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Nucleon-nucleon scattering in a chiral constituent quark model
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We study the nucleon-nucleon interaction in a chiral constituent quark model by using the resonating group
method, convenient for treating the interaction between composite particles. The calculated phase shifts for the
33, and 'S, channels show the presence of a strong repulsive core due to the combined effect of the quark
interchange and the spin-flavor structure of the effective quark-quark interaction. Such a symmetry structure
stems from the pseudoscalar meson exchange between the quarks and is a consequence of the spontaneous
breaking of the chiral symmetry. We perform single and coupled channel calculations and show the role of
coupling of theAA and hidden colo€C channels on the behavior of the phase shifts.
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[. INTRODUCTION degrees of freedom should be the constituent quarks and the
chiral meson fields. If a quark-pseudoscalar meson coupling
Many studies have been devoted so far to the understanis assumed, in a nonrelativistic limit one obtains a quark-

ing of the nUCIeOﬂ-nUCleonl\(N) interaction Starting from meson vertex proportiona| t&a )\F with 5- the Pauli ma-

models which have been considered to be successful iﬁlices&the momentum of the meson. anf the Gell-Mann

baryon spectroscopy. Here we refer to no_nrelativisitc qu.arlflavor (F) matrices. This generates a pseudoscalar meson ex-
models in the framework of which calculations of scattering . o S .
change interaction between quarks which is spin and flavor

phase shifts can be made quantitatively. We can roughly di-
. . . ' ependent.

vide these models into three categories. In the first categor9 . . L
In the following this interaction is referred to as a Gold-

we consider models based on one-gluon exchai@BE) ) . .
between quarks. They explain the short-range repulsion gftone boson exchang€BE) interaction. In coordinate space

the NN potential as due to the chromomagnetic spin—spithe gorresponding pote.ntial pontains two terms. One is are-
part of OGE, combined with quark interchanges betwegn 3 pulsive Yukawa potential tail and the other is an attractive
clusters(for a review see, e.g[1-4]). In addition, the long- contact & interaction. When regularizefil0,1] the latter
range part is obtained from the one-pion exchange potenti&ienerates the short-range part of the quark-quark interaction.
acting directly between two nucleons and the medium-rangdhe short-range part dominates over the Yukawa part in the
part is introduced phenomenologically as a local central podescription of baryon spectra, leading to a correct order of
tential [5]. positive and negative parity statglb]. This interaction con-
There is a second category of hybrid modéis8] where, tains the main ingredients required in the calculation of the
in addition to OGE, quarks belonging to different clustersNN potential, and it is thus natural to study tNé\ problem
interact also via pseudoscalar and scalar meson exchange.within this model. In addition, the two-pion exchange inter-
these hybrid models the short-range repulsion is still attrip-action between constituent quarks reinforces the effect of the
uted to OGE and the middle- and long-range attraction is du#lavor-spin part of the one-meson exchange and also pro-
to meson exchanges between quarks. vides a contribution of ar-type scalar meson exchanfgis]
Here we employ a model of the third category where therequired to describe the middle-range attraction.
quark-quark interaction, besides the confinement, is due en- The spin-flavor symmetry structure of the mofie+13,
tirely to meson exchanges between quarks. This is the chiravhich is essential in describing the light baryon spectrum, is
constituent quark model proposed in REJ] and param- getting support from the phenomenological analysisLof
etrized in a nonrelativistic version in Refd0,11]. There are =1 negative parity resonancgk7]. Also 1N, QCD studies
also semirelativistic versions available; see, €.#2]. For  [18] have a consistent interpretation in a constituent quark
the present status of the model we refer the reader to Refmodel with pseudoscalar meson exchange interaction. The
[13]. spontaneous chiral symmetry breaking is responsible for the
The origin of the mode[9-13] is thought to lie in the absence of parity doubling in the low energy hadron spec-
spontaneous breaking of chiral symmetry in QCD which im-trum. In particular it explains the splitting between the nega-
plies the existence of constituent quarks with a dynamicative parity stateN* (1535) and the nucleoN(939). Quark
mass and Goldstone bosofpseudoscalar meson#ccord-  models, such as, e.g., the OGE model, which explicitly
ing to the two-scale picture of Manohar and Gedigl] ata  breaks chiral symmetry, fail to reproduce the
distance beyond that of spontaneous chiral symmetry brealN* (1535)N(939) splitting. Recent lattice calculations,
ing, but within that of the confinement scale, the appropriatevhich take into account the chiral symmetry of QCD9)],
were able to reproduce the abaw&-N splitting. This brings
new substantial support to the modie-13.
*Electronic address: d.bartz@ulg.ac.be This work is a natural extension of the previous studies
"Electronic address: fstancu@ulg.ac.be [20-22. Reference[20] was rather exploratory about the
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role of a spin-flavor dependent interaction in giving rise to aand the spin-spin component of the GBE interaction in its
repulsive core. Within the parametrizatipbO] of the GBE = SUg(3) form is
model it was found that at zero separation between tgo 3

