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Point-form analysis of elastic deuteron form factors
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Point-form relativistic quantum mechanics is applied to elastic electron-deuteron scattering. The deuteron is
modeled using relativistic interactions that are scattering-equivalent to the nonrelativistic Argonnev18 and
Reid ’93 interactions. A point-form spectator approximation~PFSA! is introduced to define a conserved
covariant current in terms of single-nucleon form factors. The PFSA is shown to provide an accurate descrip-
tion of data up to momentum transfers of 0.5 GeV2, but falls below the data at higher momentum transfers.
Results are sensitive to the nucleon form factor parametrization chosen, particularly to the neutron electric
form factor.
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I. INTRODUCTION

Electron scattering is considered to be an ideal tool
study the electromagnetic structure of hadronic syste
Relativity cannot be ignored for momentum transfers t
provide information about the structure of the hadrons at
scale of a few tenths of a fermi. In order to understand h
ronic systems at this scale, consistent relativistic models
both the hadronic dynamics and the hadronic electrom
netic current operator are required. If the dynamics and
current operator satisfy cluster properties@1,2#, then the in-
formation learned about the structure of the simplest tw
and three-body systems provides the essential componen
models needed to treat complex targets.

Elastic electron-deuteron scattering is the simplest re
tion that must be accurately modeled in order to constrain
dynamical generators and current operators that are ne
to model complex systems. Because the deuteron is an
calar target, it might be expected that it can be accura
described by a pure impulse approximation. Unfortunate
pure impulse approximations are not consistent with curr
covariance and current conservation. An important goal i
find a physically motivated extension of the impulse appro
mation that is consistent with current conservation and co
riance and is also qualitatively consistent with experimen

In the one-photon-exchange approximation the exp
mental observables can be expressed in terms of matrix
ments of the hadronic electromagnetic current operator
tween the initial and final eigenstates of the hadro
Hamiltonian. The general form of these matrix elements

^p8, j 8,m j8uĴ
m~0!up, j ,m j&, ~1!

where up8, j 8,m j8& and up, j ,m j& are eigenstates of the fou
momentum, spin, and three-component of the spin, in re
ence frames related by a boost with momentum transfeQ

5p82p. Ĵm(0) is the hadronic current density atx50.
The dynamical constraints on the current are current c

servation,

@ P̂m ,Ĵm~0!#50, ~2!

and current covariance,
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U~L,a!Ĵm~x!U†~L,a!5~L21!m
n Ĵn~Lx1a!. ~3!

HereU(L,a) is the unitary representation of the inhomog
neous Lorentz group, whose existence is required by rela
istic invariance@3#. P̂m is the four-momentum operator, wit
U(I ,a)5eiP̂•a.

In applications there are essentially two approaches u
to compute the hadronic current matrix elements. These
the covariant@4–8# and direct interaction@9–17# approaches.
Each approach has its own advantages and disadvantag

Covariant approaches assume that the underlying the
is a local quantum field theory. For the case of the deute
the input is a covariant current vertex of the form

^0uT~C~x1!C~x2!Ĵm~x!C̄~y1!C̄~y2!!u0&, ~4!

which is the vacuum expectation value of a time-orde
product of nucleon and current fields. Assuming the ex
tence of an underlying quantum theory, Mandelstam@18#
showed how to extract the desired current matrix eleme
from the vertex. The Fourier transform of the vertex has p
terms on the deuteron mass shell. The residue includes a
of Bethe-Salpeter amplitudes and a current matrix elem
The Bethe-Salpeter normalization condition@19# can be used
with the solution of the homogeneous Bethe-Salpeter eq
tion to remove the amplitudes from the residue. What
mains is the desired current matrix element.

Quasipotential equations@4–6# are based on these sam
concepts, but they introduce constraints designed to pres
the physical singularities. Current matrix elements are
tracted using the constrained amplitudes and vertex fu
tions.

Covariant methods are appealing because of their for
connection to a quantum field theory; however in most
plications it is necessary to model the vertex and Bet
Salpeter kernel, and to replace the two-point Green’s fu
tion with the free two-point function. Quasipotential metho
lead to simpler calculations@7# than the full Bethe-Salpete
approach@8#, but the reductions complicate cluster prope
ties.

Direct interaction approaches attempt to construct con
tent models ofU(L,a) and Ĵm(x) directly. The transforma-
©2001 The American Physical Society02-1
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tion properties require that bothU(L,a) and Ĵm(x) have an
interaction dependence. Dirac@20# addressed the problem o
constructingU(L,a) by including interactions in some o
the infinitesimal generators ofU(L,a). He introduced the
notion of forms of dynamics which minimize the number
interaction-dependent generators. The three main forms
the instant form, where the interactions are in the Ham
tonian and Lorentz boost generators; the point form, wh
the interactions are in the four-momentum; and the fr
form, where interactions appear in the operators that gene
transformations transverse to a fixed light front~a three-
dimensional hyperplane tangent to the light cone.! But while
Dirac identified the different possibilities for putting intera
tions in selected generators, he did not show how to actu
construct the Poincare´ generators with interactions.

The first exact construction of Poincare´ generators with
interactions was due to Bakamjian and Thomas@21# using
Dirac’s instant form. There are Bakamjian-Thomas-like co
structions in each of the forms of dynamics@22#, and they are
scattering equivalent.

While explicit dynamical models of current operators a
difficult to construct, consistent current matrix elements c
be obtained by prescriptions that evaluate selected inde
dent matrix elements using single nucleon currents. The
maining current matrix elements can then be determined
using covariance, current conservation and discrete sym
tries. These generate the needed dynamical contribution
the current matrix elements.

