)| - Q12,1 ;). (27)
can be rewrittei24] in the form of the nonrelativistic Schro For ©=0,1,2 the current matrix elements are defined in
dinger equation, terms of the single-nucleon current matrix elements:

k2 . )\2 K
— 0| 0= 7= —m|o. 22 (Q214§]3*(0)[-Q/2,1 ;)

o . =(Q12,14{|Q5(0) @1, +1,©34(0)|— Q12,1 ;).
This defines a relativistic model of the two-nucleon sys-
tem. It can be showih22] that this model leads to a small (28)
correction to the nonrelativistic binding energy and has scat- i )

tering observables identical to the corresponding nonrelativCurrent conservation requires that

istic model. Equatioril8) shows that the solution of ER2)

leads to simultaneous eigenstates of the mass, velocity, spin, .

andz component of spin. The Poincatransformation prop- > Qu{Q/2,14/13#(0)| - Q/2,14u;)=0, (29
erties of the deuteron eigenstates are given by a

PHu, M joe)) = o oMo ) (23 Which generates a dynamical contributidff,(0) to thez
. . component of the current:
and

_ o (Q12,1]133(0)| = Q12,1 )
UA|U'mD:Jan>:Z |[Av,mp ,j,ui) L aa < ag
» =—(Q2,1u{[(35(0)® 1 +1,®J5(0))[ — Q12,1 ).

(30
(Av)o’ (24)

0 These relations define the components of the Breit-frame
where matrix elements of}#(0). Theremaining deuteron matrix

elements oﬁ"(x) are fixed by kinematic Lorentz covariance

(v,klj m sl mp L j " u) and dynamical space-time translational covariance. Although

_ , j the current matrix element is defined in the Breit frame, the

=0(v=0v") 0y, 65 Vis([K]).- (29 expression for the general current matrix element is Lorentz
‘ covariant, as can be seen in Rgg8], Eq. (3.3)).
Wis(|k|) is the nonrelativistic wave function associated with  The computation of the matrix elements is carried out by
one of the two chosen nonrelativistic potentidlEhere are inserting single-particle intermediate states in the velocity
analogous formulas for the scattering stgtd@his provides basis that was used to formulate the dynamical model in the
the desired point-form dynamics. previous section. The deuteron wave function in the basis

Eq. (25) has the form

j
XD}, (Ra(A.0))

lll. CURRENT OPERATORS, FORM FACTORS,
AND ELASTIC OBSERVABLES (v, Kljmlslo’ mp,j,uf)

The second key element in a theoretical description of =d8(v—v")d,/, 616s[ SoUo(K) + 2ux(K)], (3D
electron-scattering is a conserved, covariant hadronic current "

density J“(x). In the point form the dynamical Poincare whereuy(k) andu,(k) are the nonrelativisti& and D state
transformations are the space-time translations. Translationgkuteron wave functions. Transformation coefficid@® 27
covariance can be realized by using the dynamical translagre used to express this in terms of single-particle basis ele-
tion operators to defing*(x) in terms ofJ*(0): ments:
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O k—k(vy,vo)]
kZ

(9(V,k) ‘ 1/2
0(Vl 1V2)‘

(1, p1,02, 120" 1] \Mp) = SV = V(vq,Vy)]

112
ik

1/2

XD /
/-"2:“’2

D YI,LL|[R1(V11V2)]

k k
Bl@ﬂB@)B(ﬁ) Bl<v2>B<u>B(ﬁ)

X5 Cour sy 0L K(V2 Vo) 1+ i (v, v2) I (32)

These expressions can be used to compute the current matrix element

<v1mD111Mj|ng(o)|U/va11uU“j,>: f <U,mD11,Mj|UlaM11021M2><Ui:Mi-vé:M§|U/1mD11,Mj’>

X[(v1,u11380)[v], 1) (V3= Vo) 81, + (02,121 I5(0) |05, ) (V1 = VD) Bt T,
(33

where the nucleon current matrix elements are given by(Eg). After integrating out the delta functions, one is left with a
final three-dimensional integral:

’ q 1211 I’ ’ ' ’
(W'mp, L3O mg1up)= 2 X X X X X fd3kc;%2,”,c“’“’2c1 2 Cotu Y10, (8,6 ([K'])

