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Airy-like patterns in heavy ion elastic scattering
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A semiclassical analysis of an optical potential cross section is presented. The cross section considered is
characterized by the appearance of an Airy-like pattern. This pattern is similar to that which is present in many
cross sections, which fit the recent measurements of light heavy ion elastic scattering, and is considered as a
manifestation of a rainbow phenomenon. The semiclassical analysis shows that, in the case considered, the
oscillations arise from the interference between the contributions from two different terms of a multireflection
expansion of the scattering function, and, therefore, cannot be associated with the rainbow phenomenon.
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The elastic differential cross sections 80+ 10 [1,2] In order to confirm the rainbow nature of the spectacular
and %0+ 12C [3,4], recently measured at several energiesAiry-like pattern observed in some far-side cross sections it
and over wide angular ranges, are characterized by the apeems desirable to look for the two saddle point contribu-
pearance of structures that are rather well reproduced usirtgpns which, coalescing at the rainbow scattering angle,
optical potentials with deep real and shallow imaginary partsshould produce the Airy maximum.

A shallow imaginary part allows significant contributions In the extreme semiclassical limit, these two saddle point
from the internal region and this suggests that the grossontributions should be obtained directly from the exact scat-
structures in the angular distribution can be explained as arigering functionS,. In this limit the derivative of the argu-
ing from the contributions of trajectories refracted by thement ofS;, with respect to the angular momentupis just
deep real potential. the classical deflection function, which should show a maxi-

In order to isolate the contributions from these refractedmum or a minimum at the rainbow angle. In practical cases,
trajectories, the simple decomposition of the scattering amthe derivative of argh) presents a more or less marked os-
plitude in near- and far-side componenf is commonly cillatory behavior that prevents the treatment of this quantity
used; because, usually, for strongly absorbing potentials onlgis a deflection function. Owing to this it is not possible to
the near-side component significantly contributes to the crossbtain the saddle point contributions by simply using the
sections, one is naturally induced to think that the far-sideexact§, .
component should retain the contributions from trajectories The same also happens for the scattering from a spherical
penetrating the internal region. well, and the reason is that the link between the scattering

Applying this decomposition to the optical potential scat-angle and the angular momentum must be looked for in each
tering amplitude an Airy-like pattern often appears in theterm of the multireflection expansion and not in the exact
far-side cross section and this has stimulated the claim thaicattering function.
one is observing a rainbow phenomenon. Unfortunately, at the present time, there does not exist an

We remember that the meteorological rainbow phenomexact multireflection expansion for scattering by a generic
enon is produced by the scattering of light by the waterpotential equivalent to the Debye expansion for the spherical
droplets of rain and that a simple, scalar, model of the prowell potential. However, a nonuniform semiclassical method
cess is provided by the nonrelativistic scattering by awas proposed8] for potentials with an arbitrary number of
spherical well. turning points in the complek plane, and a uniform semi-

The semiclassical limit for scattering by this potential wasclassical technique was develogéd for the cases in which
discussed in detail by Nussenzvg®y7] in the framework of  only three turning points give the main contribution. From
an exact multireflection expansion of the scattering functionpoth these methods one can derive approximate multireflec-
named Debye expansion, in which thth term accounts for tion expansion$8,10] in which the different terms have the
the contributions of trajectories that are refractedll times same physical meaning as the corresponding terms in the
in the internal region. exact Debye expansion for scattering by a spherical well.

In this multireflection expansion the primary rainbow is  In this Rapid Communication we present the results ob-
associated with the third term, retaining the contributiontained by analyzing, with the uniform multireflection expan-
from trajectories that propagates two times in the internabion, the scattering by one optical potential whose far-side
region. Mathematically, the rainbow oscillations arise fromcross section exhibits a striking Airy-like pattern. The unde-
the coherent superposition of the contributions from twosired result obtained is that the Airy-like pattern does not
saddle points, coalescing at the rainbow scattering angle. Inarise from interference between two saddle points in the
neighborhood of this angle, the use of uniform asymptoticsame term of the multireflection expansion, but from inter-
techniques allows one to express the scattering amplitude iference between a saddle point from the second term of the
terms of an Airy function whose maximum replaces the sin-expansion, describing trajectories refracted in the internal re-
gularity predicted by the nonuniform method. gion, with a contribution from the first term of the expansion,
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FIG. 1. Modulus(open doty and derivative of the argument