Direct interaction approaches provide an exact treatm
of the symmetries associated with special relativity, but
not directly related to an underlying field theory. A numb
of direct interaction applications to elastic electron-deute
scattering exist in the literature. To date most applicatio
have used Dirac’s instant-@17# or front-forms@23,15,24–26#
of the dynamics. The point form of relativistic quantum m
chanics has important simplifying features that are usefu
modeling electron scattering. The purpose of this paper i
investigate the hadronic current operator in Dirac’s po
form of dynamics.

In Sec. II we discuss some of the features of point-fo
dynamics and construct a mass operator for the deute
Section III deals with current operators, their relation to o
servables, and the point-form spectator approximation. Th
in Sec. IV the numerical results are discussed and comp
with other methods. Section V presents our conclusions.

II. POINT-FORM RELATIVISTIC QUANTUM
MECHANICS

Unlike nonrelativistic quantum mechanics, where all t
interactions can be put in the Hamiltonian operator, for re
tivistic quantum mechanics it is necessary that at least th
generators contain interactions. This can already be see
examining the commutator of the Lorentz boost genera
with the momentum generators. Such a commutator p
duces the Hamiltonian; if the Hamiltonian contains intera
tions, then some combination of boost and momentum g
erators must also contain interactions. In the instant fo
additional interactions are put in the boost generators, le
03400
re:
l-
re
t
te

lly

-

n
n-

e-
y
e-
to

nt
e
r
n
s

-
n
to
t

n.
-
n,
ed

-
ee
by
rs
o-
-
n-

v-

ing the momentum generators free of interactions, while
the point form the additional interactions are in the mome
tum generators, with the boost generators free of inter
tions. The front form puts interactions in a mixture of Lo
entz and momentum generators.

Even though all forms of dynamics are scattering equi
lent, each has certain advantages that are useful for spe
applications. The goal of this paper is to analyze elastic d
teron form factors using the point form. The point form has
number of features that set it aside from the other form
First, all of the interactions are in the Hamiltonian and m
mentum generators, that is, the four-momentum opera
Since there are no interactions in the boost or angular
mentum generators, the Lorentz generators are all kinem
and the theory is manifestly Lorentz covariant. It is conv
nient to write the Poincare´ commutation relations not in
terms of the ten generators, but rather in terms of the fo
momentum operators that contain the interactions, and glo
kinematic Lorentz transformations:

@ P̂m ,P̂n#50; ~5!

ULP̂mUL
215~L21!m

nP̂n ; ~6!

whereUL[UL(L,0) is a unitary operator representing th
Lorentz transformationL. These rewritten Poincare´ relations
will be called the point-form equations, and are the fund
mental equations that have to be satisfied for the system

interest. The mass operator is given byM̂5AP̂• P̂ and must
have a spectrum that is bounded from below.

Since the interactions are all in the four-momentum o
erators, which are the generators of space-time translati
the nonrelativistic Schro¨dinger equation can be generalize
to a Lorentz covariant relativistic Schro¨dinger equation,
namely

i ]Cx /]xm5 P̂mCx , ~7!

wherex5xm is the four-vector space-time point. If the fou
momentum operator does not depend explicitly on spa
time, this equation becomes the eigenvalue equation

P̂mF5pmF. ~8!

Finally, as will be shown in the following paragraphs, it
possible to define states with the property that angular m
mentum can be coupled in exactly the same way as is d
in nonrelativistic quantum mechanics.

The simplest example of a system satisfying the po
form equations is a one-particle system with massm and spin
j. If up,s& is an eigenstate of four-momentump ~with p•p
5m2) and spin projections, then

P̂mup,s&5pmup,s&, ~9!

ULup,s&5(
s8

uLp,s8&Ds8s
j

~RW!Av08

v0
, ~10!
2-2
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POINT-FORM ANALYSIS OF ELASTIC DEUTERON . . . PHYSICAL REVIEW C63 034002
with RW a Wigner rotation defined by RW
5B21(Lv)LB(v), andB(v) a canonical spin~rotationless!
boost~see Ref.@27#! with argumentv5p/m. Ds8s

j (RW) is a
Wigner D function, and the eigenstates are normalized to

^p8,s8up,s&5d3~p82p!ds8s , ~11!

relativity requiring theAv08/v0 factor.
States of many noninteracting particles are tensor pr

ucts of one-particle states; however, a problem arises w
such many-particle states are Lorentz transformed. As ca
seen from Eq.~10! each state is Lorentz transformed by
own Wigner rotation, which in general are different. Th
means that these multiparticle states cannot be dire
coupled together as is the case nonrelativistically. Suc
problem is resolved by tensoring the single-particle state
the overall rest frame and boosting. It is convenient to la
the state by the system’s four-velocityv:

uv,ki ,m i&ªUB(v)~ uk1 ,m1& . . . ukn ,mn&)

5( S up1 ,s1& . . . upn ,sn&

3)
i

FDs i ,m i

j i ~RWi
!A~v i8!0

~v i !0
G D , ~12!

where pi5B(v)ki , (ki50, and RWi

5B21(pi /m)B(v)B(ki /m). Under Lorentz transformations
using the definition, Eq.~12!, such velocity states transform
as

ULuv,ki ,m i&5uLv,RWki ,m i8&)
i

FD
m

i8 ,m i

j i ~RW!A~v i8!0

~v i !0
G ,

~13!

where the Wigner rotationRW5B21(Lv)LB(v) is the same
in all the arguments of the D functions and all the intern
momentum vectorski . That means all the spins as well a
the orbital angular momenta can be coupled together exa
as is done nonrelativistically. This property will be used
the following paragraphs for coupling the nucleon spins
gether with the relative orbital angular momentum to get
spin of the deuteron. From the relation between external
internal momenta, it follows that the velocity states defin
in Eq. ~12! are eigenstates of the noninteracting mass op
tor M̂ free and free four-velocity operatorV̂m :

M̂ freeuv,ki ,m i&5(
i

Ami
21ki

2uv,ki ,m i&; ~14!

V̂muv,ki ,m i&5vmuv,ki ,m i&. ~15!