! ! ! . !
- ~ - A e I AV Y S L TR M
MMl MopM2 Mgis My 01071

XYy, (0,¢)u (kD

’
M9

*1/2
,U«éo'z

{Rw'Tk.B()IID,,/ {Ry'Tkz,B(v)1}D57, {Rulki B(v) T}

— ., , . (P1—P1)y
XDY2, {Rulkz B(v)Ju(piop)| ¥*Fl(p1—pp)?l+i 2 ot —5——
212 ” 2my
X Fl (py— pﬁ] u(pyoy) +{1-2}; (34)
|
where theC's areSU2) Clebsch-Gordan coefficients and the 4m§l Q?
conventions for the spinors, gamma, and sigma matrices are >Q%—| 1+ —2—) > Q2. (36
those of Bjorken and Dre[l29]. Mp 4mp

In this form it can be seen that the momentum of the
unstruck particle(the spectatoris unchanged, while the
struck particle’s momentum is changed, but the impulselhat is, the point-form momentum transfer seen by an indi-
given to the struck particle isot the impulse given to the vidual nucleon will be greater in magnitude than the total
deuteron. For this reason we call this the point-form spectadeuteron momentum transféx.
tor approximation(PFSA). It should not be confused with  Two important implications follow from Eqs(35) and
the use of the term spectator approximation in, for examplegg) above. First, the PFSA momentum transfer depends on
Ref. [4]. The practical adva_mtage of the PFS_A is that thethe internal momenturk, which is a variable of integration.
steps above can be ggnerallzed to any hadronic target. Mo_r%-hus in the PFSA, form factors depending op! € p;)?
over, the current matrix element is generally Lorentz covari- L . o) 5
ant and can be evaluated in any frame. muszt remain inside the integral. S(_econd, singe —p_i) |
Because the interactions in the point form are in the four= Q" the deuteron form factors will fall off faster in the
momentum, in the PFSA the momentum transfer seen by theoint-form calculations than in forms whergp; —p;)?|
scattered nucleon is not the same as the momentum transferQ”.
seen by the nucleus. In Appendix A we show that the rela- The input to the PFSA are single-nucleon current opera-
tionship between the momentu@ transferred to the deu- tors. The general structure of these operators follows from
teron and the momentum transferred to the interactingovariance, parity, Hermiticity, and time-reversal symmetry.

nucleon is For a spin-1/2 target the conditions imply that all matrix
5 o ) elements can be expressed in terms of the Dirac form factors,
T L Amy+kD) Q 35 F1(Q%) andF,(Q?). The general expression has the form
|(p1—P2)?=Q > 2 (35
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_ ) Ge, magnetic dipolésy, , and electric quadrupolég form
(p,7|[34(0)[p’,»")=u,.(p")| F1(Q%) y* factors. As current matrix elements, these are defined in the
Breit frame:
iQ oM
+F,(Q? —_ , 1 N
2(Q )g 2m u,(p) GE=§<Q/2,1,QJ°(0)|—Q/2,1,0>
(37) 5
_ _ 30 _ .
whereu,(p) andu,(p’) are Dirac spinors. In this form the - 3<Q/2’1’]l‘J (0)]-Q12.1.3; (45)
one-body matrix elements are easily evaluated in any kine-
matic frame. 2 a1
The Sachs electric and magnetic form factors of the Gu= ;(Q/ZlelJ (0)|-Q/2,1,0; (46)
nucleons are
1 R
11|, 11 Go=75—[(Q/2,1,03°(0)| - Q/2,1,
6e(@)=TF7 025,50 -025. 3] (@9 g, (Q2LATOI- Q210
—(Q/2,1,13%0)|-Q/2,1,3]; (47
) 1+ 7 11, 1 _
Gm(Q9)= - QIZ'E’ 2 J(0) _Q/Z’E*_ 2/ where = Q?/4m3 . These form factors have the static limits
39 Ge(0)=e: 49
where 7=Q?/4m?. (Here the standard frame is the Breit
frame, where the nucleon enters with momentwi®/2 and : 2_,Mo
exits with momentunQ/2, both along thez axis, which is l;mOGM(Q ) emN KD (49)
also the axis along which the spin projection is measured. R
These Dirac and Sachs form factors are related by lim GQ(Q2)=em§)QD; (50)
1 Qo
2\ — 2 2\1-
F1(Q%)= 1+T[GE(Q )+ 7GM(QI; (40 \whereeis the chargeup the magnetic dipole moment, and

