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Airy-like patterns in heavy ion elastic scattering

R. Anni
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~Received 9 November 2000; published 1 February 2001!

A semiclassical analysis of an optical potential cross section is presented. The cross section considered is
characterized by the appearance of an Airy-like pattern. This pattern is similar to that which is present in many
cross sections, which fit the recent measurements of light heavy ion elastic scattering, and is considered as a
manifestation of a rainbow phenomenon. The semiclassical analysis shows that, in the case considered, the
oscillations arise from the interference between the contributions from two different terms of a multireflection
expansion of the scattering function, and, therefore, cannot be associated with the rainbow phenomenon.
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The elastic differential cross sections of16O116O @1,2#
and 16O112C @3,4#, recently measured at several energ
and over wide angular ranges, are characterized by the
pearance of structures that are rather well reproduced u
optical potentials with deep real and shallow imaginary pa
A shallow imaginary part allows significant contribution
from the internal region and this suggests that the gr
structures in the angular distribution can be explained as a
ing from the contributions of trajectories refracted by t
deep real potential.

In order to isolate the contributions from these refrac
trajectories, the simple decomposition of the scattering a
plitude in near- and far-side components@5# is commonly
used; because, usually, for strongly absorbing potentials
the near-side component significantly contributes to the c
sections, one is naturally induced to think that the far-s
component should retain the contributions from trajector
penetrating the internal region.

Applying this decomposition to the optical potential sc
tering amplitude an Airy-like pattern often appears in t
far-side cross section and this has stimulated the claim
one is observing a rainbow phenomenon.

We remember that the meteorological rainbow pheno
enon is produced by the scattering of light by the wat
droplets of rain and that a simple, scalar, model of the p
cess is provided by the nonrelativistic scattering by
spherical well.

The semiclassical limit for scattering by this potential w
discussed in detail by Nussenzveig@6,7# in the framework of
an exact multireflection expansion of the scattering functi
named Debye expansion, in which thenth term accounts for
the contributions of trajectories that are refractedn21 times
in the internal region.

In this multireflection expansion the primary rainbow
associated with the third term, retaining the contributi
from trajectories that propagates two times in the inter
region. Mathematically, the rainbow oscillations arise fro
the coherent superposition of the contributions from t
saddle points, coalescing at the rainbow scattering angle.
neighborhood of this angle, the use of uniform asympto
techniques allows one to express the scattering amplitud
terms of an Airy function whose maximum replaces the s
gularity predicted by the nonuniform method.
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In order to confirm the rainbow nature of the spectacu
Airy-like pattern observed in some far-side cross section
seems desirable to look for the two saddle point contri
tions which, coalescing at the rainbow scattering ang
should produce the Airy maximum.

In the extreme semiclassical limit, these two saddle po
contributions should be obtained directly from the exact sc
tering functionSl . In this limit the derivative of the argu-
ment ofSl , with respect to the angular momentuml, is just
the classical deflection function, which should show a ma
mum or a minimum at the rainbow angle. In practical cas
the derivative of arg(Sl) presents a more or less marked o
cillatory behavior that prevents the treatment of this quan
as a deflection function. Owing to this it is not possible
obtain the saddle point contributions by simply using t
exactSl .

The same also happens for the scattering from a sphe
well, and the reason is that the link between the scatte
angle and the angular momentum must be looked for in e
term of the multireflection expansion and not in the ex
scattering function.

