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Spatially inhomogeneous condensate in asymmetric nuclear matter
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We study the isospin singlet pairing in asymmetric nuclear matter with nonzero total momentum of the
condensate Cooper pairs. The quasiparticle excitation spectrum is fourfold split compared to the usual BCS
spectrum of the symmetric, homogeneous matter. A twofold splitting of the spectrum into separate branches is
due to the finite momentum of the condensate, the isospin asymmetry, or the finite quasiparticle lifetime. The
coupling of the isospin singlet and triplet paired states leads to further twofold splitting of each of these
branches. The gap equation is solved numerically in the isospin singlet channel in the case where the pairing
in the isospin triplet channel and the renormalization of the single particle energies are neglected. We find
nontrivial solutions with finite total momentum of Cooper pairs. The corresponding condensate has a periodic
spatial structure which carries a isospin density wave at constant total number of particles. The phase transition
from the BCS to the inhomogeneous superconducting phase is found to be first order and occurs when the
density asymmetry= (p,— p,)/(pn+ pp) (defined in terms of partial densities of neutrgnsand protong,)
is increased above 0.25. The transition from the inhomogeneous superconducting to the unpaired normal state
is second order. The maximal values of the critical total momeritnmnits of the Fermi momentunand the
critical density asymmetry at which condensate disappeaB dfg-=0.3 anda.=0.41(assuming free single
particle spectrum The possible spatial forms of the ground state of the inhomogeneous superconducting phase
are briefly discussed.
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I. INTRODUCTION shifted. This allows for the pairing, even for vastly different
radii of the spheres, since now the nonconcentric spheres
The theory of fermion pairing when the fermions, which may intersect. The overlap regions then provide the kine-
are bound in Cooper pairs, lie on different Fermi surfacegnatical phase space for pairing phenomena to occur.
was addressed in the early 1960s in the context of metallii The microscopic calculations, based on the BCS theory

superconducting alloys containing paramagnetic impuritie or the bulk nuclear matter shov_v that the. |sos'p|n-sy3mmetr|c
[natter supports Cooper-type pair correlations ini6g-°D,

artial-wave channel due to the tensor component of the
uclear force. The energy gap is of the order of 10 MeV at
the empirical saturation densitiRefs.[5—11] and references

[1-4]. Recently, the theory has received renewed attention i
several contexts, including the pairing in asymmetric nucleaﬁ
matter [5—-11] and color superconductivity in flavor-

asymmetric high-density QCH12,13. therein if one assumes that the effective pairing interaction
This paper elaborates on an earlier suggeg@that the -5 pe approximated by the bare interaction and if the renor-
ground state of the superconducting asymmetric nuclear mafpajization of the single particle spectrum reduces the density
ter at Iarge asymmetnes COI’I’espondS to a pall’ Condensa& the state at the Fermi Surface by a factor Of 2.
with nonzero total momentum of the Cooper pairs. The ar- There is little evidence for large gap isospin singlet pair-
gument is based on the observation by Larkin and Ovchining in ordinary nuclei[18], which is evidently suppressed
nikov [14] and Fulde and Ferre[l15] who first showed, in  due to the spin-orbit splitting19]. The laboratory data do
the context of the metallic superconductors, that thenot exclude the possibility that the bulk nuclear matter, as
Bardeen-Cooper-SchrieffédBCS) equations admit solutions encountered in the supernovas and neutron stars, may sup-
with nonzero total momentum of Cooper pairs. In the con-port large gap pairing in the isospin singlet channel. In the
figuration space such a condensate forms a periodic latticeodel of “nucleon stars”[20] the kaon condensation im-
with finite shear modulus. The resulting spatially inhomoge-plies nearly isospin-symmetric matter, in which case the
neous superconducting state is called the Larkinisospin singlet pairing can play a major role in determining
Ovchinnikov-Fulde-Ferrel(LOFF) phase. the cooling and rotation dynamics of such objects. However,
The occurrence of pair correlations crucially dependsn the models without meson condensates the proton concen-
upon the overlap between the neutron and proton Fermi sutration in supernova and neutron star matter is of the order of
faces; the pairing gap is largest in the isospin-symmetric casg%—30% and these asymmetries are too large to allow for
and is suppressed as the system is driven out of the symmaeateutron-proton pairing. In the high-density regime, the
ric state. The thermal smearing of the Fermi surfaces prohyperon-rich neutron star matter may be much more sym-
motes the pairing, but, however, is ineffective when themetric than at the densities around the saturation defliy
separation between the surfaces is large compared to ttend therefore can support neutron-proton pairing, most likely
temperature. If the total momentum of the Cooper pairs iglue to the attractivéD, partial-wave interactiofi7]. If the
zero, the Fermi surface$or homogeneous systejnare lo-  nucleon-hyperon and hyperon-hyperon interactions are at-
cated on concentric spheres. If, however, a Cooper paitractive, the pairing among fermions lying on different Fermi
moves with a finite momentum, the centers of the spheres amurfaces, and in particular the formation of the LOFF phase,
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could be a realistic possibility in hyperon-rich matter. Fi- . G;l(x) 0