Qp the electric quadrupole moment of the deuteron.
1 The Rosenbluth formula alone cannot determine all three
Fa(Q%)= 1T[GI\A(QZ)—GE(QZ)]- (41)  of the deuteron’s form factors. The other independent ob-
T servable normally measured is the deuteron tensor polariza-

The input we use to define the model PFSA current is thdion Tzo, defined as

single-nucleon form factor parametrizations of Gari- dot—dg®
Krimpelmann30] and Mergell-Meissner-Drechsg31]. TZO::\/E _ (51)
The experimental observables for the deuteron and do

nucleon are well known. The elastic observat?é®?) and
B(Q?) are extracted from the Rosenbluth formula for the
cross section of unpolarized scattering in the lab frame,

wheredo* refers to the differential cross section with helic-
ity u. Conventionally it is displayed at a 70° angle in the lab
frame. The deuteron elastic observables are

do  a’cos(6/2) E’

R - 2 2 8 2
a0 ~ 287 (o) E LA(Q)+B(Q)tar(612)], A(Q)=GE+ 5 G+ 3 1Gh: (52
(42)
wherew is the fine-structure constartt,the scattering angle, B(Q?)= f 21+ 9)GZ (53)
andE andE’ the initial and final energies. For the nucleons, 3

it can be showri32] that
§ 77G6+ 5 GQGe+ 3 TGy, _

GE(Q?) +7G(Q%) T Q%)=—127 ; (59
A= 10 T+t 2, (43 i A(Q?)+B(Q*)tarf(612)
wheref = 1/2+ (1+ n)tarf(6/2).
B(Q?)=27G(Q?). (44)
IV. NUMERICAL RESULTS AND COMPARISON
For spin-1/2 particles, measurementsAtiQ?) and B(Q?) v c SULTS co SONS
suffice to determinegGg and Gy, . Various models of the One purpose of this work was to test the point-form spec-

nucleon form factor$30,31,33—3%have been constructed. tator approximation on the simplest nucleus, the deuteron,
The deuteron has three independent form factors. A comahere realistic interactions and nucleon form factors are
mon classification is to denote them as the charge monopokevailable. Comparisons with other models are then an indi-
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FIG. 1. The bound stat8 (I=0) deuteron wave function, using FIG. 3. Gg(Q?) for the Argonne potential with G-Ksolid) and
the Argonne(solid) and Reid(dashedl potentials. MMD (dashegl form factors, and for the Reid potential with G-K
(dash-dot and MMD (dotted form factors.

cation of the relative size of the requ_ired two-body currents. The deuteron form factoGe has been calculated using
For the nucleon-nucleon interaction, we have used thqth form factor parametrizations and both nucleon-nucleon
Argonnev 5 [36] and Reid '93[37] potentials to construct a potentials. The absolute values of the results are displayed in
mass operataM. TheS(I=0) andD (I=2) state momentum Fig. 3. The results are independent of the nucleon-nucleon
space wave functions are plotted in Figs. 1 and 2. The onlypotential used, except for small variations at high momenta.
significant differences between the wave functions these pofhe primary differences inGg and G, are due to the
tentials produce in configuration space occur below 0.4 frmucleon form factor parametrizationérigure 4 compares
for the Swave and below 1.0 fm for thB wave. In momen- the G-K and MMD neutron form factors. Note that the major
tum space the wave functions do not exhibit significant dif-difference is in the parametrization of the neutron electric
ferences up to 5 fm!, about 1 GeV, above which they do form factor; the neutron magnetic form factor parametriza-
differ noticeably. The effects on the choice of interactiontions, and the proton parametrizations as well, are very simi-
may therefore be expected to be relevant at higher momenar.) For G¢, both the Gari-Krmpelmann and the Mergell-
tum transfers, but as will be seen, these high-momenturMeissner-Drechsel form factors agree at low momentum
differences in the wave function make only slight differencestransfers and have zeros near 0.8 GeVhe G-K form fac-
in the calculations. tors predict a second zero near 5.5 Genhile MMD pre-
The PFSA currents are constructed using the Garidicts a second zero between 6 and 7 &GeBecause the two
Krimpelmann[30] and Mergell-Meissner-Drechsg81] pa-  form factors are almost identical except for the parametriza-
rametrizations of the nucleon form factors. At the range oftion of the neutron electric form factor, this would suggest
momentum transfer under consideration, the parametrizahat the neutron form factor is the dominant cause of the
tions give very similar results for the proton form factors anddifferences in the calculations @Gg .
the neutron magnetic form factor. The neutron electric form  Figure 5 illustrates the dependence of the magnitude of

