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Nucleon-nucleon scattering in a chiral constituent quark model

D. Bartz* and Fl. Stancu†

Universitéde Liège, Institut de Physique B5, Sart Tilman, B-4000 Lie`ge 1, Belgium
~Received 5 September 2000; published 26 January 2001!

We study the nucleon-nucleon interaction in a chiral constituent quark model by using the resonating group
method, convenient for treating the interaction between composite particles. The calculated phase shifts for the
3S1 and 1S0 channels show the presence of a strong repulsive core due to the combined effect of the quark
interchange and the spin-flavor structure of the effective quark-quark interaction. Such a symmetry structure
stems from the pseudoscalar meson exchange between the quarks and is a consequence of the spontaneous
breaking of the chiral symmetry. We perform single and coupled channel calculations and show the role of
coupling of theDD and hidden colorCC channels on the behavior of the phase shifts.

DOI: 10.1103/PhysRevC.63.034001 PACS number~s!: 24.85.1p, 21.30.2x, 13.75.Cs
an

l
ar
ng
d
o

pi
3

nt
ng
po

rs
e

rib
du

th
e
ir

R

m
ica

ea
at

the
ling
rk-

ex-
vor

d-
e
re-

ive

tion.
the
of

the

r-
the

pro-

, is

ark
The
the
ec-
a-

itly
e

s,

ies
e

I. INTRODUCTION

Many studies have been devoted so far to the underst
ing of the nucleon-nucleon (NN) interaction starting from
models which have been considered to be successfu
baryon spectroscopy. Here we refer to nonrelativisitc qu
models in the framework of which calculations of scatteri
phase shifts can be made quantitatively. We can roughly
vide these models into three categories. In the first categ
we consider models based on one-gluon exchange~OGE!
between quarks. They explain the short-range repulsion
the NN potential as due to the chromomagnetic spin-s
part of OGE, combined with quark interchanges betweenq
clusters~for a review see, e.g.,@1–4#!. In addition, the long-
range part is obtained from the one-pion exchange pote
acting directly between two nucleons and the medium-ra
part is introduced phenomenologically as a local central
tential @5#.

There is a second category of hybrid models@6–8# where,
in addition to OGE, quarks belonging to different cluste
interact also via pseudoscalar and scalar meson exchang
these hybrid models the short-range repulsion is still att
uted to OGE and the middle- and long-range attraction is
to meson exchanges between quarks.

Here we employ a model of the third category where
quark-quark interaction, besides the confinement, is due
tirely to meson exchanges between quarks. This is the ch
constituent quark model proposed in Ref.@9# and param-
etrized in a nonrelativistic version in Refs.@10,11#. There are
also semirelativistic versions available; see, e.g.,@12#. For
the present status of the model we refer the reader to
@13#.

The origin of the model@9–13# is thought to lie in the
spontaneous breaking of chiral symmetry in QCD which i
plies the existence of constituent quarks with a dynam
mass and Goldstone bosons~pseudoscalar mesons!. Accord-
ing to the two-scale picture of Manohar and Georgi@14# at a
distance beyond that of spontaneous chiral symmetry br
ing, but within that of the confinement scale, the appropri
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degrees of freedom should be the constituent quarks and
chiral meson fields. If a quark-pseudoscalar meson coup
is assumed, in a nonrelativistic limit one obtains a qua

meson vertex proportional tosW •qW lF with sW the Pauli ma-

trices,qW the momentum of the meson, andlF the Gell-Mann
flavor ~F! matrices. This generates a pseudoscalar meson
change interaction between quarks which is spin and fla
dependent.

In the following this interaction is referred to as a Gol
stone boson exchange~GBE! interaction. In coordinate spac
the corresponding potential contains two terms. One is a
pulsive Yukawa potential tail and the other is an attract
contact d interaction. When regularized@10,11# the latter
generates the short-range part of the quark-quark interac
The short-range part dominates over the Yukawa part in
description of baryon spectra, leading to a correct order
positive and negative parity states@15#. This interaction con-
tains the main ingredients required in the calculation of
NN potential, and it is thus natural to study theNN problem
within this model. In addition, the two-pion exchange inte
action between constituent quarks reinforces the effect of
flavor-spin part of the one-meson exchange and also
vides a contribution of as-type scalar meson exchange@16#
required to describe the middle-range attraction.

The spin-flavor symmetry structure of the model@9–13#,
which is essential in describing the light baryon spectrum
getting support from the phenomenological analysis ofL
51 negative parity resonances@17#. Also 1/Nc QCD studies
@18# have a consistent interpretation in a constituent qu
model with pseudoscalar meson exchange interaction.
spontaneous chiral symmetry breaking is responsible for
absence of parity doubling in the low energy hadron sp
trum. In particular it explains the splitting between the neg
tive parity stateN* (1535) and the nucleonN(939). Quark
models, such as, e.g., the OGE model, which explic
breaks chiral symmetry, fail to reproduce th
N* (1535)-N(939) splitting. Recent lattice calculation
which take into account the chiral symmetry of QCD@19#,
were able to reproduce the aboveN* -N splitting. This brings
new substantial support to the model@9–13#.