(full dots) of the scattering function. The thin curves show the cubic  FIG. 2. Cross sectiotheavy thick ling, near- and far-side com-
spline interpolation of the dots. ponents(medium continuous and dashed linemgether with the
naive WKB cross sectiofdotted ling and the saddle point contri-

describing trajectories that do not penetrate the internal ret-’Ution from the two far-side branches of the WKB deflection func-
g ray P tion (thin continuous and dashed line§he dots show the saddle

gion. This last contribution is responsible for the Fraunhofer-_"_ - ; . : :
like pattern in the cross section of the first term of the eX_pomt contribution estimated using the exact scattering function.
pansion, supporting the conjecture that it must be consideregkder of magnitude as the far-side cross section in the region
a diffractive contribution. in which the oscillations become more marked.

The optical potential considered here is one of those ob- The simplest quantity in which to look for another saddle
tained [4] by fitting the elastic scattering cross section of point contribution, which interfering with the above one
16 1 — H H . . A . .

O+ '°C at E|,,=132 MeV. This potential has conven- could produce the Airy-like pattern, is the scattering function
tional Woods-Saxon form factors with paramete¥g  of the naive WKB approximation in which the imaginary
=282.2 MeV, R,=2.818 fm, andd,=0.978 fm, for the part of the potential is treated as a perturbatiaf]. This
real part, andW,=13.86 MeV, R,=5.689 fm, andd,  quantity has an argument whose derivative with respext to
=0.656 fm, for the imaginary part. The only modification coincides with the classical deflection function calculated
introduced in the optical potential used here, with respect tqvith only the real part of the potential. In the present case
the original one, is represented by the use for the Coulomihis deflection function has a minimum of abou10°, at
part of a proper analytical potential, in order to allow the =235, and indicates the existence of the two desired
continuation of the quantities needed in a semiclassicadaddle point contributions.
analysis outside the realaxis. The differences to the cross  The contributions from the first of these two branches of
section values produced by this substitution are completelyhe deflection functior(thin dashed line in Fig. )2closely
irrelevant. follow the open dots, the secorithin continuous ling re-

In Fig. 1 we show the modulus & and a rough estimate sults larger at forward angles, but not enough to justify the
of the derivative of its argument, obtained using the formulaaverage behavior of the exact far-side cross section. The in-
O(\)=arg(S 1) —arg(S), for integerl values and witlhh  terference between the amplitudes of the two contributions
=I+3. The oscillatory behavior of ar§(), which in the was not calculated; in any case it is evident that their sum
following we name the quantum deflection function, in thedoes not exhibit any classical rainbow singularity, a singu-
range ofl values aroundl=23 cancels the hope of estimating larity that the uniform technique should transform in the Airy
the cross section by applying the saddle point techniquenaximum. Because the minimum of the deflection function
starting from the exac§, . However the smooth behavior of is of —310°, this singularity is expected at an angle of 50° in
both ®(\) and|S| for | values up to about 18 can be con- the contributions to the cross section from trajectories com-
sidered a signature of the dominance of a classical contribung from the near side of the scattering plane.
tion in this| range. These difficulties simply reflect the fact that the naive

This behavior of®(\) is just the one expected for the WKB approximation is too rough for a quantitative analysis
deflection function of trajectories refracted in the internalof the cross section, and this is confirmed by the comparison
region of an attractive potential, and should produce a saddlef the cross section that it predidotted line in Fig. 2with
point contribution to the far-side cross section. the exact ongheavy continuous line