factor, however, varies significantly between the two. the form factorGy, on the potential and on the nucleon form
Q
- T v r 11 1 — F T T T T ! T
? I
° ;N
z 2=
3 i o E
t €
o c_
- LS
o
. w - TrmelL
Io 1 L ] ol ] 1 '~
-0 10 20 30 40 -0 2 4 6 8
k (fm™") Q? (Gev?)
FIG. 2. The bound stat® (I=2) deuteron wave function, using FIG. 4. The neutron magnetic and electric form factors of G-K
the Argonne(solid) and Reid(dashed potentials. (dotted and dash-dptand of MMD (dashed and sol)d
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FIG. 5. Gy (Q?) for the Argonne potential with G-Ksolid) and FIG. 7. A(Q?) for the Argonne potential with G-Ksolid) and
MMD (dashed form factors, and for the Reid potential with G-K MMD (dashed form factors, and for the Reid potential with G-K
(dash-dox and MMD (dotted form factors. (dash-dot and MMD (dotted form factors. The data come from

Refs. [41] (squarey [42] (crossed circles [43] (triangles, [44]
factors used. Both parametrizations predict the same behatepen circles and[56] (curved squargs
ior up to the first zero, this time at 1.6 G&Vand within the
range studied, fall off with almost identical behavior. Com- Further, the magnitude of the G-K results is greater than that
parison with Fig. 3 would suggest that the neutron electricof MMD almost everywhere throughout. The different neu-
form factor has little effect on the calculation &,,. A  tron electric form factor parametrizations is the primary
further comparison to experimental data can be made by exzause of the differences in the results. The deuteron electric
amining the static limit ofGy,. Equation(49) relates this quadrupole momerfEq. (50)], displayed in Table I, differs
limit to the deuteron magnetic moment, and Table | displaygrom the experimental result, the calculated values approach-
the results. In the static limit, the parametrization of theing about 90% of the experimental value, as opposed to 99%
nucleon form factors does not affect the results, while thdor the magnetic moment calculations. This is consistent with
choice of nucleon-nucleon interaction does. This is expectedyther model§11,17,34,36,38—40

as the form factors must approach precise limit€&s-0, To summarize, these point-form calculations imply that
while the momentum-space wave functions have no sucthe deuteron form factors are essentially independent of the
constraints. potential (Argonnew ;g or Reid '93 used, but depend more

This procedure is repeated f@rg in Fig. 6. As was the significantly on the parametrizations of the form factors, and
case withGg, there is little difference due to the potential in particular on the neutron electric form factor, as this is the
used, but a noticeable difference between the predictions afnly substantial difference between the G-K and MMD pa-
the G-K and MMD parametrizations. The G-K form factors rametrizations. The static moments are similar to predictions
show a zero between 4.5 and 5.0 GeWhile the MMD  in other realistic models with the electric quadrupole
form factors produce a zero approximately 1 Gehigher.
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FIG. 8. A(Q?) for the Argonne potential with G-Ksolid) and
FIG. 6. GQ(QZ) for the Argonne potential with G-Ksolid) and ~ MMD (dashegl form factors, and for the Reid potential with G-K
MMD (dashedl form factors, and for the Reid potential with G-K (dash-dotand MMD (dotted form factors. The legend for the data
(dash-dox and MMD (dotted form factors. is the same as in Fig. 7.
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TABLE I. The magnetic dipole and electric quadrupole moments, comput&f-as0.