clusters the height of the repulsive core is 0.830 GeV and

1.356 GeV in the®S; and 'S, channels, respectively. The Vilrij) = le Vﬂ(rij))\f)\f+24 Vi(Ti AT

spin-flavor symmetry and the parametrizatipt0] of the

GBE model favor the[42]o[51]¢s) state which becomes sug. 2 - -

highly dominant. In a better badig1], obtained from single- HV(Fp A+ §Vn’(rii) oi-oj. (23
particle molecular-type states, instead of cluster model states,

the situation is similar, the repulsion being reduced by abouthe interaction2.3 containsy=m, K, », and»’ meson

200 MeV in the s, channel and by about 400 MeV in the exchange terms and,(r;;) is given as the sum of two dis-
'Sy channel. This is natural because the molecular orbitajinct contributions: a Yukawa-type potential containing the
basis gives a lower bound of the expectation value of thenass of the exchanged meson and a short-range contribution

Hamiltonian in the six-quark basis. In R¢22] an adiabatic  of opposite sign, the role of which is crucial in baryon spec-
nucleon-nucleon potential was calculated based on the modgbscopy. For a given mesop, the exchange potential is

[10]. It was found that none of the bases, cluster or molecu-

3 7

lar, leads to an attractive pocket. An attraction was simulated g2 1 e M Ay

i i imi i V()= = 2 —A? (2.4
by introducing ac-meson exchange of a similar analytic y P — Y r | .
structure between quarks, with that of the pseudoscalar me- v
son exchange. whereA ,=Ay+ k.. For a system ofi andd quarks only,

Here, instead of10], we use the chiral constituent quark as is the case here, theexchange does not contribute. In the

model version of Ref[11] where the GBE interaction is calculations below we use the parameters of Ref]. These
parametrized in a more realistic way. The adiabatic potentialre

calculated [22] in the Born-Oppenheimer approximation
with this version possesses a small attractive pocket, in con- my ¢=340 MeV, C=0.77 fm 2,
trast to that resulting from modgl0] (see Ref[21]).

The present study is based on a dynamical approach to the x.,=139 MeV, u,=547 MeV, u, =958 MeV,
NN interaction, namely, the resonating group method
(RGM) [23-29, which allows the calculation of both bound gfrq gfyq f?,q
states and phase shifts. This method has already been used in Im  dg 124 - =2.7652,

NN studies with models of categoriéf) and(2) mentioned

above. So far it has been always applied to nonrelativistic Ao=5.82 fm%, k=1.34, Vo=—112 MeV.
models, where the wave function of the nucleon can be ap- (2.5
proximated by ars® configuration.

In the next section we shortly review the Hamiltonian As already mentioned before, the reason for using the
model[11]. In Sec. Ill we describe the main steps of the parametrizatiof11], instead of 10], as in the previous work
resonating group method for bound and scattering states. TH20—22, is that it is more realistic. Its volume integral, i.e.,
6q basis formed oNN, AA, andCC (hidden coloj states is  its Fourier transform afj=0, vanishes, consistently with the

inltroduced in Sec. I“% In Sec. IVhwefderir\‘/e the rr|1atri_x quark-pseudoscalar meson vertex proportionaf tgAF. In
elements required by the RGM method for the typical Spin—qition, this interaction does not enhance the quark-quark

flavor structure of the GBE model. In Sec. V we present the, iy elements containingpLrelative motion, as is the case

. . l
results for the phase shifts in tHis, and 'S, channels and \yih the parametrizatiofi10]. This point has been raised in
discuss the role of the couplefiA andCC channels on the gt [26].

NN phase shifts. The last section is devoted to conclusions. ay this stage we wish to stress that the above parametri-
zation gives a good description of baryon spectra. We do not
Il. MODEL change any parameter obtained from the fif]. Such a pa-
rametrization is, of course, only effective. However, irre-
spective of the parametrization, the flavor-spin symmetry is
essential in this model. There are also semirelativistic ver-
2 sions of the GBE model, such as, for exampl)] but the
H=> m+ >, p_'_KG+Z VCOnf(rinz V. (rij), application of the RGM techniques to semirelativistic six-
i =1 2m i< i<] 2.1) quark Hamiltonians is certainly much more involved.