The Bakamjian-Thomas procedure is implemented in
point form by writing P̂m5M̂ V̂m , where nowM̂ is the sum
of free and interacting mass operators,M̂5M̂ free1M̂ int . M̂

takes the place of the center of momentum Hamiltonianĥ

5Ĥ2 P̂2/2M in nonrelativistic quantum mechanics; no
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however that even though there is only one operator cont
ing interactions, namely the mass operator, that neverthe
there are interactions in all four components of the fo
momentum operator.

In order that the four-momentum operator satisfy t
point-form equations, Eqs.~5! and ~6!, the interacting mass
operator must satisfy certain conditions. To satisfy Eq.~5!,
the mass operator must commute with the four-velocity
erator, defined in Eq.~15!:

@M̂ ,V̂m#50. ~16!

This has the consequence that mass and four-velocity ca
simultaneously diagonalized. Eigenstates of the fo
momentum operator can thus be written as the mass ti
the four-velocity. Since the four-velocity is purely kinemati
it can be factored from the wave function leaving the cov
riant Schro¨dinger equation, Eq.~8!, to become a mass opera
tor eigenvalue equation,

M̂F5lF. ~17!

Moreover, even though the four-momentum is conserved
reactions, the total four-momentum is not the sum of
four-momenta of the individual particles. Rather what is co
served is the overall four-velocity of the individual particle
and the mass is then ‘‘off-shell,’’ not unlike the situatio
with Feynman diagrams. This is to be contrasted with
instant form, where the three-momentum of all the individu
particles gives the total three-momentum of the syste
while the energy is ‘‘off-shell.’’

The mass operator must also satisfy the other point fo
equation, Eq.~6!, implying the mass operator is a Loren
scalar. On velocity states this means the kernel of the m
operator must be rotationally invariant and independent
v2, exactly the condition put on nonrelativistic Hamiltonian
in order that they be Galilei invariant.

For a two-body system such as the deuteron, the rele
Hilbert space is the tensor product of proton and neut
Hilbert spaces,H5Hp^ Hn . In that case the velocity state
can be written asuv,k,mp ,mn&, wherek5k152k2 , andmp
and mn are the eigenvalues of the three-components of
canonical spins of the proton and neutron, respectively.
cause with velocity states the angular momenta can al
coupled together, these states can also be written
uv,uku, j ,m j ,l ,s&, as in the nonrelativistic case. The mass
the two particle state, from Eq.~14!, is 2Am21k2; j is the
total angular momentum, whilel and s are the orbital and
spin angular momentum, respectively.

It is advantageous to express the interacting mass ope
in terms of a mass squared operator with matrix elemen

^v,uku, j ,m j ,l ,suM̂ I
2uv8,uk8u, j 8,m j8 ,l 8,s8&

5d~v2v8!dm jm j8
d j j 8^k,l ,si~mI

j !2ik8,l 8,s8&. ~18!

A mass operator with a kernel of the form Eq.~18! will
satisfy Eq.~16! and thus the Poincare´ commutation relations,
Eqs.~5! and ~6!. The kernel ofM̂ I

2 is taken to be
2-3
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^k,l ,si~mI
j !2ik8,l 8,s8&ª4m^k,l ,sivnn

j ik8,l 8,s8&, ~19!

wherevnn
j is a nucleon-nucleon interaction. The mass is th

defined by

M̂ª
AM̂2; M̂2

ª4~k21m2!1M̂ I
2 . ~20!

Denoting the eigenvalue of the interacting mass operato
l2, the equation

M̂2F5~4m214k214mvnn
j !F5l2F ~21!

can be rewritten@24# in the form of the nonrelativistic Schro¨-
dinger equation,

S k2

m
1vnn

j DF5S l2

4m
2mDF. ~22!

This defines a relativistic model of the two-nucleon sy
tem. It can be shown@22# that this model leads to a sma
correction to the nonrelativistic binding energy and has s
tering observables identical to the corresponding nonrela
istic model. Equation~18! shows that the solution of Eq.~22!
leads to simultaneous eigenstates of the mass, velocity,
andz component of spin. The Poincare´ transformation prop-
erties of the deuteron eigenstates are given by

P̂muv,mD , j ,m j&5lvmuv,mD , j ,m j& ~23!

and

ULuv,mD , j ,m j&5(
m j8

uLv,mD , j ,m j8&

3Dm
j8m j

j
„RW~L,v !…A~Lv !0

v0
, ~24!

where

^v,uku, j ,m j ,l ,suv8,mD , j 8,m j8&

5d~v2v8!dm
j8m j

d j 8 jC ls
j ~ uku!. ~25!

C ls
j (uku) is the nonrelativistic wave function associated w

one of the two chosen nonrelativistic potentials.~There are
analogous formulas for the scattering states.! This provides
the desired point-form dynamics.

III. CURRENT OPERATORS, FORM FACTORS,
AND ELASTIC OBSERVABLES

The second key element in a theoretical description
electron-scattering is a conserved, covariant hadronic cur
density Ĵm(x). In the point form the dynamical Poincar´
transformations are the space-time translations. Translati
covariance can be realized by using the dynamical tran
tion operators to defineĴm(x) in terms ofĴm(0):
03400
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Ĵm~x!ªeiP̂•xĴm~0!e2 i P̂•x. ~26!

The densityĴm(0) is assumed to transform as a four-vec
@14,28# with respect to the free Lorentz transformations.

We now want to define the model current operator
terms of measured one-body current operators. This is d
as follows. The deuteron matrix elements ofĴm(0) are de-
fined in terms of their Breit-frame values withQ in the ẑ
direction:

^Q/2,1,m j8uĴ
m~0!u2Q/2,1,m j&. ~27!

For m50,1,2 the current matrix elements are defined
terms of the single-nucleon current matrix elements:

^Q/2,1,m j8uĴ
m~0!u2Q/2,1,m j&

5^Q/2,1,m j8u„Ĵp
m~0! ^ Î n1 Î p^ Ĵn

m~0!…u2Q/2,1,m j&.