Unfortunately, at the present time, there does not exis
exact multireflection expansion for scattering by a gene
potential equivalent to the Debye expansion for the spher
well potential. However, a nonuniform semiclassical meth
was proposed@8# for potentials with an arbitrary number o
turning points in the complexr plane, and a uniform semi
classical technique was developed@9# for the cases in which
only three turning points give the main contribution. Fro
both these methods one can derive approximate multirefl
tion expansions@8,10# in which the different terms have th
same physical meaning as the corresponding terms in
exact Debye expansion for scattering by a spherical well

In this Rapid Communication we present the results
tained by analyzing, with the uniform multireflection expa
sion, the scattering by one optical potential whose far-s
cross section exhibits a striking Airy-like pattern. The und
sired result obtained is that the Airy-like pattern does n
arise from interference between two saddle points in
same term of the multireflection expansion, but from int
ference between a saddle point from the second term of
expansion, describing trajectories refracted in the internal
gion, with a contribution from the first term of the expansio
©2001 The American Physical Society01-1
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describing trajectories that do not penetrate the internal
gion. This last contribution is responsible for the Fraunhof
like pattern in the cross section of the first term of the e
pansion, supporting the conjecture that it must be conside
a diffractive contribution.

The optical potential considered here is one of those
tained @4# by fitting the elastic scattering cross section
16O1 12C at ELab5132 MeV. This potential has conven
tional Woods-Saxon form factors with parametersV0
5282.2 MeV, Rv52.818 fm, anddv50.978 fm, for the
real part, andW0513.86 MeV, Rw55.689 fm, anddw
50.656 fm, for the imaginary part. The only modificatio
introduced in the optical potential used here, with respec
the original one, is represented by the use for the Coulo
part of a proper analytical potential, in order to allow t
continuation of the quantities needed in a semiclass
analysis outside the realr axis. The differences to the cros
section values produced by this substitution are comple
irrelevant.

In Fig. 1 we show the modulus ofSl and a rough estimate
of the derivative of its argument, obtained using the form
Q(l)5arg(Sl 11)2arg(Sl), for integer l values and withl
5 l 1 1

2 . The oscillatory behavior of arg(Sl), which in the
following we name the quantum deflection function, in t
range ofl values aroundl .23 cancels the hope of estimatin
the cross section by applying the saddle point techni
starting from the exactSl . However the smooth behavior o
both Q(l) and uSl u for l values up to about 18 can be co
sidered a signature of the dominance of a classical contr
tion in this l range.

This behavior ofQ(l) is just the one expected for th
deflection function of trajectories refracted in the intern
region of an attractive potential, and should produce a sa
point contribution to the far-side cross section.

A rough estimate of this contribution, from the integel
values up to 18, is shown by the open dots in Fig. 2. It
several orders of magnitude smaller than the far-side c
section~medium-thick dashed curve! at forward angles, bu
increases for increasing angles until it becomes of the s

FIG. 1. Modulus~open dots! and derivative of the argumen
~full dots! of the scattering function. The thin curves show the cu
spline interpolation of the dots.
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order of magnitude as the far-side cross section in the reg
in which the oscillations become more marked.

The simplest quantity in which to look for another sadd
point contribution, which interfering with the above on
could produce the Airy-like pattern, is the scattering functi
of the naive WKB approximation in which the imaginar
part of the potential is treated as a perturbation@11#. This
quantity has an argument whose derivative with respect tl
coincides with the classical deflection function calculat
with only the real part of the potential. In the present ca
this deflection function has a minimum of about2310°, at
l.23.5, and indicates the existence of the two desi
saddle point contributions.

The contributions from the first of these two branches
the deflection function~thin dashed line in Fig. 2! closely
follow the open dots, the second~thin continuous line! re-
sults larger at forward angles, but not enough to justify
average behavior of the exact far-side cross section. The
terference between the amplitudes of the two contributi
was not calculated; in any case it is evident that their s
does not exhibit any classical rainbow singularity, a sing
larity that the uniform technique should transform in the Ai
maximum. Because the minimum of the deflection functi
is of 2310°, this singularity is expected at an angle of 50°
the contributions to the cross section from trajectories co
ing from the near side of the scattering plane.

These difficulties simply reflect the fact that the nai
WKB approximation is too rough for a quantitative analys
of the cross section, and this is confirmed by the compari
of the cross section that it predicts~dotted line in Fig. 2! with
the exact one~heavy continuous line!.