The GBE Hamiltonian considered below has the form
[11]

whereKg is the kinetic energy of the center of mass. The lll. RESONATING GROUP METHOD

linear confining interaction is The resonating group methd@3] is one of the well-
3 established methods used to study the interaction between
N 2 e Ny two composite systems. It allows one to calculate bound
Veontfiy) 8)\' M (Crij+ Vo), 2.2 state energies and scattering phase shifts. It was first applied
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to nuclear physics in the study of the nucleus-nucleus interwith A{(® the Gell-Mann matrices & Ug(3) [SUc(3)] and
action[24,235. Its application to baryon-baryon systems was ;. the pauli matrices.
initiated by Oka and YazakP7]. In a baryon-baryon system, | et s first consider the one-channel case. From the varia-

where each baryon is aq3cluster, it takes explicitly into  tjonal principle one can obtain the equation determining the
account the quark interchange between the two 'nteraCt'nF’elative wave functior)((ﬁ ):
AB/ -

baryons. This comes from the assumption that the total wave
function can be written as

J ¢*(En) ¢ " (Es)(H—E) AL d(€n) d(€8) X(Rap)]
¥=2, Al®pxp(Rap)], (3.9 X %, A0, 36

whereg is a specific channghereB=NN, AA, orCC), A  Where H is the Hamiltonian of the six-quark system. As
is an antisymmetrization operator defined belaly, con- ~ usual(see, e.g., Re{3]) we introduce the Hamiltonian ker-
tains the product of internal wave functions of the interactingnel

baryons, andyB(IiAB) is the wave function of the relative

motion in the channeB, depending on the relative coordi- H(ﬁ’,ﬁ)zf b (En) T (&) S(R'—Rap)
nateliAB between clusteré andB.
The internal wave function of each cluster has orbital, XHA[ p(Ex) d(E) S(R—Rap)]
flavor, spin, and color parts. I, the flavor and spin are 3. 3. 3
combined to give a definite total spiand isospin so that X d*¢pd°8g d°Rap
one has JE . L
=HDR)S(R-R)-HEIR',R) (3.7
Pp=[¢aléa) Pe(E)elsi, 32 and the normalization kernel
whereé = (&,,&,) and&g=(£&;,£,) are the internal coordi- o ) L
nates of the cluster& andB: N(R',R)=f ¢ (€A ¢ (€8) (R —Rpp)
E=r1=Tz, &=r4Ts, X AL ¢(€n) (Ee) S(R—Rap)]
- > - - - - 3 3 3
= Tytr=2r3 - rytrs—2rg XA d g d"Rap
2 2 v 2 ’ =ND(R)SR-R)-NEIR',R). (3.8
R O R The direct term of the Hamiltonian kerngf (“(R) consists
Ra= 3 v RBT 3 : (33 of the relative kinetic, the relative potential, and the internal
energies:
The functions¢;(¢;), i=A,B, are supposed to be known V2
(see latex. They are totally antisymmetric3states in or- @3v_ _ R\ (d)/B .
bital, spin, flavor, and color space. The color part igld] HE(R)= 2u Vrel(R)+ Hin. 3.9

singlet forN andA states and an octet f@ states. Usually

the color part of a § state is not written explicitly. The same whereu=3m/2 is the reduced mass of the clustérandB.
statement remains valid for they6state which is §222]c  Then Eq.(3.6) can be written as

singlet in any channel.

The antisymmetrization operatot is defined by f LR ﬁ)X(ﬁ)d3R=0 (3.10
3 6
A=1-2 > Py, (34  where £(R',R)=H(R',R)—EM(R’,R). This is the RGM
i=1j=4 - . .
equation. Using Eq(3.9) one can write
where P;; is the permutation operator of the quaikandj v2
belonging to cluster&(1,2,3) andB(4,5,6), respectively. It £(|§/'|§):[_ _R+V(d?(ﬁ)_Erel S(R—R’)
acts in the orbital, flavor, spin, and color space, so it can be 2p O 'C

: _ popf popc
written asPij—Pij PijPijPij where —[H(e")(fe’,ﬁ)—E/\/’(ex)(ﬁ’,ﬁ)], (3.10

1. . 1

PF:—O'i'(Tj"rE,

=3 where E,o;=E—H;,; is the energy of the relative motion.

There are two important steps in solving this equation. One
is to calculate the Hamiltonian kern€.7) by reducing the
1 1 six-body matrix elements to two-body matrix elements. This
PS=_ NSNS+ =, (3.5  >x-body mal y! clements.
he2mt 3 is discussed in Sec. IV. Another step is the discretization of