~28!

Current conservation requires that

(
m

Qm^Q/2,1,m j8uĴ
m~0!u2Q/2,1,m j&50, ~29!

which generates a dynamical contributionĴpn
m (0) to the ẑ

component of the current:

^Q/2,1,m j8uĴpn
3 ~0!u2Q/2,1,m j&

52^Q/2,1,m j8u„Ĵp
3~0! ^ Î n1 Î p^ Ĵn

3~0!…u2Q/2,1,m j&.

~30!

These relations define the components of the Breit-fra
matrix elements ofĴm(0). The remaining deuteron matrix
elements ofĴm(x) are fixed by kinematic Lorentz covarianc
and dynamical space-time translational covariance. Altho
the current matrix element is defined in the Breit frame,
expression for the general current matrix element is Lore
covariant, as can be seen in Ref.@28#, Eq. ~3.31!.

The computation of the matrix elements is carried out
inserting single-particle intermediate states in the veloc
basis that was used to formulate the dynamical model in
previous section. The deuteron wave function in the ba
Eq. ~25! has the form

^v,uku, j ,m j ,l ,suv8,mD , j ,m j8&

5d~v2v8!dm
j8m j

d j 1ds1@d l0u0~k!1d l2u2~k!#, ~31!

whereu0(k) andu2(k) are the nonrelativisticS andD state
deuteron wave functions. Transformation coefficients@22,27#
are used to express this in terms of single-particle basis
ments:
2-4
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^v1 ,m1 ,v2 ,m2uv8,m j8 ,mD&5d3@v82v~v1 ,v2!#
d@k2k~v1 ,v2!#

k2 U ]~v,k!

]~v1 ,v2!
U1/2

3Dm1m
18

1/2 FB21~v1!B~v !BS k1

mD GDm2m
28

1/2 FB21~v2!B~v !BS k2

mD GYlm l
@ k̂1~v1 ,v2!#

3Cmsm1m2

1 1/2 1/2Cm
j8m lms

1 l 1
$d l0u0@k~v1 ,v2!#1d l2u2@k~v1 ,v2!#%. ~32!

These expressions can be used to compute the current matrix element

^v,mD,1,m j uĴSA
m ~0!uv8,mD,1,m j8&5E ^v,mD,1,m j uv1 ,m1 ,v2 ,m2&^v18 ,m18 ,v28 ,m28uv8,mD,1,m j8&

3@^v1 ,m1uĴ1
m~0!uv18 ,m18&d

3~v282v2!dm
28m2

1^v2 ,m2uĴ2
m~0!uv28 ,m28&d

3~v182v1!dm
18m1

#,

~33!

where the nucleon current matrix elements are given by Eq.~28!. After integrating out the delta functions, one is left with
final three-dimensional integral:

^v8,mD,1,m j8uĴ
m~0!uv,md,1,m j&5 (

m18m1

(
m28m2

(
ms8ms

(
l 8 l

(
m l8m l

(
s18s1

E d3kCm
s8m

18m
28

11/2 1/2
Cmsm1m2

11/2 1/2Cm
j8m

l8m
s8

1l 81
Cm jm lms

1l1 Yl 8m
l8

* ~u8,f8!ul 8~ uk8u!

3Ylm l
~u,f!ul~ uku!Dm

18s
18

*1/2
$RW

21@k18 ,B~v8!#%Dm
28s2

*1/2
$RW

21@k28 ,B~v8!#%Ds1m1

1/2 $RW@k1 ,B~v !#%

3Ds2m2

1/2 $RW@k2 ,B~v !#%ū~p18s18!H gmF1@~p182p1!2#1 i(
n

smn
~p182p1!n

2mN

3F2@~p182p1!2#J u~p1s1!1$1↔2%; ~34!
e
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where theC’s areSU~2! Clebsch-Gordan coefficients and th
conventions for the spinors, gamma, and sigma matrices
those of Bjorken and Drell@29#.

In this form it can be seen that the momentum of t
unstruck particle~the spectator! is unchanged, while the
struck particle’s momentum is changed, but the impu
given to the struck particle isnot the impulse given to the
deuteron. For this reason we call this the point-form spe
tor approximation~PFSA!. It should not be confused with
the use of the term spectator approximation in, for exam
Ref. @4#. The practical advantage of the PFSA is that t
steps above can be generalized to any hadronic target. M
over, the current matrix element is generally Lorentz cova
ant and can be evaluated in any frame.

Because the interactions in the point form are in the fo
momentum, in the PFSA the momentum transfer seen by
scattered nucleon is not the same as the momentum tra
seen by the nucleus. In Appendix A we show that the re
tionship between the momentumQ transferred to the deu
teron and the momentum transferred to the interac
nucleon is

u~p182p1!2u5Q2
4~mN

2 1k'
2 !

mD
2 S 11

Q2

4mD
2 D ~35!
03400
re

e

a-

e,
e
re-
i-

-
he
fer
-

g

.Q2
4mN

2

mD
2 S 11

Q2

4mD
2 D .Q2. ~36!

That is, the point-form momentum transfer seen by an in
vidual nucleon will be greater in magnitude than the to
deuteron momentum transferQ2.

Two important implications follow from Eqs.~35! and
~36! above. First, the PFSA momentum transfer depends
the internal momentumk, which is a variable of integration
Thus in the PFSA, form factors depending on (pi82pi)

2

must remain inside the integral. Second, sinceu(pi82pi)
2u

.Q2, the deuteron form factors will fall off faster in th
point-form calculations than in forms whereu(pi82pi)

2u
5Q2.