The reason for the failure of the naive WKB approxim
tion must be looked for in the fact that the addition of a sm
imaginary part to a real potential can dramatically modify t
motion of the turning points, as a function of the angu
momentum.

FIG. 2. Cross section~heavy thick line!, near- and far-side com
ponents~medium continuous and dashed lines!, together with the
naive WKB cross section~dotted line! and the saddle point contri
bution from the two far-side branches of the WKB deflection fun
tion ~thin continuous and dashed lines!. The dots show the saddl
point contribution estimated using the exact scattering function
1-2
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In Fig. 3 the positions are shown, for integerl values, of
the turning points nearest to the realr axis ~open dots!, and
of the orbiting points at which two turning points coalesc
for complexl values in this case. The small dots refer to t
complete potential and the large ones to its real part.
squares show the singularities of the potential nearest to
real axis.

The trajectory of the real turning point, for the real pote
tial, is broken into two branches for the complete one:
first terminating in a location near a singularity of the re

FIG. 4. Modulus and deflection function~heavy- and medium-
thick lines! of the first and second terms~continuous and dashe
lines! of the multireflection expansion. The thin lines show t
same quantities for the sum of the two terms. The dots are from
1, and the dotted line shows the classical deflection function of
real potential.

FIG. 3. Turning points in the complexr plane~open dots! and
orbiting points~full dots! for the complete potential~small! and for
only the real part~large!. The squares indicate the singularities
the potential.
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part, the second originating near a singularity of the ima
nary part. In the following the turning points of these tw
branches will be indicated with the subscript 3 and 1.

The trajectory described by the turning point, with po
tive imaginary part and ending in a position near a singu
ity of the real potential, is not qualitatively modified. In th
following this turning point will be referred to with the sub
script 2.

The addition of the imaginary part modifies the old tr
jectory with negative imaginary part. The new trajecto
starts in a location near the old one but ends in a loca
near a singularity of the imaginary potential.

This turning point and the new one, appearing in the fi
quadrant near a singularity of the imaginary potential, rem
far from the real axis and their contributions will be n
glected.

Retaining only the contributions from the turning poin
labeled from 1 to 3 the uniform semiclassical multireflecti
expansion ofS(l) is given by

SSC~l!5 (
n50

`

Sn~l!, ~1!

where

S0~l!5
exp~2id1!

NS S21

p D , ~2!

and, forn>1,

Sn~l!52~2 !n
exp@2i ~nS321S211d1!#

Nn11S S21

p D . ~3!

In the above equationsd1 is the complex WKB phase shif
for the turning pointr 1 , Si j is the action integral, in units o
\, between the turning pointsr i and r j , and N(z) is the
barrier penetrability factorgiven by

N~z!5
A2p

G~ 1
2 1z!

exp~z ln z2z!. ~4!

As in the Debye expansion, the first term, usually deno
nated as the barrier term, retains the contributions from
jectories not penetrating the internal region, while thenth
term retains the contributions from trajectories refractedn
times in the internal region withn21 reflections at the turn-
ing point r 2.

The modulus and the quantum deflection function of
first two terms of the expansion are shown in Fig. 4. T
modulus of the second term~thick dashed line! is much
larger than that of the first~thick continuous line! for small l
values, but it decreases while the other increases, until
become equal atl .21. For higherl value the modulus of the
first term rapidly increases while that of the second ev
more rapidly decreases.
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The quantum deflection function of the first term~medium
continuous line! has the typical behavior, apart from a sm
neighborhood of the grazing angular momentum, of the
flection function of trajectories reflected at the surface o
spherical region, in the presence of an external small C
lomb field.