1 1
f f f
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the RGM equation. It is important both for bound and scat-are obtained from Eq<$3.7) and (3.8), respectively. By in-
tering states. The discretization has been performed by usinguding the center of mass coordina,( Rg)/2 and trans-

the method of Ref[25]. forming back tor; (i=1,...,6) we get thdollowing for-
mulas:
A. Bound states
3 3\ 6 3
Here we briefly describe the discretization procedure di- H':f T ¢ Ri T ¢ re+ Ri
rectly applicable to bound states. According to R2b], the " k=1 k2 W4 K2
relative wave functiory(ﬁ) has been expanded over a finite B IR R
number of Gaussiang; centered atlii (i=12,...N) XHA H ¢(r|—&) H P FI,+&
whereR; are points, here equally spaced, between the origin E 2 )72, 2
and some value dR depending on the range of the interac- s 5
tion. The expansion is Xd°ry---drg (3.18
I - and
X(R)=2, Cixi(R), (3.12
= 3 3\ 6 2
- R R;
with NIJ:Jkl;[l ¢+(rk_ ?)k];__];l ¢+ rk/‘l‘?
3 3/4 L 3 F-é 6 F-é
xi<ﬁ>=g(§—ﬁi,J2/3b>=( 2) e~ (BIR-R)? x A 1 ¢>(ﬂ——‘) IT ¢lr+5
27Tb =1 2 1"=4 2
(3.13
X d3 ;- - d, (3.19

If g(F,b) is the normalized Gaussian wave function of a
quark, given by with ¢(r)=g(r,b) given by Eq.(3.14). These forms are
3 much easier to handle in actual calculations. They allow one
N 122 to reduce the § matrix elements to two-body matrix ele-
g““‘(ﬁ) € ' (3.14 ments. Moreover, the distanc& play now the role of a
generator coordinafél] and lead to a better understanding of

from the Jacobi transformatior8.3) it follows that the rela-  the relation between the resonating group method and the
tive wave function is expanded in terms of the Gaussian§€nerator coordinate meth¢asj.
(3.13 with the size paramete¢2/3b. This method can be

applied straightforwardly to the bound state problem. The B. Scattering states
modification necessary for treating the scattering problem
will be explained later in the next subsection. The bindingfini
energyE and the expansion coefficien@ are given by the
eigenvalues and eigenvectors of the following equation:

For scattering states the expansi@l12 holds up to a
te distanceR=R., depending on the range of the inter-
action. BeyondR,, X(Ii) becomes the usual combination of
Hankel functions containing th® matrix. Because practical

calculations of both bound states and scattering states are

N N
2 H;;C;= EZ Ni;C;, (3.1 done in terms of partial waves, we first give the partial-wave
j=1 =1 expansion of Eq(3.12 in terms of locally peaked wave

) ) ) ) functions with a definite angular momenturand projection
whereN is the number of Gaussians considered inBdl2.

The matrices

N
. I, m(R)=2> COYO(R)Y,(R), 3.2
Hy= [ 0" (@06 ExRus—ROH-A) aim(R)= 2 COPRYm®), - (3.20
X[ p(En) (€5) x(Rap— R))]d3¢a d3¢g d°Rag with the explicit form ofx(" given by

(3.1

(3.21

3 3/4 3
O(R)=41 e GMARHR) [~ pR
Xl 2h? 202

and

Nij:f " (€ b " (Ep)x(Rag—R)(1—A")

wherei, is the modified spherical Bessel functid®]. When
- - - s 3 3, 3 we treat the scattering problem, the fof6122) holds up to
X[¢(&n) ¢(Ep) X(Rap—R;)]1d"Ea 0" d°Rap R=<R; only. In fact in this case the relative wave function is

(3.17  expanded in terms of" as
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N _ where P}, Pifj , and Pﬁ- are the exchange operators in the
x"(R) =2 cYO(R), (3.22  spin, isospin, and color space, respectively, defined by Eq.
=1 (3.5. From the orthonormality conditionéCC|CC)=1,
(CCINN)=0, and(CC|AA)=0 one can determine the co-

efficientsa, B8, andy so that

I

5 1 15
[CC)=— 5 INN)+ Z[AA)— = AsrdAA). (3.28

where
YR =a"x"(R)  (R<Ry),

x"(R)=h{(kR)+ S h{(kR) (R=R,),
(3.23
. 0 . ) The important feature in the definition of tiiaC state is that
with xi’(R) defined by Eq(3.21). Herek is the wave num- e eigenvalue of the color $8) Casimir operator is 12 for
ber k=2uEe and h{”) and h{*) are spherical Hankel each 3 cluster. This tells us that is a color octet state and
functions[29]. The coefficientsr! and S are determined  thus explains why we call th€ C state a hidden color state.
from the continuity ofy!" and its derivative aR=R.. The ~ Note that at zero separation between quaissell model
coefficients Ci(l) of Eq. (3.20 are normalized such that basis the CC state above is the same as that introduced by
ZiNzlci(l)zl' Then theS matrix is given in terms of the Harvey. The MO Q|ﬁer only at finite separation distances. To
see the identity with Harvey'€ C state[30] at zero separa-
tion one can combine it with thBIN and AA states as de-
N fined by Eq.(3.1) to get symmetry states of the form
sh=> chsh, (3.24  |[fled222]c;grsc) Whereq is the representation resulting
=1 from the inner product of f |5 and[222]¢ which is conju-
gate with the symmetrg of an orbital state such as to pro-
duce a totally antisymmetricistate. Comparing Table 3 of

coefficientsC{" as

The method of determining the expansion coefficients is de

scribed in detail by Oka and Yazaki7]. Ref.[31] with that of Harvey's30] Table 1 one can see that
the coefficients of this basis transformation are identical
C. Coupled channels which proves the identity of the hidden color stg&298)