This work is a natural extension of the previous stud
@20–22#. Reference@20# was rather exploratory about th
©2001 The American Physical Society01-1
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D. BARTZ AND Fl. STANCU PHYSICAL REVIEW C63 034001
role of a spin-flavor dependent interaction in giving rise to
repulsive core. Within the parametrization@10# of the GBE
model it was found that at zero separation between twoq
clusters the height of the repulsive core is 0.830 GeV a
1.356 GeV in the3S1 and 1S0 channels, respectively. Th
spin-flavor symmetry and the parametrization@10# of the
GBE model favor theu@42#O@51#FS& state which become
highly dominant. In a better basis@21#, obtained from single-
particle molecular-type states, instead of cluster model sta
the situation is similar, the repulsion being reduced by ab
200 MeV in the 3S1 channel and by about 400 MeV in th
1S0 channel. This is natural because the molecular orb
basis gives a lower bound of the expectation value of
Hamiltonian in the six-quark basis. In Ref.@22# an adiabatic
nucleon-nucleon potential was calculated based on the m
@10#. It was found that none of the bases, cluster or mole
lar, leads to an attractive pocket. An attraction was simula
by introducing as-meson exchange of a similar analyt
structure between quarks, with that of the pseudoscalar
son exchange.

Here, instead of@10#, we use the chiral constituent qua
model version of Ref.@11# where the GBE interaction is
parametrized in a more realistic way. The adiabatic poten
calculated @22# in the Born-Oppenheimer approximatio
with this version possesses a small attractive pocket, in c
trast to that resulting from model@10# ~see Ref.@21#!.

The present study is based on a dynamical approach to
NN interaction, namely, the resonating group meth
~RGM! @23–25#, which allows the calculation of both boun
states and phase shifts. This method has already been us
NN studies with models of categories~1! and~2! mentioned
above. So far it has been always applied to nonrelativi
models, where the wave function of the nucleon can be
proximated by ans3 configuration.

In the next section we shortly review the Hamiltonia
model @11#. In Sec. III we describe the main steps of t
resonating group method for bound and scattering states.
6q basis formed ofNN, DD, andCC ~hidden color! states is
introduced in Sec. III C. In Sec. IV we derive the matr
elements required by the RGM method for the typical sp
flavor structure of the GBE model. In Sec. V we present
results for the phase shifts in the3S1 and 1S0 channels and
discuss the role of the coupledDD andCC channels on the
NN phase shifts. The last section is devoted to conclusio

II. MODEL

The GBE Hamiltonian considered below has the fo
@11#

H5(
i

mi1(
i 51

pi
2

2mi
2KG1(

i , j
VCon f~r i j !1(

i , j
Vx~r i j !,

~2.1!

whereKG is the kinetic energy of the center of mass. T
linear confining interaction is

VCon f~r i j !52
3

8
l i

c
•l j

c~Cri j 1V0!, ~2.2!
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and the spin-spin component of the GBE interaction in
SUF(3) form is

Vx~r i j !5H (
F51

3

Vp~r i j !l i
Fl j

F1 (
F54

7

VK~r i j !l i
Fl j

F

1Vh~r i j !l i
8l j

81
2

3
Vh8~r i j !J sW i•sW j . ~2.3!

The interaction~2.3! containsg5p, K, h, andh8 meson
exchange terms andVg(r i j ) is given as the sum of two dis
tinct contributions: a Yukawa-type potential containing t
mass of the exchanged meson and a short-range contrib
of opposite sign, the role of which is crucial in baryon spe
troscopy. For a given mesong, the exchange potential is

Vg~r !5
gg

2

4p

1

12mimj
H mg

2 e2mgr

r
2Lg

2e2Lgr

r J , ~2.4!

whereLg5L01kmg . For a system ofu andd quarks only,
as is the case here, theK exchange does not contribute. In th
calculations below we use the parameters of Ref.@11#. These
are

mu,d5340 MeV, C50.77 fm22,

mp5139 MeV, mh5547 MeV, mh85958 MeV,

gpq
2

4p
5

ghq
2

4p
51.24,

gh8q
2

4p
52.7652,

L055.82 fm21, k51.34, V052112 MeV.
~2.5!

As already mentioned before, the reason for using
parametrization@11#, instead of@10#, as in the previous work
@20–22#, is that it is more realistic. Its volume integral, i.e
its Fourier transform atqW 50, vanishes, consistently with th
quark-pseudoscalar meson vertex proportional tosW •qW lF. In
addition, this interaction does not enhance the quark-qu
matrix elements containing 1p relative motion, as is the cas
with the parametrization@10#. This point has been raised i
Ref. @26#.

At this stage we wish to stress that the above parame
zation gives a good description of baryon spectra. We do
change any parameter obtained from the fit@11#. Such a pa-
rametrization is, of course, only effective. However, irr
spective of the parametrization, the flavor-spin symmetry
essential in this model. There are also semirelativistic v
sions of the GBE model, such as, for example,@12# but the
application of the RGM techniques to semirelativistic s
quark Hamiltonians is certainly much more involved.