The quantum deflection function of the second term~me-
dium dashed line! closely follows the classical deflectio
function ~dotted line! for l values smaller than about 20; fo
higher values ofl it shows a rainbow behavior, less deep a
more large than that predicted by classical mechanics.
very small value of the modulus of the scattering functi
suggests that the saddle point contribution from the branc
the quantum deflection function to the right of the rainbo
angular momentum should result as completely negligibl

The thin curves represent the cubic spline interpolatio
of the integerl values, of the modulus and the quantum d
flection function of the sum of the first two terms of th
expansion. These curves are in very good agreement with
dots representing the corresponding exact quantities and
vide a simple explanation of the origin of the irregular b
havior of the exact quantum deflection function, as aris
from the interference between the contributions of two s
pler component scattering functions.

The semiclassical cross section, and its near- and far-
components, obtained using the partial wave expansion
first two terms of the multireflection expansion, are shown
panel~a! of Fig. 5. The differences between these quantit
and the corresponding exact ones cannot be apprec
within the scale and the thickness used for the curves.

In panel ~b! the complete semiclassical cross section
shown together with the separate cross sections of the
two terms of the expansion. The cross section of the fi
term is characterized by the appearance, at forward angle

FIG. 5. ~a! Near- and far-side decomposition~continuous and
dashed lines! of the semiclassical cross section~thick line!; ~b!
cross section of the first and second terms~continuous and dashe
lines! of the multireflection expansion and of their sum~thick line!;
~c! near- and far-side decomposition~continuous and dashed lines!
of the cross section of the first term of the expansion~thick line!;
~d! the same as~c! for the second term of the expansion.
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a Fraunhofer-like oscillatory pattern, while no Airy-like os
cillatory pattern is present in that of the second term. T
Airy-like oscillatory pattern appears only in the comple
cross section and arises from the interference between
scattering amplitudes of the two terms.

The near- and far-side decompositions of the cross sec
of the first and the second term of the expansion are sh
in panels~c! and~d!, respectively. With the exclusion of th
extreme backward scattering angles the cross section o
second term of the expansion is completely far-side and
sults in very good agreement with the dots that represent
saddle point contribution to the cross section previously
timated using the exact scattering function.

The Fraunhofer-like oscillatory behavior of the first ter
of the expansion arises from the interference between a n
side and a far-side contribution. It is just the interferen
between the far-side contributions of the first two term
which is responsible for the Airy-like pattern appearing
the far-side component of the complete cross section.

Previous analyses of similar decompositions@10# have
shown that the far-side component of the barrier term of
expansion retains the contribution from generalized d
fracted trajectories. In the uniform semiclassical approxim
tion for the barrier scattering function, this contributio
should, mathematically, derive from the Sommerfeld pole~or
if one likes, the barrier top resonance@12#! located near the
real l axis, at thel0 value for whichS21(l0)52 (p/2).

The correctness of this interpretation can only be prov
by the direct numerical calculation of the location and of t
residue of this pole. In any case, the analysis of the cr
section here considered shows that the oscillations in
far-side cross section arise from the interference of contri
tions from different terms of the multireflection expansio
From this it follows that~if one agrees to reserve therainbow
denomination to the phenomena having the same justifica
of the phenomenon observed in meteorology! the use of the
rainbow terminology for these oscillations should
avoided.

Irrespective of the nature of the other contribution, and
the denomination of the interference pattern, the pres
analysis confirms that one of these two contributions is
saddle point one, and that it is associated with trajecto
which more or less deeply penetrate the internal region
give important contributions to the optical potential cro
section.

Note added. After the submission of the present work, th
author was notified of the existence of a previously publish
one @13# in which similar results were obtained, with a di
ferent method, for a similar case.

The physical contents of the two methods is exactly
same, both being based on the multireflection expansio
the semiclassical scattering amplitude@9#.

The physical meaning of the amplitude, here denomina
as thesecond term of the multireflection expansion, is prac-
tically the same as that of theinternal amplitude used in Ref.
@13#. The small difference in the terminology used mere
reflects the preference of the author to reserve theinternal
denomination to the difference between the total and the
rier semiclassical amplitudes.
1-4
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