Here we consider more than one channel. In this cas&Vith that of Harvey aR=0. Note that Harvey's definition
based on Eq(3.1), the RGM equation becomes a system of[30] of CC is more appropriate for generator coordinate

coupled channel equations fgt; method than for RGM calculations.
> Jgaﬂ(ﬁ’,ﬁ)xﬁ(ﬁ)dm IV. SIX-BODY MATRIX ELEMENTS
3

The method to compute the six-body matrix elements is
explained in some detail in the Appendix. In Tables | and Il
we give the results for diagonal and off-diagonal matrix el-
ements of the channelN, AA, and CC to be used in
(3.29 coupled channel calculations of ti8, and 1S, phase shifts,
respectively. Although we apply the &) version of the
GBE model, the matrix elements o&;-o;7-7; and
O 0T T| P2 needed in S(®) calculations are also indi-
cated. In fact they are used in calculating the expectation
value of o~ o[-\ by subtracting them fronar;- oy\{- |
because there is t&-meson exchange. Moreover, the values
we found can be considered as a validity test of our method
because they are in full agreement with Table 1 of R&d].

= % f [Hap(R',R)— EN,5(R",R)]xp(RId*R=0.

Usually the normalization kerneV,; is not diagonal be-
cause of the antisymmetrization. For a giv@hsector one
can establish which are they&tates of Eq(3.2) allowed by
the Pauli principle[30]. Here we consider the=0 partial
waves; i.e., we study théS, and 1S, phase shifts. In this
case, according tp30], the 6g allowed states arBIN, AA,
andCC. TheNN andAA states are easy to define directly
from Eq.(3.1). For CC states we adopt the definition of Ref.
[31] which is more appropriate for the RGM calculation.

This CC state of six quarks allows some *“color polariza- V. NUMERICAL RESULTS
tion” of the 6q system in the interaction region. It is defined ) )
in the following way: We perform the RGM calculation as described above for

NN, NN+AA, and NN+AA+CC channels. In all cases
|CC)=a|NN)+ B|AA)+ yAstd AA), (3.26  the size parameter of the Gaussiéhld is fixed atb
=0.44 fm by the stability conditiorisee, for example, Ref.

with (1]

1

6
ASTCZR) 1_2 124 Pﬁpifj Pl (3.2 %<¢|H|¢>:0' 5

3
i=1
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TABLE I. Matrix elements/«|O| ) of different operator® for TABLE II. Matrix elements(«|O|B) of different operator©

(S,1)=(1,0). for (S,1)=(0,1).
a NN NN AA NN AA CC a NN NN AA NN AA CC
B NN AA AA CC CC CC B NN AA AA CC CC CC

1 972 0 972 0 0 972 1 972 0 972 0 0 972
ploc —-12 48  12-144 288 -756 Pi° —-12 48  12-144 288 —756
NSNS —-2592  0-2592 0 0 —648 \S-AS -2592  0-2592 0 0 —648

S-S 0 0 0 0 0-129 $NE 0 o0 0 0 0-129
NSNS PLgC 32 -128 —-32 384-768 72 S\ PLZC 32-128 -32 384-768 72

S Ng PLec —64 256 64 96-192 1152 AS-AE PIZC -64 256 64 96-192 1152
NSNS PiZe 32 -128 —32 384-768 720 AS-A§ PiZC 32 -128 —32 384-768 720