Moment Units Experimental Argonng;g Argonneuv g Reid '93 Reid '93
G-K MMD G-K MMD
M“D eun 0.85741 0.8613 0.8623 0.8615 0.8625
Qp e/Ge\? 7.3422 6.6 6.6 6.6 6.6
moment differing with experiment by about 10%. netic form factorG,,, is displayed in Fig. 9 up to 8 GeéV

Figure 7 displays the results fé(Q?) up to 2 GeV¥ for  ysing hoth potentials and both sets of parametrizations. The
both potentials and both form factor parametrizations; Fig. &ata come from Refg§41,45-47. The PFSA calculation of
extends the calculations to 8 G&VThe data come from B(Q?) in the intermediate region 0.5-3 G&Va region
Refs.[41-44. Differences among the various calculations\yhich contains all presently available data, fits that data
beg|r21 to appear at intermediate momentum transfers. FQ§oorly, though the differences between the two form factor
A(Q?), with Q* between 0.5 and 3 GéY the PFSA com-  parametrizations are less marked. Both parametrizations ex-
bined with the Gari-Krmpelmann form factors fit the data pipjt a zero at 1.50.1 Ge\?, causing a wide discrepancy
fairly closely, while the Mergell-Meissner-Drechsel form ith experiment; data suggest a zero nearer 1.95G&dain
factors produce results that fall short by an order of magnichynget al. and Van Orderet al. fit the B(Q?) data quite
tude. This pattern occurs in other impulse and spectator calge||. |n contrast, Chungt al., using the Paris and the Bonn
culations as well. In the front-form calculations of Chung ave functions instead of the Argonne,, produce results
etal. [15], the fit for an earlier G-K parametrizatidosing gyt similar to the point form’s. Carlson and Schiavilla ob-
the Argonnev,, potentia) is even better, while the Hder  iain 4 zero at 2.2 Ged/only with the Nijmegen potential;
(on which the newer MMD form factors were bas@dicu-  hejr other potentials reproduce the zero at 1.6 &elev
lations again fall an order of magnitude short. In Leval. &t 51 produce zeros between 1-2 GeW the 0—4 GeV

[11] the two curves are closer, though the G-K remains egion using various potentials and parametrizations. The po-
higher and fits the data out to 2.0 GeVIn the nonrelativistic sition of the zero in all these forms seems to be the most

calculations of Carlson and Schiavil]ag], which cover the  ggjient feature of calculations &(Q?), affecting as it does

range 0-2.4 Ge¥ and use only the Hder form factors, the deviation from data in the 1-2 G&¥ange.

impulse approximations using various potenti(aifscluding The tensor polarizatiort,«(Q?), is displayed in Fig. 10,

the Argonnev,g) all fall nearly an order of magnitude short it data from Refs[48-55. As with B(Q?), measure-

in the intermediate range. In the work of Van Ordetal.  onts of T,o(Q?) have only investigated the loW0—0.5

[7], which contains an impulse approximation that fits mos eV) and intermediat€0.5—1.5 GeV ranges of momentum

of the data for all three form factors quite closely, the varia-;ansfer. In both ranges, the MMD and G-K parametrizations

. 2 . . 1

tion from theA(Q”) data starts {a; 2.0 Gé\and is an order  ,oq,ce identical results in the PFSA. In the intermediate

of magnitude short at higt8 ZGe ) momentum transfers.  ange the results fall slightly below the data. The impulse
The elastic observabg(Q"), related directly to the mag-  approximations of Carlson and Schiavilla as well as Lev

et al. do this too, while Van Ordert al. and Chunget al.

P produce curves that fit modern data quite closely.
. i
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FIG. 9. B(Q?) for the Argonne potential with G-Ksolid) and
MMD (dashed form factors, and for the Reid potential with G-K FIG. 10. T,(Q?) for the Argonne potential with G-Ksolid)
(dash-dox and MMD (dotted form factors. The data come from and MMD (dashed form factors, and for the Reid potential with
Refs.[41] (squarey [45] (triangles, [46] (crossed circlg and[47] G-K (dash-dot and MMD (dotted form factors. The data are com-
(open circles piled from Refs[48-55.
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tial and the G-K form factors.