nally, in superstrong magnetic fields of highly magnetized Gal(x)z( -1 *),

neutrons stargmagnetars the Pauli paramagnetism will 0 [G, ()]

cause a splitting in the Fermi energies of the spin-up and (©)
spin-down fermions; in this case the pairing in the isospin 5 2 4 5(X1,%2) Aaﬁ(xl,xz))

triplet channel among th&wave paired neutrons should ex- ap(X1,X2) Alg(xl,XQ) EZﬁ(XlaXZ) ;

hibit the properties of the LOFF phase.

Before turning to the main body of the paper, we draw the I . .
reader’s attentiogn to Ref16] Whoyconsidepr)eg the color su- wherelGa (X)z'f?/erVzlzm“Jr““’ Mo IS the chem|cgl .
perconducting LOFF phase in the context of high-densit)POt.ent'al’ and“n.a is the bare mass. The self—gnergy matr|>§ IS
QCD and Ref.[17] who considered the finite-momentum defined accordlAng to the rules of the usual diagram tecAhmque
pairing between quarks in the particle-hole changusiiral in the terms ofG and the four-fermion interaction vertdx
condensate Our work, to some extent, parallels the former In particular, the anomalous self-energy, which incorporates
reference, but we do not attempt any comparison at thighe pair correlations, is given by
stage, as the formalisms and contexts are entirely different.

In Sec. Il we derive the BCS equations, which include the A _ 2 r )
effects of the finite momentum of the Cooper pairs, within ap(X1:%2) <~ apye(X1,X21X3,X4)
the finite-temperature real-time Green'’s functions formalism.
The numerical solutions of these equations are shown in Sec. XF oy (X3,X4) dX30 Xy (4)

[ll. Section IV contains a summary of the results.
In the following we shall be interested in stationdtime-
independentand spatially inhomogeneous solutions of the
Il. FORMALISM equations above in the quasiclassical approximation. This

Below. we shall use the real-time Green’s functions ex-2PProximation holds when the characteristic length scales of

tended to the Nambu-Gor'kov space to account for pair corlhe spatial variations of the macroscopic condensate are

relations. The single particle retarded Green's function ifMuch larger than the inverse of the momenta involved in the
this space is defined as usual: problem~pg, wherepg is the Fermi momentum. The qua-

siclassical counterparts of the equations above are obtained
by going over to the center of maX¥s=(x;,+X,)/2 and rela-
Gap(X1:X2)  Fap(X1,%2) tive x=x;—X, coordinates in the two-point functions and
Flﬁ(xl,xz) Glﬁ(xl,xz) carrying aAFourier t[ansform with respect to the relative co-
T ordinatesG(x,X)—G(w,p,R, T), wherew,p are the relative
<Tt'/’a(xl)’/’ﬁ(x2)> (Tetha(X1) Y5(X2)) frequency and momentum, axd=(R,T). As the variations
<Tt¢2(xl)¢;3(x2)> <Tt¢£(X1) Pa(X2)))’ of the propagators and self—ene_rgies are slow on the scale; of
the order ofR, keeping the leading order terms in the gradi-
@D ent expansion is accurate to orde[ (pgR) ~1]. Carrying
out a Fourier transformation with respectRp we arrive at
where a and B stand for discrete quantum numbespin, the Dyson equation for the quasiclassical functions:
isospin, etd, ' and ¢ are the nucleon creation and annihi-

iéaﬁ(xl,xz)zi(

lation operatorsx=(r,t) denotes the space-time coordinate, w— e;y ~Auy \[Gys Foup )
andT, is the time-ordering symbol. The averaging is carried N v et ot ™ S5l (9
out over the equilibrium ensemble at a fixed density and v ay @7 €ay B B

temperature. The equation of motion for the matrix Green'’s
function is given by the time-dependent Dyson equation where