SNg Phee 32 -128 -32 -48 96 720 A§\ PL° 32-128 —32 -48 96 720
NS NG Phoe -16 64 16 24 —48 1260 AS-\§ PLC -16 64 16 24 —48 1260
010y T T 4860 0 972 0 0 108 o0y-0, 747y 4860 0 972 0 0 108
0306 T3 T -900 576 1980 0 0 1116 o3 0g 73 7g -900 576 1980 0 0O 1116
o0, T, PRC —444 48 12-720 288 588 oy-0, 7o, PYC  —444 48  12-720 288 588
03-06 T3 76 PLZC 708 48 1596 240 6721092 o5 0g 7575 PLC 708 48 1596 240 672-1092
o105 7-7T3 PYC 132 336  12-720 288 —420 0y-05 7y-73 PRC 132 336  12-720 288 —420
o106 -7 PRC 132 48 12 336 —96 —420 o0y-05 T-7g PRC 132 48 12 336 —96 —420
o104 T4 PRC 36 —144 —36 228 288-1260 oy-04 Ty-74 PRC 36 —144 —36 228 288-1260
o1-05 NND 4536 0 1296 0 0 —18  oy-0, AAS 4536 0 1296 0 0-126
0306 N5-NL —-864 576 1584 0 0 1020 o3 06 NhAL —-1008 576 1440 0 O 948
oo, NS P —376 64 16-672 384 706 oy-0, N-NL PLC —376 64  16—672 384 814
o306 N5-NL PLZC 784 32 1520 216 5281024 o3 06 Ah-AL PEC 832 32 1568 232 496-976

op-05 NpNL PiZC 104 304  16-672 384 —332 oy -05 NN} P 104 304  16-672 384 —260
o106 NNE PIZC 104 64 16 340-200 —332  o;-06 Nj-AL PIEC 104 64 16 364-248 —260

oo, NG PiC 44 —152 —32 278 164-1197 oy 04 N-A) PEZC 36 —168 —48 298 124-1155
o1 0y NOARO -648 0 648 0 0-252  gy-0, APONSD -648 0 648 0 0 —468
o3 0 N5OAEO 720 =792 0 0 —-192 o506 AEOALC -216 0-1080 0 0 —336
or-op NPONRO PR 136 32 8 96 192 236 o0, MONY PR 136 32 8 96 192 452
o3-0g NFONEO Plec 152 —32 —152 -48 -288 136  o03-06 AEONLO PIZC 248 -32 56 —16 —352 232
op-o3 NPOAEO plec —56 —64 8 96 192 176 o;-03 NOAEO PR —56 —64 8 96 192 320
o1-0g NONEO plec —56 32 8 8-208 176 o-0g NOANEO Plec -5 32 8 56-304 320
o 4 NP0 phec 16 —16 8 —20-248 126  oq-04 NONEO PCC 0 —48 -24 20-328 210
1 5 1 5 1 1 1 5 1 5 1 1
Factor 972 972 972 972 972 972 Factor 972 972 972 972 972 972

. , N
whered is a variational solution of the Hamiltonid@.1) for ~ channels brings a very small change in th®, and 'S,

: P L hase shifts below 2.5 fm*, making the repulsion slightly
a ground state @ system. This solution is fully symmetric in p ! X N
: : weaker. TheC C channel brings slightly more repulsion than
the orbital space and is chosen to be of the form the AA channel. In fact the role € C channels is expected

3 to increase for larger values &f or, alternatively, smaller
é=11 o(r;.b), (5.2)  separation distances between nucleons, where they could
i=1 bring an important contribution. Of course, the contribution
. of the CC channels to th&l N phase shifts vanishes at larger
with g(r;,b) of Eq. (3.14. separations because of their color structure. The conclusion
If we take either one, two, or three channels, namisly, regarding the minor contribution @A andCC channels to
NN+AA, or NN+AA+CC, we found that a number of 15 the phase shifts below 2.5 fm is similar for results based
Gaussians in the expansi98.12 is large enough to obtain on the OGE mode(see, for example,31]). Thus forl=0
convergence. In all cases the result is stable at the matchingaves it is good enough to perform one-channel calculations
radiusR,=4.5 fm. In Figs. 1 and 2 we show the phase shiftsin the laboratory energy interval 0-350 MeV.
as a function of the relative momentuaobtained from one, We recall that the pseudoscalar exchange intera¢ficgh
two, and three coupled channels. One can see that the addientains both a short-range part, responsible for the repul-
tion to NN of the AA channel alone or of bothA andCC  sion, and a long-range Yukawa-type potential, which brings
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o . . . . .
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FIG. 1. S, NN scattering phase shift as a function lof The FIG. 3. The relative wave function of Ed5.3) for the S,

solid line shows the result for tHeéN channel only, the dotted line partial wave fork=1 fm™! obtained in one-channébolid line)
for the NN+AA, and the dashed line for thBIN+AA+CC and three-channétlashed ling calculations.
coupled channels.

welcome feature in correctly describing the phase shifts
attraction in theNN potential. In order to see the difference aboveE,,,=350 MeV.
in the amount of repulsion induced by the GBE and that A note of caution is required regarding the removal of the
induced by the OGE interaction we repeated the one-chann@ing-range Yukawa part of the interacti¢®.4) with the pa-
(NN) calculations above by removing the Yukawa-type part.rametrization(2.5) which contains a rather large coupling
We compared the resulting phase shifts with those of Fig. Zonstantg?, /(4m)=2.7652. Then'-meson exchange is re-