The input to the PFSA are single-nucleon current ope
tors. The general structure of these operators follows fr
covariance, parity, Hermiticity, and time-reversal symmet
For a spin-1/2 target the conditions imply that all matr
elements can be expressed in terms of the Dirac form fact
F1(Q2) and F2(Q2). The general expression has the for
@29#
2-5
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^p,nuJm~0!up8,n8&5ūn8~p8!FF1~Q2!gm

1F2~Q2!(
a

iQasma

2m Gun~p!,

~37!

whereun(p) and ūn8(p8) are Dirac spinors. In this form the
one-body matrix elements are easily evaluated in any k
matic frame.

The Sachs electric and magnetic form factors of
nucleons are

GE~Q2!5A11t K Q/2,
1

2
,
1

2UĴ0~0!U2Q/2,
1

2
,
1

2L ; ~38!

GM~Q2!5A11t

t K Q/2,
1

2
,
1

2UĴ1~0!U2Q/2,
1

2
,2

1

2L ;

~39!

where t5Q2/4m2. ~Here the standard frame is the Bre
frame, where the nucleon enters with momentum2Q/2 and
exits with momentumQ/2, both along thez axis, which is
also the axis along which the spin projection is measure!
These Dirac and Sachs form factors are related by

F1~Q2!5
1

11t
@GE~Q2!1tGM~Q2!#; ~40!

F2~Q2!5
1

11t
@GM~Q2!2GE~Q2!#. ~41!

The input we use to define the model PFSA current is
single-nucleon form factor parametrizations of Ga
Krümpelmann@30# and Mergell-Meissner-Drechsel@31#.

The experimental observables for the deuteron
nucleon are well known. The elastic observablesA(Q2) and
B(Q2) are extracted from the Rosenbluth formula for t
cross section of unpolarized scattering in the lab frame,

ds

dV
5

a2cos2~u/2!

4E2sin4~u/2!

E8

E
@A~Q2!1B~Q2!tan2~u/2!#,

~42!

wherea is the fine-structure constant,u the scattering angle
andE andE8 the initial and final energies. For the nucleon
it can be shown@32# that

A~Q2!5
GE

2~Q2!1tGM
2 ~Q2!

11t
; ~43!

B~Q2!52tGM
2 ~Q2!. ~44!

For spin-1/2 particles, measurements ofA(Q2) and B(Q2)
suffice to determineGE and GM . Various models of the
nucleon form factors@30,31,33–35# have been constructed

The deuteron has three independent form factors. A c
mon classification is to denote them as the charge mono
03400
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e
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-
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GE , magnetic dipoleGM , and electric quadrupoleGQ form
factors. As current matrix elements, these are defined in
Breit frame:

GE5
1

3
^Q/2,1,0uĴ0~0!u2Q/2,1,0&

1
2

3
^Q/2,1,1uĴ0~0!u2Q/2,1,1&; ~45!

GM5A2

h
^Q/2,1,1uĴ1~0!u2Q/2,1,0&; ~46!

GQ5
1

2h
@^Q/2,1,0uĴ0~0!u2Q/2,1,0&

2^Q/2,1,1uĴ0~0!u2Q/2,1,1&#; ~47!

whereh5Q2/4mD
2 . These form factors have the static limi

GE~0!5e; ~48!

lim
Q2→0

GM~Q2!5e
mD

mN
mD ; ~49!

lim
Q2→0

GQ~Q2!5emD
2 QD ; ~50!

wheree is the charge,mD the magnetic dipole moment, an
QD the electric quadrupole moment of the deuteron.

The Rosenbluth formula alone cannot determine all th
of the deuteron’s form factors. The other independent
servable normally measured is the deuteron tensor pola
tion T20, defined as

T20ªA2
ds12ds0

ds
, ~51!

wheredsm refers to the differential cross section with heli
ity m. Conventionally it is displayed at a 70° angle in the l
frame. The deuteron elastic observables are

A~Q2!5GE
21

8

9
h2GQ

2 1
2

3
hGM

2 ; ~52!

B~Q2!5
4

3
h~11h!GM

2 ; ~53!

T20~Q2!52A2h
4
9 hGQ

2 1 4
3 GQGE1 1

3 f GM
2

A~Q2!1B~Q2!tan2~u/2!
; ~54!

where f 51/21(11h)tan2(u/2).

IV. NUMERICAL RESULTS AND COMPARISONS

One purpose of this work was to test the point-form sp
tator approximation on the simplest nucleus, the deute
where realistic interactions and nucleon form factors
available. Comparisons with other models are then an in
2-6
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cation of the relative size of the required two-body curren
For the nucleon-nucleon interaction, we have used

Argonnev18 @36# and Reid ’93@37# potentials to construct a
mass operatorM̂ . TheS ~l50! andD ~l52! state momentum
space wave functions are plotted in Figs. 1 and 2. The o
significant differences between the wave functions these
tentials produce in configuration space occur below 0.4
for theSwave and below 1.0 fm for theD wave. In momen-
tum space the wave functions do not exhibit significant d
ferences up to 5 fm21, about 1 GeV, above which they d
differ noticeably. The effects on the choice of interacti
may therefore be expected to be relevant at higher mom
tum transfers, but as will be seen, these high-momen
differences in the wave function make only slight differenc
in the calculations.

The PFSA currents are constructed using the G
Krümpelmann@30# and Mergell-Meissner-Drechsel@31# pa-
rametrizations of the nucleon form factors. At the range
momentum transfer under consideration, the parametr
tions give very similar results for the proton form factors a
the neutron magnetic form factor. The neutron electric fo
factor, however, varies significantly between the two.

FIG. 1. The bound stateS ~l50! deuteron wave function, using
the Argonne~solid! and Reid~dashed! potentials.