III. RESONATING GROUP METHOD

The resonating group method@23# is one of the well-
established methods used to study the interaction betw
two composite systems. It allows one to calculate bou
state energies and scattering phase shifts. It was first app
1-2
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NUCLEON-NUCLEON SCATTERING IN A CHIRAL . . . PHYSICAL REVIEW C 63 034001
to nuclear physics in the study of the nucleus-nucleus in
action@24,25#. Its application to baryon-baryon systems w
initiated by Oka and Yazaki@27#. In a baryon-baryon system
where each baryon is a 3q cluster, it takes explicitly into
account the quark interchange between the two interac
baryons. This comes from the assumption that the total w
function can be written as

c5(
b

A@Fbxb~RW AB!#, ~3.1!

whereb is a specific channel~hereb5NN, DD, or CC), A
is an antisymmetrization operator defined below,Fb con-
tains the product of internal wave functions of the interact
baryons, andxb(RW AB) is the wave function of the relative
motion in the channelb, depending on the relative coord
nateRW AB between clustersA andB.

The internal wave function of each cluster has orbit
flavor, spin, and color parts. InFb the flavor and spin are
combined to give a definite total spinS and isospinI so that
one has

Fb5@fA~jWA!fB~j!B] SI , ~3.2!

wherejWA5(jW1 ,jW2) andjWB5(jW3 ,jW4) are the internal coordi-
nates of the clustersA andB:

jW15rW12rW2 , jW35rW42rW5 ,

jW25
rW11rW222rW3

2
, jW45

rW41rW522rW6

2
,

RW A5
rW11rW21rW3

3
, RW B5

rW41rW51rW6

3
. ~3.3!

The functionsf i(j i), i 5A,B, are supposed to be know
~see later!. They are totally antisymmetric 3q states in or-
bital, spin, flavor, and color space. The color part is a@13#
singlet forN andD states and an octet forC states. Usually
the color part of a 3q state is not written explicitly. The sam
statement remains valid for the 6q state which is a@222#C
singlet in any channel.

The antisymmetrization operatorA is defined by

A512(
i 51

3

(
j 54

6

Pi j , ~3.4!

wherePi j is the permutation operator of the quarksi and j
belonging to clustersA(1,2,3) andB(4,5,6), respectively. It
acts in the orbital, flavor, spin, and color space, so it can
written asPi j 5Pi j

o Pi j
f Pi j

s Pi j
c where

Pi j
f 5

1

2
l i

f
•l j

f1
1

3
, Pi j

s 5
1

2
sW i•sW j1

1

2
,

Pi j
c 5

1

2
l i

c
•l j

c1
1

3
, ~3.5!
03400
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g
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with l i
f (c) the Gell-Mann matrices ofSUF(3) @SUC(3)# and

sW i the Pauli matrices.
Let us first consider the one-channel case. From the va

tional principle one can obtain the equation determining
relative wave functionx(RW AB):

E f1~jWA!f1~jWB!~H2E!A@f~jWA!f~jWB!x~RW AB!#

3d3jA d3jB50, ~3.6!

where H is the Hamiltonian of the six-quark system. A
usual~see, e.g., Ref.@3#! we introduce the Hamiltonian ker
nel

H~RW 8,RW !5E f1~jWA!f1~jWB!d~RW 82RW AB!

3HA@f~jWA!f~jWB!d~RW 2RW AB!#

3d3jA d3jB d3RAB

5H (d)~RW !d~RW 2RW 8!2H (ex)~RW 8,RW ! ~3.7!

and the normalization kernel

N~RW 8,RW !5E f1~jWA!f1~jWB!d~RW 82RW AB!

3A@f~jWA!f~jWB!d~RW 2RW AB!#

3d3jA d3jB d3RAB

5N (d)~RW !d~RW 2RW 8!2N (ex)~RW 8,RW !. ~3.8!

The direct term of the Hamiltonian kernelH (d)(RW ) consists
of the relative kinetic, the relative potential, and the intern
energies:

H (d)~RW !52
¹R

2

2m
1Vrel

(d)~RW !1Hint , ~3.9!

wherem53m/2 is the reduced mass of the clustersA andB.
Then Eq.~3.6! can be written as

E L~RW 8,RW !x~RW !d3R50, ~3.10!

where L(RW 8,RW )5H(RW 8,RW )2EN(RW 8,RW ). This is the RGM
equation. Using Eq.~3.9! one can write

L~RW 8,RW !5F2
¹R

2

2m
1Vrel

(d)~RW !2ErelGd~RW 2RW 8!

2@H (ex)~RW 8,RW !2EN (ex)~RW 8,RW !#, ~3.11!

where Erel5E2Hint is the energy of the relative motion
There are two important steps in solving this equation. O
is to calculate the Hamiltonian kernel~3.7! by reducing the
six-body matrix elements to two-body matrix elements. T
is discussed in Sec. IV. Another step is the discretization
1-3
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D. BARTZ AND Fl. STANCU PHYSICAL REVIEW C63 034001
the RGM equation. It is important both for bound and sc
tering states. The discretization has been performed by u
the method of Ref.@25#.

A. Bound states

Here we briefly describe the discretization procedure
rectly applicable to bound states. According to Ref.@25#, the
relative wave functionx(RW ) has been expanded over a fini
number of Gaussiansx i centered atRW i ( i 51,2, . . . ,N)
whereRi are points, here equally spaced, between the or
and some value ofR depending on the range of the intera
tion. The expansion is

x~RW !5(
i 51

N

Cix i~RW !, ~3.12!

with

x i~RW !5g~RW 2RW i ,A2/3b!5S 3

2pb2D 3/4

e2(3/4b2)(RW 2RW i )
2
.