Finally, it is instructive to compare the results obtained in
point-form dynamics to the results of nonrelativistic impulse
calculations to get some idea of the nature of the relativistic This work has used the point form of relativistic dynamics
effects; and to compare the results in the point form to theo calculate elastic deuteron form factors. The point form
same relativistic calculations done assumil{@i—pi1)?|  stands somewhat between the covariant approaches and
=Q?2 (that is, pulling the nucleon form factors outside of the direct-interaction approaches mentioned in the introduction
integra) to examine how the point-form momentum transferin that it is on the one hand, manifestly covarigbecause
affects the results. the Lorentz generators are kinematmd it is the mass that

The resultqusing the Argonne (g potential and the Gari- is “off-shell” (rather than the energy as is the case with the
Krimpelmann form factojsfor A(Q?) are displayed in Fig. instant form) On the other hand, the point form is one of the
11. For low momentum transfers, all three agree. In the rangfrms of dynamics listed by Dirac, in which all of the inter-
of 1.0-5.0 GeV, the nonrelativistic and PFSA calculations actions are in the four-momentum generators. Moreover
decrease similarly, the nonrelativistic curve consistentlythere is a natural way in which one-body currents can be
higher. The constar®? calculation in this region gradually introduced in the point fornicalled the point-form spectator
rises from the PFSA to the nonrelativistic curve. Aboveapproximation that satisfies the correct Poincarmed charge
5.0 GeV, all three curves systematically decrease, nonrelaconservation properties.
tivistic above constan®? above PFSA. While a relativistic We have shown that the PFSA produces results consistent
treatment is needed as a matter of principle at high momenwith other impulse and spectator approximations. Within the
tum transfers, it is clear that in these calculations the effectsange Schiavilla and Riska examined, for example, their im-
of combining the PFSA with point-form quantum models haspulse approximation and the PFS#ésing G-K form factors
a tendency to reduce the structure functidggQ?) at high

V. CONCLUSION

Q2. One clear cause of this is that -
|(p{ = p)?[>Q% (55)
o - —
the magnitude of the point-form momentum transfer is ~
greater than the magnitude of the nonrelativistic momentum 8
transfer. Because the form factors depend on the magnitude &

of the momentum transfer, they therefore drop off more -
quickly in the point form. This reduces the point-form results
in comparison to the consta@? calculations, as Fig. 11
shows: as the momentum transfer increases, the two calcula-
tions diverge further from each other. w0 o L
The point-form and nonrelativistic results fB(Q?) and "o 1 2 3
T,o(Q?) do not exhibit as dramatic differences as they did Q (Gev)
for A(Q?). Again in the graphs dB(Q?) andT,(Q?), Figs.
12 and 13, one sees the similar but increasingly divergent FIG. 13. Point-form (solid), nonrelativistic (dashed, and
results obtained from the consta@f and the PFSA constant®? (dash-dok results forT,o(Q2) using the Argonne po-
methods. tential and the G-K form factors.
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predict nearly identical results fax(Q?) andT,,(Q?); and  and some deviation from nonrelativistic calculations was at-
though the zero they predict f@(Q?) falls near 2.0 Ge¥ tributed to this.

rather than the PFSA’s 1.6, the fall-off from the data begins Additional dynamically consistent two-body currents
near 0.5 Ge¥ in both. The calculations of Kobushkin and must be added to the PFSA in order to bring the calculations
Syamtomov[38] (before using their approach of reduced into agreement with data at intermediate to _high momentum
transition amplitudesand the PFSAG-K) results forA(Q?) transfers. Such currents have not been considered in this pre-

andB(Q?) nearly duplicate each other, as do the results fofiminary work; but other calculations that include dynamical

T,o(Q?) except in the high-momentum range, where no datdwo-body currentysee Refs[8,11,15,17) suggest that the

are currently available. And although the calculations of‘é‘ﬁ%'ﬁg’;cg; %ﬁ?@g‘éﬂa\tgﬁ&esnit;'Sulcsaepgflse gét;?g(r)gcmpc?xitrzz-
Chunget al. with earlier G-K form factors and the Argonne P P PP

. . tions with data.
V1g potent!al fall quite close_ to the data for all three observ- In the point form it is quite easy to interpret Feynman
ables, their calculations using Hier [35] form factors and di

. . S L agrams for nucleon-nucleon scattering with the production
potentials show the same salient points: the deviation fron('!)]c a photon as a current matrix element satisfying the re-
data beginning inA(Q?) near 1GeV and in B(Q?) near

i . . ; > quirements given in Sec. lll. However, while the addition of
0.5 GeV:; the location of the f_”$t Zero B (Q )2 between such current matrix elements may produce better agreement
1.5-2.0 GeV; and the first minimum inT,,(Q?) around

N ) . with data, it does not provide a systematic procedure for
0.8 GeV.. The work of Van Orderet alz.glves results S|m2|Iar constructing two-body currents. What is needed is a proce-
to Chunget al., except that the higl®- behavior ofA(Q?)