- - : : : 7'q

of Ref.[31] obtained with an OGE interaction parametrized sponsible for describing correctly the-N splitting. If the
;uch as to satisfy the stability copditi(fﬁ.l). We found that long-range Yukawa part is removed, the model fails to de-
in the GBE model the repul_smrglés much stronger anéje(éorre'scribe this splitting because the contribution coming from the
sponds to a hard core rad""GgBE =0.68 fm (versusr%GE second term of Eq(2.4) for y=7' becomes too large in a
=0.30 fm) in the 3S; and ry°"=0.81 fm (versusry 3q system in the parametrizatiaf2.5). We recall that the
=0.35 fm) in the 'S, partial waves. The radius, was ex-  contribution toN of the short-range;’ -meson exchange part
tracted from the phase shifts at smkliwhich is approxi- s proportional to a factor of 2 and the contributiontao a
mately given bys=—kr,. One can also see that the repul- factor of — 2 [9], which bringsA too low andN too high if
sion induced by the GBE interaction in ti&; partial wave  the Yukawa part is removed. In these circumstances two or
is weaker than that induced in th&, partial wave. This is  three coupled channel calculations become meaningless.
consistent with our previous res{i#2] where we found that It is also interesting to see the behavior of the relative

the height of the repulsive core is lower &8, than for'S;,  wave functiony'=° of Eq. (3.22 at short distances. Instead
as mentioned in the Introduction. Thus the OGE model gives

less repulsion than the GBE model. In Re¥3] the stronger
repulsion induced by the GBE interaction is viewed as a

10 T T T T T

0.2 T T T T

NN ——
NN+AA -—--—-
NN+AA+GG --------

3 (deg)

8 (rad)

L L L L
50 100 180 200 250 300 350
Eigp, (MeV)

FIG. 4. 'S, and 3S; NN scattering phase shifts as a function of
the laboratory energ¥,,,. The solid and dotted lines show the
result corresponding to the GBE model and the dashed and dot-
FIG. 2. Same as Fig. 1 but for tH, partial wave. dashed lines that of the OGE modske Ref[31)).

0 0.5 1 1.5 2 25
K (fm™)

034001-7



D. BARTZ AND FI. STANCU PHYSICAL REVIEW C63 034001

of ¥'=C it is more appropriat§27] to introduce a renormal- laboratory energies up to about 350 MeV.
ized wave function as Our conclusions are the following.
(i) The phase shifts present a behavior typical for strongly
~120/ 5y Jenil=0 12 1=0) replusive potentials. We find that this repulsion, which is
Xa (R)_% de [Nga (RRDI™x5 (R, (5.3 induced by pseudoscalar meson exchange, is stronger than
that produced by the OGE interaction.

where the quantity to be integrated contains ke com- (i) In the 'S, partial wave the repulsion is stronger than
ponent of the normN. In Fig. 3 we show results for the in 3_§1 partial wave as our previous studies suggested.
above function for the’S; wave atk=1 fm~* both for the (iii ) Our results prove that in the laboratory energy inter-

one- and three-channel cases. One can see th&<dr fm  val 0-350 MeV the one-channel approximation is entirely
the two functions are entirely different, in the three-channelsatisfactory.

case a node being present. If the renormalization was made Finally in future calculations, in order to describe tf@

with the normN instead of its square, as in E§.3), nonode  phase shift the tensor force is compulsory and this is our
would have been present. The existence of a node is relatd@llowing major step.

to the presence of tHel2]o configuration in the wave func-

tion (see, e.g.[20]). Here, whenever it appears, it is due to

the cancellation of the positive and negative components of ACKNOWLEDGMENTS

the wave function, but the lack of a node does not exclude a

repulsive potential. In a renormalized wave function the am- We are most grateful to Kiyotaka Shimizu for help in
P P S . understanding the resonating group method techniques and
plitudes of positive and negative components change the

values depending on the multiplicative facfgror N1/2, S0 FOT constructive criticism in preparing the manuscript.

the node could appear in one renormalization definition but
not in the other. On the other hand, as discussed above, the
phase shift changes insignificantly when one goes from one
channel to three channels, and this can also be seen in the The method to compute the six-body matrix elements is
asymptotic form of the wave function beyofi=1 fm, al-  explained here using the example®¢ 1,1 =0 case.
though in the overlap region the two functions are entirely We know that for the nucleon, the spin-flavor wave func-
different. The above behavior of the wave function is verytion is given by
similar to that found in Ref[33] where no long-range part is
present in the schematic quark-quark potential due to pion
exchange. 1

In Fig. 4 we represent théS; and 'S, phase shifts of l//N:T[X%“FX)‘(ﬁA], (A1)
Figs. 1 and 2 in the one-channel ca¢N) again with the 2
Yukawa part included, but this time as a function Bf,
= 27:°k?/3m with m=m,, 4 of Eq. (2.5). This is to show that
in the GBE model the two phase shifts are very near eac
other, with §(3S;) slightly lower thans(1S,). On the con-
trary, in OGE calculations—as example those of Fig. 2 of
Ref. [31]—one obtains 5(3S;)>8(1S,). In calculations 1
based on the OGE model the difference between the two Xop=—=(TLT—111),
phase shifts is reduced by the addition of a scalar potential V2
acting at a nucleon level with a larger attractive strength in
the 1S, channel than in théS; channel[5].