~3.13!

If g(rW,b) is the normalized Gaussian wave function of
quark, given by

g~rW,b!5S 1

pb2D 3/4

e2r 2/2b2
, ~3.14!

from the Jacobi transformations~3.3! it follows that the rela-
tive wave function is expanded in terms of the Gaussi
~3.13! with the size parameterA2/3b. This method can be
applied straightforwardly to the bound state problem. T
modification necessary for treating the scattering prob
will be explained later in the next subsection. The bindi
energyE and the expansion coefficientsCi are given by the
eigenvalues and eigenvectors of the following equation:

(
j 51

N

Hi j Cj5E(
j 51

N

Ni j Cj , ~3.15!

whereN is the number of Gaussians considered in Eq.~3.12!.
The matrices

Hi j 5E f1~jWA!f1~jWB!x~RW AB2RW i !H~12A8!

3@f~jWA!f~jWB!x~RW AB2RW j !#d
3jA d3jB d3RAB

~3.16!

and

Ni j 5E f1~jWA!f1~jWB!x~RW AB2RW i !~12A8!

3@f~jWA!f~jWB!x~RW AB2RW j !#d
3jA d3jB d3RAB

~3.17!
03400
-
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are obtained from Eqs.~3.7! and ~3.8!, respectively. By in-
cluding the center of mass coordinate (RW A1RW B)/2 and trans-
forming back tor i ( i 51, . . . ,6) we get thefollowing for-
mulas:

Hi j 5E )
k51

3

f1S rWk2
RW i

2
D )

k854

6

f1S rWk81
RW i

2
D

3HAF)
l 51

3

fS rW l2
RW j

2
D )

l 854

6

fS rW l 81
RW j

2
D G

3d3r 1•••d3r 6 ~3.18!

and

Ni j 5E )
k51

3

f1S rWk2
RW i

2
D )

k854

6

f1S rWk81
RW i

2
D

3AF)
l 51

3

fS rW l2
RW j

2
D )

l 854

6

fS rW l 81
RW j

2
D G

3d3r 1•••d3r 6, ~3.19!

with f(rW)5g(rW,b) given by Eq. ~3.14!. These forms are
much easier to handle in actual calculations. They allow o
to reduce the 6q matrix elements to two-body matrix ele
ments. Moreover, the distancesRi play now the role of a
generator coordinate@4# and lead to a better understanding
the relation between the resonating group method and
generator coordinate method@28#.

B. Scattering states

For scattering states the expansion~3.12! holds up to a
finite distanceR5Rc , depending on the range of the inte
action. BeyondRc , x(RW ) becomes the usual combination
Hankel functions containing theS matrix. Because practica
calculations of both bound states and scattering states
done in terms of partial waves, we first give the partial-wa
expansion of Eq.~3.12! in terms of locally peaked wave
functions with a definite angular momentuml and projection
m:

x lm~RW !5(
i 51

N

Ci
( l )x i

( l )~R!Ylm~R̂!, ~3.20!

with the explicit form ofx i
( l ) given by

x i
( l )~R!54pS 3

2pb2D 3/4

e2~3/4b2!(R21Ri
2)i lS 3

2b2
RRi D ,

~3.21!

wherei l is the modified spherical Bessel function@29#. When
we treat the scattering problem, the form~3.21! holds up to
R<Rc only. In fact in this case the relative wave function
expanded in terms ofx̃ ( l ) as
1-4
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x ( l )~R!5(
i 51

N

Ci
( l )x̃ i

( l )~R!, ~3.22!

where

x̃ i
( l )~R!5a i

( l )x i
( l )~R! ~R<Rc!,

x̃ i
( l )~R!5hl

(2)~kR!1Si
( l )hl

(1)~kR! ~R>Rc!,
~3.23!

with x i
( l )(R) defined by Eq.~3.21!. Herek is the wave num-

ber k5A2mErel and hl
(2) and hl

(1) are spherical Hanke
functions@29#. The coefficientsa i

( l ) andSi
( l ) are determined

from the continuity ofx̃ i
( l ) and its derivative atR5Rc . The

coefficients Ci
( l ) of Eq. ~3.20! are normalized such tha

( i 51
N Ci

( l )51. Then theS matrix is given in terms of the
coefficientsCi

( l ) as

S( l )5(
i 51

N

Ci
( l )Si

( l ) . ~3.24!

The method of determining the expansion coefficients is
scribed in detail by Oka and Yazaki@27#.

C. Coupled channels

Here we consider more than one channel. In this ca
based on Eq.~3.1!, the RGM equation becomes a system
coupled channel equations forxb :

(
b

E Lab~RW 8,RW !xb~RW !d3R

5(
b

E @Hab~RW 8,RW !2ENab~RW 8,RW !#xb~RW !d3R50.

~3.25!