A rough estimate of this contribution, from the inteder The reason for the failure of the naive WKB approxima-
values up to 18, is shown by the open dots in Fig. 2. It istion must be looked for in the fact that the addition of a small
several orders of magnitude smaller than the far-side crossnaginary part to a real potential can dramatically modify the
section(medium-thick dashed curyeat forward angles, but motion of the turning points, as a function of the angular
increases for increasing angles until it becomes of the sam@omentum.
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5 ‘ ' ' 1 part, the second originating near a singularity of the imagi-
nary part. In the following the turning points of these two
branches will be indicated with the subscript 3 and 1.
0 1 The trajectory described by the turning point, with posi-
.1 % ﬁ ) | tive imaginary part and ending in a position near a singular-
boos’ O ity of the real potential, is not qualitatively modified. In the
° o 8 following this turning point will be referred to with the sub-
e script 2.

1+

Im (r) (fm)

0 me@goon O, . oLRuneeeeeseey The addition of the imaginary part modifies the old tra-
gt °, © o . jectory with negative imaginary part. The new trajectory
g Q% starts in a location near the old one but ends in a location
2r ﬁ ?é i near a singularity of the imaginary potential.
b O i This turning point and the new one, appearing in the first
) . quadrant near a singularity of the imaginary potential, remain
4r . 1 far from the real axis and their contributions will be ne-
3 S SO E S R glected.
o 1 2 3 4Re (rf (fm)6 7 8 9 10 Retaining only the contributions from the turning points

labeled from 1 to 3 the uniform semiclassical multireflection
FIG. 3. Turning points in the complexplane (open dots and expansion ofS(\) is given by

orbiting points(full dots) for the complete potentidbmal) and for

only the real par{large. The squares indicate the singularities of

the potential. Ssd\) = ngo S,(N), D

In Fig. 3 the positions are shown, for intedevalues, of
the turning points nearest to the readxis (open dotg and
of the orbiting points at which two turning points coalesce,

where

for complex! values in this case. The small dots refer to the (N)= M, )
complete potential and the large ones to its real part. The N(%l)
squares show the singularities of the potential nearest to the T
real axis.
The trajectory of the real turning point, for the real poten-and, forn=1,
tial, is broken into two branches for the complete one: the
first terminating in a location near a singularity of the real ex] 2i (NSypt Spi+ 61)]
SN =—=(=)" )
180 5 10° NP+L a1
] a

In the above equationg; is the complex WKB phase shift

90
100 for the turning point;, S;; is the action integral, in units of
fi, between the turning points andr;, andN(z) is the
0 barrier penetrability factorgiven by
g
~ _ N2
S 107 = N(z)= ———exp(zInz—2). (4)
90 I'(z +2)

As in the Debye expansion, the first term, usually denomi-

| 107 nated as the barrier term, retains the contributions from tra-

] jectories not penetrating the internal region, while tith
term retains the contributions from trajectories refracted
times in the internal region with—1 reflections at the turn-

i 10 ing pointr,.

o 5 10 15 20 25 30 35 40 The modulus and the quantum deflection function of the
first two terms of the expansion are shown in Fig. 4. The
FIG. 4. Modulus and deflection functiciheavy- and medium- Modulus of the second terrthick dashed lingis much

thick lines of the first and second ternfsontinuous and dashed larger than that of the firgthick continuous lingfor smalll

lines of the multireflection expansion. The thin lines show the Values, but it decreases while the other increases, until they
same quantities for the sum of the two terms. The dots are from Figoecome equal dt=21. For highet value the modulus of the

1, and the dotted line shows the classical deflection function of thdirst term rapidly increases while that of the second even
real potential. more rapidly decreases.
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a Fraunhofer-like oscillatory pattern, while no Airy-like os-
cillatory pattern is present in that of the second term. The
Airy-like oscillatory pattern appears only in the complete
cross section and arises from the interference between the
scattering amplitudes of the two terms.

The near- and far-side decompositions of the cross section
of the first and the second term of the expansion are shown
in panels(c) and(d), respectively. With the exclusion of the
extreme backward scattering angles the cross section of the
second term of the expansion is completely far-side and re-
sults in very good agreement with the dots that represent the
saddle point contribution to the cross section previously es-
timated using the exact scattering function.