FIG. 2. The bound stateD ~l52! deuteron wave function, using
the Argonne~solid! and Reid~dashed! potentials.
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The deuteron form factorGE has been calculated usin
both form factor parametrizations and both nucleon-nucle
potentials. The absolute values of the results are displaye
Fig. 3. The results are independent of the nucleon-nucl
potential used, except for small variations at high momen
The primary differences inGE and GQ are due to the
nucleon form factor parametrizations.~Figure 4 compares
the G-K and MMD neutron form factors. Note that the maj
difference is in the parametrization of the neutron elec
form factor; the neutron magnetic form factor parametriz
tions, and the proton parametrizations as well, are very s
lar.! For GE , both the Gari-Kru¨mpelmann and the Mergell
Meissner-Drechsel form factors agree at low moment
transfers and have zeros near 0.8 GeV2. The G-K form fac-
tors predict a second zero near 5.5 GeV2 while MMD pre-
dicts a second zero between 6 and 7 GeV2. Because the two
form factors are almost identical except for the parametri
tion of the neutron electric form factor, this would sugge
that the neutron form factor is the dominant cause of
differences in the calculations ofGE .

Figure 5 illustrates the dependence of the magnitude
the form factorGM on the potential and on the nucleon for

FIG. 3. GE(Q2) for the Argonne potential with G-K~solid! and
MMD ~dashed! form factors, and for the Reid potential with G-K
~dash-dot! and MMD ~dotted! form factors.

FIG. 4. The neutron magnetic and electric form factors of G
~dotted and dash-dot!, and of MMD ~dashed and solid!.
2-7
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factors used. Both parametrizations predict the same be
ior up to the first zero, this time at 1.6 GeV2, and within the
range studied, fall off with almost identical behavior. Com
parison with Fig. 3 would suggest that the neutron elec
form factor has little effect on the calculation ofGM . A
further comparison to experimental data can be made by
amining the static limit ofGM . Equation~49! relates this
limit to the deuteron magnetic moment, and Table I displa
the results. In the static limit, the parametrization of t
nucleon form factors does not affect the results, while
choice of nucleon-nucleon interaction does. This is expec
as the form factors must approach precise limits asQ2→0,
while the momentum-space wave functions have no s
constraints.

This procedure is repeated forGQ in Fig. 6. As was the
case withGE , there is little difference due to the potenti
used, but a noticeable difference between the prediction
the G-K and MMD parametrizations. The G-K form facto
show a zero between 4.5 and 5.0 GeV2, while the MMD
form factors produce a zero approximately 1 GeV2 higher.

FIG. 6. GQ(Q2) for the Argonne potential with G-K~solid! and
MMD ~dashed! form factors, and for the Reid potential with G-K
~dash-dot! and MMD ~dotted! form factors.

FIG. 5. GM(Q2) for the Argonne potential with G-K~solid! and
MMD ~dashed! form factors, and for the Reid potential with G-K
~dash-dot! and MMD ~dotted! form factors.
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Further, the magnitude of the G-K results is greater than
of MMD almost everywhere throughout. The different ne
tron electric form factor parametrizations is the prima
cause of the differences in the results. The deuteron ele
quadrupole moment@Eq. ~50!#, displayed in Table I, differs
from the experimental result, the calculated values approa
ing about 90% of the experimental value, as opposed to 9
for the magnetic moment calculations. This is consistent w
other models@11,17,34,36,38–40#.

To summarize, these point-form calculations imply th
the deuteron form factors are essentially independent of
potential~Argonnev18 or Reid ’93! used, but depend mor
significantly on the parametrizations of the form factors, a
in particular on the neutron electric form factor, as this is t
only substantial difference between the G-K and MMD p
rametrizations. The static moments are similar to predicti
in other realistic models with the electric quadrupo

FIG. 7. A(Q2) for the Argonne potential with G-K~solid! and
MMD ~dashed! form factors, and for the Reid potential with G-K
~dash-dot! and MMD ~dotted! form factors. The data come from
Refs. @41# ~squares!, @42# ~crossed circles!, @43# ~triangles!, @44#
~open circles!, and@56# ~curved squares!.

FIG. 8. A(Q2) for the Argonne potential with G-K~solid! and
MMD ~dashed! form factors, and for the Reid potential with G-K
~dash-dot! and MMD ~dotted! form factors. The legend for the dat
is the same as in Fig. 7.
2-8
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TABLE I. The magnetic dipole and electric quadrupole moments, computed asQ2→0.

Moment Units Experimental Argonnev18 Argonnev18 Reid ’93 Reid ’93

G-K MMD G-K MMD
mD emN 0.85741 0.8613 0.8623 0.8615 0.8625
QD e/GeV2 7.3422 6.6 6.6 6.6 6.6
.
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moment differing with experiment by about 10%.
Figure 7 displays the results forA(Q2) up to 2 GeV2 for

both potentials and both form factor parametrizations; Fig
extends the calculations to 8 GeV2. The data come from
Refs. @41–44#. Differences among the various calculatio
begin to appear at intermediate momentum transfers.
A(Q2), with Q2 between 0.5 and 3 GeV2, the PFSA com-
bined with the Gari-Kru¨mpelmann form factors fit the dat
fairly closely, while the Mergell-Meissner-Drechsel for
factors produce results that fall short by an order of mag
tude. This pattern occurs in other impulse and spectator
culations as well. In the front-form calculations of Chun
et al. @15#, the fit for an earlier G-K parametrization~using
the Argonnev14 potential! is even better, while the Ho¨hler
~on which the newer MMD form factors were based! calcu-
lations again fall an order of magnitude short. In Levet al.
@11# the two curves are closer, though the G-K rema
higher and fits the data out to 2.0 GeV2. In the nonrelativistic
calculations of Carlson and Schiavilla@39#, which cover the
range 0–2.4 GeV2 and use only the Ho¨hler form factors,
impulse approximations using various potentials~including
the Argonnev18) all fall nearly an order of magnitude sho
in the intermediate range. In the work of Van Ordenet al.
@7#, which contains an impulse approximation that fits m
of the data for all three form factors quite closely, the var
tion from theA(Q2) data starts at 2.0 GeV2 and is an order
of magnitude short at high~8 GeV2) momentum transfers.