Usually the normalization kernelNab is not diagonal be-
cause of the antisymmetrization. For a givenSI sector one
can establish which are the 6q states of Eq.~3.2! allowed by
the Pauli principle@30#. Here we consider thel 50 partial
waves; i.e., we study the3S1 and 1S0 phase shifts. In this
case, according to@30#, the 6q allowed states areNN, DD,
andCC. The NN andDD states are easy to define direct
from Eq.~3.1!. For CC states we adopt the definition of Re
@31# which is more appropriate for the RGM calculatio
This CC state of six quarks allows some ‘‘color polariz
tion’’ of the 6q system in the interaction region. It is define
in the following way:

uCC&5auNN&1buDD&1gASTCuDD&, ~3.26!

with

ASTC5
1

10F12(
i 51

3

(
j 54

6

Pi j
s Pi j

f Pi j
c G , ~3.27!
03400
-

e,
f

where Pi j
s , Pi j

f , and Pi j
c are the exchange operators in th

spin, isospin, and color space, respectively, defined by
~3.5!. From the orthonormality conditionŝCCuCC&51,
^CCuNN&50, and^CCuDD&50 one can determine the co
efficientsa, b, andg so that

uCC&52
A5

6
uNN&1

1

3
uDD&2

15

4
ASTCuDD&. ~3.28!

The important feature in the definition of theCC state is that
the eigenvalue of the color SU~3! Casimir operator is 12 for
each 3q cluster. This tells us thatC is a color octet state and
thus explains why we call theCC state a hidden color state
Note that at zero separation between quarks~shell model
basis! the CC state above is the same as that introduced
Harvey. The two differ only at finite separation distances.
see the identity with Harvey’sCC state@30# at zero separa-
tion one can combine it with theNN and DD states as de-
fined by Eq. ~3.1! to get symmetry states of the form
u@ f #FS@222#C ;g̃FSC& where g̃ is the representation resultin
from the inner product of@ f #FS and @222#C which is conju-
gate with the symmetryg of an orbital state such as to pro
duce a totally antisymmetric 6q state. Comparing Table 3 o
Ref. @31# with that of Harvey’s@30# Table 1 one can see tha
the coefficients of this basis transformation are identi
which proves the identity of the hidden color state~3.28!
with that of Harvey atR50. Note that Harvey’s definition
@30# of CC is more appropriate for generator coordina
method than for RGM calculations.

IV. SIX-BODY MATRIX ELEMENTS

The method to compute the six-body matrix elements
explained in some detail in the Appendix. In Tables I and
we give the results for diagonal and off-diagonal matrix
ements of the channelsNN, DD, and CC to be used in
coupled channel calculations of the3S1 and 1S0 phase shifts,
respectively. Although we apply the SU~3! version of the
GBE model, the matrix elements ofs i•s jt i•t j and
s i•s jt i•t j P36

f sc needed in SU~2! calculations are also indi
cated. In fact they are used in calculating the expecta
value ofs i•s jl i

8
•l j

8 by subtracting them froms i•s jl i
f
•l j

f

because there is noK-meson exchange. Moreover, the valu
we found can be considered as a validity test of our met
because they are in full agreement with Table 1 of Ref.@32#.

V. NUMERICAL RESULTS

We perform the RGM calculation as described above
NN, NN1DD, and NN1DD1CC channels. In all cases
the size parameter of the Gaussian~3.14! is fixed at b
50.44 fm by the stability condition~see, for example, Ref
@1#!

]

]b
^fuHuf&50, ~5.1!
1-5
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wheref is a variational solution of the Hamiltonian~2.1! for
a ground state 3q system. This solution is fully symmetric in
the orbital space and is chosen to be of the form

f5)
i 51

3

g~rW i ,b!, ~5.2!

with g(rW i ,b) of Eq. ~3.14!.
If we take either one, two, or three channels, namely,NN,

NN1DD, or NN1DD1CC, we found that a number of 15
Gaussians in the expansion~3.12! is large enough to obtain
convergence. In all cases the result is stable at the matc
radiusRc54.5 fm. In Figs. 1 and 2 we show the phase sh
as a function of the relative momentumk obtained from one,
two, and three coupled channels. One can see that the
tion to NN of the DD channel alone or of bothDD andCC

TABLE I. Matrix elementŝ auOub& of different operatorsO for
(S,I )5(1,0).

a NN NN DD NN DD CC
b NN DD DD CC CC CC

1 972 0 972 0 0 972
P36

f sc 212 48 122144 288 2756
l1

c
•l2

c 22592 022592 0 0 2648
l3

c
•l6

c 0 0 0 0 021296
l1

c
•l2

c P36
f sc 32 2128 232 3842768 72

l3
c
•l6

c P36
f sc 264 256 64 962192 1152

l1
c
•l3

c P36
f sc 32 2128 232 3842768 720

l1
c
•l6

c P36
f sc 32 2128 232 248 96 720

l1
c
•l4

c P36
f sc 216 64 16 24 248 1260

s1•s2 t1•t2 4860 0 972 0 0 108
s3•s6 t3•t6 2900 576 1980 0 0 1116
s1•s2 t1•t2 P36