N 8 ) dure for constructing conserved currents from one-body cur-
and B(Q?) is nearly level at 10°, while Chunget al. and

1 A rents and the dynamical mass operator. Models based on
th%g’FSA shozvv gradual decreases at*t@or A(Q?) and at such a procedure are being developed.
10°° for B(Q?). In contrast, Levet al. calculate that the
Hohler form factors produce results f&(Q?) that lie close ACKNOWLEDGMENTS
to the data, while the G-K form factors fA(Q?) up to )
2 Ge\? but produce results increasingly higher than the data_ "€ author thank Fritz Coester and Gerald Payne for ad-
thereafter. Their results f@(Q?2) andT,,(Q?) are similarto  vice and many helpful suggestions.
those of Van Ordert al. and Chunget al.

This work also addressed the sensitivity of PFSA results
to different nucleon-nucleon interactions and different pa- The momentum transfemp( —p;) seen by nucleom can
rametrizations of the nucleon form factors. In almost everyhe computed following Ref.28]. Suppose that the momen-
instance it was found that the two nucleon-nucleon potentialgym transfer is along the axis,
produced only slight, if any, differences in the form factors

APPENDIX A: POINT-FORM MOMENTUM TRANSFER

and elastic observables. This may not be surprising consid- coshA/2 0 O sinhA/2
ering that the Argonne ;g and Reid '93 nucleon-nucleon 0 1 0
interactions produce nearly identical momentum-space wave B(viy) = , (A1)
functions on the momentum scale of interest. 0 01 0
Much more pronounced were the differences between the sinhA/2 0 0 cosh\/2
Gari-Krumpelmann and the Mergell-Meissner-Drechsel pa-
rametrizations of the nucleon form factors. As the momen- coshA/2 0 0 —sinhA/2
tum transfers become higher, the two often predict signifi- 0 1 0
cantly different results. These are most notable in the B(vow = 0 01 0 , (A2)
deuteron form factor&g andGg, which are sensitive to the
neutron electric form factor; the G-K parametrization, whose —sinhA/2 0 0 cosh\/2

neutron electric form factor falls off markedly more rapidly

than the MMD, produces deuteron form factor zeros in there the boosts that take the deuteron fro’m the center of mo-

intermediate range that occur at higher momentum transfef§€ntum frame to the Breit framevhere P = — Pyo.) For

in the MMD results. That this phenomenon is due to the€lastic scattering,

neutron electric form factor is supported by the similarity of Q

results forG,,, where the nucleon magnetic form factors SinhA/2=\/—

dominate the calculations. 4mp
Aside from differences due to varying potentials and

nucleon form factors, the consequences of the point form’

(A3)

él’he initial energies and momenta are then

nontrivial momentum transfer have also been examined. We E;= w coshA/2+k,sinhA/2;
have shown that the point-form momentum transferred to a .
nucleon is greater than th@? transferred to the deuteron, P1,=K,COShA/2+ o SINhA/2;

and that its deviation increases with increas@g This re- . )
sults in a lowering of the deuteron form factors and elastic E2=w coshA/2=k,sinhA/2;

s:cattering observables c_ompared to no_nrelativistic calcula- P,,= — k,c0ShA/2+ o SinhA/2; (A4)
tions. The greater magnitude of the point-form momentum

transfer causes a quicker fall-off of the nucleon form factorswherew andk are center of momentum variables.
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In this notationk, refers to the relative-axis momentum E,=E,; Pb,=Pas. (A7)
of particle one. This convention gives rise to the following
relations: Now some hyperbolic trigonometry reveals that
o' = coshA Fk,sinhA; (A5) (pi—p1)?=4(K2— 0?)siniPA. (A8)
k,=k,C0ShA ¥ w sinhA; (A6) Since
where the minus signs are used when particle one is struck, . Q Q
the plus signs when particle two is struck. Suppose for illus- sinhA=2+/7-=\/1+ 7, (A9)
tration that particle one is struck. The final energies and mo- b D
menta will then be and
E;1=w cosh 3\/2—Kk,sinh 3A/2; K- w2=k2—m2—k2=—(m2+k?), (A10)
P1,=K,cosh 3A\/2— w sinh 3A/2; the resulting Eq(36) is established.
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