The elastic observableB(Q2), related directly to the mag

FIG. 9. B(Q2) for the Argonne potential with G-K~solid! and
MMD ~dashed! form factors, and for the Reid potential with G-K
~dash-dot! and MMD ~dotted! form factors. The data come from
Refs.@41# ~squares!, @45# ~triangles!, @46# ~crossed circle!, and@47#
~open circles!.
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netic form factorGM , is displayed in Fig. 9 up to 8 GeV2

using both potentials and both sets of parametrizations.
data come from Refs.@41,45–47#. The PFSA calculation of
B(Q2) in the intermediate region 0.5–3 GeV2, a region
which contains all presently available data, fits that d
poorly, though the differences between the two form fac
parametrizations are less marked. Both parametrizations
hibit a zero at 1.560.1 GeV2, causing a wide discrepanc
with experiment; data suggest a zero nearer 1.9 GeV2. Again
Chunget al. and Van Ordenet al. fit the B(Q2) data quite
well. In contrast, Chunget al., using the Paris and the Bon
wave functions instead of the Argonnev14, produce results
quite similar to the point form’s. Carlson and Schiavilla o
tain a zero at 2.2 GeV2 only with the Nijmegen potential;
their other potentials reproduce the zero at 1.6 GeV2. Lev
et al. produce zeros between 1–2 GeV2 in the 0–4 GeV2

region using various potentials and parametrizations. The
sition of the zero in all these forms seems to be the m
salient feature of calculations ofB(Q2), affecting as it does
the deviation from data in the 1–2 GeV2 range.

The tensor polarization,T20(Q
2), is displayed in Fig. 10,

with data from Refs.@48–55#. As with B(Q2), measure-
ments of T20(Q

2) have only investigated the low~0–0.5
GeV! and intermediate~0.5–1.5 GeV! ranges of momentum
transfer. In both ranges, the MMD and G-K parametrizatio
produce identical results in the PFSA. In the intermedi
range, the results fall slightly below the data. The impu
approximations of Carlson and Schiavilla as well as L
et al. do this too, while Van Ordenet al. and Chunget al.
produce curves that fit modern data quite closely.

FIG. 10. T20(Q
2) for the Argonne potential with G-K~solid!

and MMD ~dashed! form factors, and for the Reid potential wit
G-K ~dash-dot! and MMD ~dotted! form factors. The data are com
piled from Refs.@48–55#.
2-9
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Finally, it is instructive to compare the results obtained
point-form dynamics to the results of nonrelativistic impul
calculations to get some idea of the nature of the relativi
effects; and to compare the results in the point form to
same relativistic calculations done assumingu(p182p1)2u
5Q2 ~that is, pulling the nucleon form factors outside of t
integral! to examine how the point-form momentum trans
affects the results.

The results~using the Argonnev18 potential and the Gari-
Krümpelmann form factors! for A(Q2) are displayed in Fig.
11. For low momentum transfers, all three agree. In the ra
of 1.0–5.0 GeV2, the nonrelativistic and PFSA calculation
decrease similarly, the nonrelativistic curve consisten
higher. The constant-Q2 calculation in this region gradually
rises from the PFSA to the nonrelativistic curve. Abo
5.0 GeV2, all three curves systematically decrease, nonr
tivistic above constant-Q2 above PFSA. While a relativistic
treatment is needed as a matter of principle at high mom
tum transfers, it is clear that in these calculations the effe
of combining the PFSA with point-form quantum models h
a tendency to reduce the structure functionA(Q2) at high
Q2. One clear cause of this is that

u~pi82pi !
2u.Q2; ~55!

the magnitude of the point-form momentum transfer
greater than the magnitude of the nonrelativistic momen
transfer. Because the form factors depend on the magni
of the momentum transfer, they therefore drop off mo
quickly in the point form. This reduces the point-form resu
in comparison to the constant-Q2 calculations, as Fig. 11
shows: as the momentum transfer increases, the two calc
tions diverge further from each other.

The point-form and nonrelativistic results forB(Q2) and
T20(Q

2) do not exhibit as dramatic differences as they d
for A(Q2). Again in the graphs ofB(Q2) andT20(Q

2), Figs.
12 and 13, one sees the similar but increasingly diverg
results obtained from the constant-Q2 and the PFSA
methods.

FIG. 11. Point-form ~solid!, nonrelativistic ~dashed!, and
constant-Q2 ~dash-dot! results forA(Q2) using the Argonne poten
tial and the G-K form factors.
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V. CONCLUSION

This work has used the point form of relativistic dynami
to calculate elastic deuteron form factors. The point fo
stands somewhat between the covariant approaches
direct-interaction approaches mentioned in the introduct
in that it is on the one hand, manifestly covariant~because
the Lorentz generators are kinematic! and it is the mass tha
is ‘‘off-shell’’ ~rather than the energy as is the case with
instant form.! On the other hand, the point form is one of th
forms of dynamics listed by Dirac, in which all of the inte
actions are in the four-momentum generators. Moreo
there is a natural way in which one-body currents can
introduced in the point form~called the point-form spectato
approximation! that satisfies the correct Poincare´ and charge
conservation properties.

We have shown that the PFSA produces results consis
with other impulse and spectator approximations. Within
range Schiavilla and Riska examined, for example, their
pulse approximation and the PFSA~using G-K form factors!

FIG. 12. Point-form ~solid!, nonrelativistic ~dashed!, and
constant-Q2 ~dash-dot! results forB(Q2) using the Argonne poten
tial and the G-K form factors.