f sc 2444 48 122720 288 588
s3•s6 t3•t6 P36

f sc 708 48 1596 240 67221092
s1•s3 t1•t3 P36

f sc 132 336 122720 288 2420
s1•s6 t1•t6 P36

f sc 132 48 12 336 296 2420
s1•s4 t1•t4 P36

f sc 36 2144 236 228 28821260
s1•s2 l1

f
•l2

f 4536 0 1296 0 0 218
s3•s6 l3

f
•l6

f 2864 576 1584 0 0 1020
s1•s2 l1

f
•l2

f P36
f sc 2376 64 162672 384 706

s3•s6 l3
f
•l6

f P36
f sc 784 32 1520 216 52821024

s1•s3 l1
f
•l3

f P36
f sc 104 304 162672 384 2332

s1•s6 l1
f
•l6

f P36
f sc 104 64 16 3402200 2332

s1•s4 l1
f
•l4

f P36
f sc 44 2152 232 278 16421197

s1•s2 l1
f ,0
•l2

f ,0 2648 0 648 0 0 2252
s3•s6 l3

f ,0
•l6

f ,0 72 0 2792 0 0 2192
s1•s2 l1

f ,0
•l2

f ,0 P36
f sc 136 32 8 96 192 236

s3•s6 l3
f ,0
•l6

f ,0 P36
f sc 152 232 2152 248 2288 136

s1•s3 l1
f ,0
•l3

f ,0 P36
f sc 256 264 8 96 192 176

s1•s6 l1
f ,0
•l6

f ,0 P36
f sc 256 32 8 82208 176

s1•s4 l1
f ,0
•l4

f ,0 P36
f sc 16 216 8 220 2248 126

Factor
1

972

A5

972

1

972

A5

972

1

972

1

972
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channels brings a very small change in the3S1 and 1S0
phase shifts below 2.5 fm21, making the repulsion slightly
weaker. TheCC channel brings slightly more repulsion tha
theDD channel. In fact the role ofCC channels is expected
to increase for larger values ofk or, alternatively, smaller
separation distances between nucleons, where they c
bring an important contribution. Of course, the contributi
of theCC channels to theNN phase shifts vanishes at larg
separations because of their color structure. The conclu
regarding the minor contribution ofDD andCC channels to
the phase shifts below 2.5 fm21 is similar for results based
on the OGE model~see, for example,@31#!. Thus for l 50
waves it is good enough to perform one-channel calculati
in the laboratory energy interval 0–350 MeV.

We recall that the pseudoscalar exchange interaction~2.4!
contains both a short-range part, responsible for the re
sion, and a long-range Yukawa-type potential, which brin

TABLE II. Matrix elements^auOub& of different operatorsO
for (S,I )5(0,1).

a NN NN DD NN DD CC
b NN DD DD CC CC CC

1 972 0 972 0 0 972
P36

f sc 212 48 122144 288 2756
l1

c
•l2

c 22592 022592 0 0 2648
l3

c
•l6

c 0 0 0 0 021296
l1

c
•l2

c P36
f sc 32 2128 232 3842768 72

l3
c
•l6

c P36
f sc 264 256 64 962192 1152

l1
c
•l3

c P36
f sc 32 2128 232 3842768 720

l1
c
•l6

c P36
f sc 32 2128 232 248 96 720

l1
c
•l4

c P36
f sc 216 64 16 24 248 1260

s1•s2 t1•t2 4860 0 972 0 0 108
s3•s6 t3•t6 2900 576 1980 0 0 1116
s1•s2 t1•t2 P36

f sc 2444 48 122720 288 588
s3•s6 t3•t6 P36

f sc 708 48 1596 240 67221092
s1•s3 t1•t3 P36

f sc 132 336 122720 288 2420
s1•s6 t1•t6 P36

f sc 132 48 12 336 296 2420
s1•s4 t1•t4 P36

f sc 36 2144 236 228 28821260
s1•s2 l1

f
•l2

f 4536 0 1296 0 0 2126
s3•s6 l3

f
•l6

f 21008 576 1440 0 0 948
s1•s2 l1

f
•l2

f P36
f sc 2376 64 162672 384 814

s3•s6 l3
f
•l6

f P36
f sc 832 32 1568 232 4962976

s1•s3 l1
f
•l3

f P36
f sc 104 304 162672 384 2260

s1•s6 l1
f
•l6

f P36
f sc 104 64 16 3642248 2260

s1•s4 l1
f
•l4

f P36
f sc 36 2168 248 298 12421155

s1•s2 l1
f ,0
•l2

f ,0 2648 0 648 0 0 2468
s3•s6 l3

f ,0
•l6

f ,0 2216 0 21080 0 0 2336
s1•s2 l1

f ,0
•l2

f ,0 P36
f sc 136 32 8 96 192 452

s3•s6 l3
f ,0
•l6

f ,0 P36
f sc 248 232 256 216 2352 232

s1•s3 l1
f ,0
•l3

f ,0 P36
f sc 256 264 8 96 192 320

s1•s6 l1
f ,0
•l6

f ,0 P36
f sc 256 32 8 562304 320

s1•s4 l1
f ,0
•l4

f ,0 P36
f sc 0 248 224 20 2328 210

Factor
1

972

A5

972

1

972

A5

972

1

972

1

972
1-6
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attraction in theNN potential. In order to see the differenc
in the amount of repulsion induced by the GBE and t
induced by the OGE interaction we repeated the one-cha
(NN) calculations above by removing the Yukawa-type pa
We compared the resulting phase shifts with those of Fig
of Ref. @31# obtained with an OGE interaction parametriz
such as to satisfy the stability condition~5.1!. We found that
in the GBE model the repulsion is much stronger and co
sponds to a hard core radiusr 0