A major difference between the GB&?®S,;) and 5(1S,) 1
is expected to appear after the inclusion of a quark-quark X p==(TLL=1T]),
tensor forcg34]. This will modify only the 3S, phase shift. V2

APPENDIX

herey and ¢ are the spin and flavor parts, respectively. For
e spin parts we have

VI. CONCLUSIONS

1

This work is a further important step in our previous stud- XQ/ZZ%(T LT+ITT=2111),
ies [21,22 of the NN problem. We consider the two inter-
acting nucleons as agésystem described by a Hamiltonian
containing a linear confinement plus a pseudosdateson 1
exchange interaction between quarks. N _

Previously we derived aftNN potential in an adiabatic X \/E(HlJrlN 2L, (A2)
approximation. The present study is based on a dynamical
approach of theNN interaction, namely, the resonating
group method. We perform one-, two-, and three-coupledand similarly for the flavor parts with replaced byu and |
channel calculations for théS, and 'S, phase shifts for replaced byd. Then for3=NN, Eq. (3.2 becomes
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@ﬁh% 2 CIECIZI2 32 (1) ¢ (1) + x5 (1) ¢k (DXL (2) $7,(2) + x5, (2) 43 (2)], (A3)

whereS andl are the spin and isospin of tiéN system.y (i) and ¢(i) are the spin and flavor parts of th nucleon. For
S=S,=1 andl =1,=0, after inserting the values of the corresponding Clebsch-Gordan coefficients we have

1
<I>h°N=ﬁ{[xﬁ/z<1>¢€/2<1>+x§/2< 1)L DIXEA2) B 142) + x1f(2) b 1o 2)]

—[X0AD) " 1 D)+ XA 1) b 1 DI XA 2) d51o(2) + X1k 2) D1iA(2) 1} (A4)

At this stage we Us®IATHEMATICA [35]. We introduce EqsiA2) and the equivalent for the flavor parts in E§4). We get
a huge expression with 338 terms depending now on the quantum numbers of the quarks. In the matrix element of an operator
O we then get 338=114 244 terms of the form

(815253548556 T1 T2 T3 T4 T5 76| O|S1575354 8586 T1 T2 T3 T4 T5 T) (A5)
wheres; andr; (i=1, ... ,6)stand for the spin and isospin projection of tiie quark. Note that the normal order of particles
is implied. Now let us choos®=¢- o3 Xf-XEPS!, which contains the permutatidPgs. Then we have

T 2N Sfpoflart ettt ol al 1t 1 1}
(515283548556 T1 T2 T3 TaT5To| 01 - TN - N3P3|S157838,S686 71 T2 T3 74 75 Tg)

_ NG NG B S B B S A S A A
= (515753545586 T1 T2 7374 T5 76| 01+ 03N 1 - N3|S1S5S65,S685 71 ToTg T4 T5 T3)
- > Cf of S’ S’ S’ S’ T’ Tr T’ T’
_ . . ral 11\ 852 654 655 oS3 oT) 0Ty oT5 oT3
(S18371 73|01 T3N] )\3|SlsGTlTG>552554655556572674575576
- - ~f Of S aSh oSt Sk oTh Ty oTe oTh
_ /) ! 2 4 5 35254 85 8°3
—<5153|0'1‘03|Sls6><7'17'3|)\1')\3|7'17'6>58255455555657257457_5576. (A6)

This shows how a six-body matrix element can be reduced to the calculation of two-body matrix elements. The necessary
nonzero two-body matrix elements are

(T1loy-alt1)=(Ll]or- ool L1)=1,

(Tloralt)=(11]or ool L T)=~1,

(Torall)=(11]or a2l T])=2,

(uulXt-XEjuuy=(dd|xT-XE|dd)y=4/3,
(udXt-X5jud)=(du|x{-XE|duy=—2/3,

(ud|Xt-X5|duy=(du|x{-XFjud)y=2. (A7)

MATHEMATICA is then used to compute systematically the sum of the 114 244 terms stemming fraAdEqQ.
In Tables | and Il all required six-body matrix elements obtained by this technique are listed.
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