FIG. 13. Point-form ~solid!, nonrelativistic ~dashed!, and
constant-Q2 ~dash-dot! results forT20(Q

2) using the Argonne po-
tential and the G-K form factors.
2-10
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predict nearly identical results forA(Q2) andT20(Q
2); and

though the zero they predict forB(Q2) falls near 2.0 GeV2

rather than the PFSA’s 1.6, the fall-off from the data beg
near 0.5 GeV2 in both. The calculations of Kobushkin an
Syamtomov@38# ~before using their approach of reduce
transition amplitudes! and the PFSA~G-K! results forA(Q2)
andB(Q2) nearly duplicate each other, as do the results
T20(Q

2) except in the high-momentum range, where no d
are currently available. And although the calculations
Chunget al. with earlier G-K form factors and the Argonn
v14 potential fall quite close to the data for all three obse
ables, their calculations using Ho¨hler @35# form factors and
potentials show the same salient points: the deviation fr
data beginning inA(Q2) near 1GeV2 and in B(Q2) near
0.5 GeV2; the location of the first zero inB(Q2) between
1.5–2.0 GeV2; and the first minimum inT20(Q

2) around
0.8 GeV2. The work of Van Ordenet al.gives results similar
to Chunget al., except that the high-Q2 behavior ofA(Q2)
and B(Q2) is nearly level at 1028, while Chunget al. and
the PFSA show gradual decreases at 10211 for A(Q2) and at
1028 for B(Q2). In contrast, Levet al. calculate that the
Höhler form factors produce results forA(Q2) that lie close
to the data, while the G-K form factors fitA(Q2) up to
2 GeV2 but produce results increasingly higher than the d
thereafter. Their results forB(Q2) andT20(Q

2) are similar to
those of Van Ordenet al. and Chunget al.

This work also addressed the sensitivity of PFSA res
to different nucleon-nucleon interactions and different p
rametrizations of the nucleon form factors. In almost ev
instance it was found that the two nucleon-nucleon potent
produced only slight, if any, differences in the form facto
and elastic observables. This may not be surprising con
ering that the Argonnev18 and Reid ’93 nucleon-nucleo
interactions produce nearly identical momentum-space w
functions on the momentum scale of interest.

Much more pronounced were the differences between
Gari-Krümpelmann and the Mergell-Meissner-Drechsel p
rametrizations of the nucleon form factors. As the mom
tum transfers become higher, the two often predict sign
cantly different results. These are most notable in
deuteron form factorsGE andGQ , which are sensitive to the
neutron electric form factor; the G-K parametrization, who
neutron electric form factor falls off markedly more rapid
than the MMD, produces deuteron form factor zeros in
intermediate range that occur at higher momentum trans
in the MMD results. That this phenomenon is due to t
neutron electric form factor is supported by the similarity
results forGM , where the nucleon magnetic form facto
dominate the calculations.

Aside from differences due to varying potentials a
nucleon form factors, the consequences of the point for
nontrivial momentum transfer have also been examined.
have shown that the point-form momentum transferred t
nucleon is greater than theQ2 transferred to the deuteron
and that its deviation increases with increasingQ2. This re-
sults in a lowering of the deuteron form factors and elas
scattering observables compared to nonrelativistic calc
tions. The greater magnitude of the point-form moment
transfer causes a quicker fall-off of the nucleon form facto
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and some deviation from nonrelativistic calculations was
tributed to this.

Additional dynamically consistent two-body curren
must be added to the PFSA in order to bring the calculati
into agreement with data at intermediate to high moment
transfers. Such currents have not been considered in this
liminary work; but other calculations that include dynamic
two-body currents~see Refs.@8,11,15,17#! suggest that the
addition of dynamical currents is capable of reconciling t
differences between various impulse or spectator approxi
tions with data.

In the point form it is quite easy to interpret Feynma
diagrams for nucleon-nucleon scattering with the product
of a photon as a current matrix element satisfying the
quirements given in Sec. III. However, while the addition
such current matrix elements may produce better agreem
with data, it does not provide a systematic procedure
constructing two-body currents. What is needed is a pro
dure for constructing conserved currents from one-body c
rents and the dynamical mass operator. Models based
such a procedure are being developed.
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APPENDIX A: POINT-FORM MOMENTUM TRANSFER

The momentum transfer (pi82pi) seen by nucleoni can
be computed following Ref.@28#. Suppose that the momen
tum transfer is along thez axis,

B~v in!5S coshD/2 0 0 sinhD/2

0 1 0 0

0 0 1 0

sinhD/2 0 0 coshD/2

D , ~A1!

B~vout!5S coshD/2 0 0 2sinhD/2

0 1 0 0

0 0 1 0

2sinhD/2 0 0 coshD/2

D , ~A2!

are the boosts that take the deuteron from the center of
mentum frame to the Breit frame~wherePtot8 52Ptot .) For
elastic scattering,

sinhD/25A Q2

4mD
2 . ~A3!

The initial energies and momenta are then

E15v coshD/21kzsinhD/2;

p1z5kzcoshD/21v sinhD/2;

E25v coshD/22kzsinhD/2;

p2z52kzcoshD/21v sinhD/2; ~A4!

wherev andk are center of momentum variables.
2-11
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In this notation,kz refers to the relativez-axis momentum
of particle one. This convention gives rise to the followin
relations:

v85v coshD7kzsinhD; ~A5!

kz85kzcoshD7v sinhD; ~A6!

where the minus signs are used when particle one is str
the plus signs when particle two is struck. Suppose for ill
tration that particle one is struck. The final energies and m
menta will then be

E185v cosh 3D/22kzsinh 3D/2;

p1z8 5kzcosh 3D/22v sinh 3D/2;
et

-F

u

C

,
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E285E2 ; p2z8 5p2z . ~A7!

Now some hyperbolic trigonometry reveals that

~p182p1!254~kz
22v2!sinh2D. ~A8!

Since

sinhD52A Q2

4mD
2A11

Q2

4mD
2 , ~A9!

and

kz
22v25kz

22mn
22k252~mN

2 1k'
2 !, ~A10!

the resulting Eq.~36! is established.
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