GBE50.68 fm ~versusr 0
OGE

50.30 fm! in the 3S1 and r 0
GBE50.81 fm ~versus r 0

OGE

50.35 fm! in the 1S0 partial waves. The radiusr 0 was ex-
tracted from the phase shifts at smallk, which is approxi-
mately given byd52kr0. One can also see that the repu
sion induced by the GBE interaction in the3S1 partial wave
is weaker than that induced in the1S0 partial wave. This is
consistent with our previous result@22# where we found that
the height of the repulsive core is lower for3S1 than for 1S0,
as mentioned in the Introduction. Thus the OGE model gi
less repulsion than the GBE model. In Ref.@33# the stronger
repulsion induced by the GBE interaction is viewed as

FIG. 1. 3S1 NN scattering phase shift as a function ofk. The
solid line shows the result for theNN channel only, the dotted line
for the NN1DD, and the dashed line for theNN1DD1CC
coupled channels.

FIG. 2. Same as Fig. 1 but for the1S0 partial wave.
03400
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welcome feature in correctly describing the phase sh
aboveElab5350 MeV.

A note of caution is required regarding the removal of t
long-range Yukawa part of the interaction~2.4! with the pa-
rametrization~2.5! which contains a rather large couplin
constantgh8q

2 /(4p)52.7652. Theh8-meson exchange is re
sponsible for describing correctly theD-N splitting. If the
long-range Yukawa part is removed, the model fails to d
scribe this splitting because the contribution coming from
second term of Eq.~2.4! for g5h8 becomes too large in a
3q system in the parametrization~2.5!. We recall that the
contribution toN of the short-rangeh8-meson exchange par
is proportional to a factor of 2 and the contribution toD to a
factor of 22 @9#, which bringsD too low andN too high if
the Yukawa part is removed. In these circumstances two
three coupled channel calculations become meaningless

It is also interesting to see the behavior of the relat
wave functionx l 50 of Eq. ~3.22! at short distances. Instea

FIG. 3. The relative wave function of Eq.~5.3! for the 3S1

partial wave fork51 fm21 obtained in one-channel~solid line!
and three-channel~dashed line! calculations.

FIG. 4. 1S0 and 3S1 NN scattering phase shifts as a function
the laboratory energyElab . The solid and dotted lines show th
result corresponding to the GBE model and the dashed and
dashed lines that of the OGE model~see Ref.@31#!.
1-7
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of x l 50 it is more appropriate@27# to introduce a renormal
ized wave function as

x̃a
l 50~R!5(

b
E dR8@Nba

l 50~R,R8!#1/2xb
l 50~R8!, ~5.3!

where the quantity to be integrated contains thel 50 com-
ponent of the normN. In Fig. 3 we show results for the
above function for the3S1 wave atk51 fm21 both for the
one- and three-channel cases. One can see that forR,1 fm
the two functions are entirely different, in the three-chan
case a node being present. If the renormalization was m
with the normN instead of its square, as in Eq.~5.3!, no node
would have been present. The existence of a node is rel
to the presence of the@42#O configuration in the wave func
tion ~see, e.g.,@20#!. Here, whenever it appears, it is due
the cancellation of the positive and negative component
the wave function, but the lack of a node does not exclud
repulsive potential. In a renormalized wave function the a
plitudes of positive and negative components change t
values depending on the multiplicative factorN or N1/2, so
the node could appear in one renormalization definition
not in the other. On the other hand, as discussed above
phase shift changes insignificantly when one goes from
channel to three channels, and this can also be seen in
asymptotic form of the wave function beyondR51 fm, al-
though in the overlap region the two functions are entir
different. The above behavior of the wave function is ve
similar to that found in Ref.@33# where no long-range part i
present in the schematic quark-quark potential due to p
exchange.

In Fig. 4 we represent the3S1 and 1S0 phase shifts of
Figs. 1 and 2 in the one-channel case (NN) again with the
Yukawa part included, but this time as a function ofElab
52\2k2/3m with m5mu,d of Eq. ~2.5!. This is to show that
in the GBE model the two phase shifts are very near e
other, withd(3S1) slightly lower thand(1S0). On the con-
trary, in OGE calculations—as example those of Fig. 2
Ref. @31#—one obtains d(3S1).d(1S0). In calculations
based on the OGE model the difference between the
phase shifts is reduced by the addition of a scalar poten
acting at a nucleon level with a larger attractive strength
the 1S0 channel than in the3S1 channel@5#.

A major difference between the GBEd(3S1) andd(1S0)
is expected to appear after the inclusion of a quark-qu
tensor force@34#. This will modify only the 3S1 phase shift.

VI. CONCLUSIONS

This work is a further important step in our previous stu
ies @21,22# of the NN problem. We consider the two inter
acting nucleons as a 6q system described by a Hamiltonia
containing a linear confinement plus a pseudoscalar~meson!
exchange interaction between quarks.