: The Fraunhofer-like oscillatory behavior of the first term

0 30 60 90 120 150 180 o_f the expansion arises frqm t_he mterfergnce bet_ween a near-
© (deg) side and a far-side contribution. It is just the interference
between the far-side contributions of the first two terms

FIG. 5. (a) Near- and far-side decompositignontinuous and  \hich is responsible for the Airy-like pattern appearing in
dashed Iin_e)s of the s_,emiclassical cross sec_ticﬁﬂnick line); (b) the far-side component of the complete cross section.
c_ross section of_the f|r§t and secqnd tel(m:mtlnu_ous a_nd Qashed Previous analyses of similar decompositidii®)] have
lines) of the multireflection expansion and of their suthick line); g5\ that the far-side component of the barrier term of the
g}? tﬂzaé;oasr;dsf;i:geo??ﬁg?giﬁ'gﬁgp?#g‘::xa;: i‘ﬁ;ﬁeﬁnges expansion retains the contribution from generalized dif-

pans® ' fracted trajectories. In the uniform semiclassical approxima-
(d) the same asc) for the second term of the expansion. . ; . . . W
tion for the barrier scattering function, this contribution
should, mathematically, derive from the Sommerfeld gole

The quantum deflection function of the first tetmedium  if one likes, the barrier top resonanfE]) located near the
continuous ling has the typical behavior, apart from a small real\ axis, at thexy value for whichS,(\g)=— (7/2).
neighborhood of the grazing angular momentum, of the de- The correctness of this interpretation can only be proved
flection function of trajectories reflected at the surface of ay the direct numerical calculation of the location and of the
spherical region, in the presence of an external small Couwesidue of this pole. In any case, the analysis of the cross
lomb field. section here considered shows that the oscillations in the

The quantum deflection function of the second téme-  far-side cross section arise from the interference of contribu-
dium dashed line closely follows the classical deflection tions from different terms of the multireflection expansion.
function (dotted ling for | values smaller than about 20; for From this it follows thafif one agrees to reserve th@nbow
higher values of it shows a rainbow behavior, less deep anddenomination to the phenomena having the same justification
more large than that predicted by classical mechanics. Thef the phenomenon observed in meteorolotiye use of the
very small value of the modulus of the scattering functionrainbow terminology for these oscillations should be
suggests that the saddle point contribution from the branch aivoided.
the quantum deflection function to the right of the rainbow Irrespective of the nature of the other contribution, and on
angular momentum should result as completely negligible. the denomination of the interference pattern, the present

The thin curves represent the cubic spline interpolationsanalysis confirms that one of these two contributions is a
of the integerl values, of the modulus and the quantum de-saddle point one, and that it is associated with trajectories
flection function of the sum of the first two terms of the which more or less deeply penetrate the internal region and
expansion. These curves are in very good agreement with thgive important contributions to the optical potential cross
dots representing the corresponding exact quantities and preection.
vide a simple explanation of the origin of the irregular be- Note addedAfter the submission of the present work, the
havior of the exact quantum deflection function, as arisingauthor was notified of the existence of a previously published
from the interference between the contributions of two sim-one[13] in which similar results were obtained, with a dif-
pler component scattering functions. ferent method, for a similar case.

The semiclassical cross section, and its near- and far-side The physical contents of the two methods is exactly the
components, obtained using the partial wave expansion thgame, both being based on the multireflection expansion of
first two terms of the multireflection expansion, are shown inthe semiclassical scattering amplitucg.
panel(a) of Fig. 5. The differences between these quantities The physical meaning of the amplitude, here denominated
and the corresponding exact ones cannot be appreciates thesecond term of the multireflection expansienprac-
within the scale and the thickness used for the curves. tically the same as that of theternal amplitude used in Ref.

In panel (b) the complete semiclassical cross section ig13]. The small difference in the terminology used merely
shown together with the separate cross sections of the firseflects the preference of the author to reserveitlernal
two terms of the expansion. The cross section of the firstlenomination to the difference between the total and the bar-
term is characterized by the appearance, at forward angles, tér semiclassical amplitudes.

o(9)/or(3)
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