Previously we derived anNN potential in an adiabatic
approximation. The present study is based on a dynam
approach of theNN interaction, namely, the resonatin
group method. We perform one-, two-, and three-coupl
channel calculations for the3S1 and 1S0 phase shifts for
03400
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laboratory energies up to about 350 MeV.
Our conclusions are the following.
~i! The phase shifts present a behavior typical for stron

replusive potentials. We find that this repulsion, which
induced by pseudoscalar meson exchange, is stronger
that produced by the OGE interaction.

~ii ! In the 1S0 partial wave the repulsion is stronger tha
in 3S1 partial wave as our previous studies suggested.

~iii ! Our results prove that in the laboratory energy int
val 0–350 MeV the one-channel approximation is entire
satisfactory.

Finally in future calculations, in order to describe the3S1
phase shift the tensor force is compulsory and this is
following major step.
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APPENDIX

The method to compute the six-body matrix elements
explained here using the example ofS51,I 50 case.

We know that for the nucleon, the spin-flavor wave fun
tion is given by

cN5
1

A2
@xrfr1xlfl#, ~A1!

wherex andf are the spin and flavor parts, respectively. F
the spin parts we have

x1/2
r 5

1

A2
~↑↓↑2↓↑↑ !,

x21/2
r 5

1

A2
~↑↓↓2↓↑↓ !,

x1/2
l 5

1

A6
~↑↓↑1↓↑↑22↑↑↓ !,

x21/2
l 5

21

A6
~↑↓↓1↓↑↓22↓↓↑ !, ~A2!

and similarly for the flavor parts with↑ replaced byu and↓
replaced byd. Then forb5NN, Eq. ~3.2! becomes
1-8
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FNN
SI 5

1

2 ( Cs1s2s
1/2 1/2SCt1t2t

1/2 1/2I@xs1

r ~1!ft1

r ~1!1xs1

l ~1!ft1

l ~1!#@xs2

r ~2!ft2

r ~2!1xs2

l ~2!ft2

l ~2!#, ~A3!

whereS and I are the spin and isospin of theNN system.x( i ) andf( i ) are the spin and flavor parts of thei th nucleon. For
S5Sz51 andI 5I z50, after inserting the values of the corresponding Clebsch-Gordan coefficients we have

FNN
10 5

1

2A2
$@x1/2

r ~1!f1/2
r ~1!1x1/2

l ~1!f1/2
l ~1!#@x1/2

r ~2!f21/2
r ~2!1x1/2

l ~2!f21/2
l ~2!#

2@x1/2
r ~1!f21/2

r ~1!1x1/2
l ~1!f21/2

l ~1!#@x1/2
r ~2!f1/2

r ~2!1x1/2
l ~2!f1/2

l ~2!#%. ~A4!

At this stage we useMATHEMATICA @35#. We introduce Eqs.~A2! and the equivalent for the flavor parts in Eq.~A4!. We get
a huge expression with 338 terms depending now on the quantum numbers of the quarks. In the matrix element of an
O we then get 33825114 244 terms of the form

^s1s2s3s4s5s6t1t2t3t4t5t6uOus18s28s38s48s58s68t18t28t38t48t58t68&, ~A5!

wheresi andt i ( i 51, . . . ,6)stand for the spin and isospin projection of thei th quark. Note that the normal order of particle
is implied. Now let us chooseO5sW 1•sW 3 lW 1

f
•lW 3

f P36
s f , which contains the permutationP36. Then we have

^s1s2s3s4s5s6t1t2t3t4t5t6usW 1•sW 3lW 1
f
•lW 3

f P36
s f us18s28s38s48s58s68t18t28t38t48t58t68&

5^s1s2s3s4s5s6t1t2t3t4t5t6usW 1•sW 3lW 1
f
•lW 3

f us18s28s68s48s58s38t18t28t68t48t58t38&

5^s1s3t1t3usW 1•sW 3lW 1
f
•lW 3

f us18s68t18t68&d s2

s28d
s4

s48d
s5

s58d
s6

s38d
t2

t28d
t4

t48d
t5

t58d
t6

t38

5^s1s3usW 1•sW 3us18s68&^t1t3ulW 1
f
•lW 3

f ut18t68&d s2

s28d
s4

s48d
s5

s58d
s6

s38d
t2

t28d
t4

t48d
t5

t58d
t6

t38. ~A6!

This shows how a six-body matrix element can be reduced to the calculation of two-body matrix elements. The ne
nonzero two-body matrix elements are

^↑↑usW 1•sW 2u↑↑&5^↓↓usW 1•sW 2u↓↓&51,

^↑↓usW 1•sW 2u↑↓&5^↓↑usW 1•sW 2u↓↑&521,

^↑↓usW 1•sW 2u↓↑&5^↓↑usW 1•sW 2u↑↓&52,

^uuulW 1
f
•lW 2

f uuu&5^ddulW 1
f
•lW 2

f udd&54/3,

^udulW 1
f
•lW 2

f uud&5^duulW 1
f
•lW 2

f udu&522/3,

^udulW 1
f
•lW 2

f udu&5^duulW 1
f
•lW 2

f uud&52. ~A7!

MATHEMATICA is then used to compute systematically the sum of the 114 244 terms stemming from Eq.~A4!.
In Tables I and II all required six-body matrix elements obtained by this technique are listed.
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