. . €. ,=(Pl2+p)?l2m,— u,tReS z,—Im3 5, (6
G;1(X1)Gaﬁ(xlvxz) s~ i # Fa Fa ©
A . A and RE ,5=(3 5~ 31512, IM3 5=(S,5+3])/2; all
=16,50(x1—X) +i 2, f d®x33.,,(X1,X3)G,5(X3,X2),  propagators and self-energies are functionsopfp, and P

4 (the dependence on center-of-mass time is dropped in the
(2 stationary limi). Equation(5) is a (4X 4) matrix in the spin-
isospin space in general. The number of degrees of freedom

herei i it matrix in the Nambu-Gor'k th can be reduced since the fermionic wave function of paired
where L 1S a unit matrix in theé Nambu-t50r KoV Space, e o minns must be antisymmetric. In the case of spin and

inverse free-particle propagator, and the self-energy matrixelgospin conserving forces the normal Green’s functions and

are self-energies are diagonal in the spin and isospin spaces. It is
sufficient to consider the anomalous propagators, e.g., in the
isospin space, since the resulting spin structure Sferave
1This problem is currently under study. interactions, is uniquely determined for each isospin combi-
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nation. The quasiparticle excitation spectrum is determined
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!

K]
in the standard fashion by finding the poles of the propagaA(p,P):zf (Z—)SF(w’,p,p’,P)lm Flo',p',P)f(w'),
o

tors in Eq.(5):

W+ = Ep

+ \/ est %Tr(AAT )i%\/[Tr(AAT)]Z—4 Dei AAT).

@)

Here A=A .4, es=(e"+€7)/2, andey=(e" —€)/2. The

(13

where f(w)=[exp(Bw)+1] ! is the Fermi distribution
function andg is the inverse temperature; the effective pair-
ing interactionl” is assumed real and will be replaced by the
bare interaction below. The integration is straightforward

in the quasiparticle approximation, since the frequency de-
pendence of the propagator is constrained by the on-shell

new quasiparticle spectrum has four branches. The fourfoldondition. Further progress requires partial-wave decomposi-

splitting of the BCS spectrum is due (a) isospin asymme-

tion of the interaction, which can be done after an angle

try and/or the finite momentum of the condensate and/or thaveraging in the remainder functions on the right-hand side

finite lifetime of the quasiparticles an@) the coupling of

of the Eq.(13). The result of this procedure is

the pairing gaps in different isospin channels. If we restrict

ourselves to the neutron-proton pairing in tH#-°D; chan-
nel, which is justified whenA,,,Ap,<A,,, then A4

=o,A (o is the first component of the vector of Pauli ma-

trixes). The spectrum, in this case, simplifies to

0= ent JEH[AP, 8

where the symmetric and asymmetric parts of the spectru
(which are even and odd with respect to the time-revers

symmetry are defined as
es=P?/8m+ p?2m+Re3 — pu,
ea=P-p2m+ImX—Su. (9)

Here pu=(unt up)l2, Spu=(un—up)/2 and RE=(%,,
—300)/2, ImS=(3,,+37)/2 (subscriptsp and n refer to

protons and neutropsThe limit e,—0 corresponds to the
BCS pairing in the isospin symmetric nuclear matter. It is

explicit now that the spectrun®) is twofold split due to
three factors, the isospin asymmetrgu(#0), the finite-
momentum of the Cooper paiP{ 0), and the finite lifetime

of the quasiparticle (Inx # 0). Below, we shall keep the first

i

dp’p
A = — —_—
1(p,P) ; (2m)?

X([f(wy)=F(w)]),

A|r(p/,P)
2\ek+A(p',P)?
(14

Vi (p,p")

where(- - -) denotes the average over the angle between the

;ﬁ]elative and total momenta, and (p,P)?=A(p,P)?

+A,(p,P)? is the angle-averaged gap. Here the pairing in-
teraction is approximated by the bare neutron-proton interac-
tion V(p,p’) in the 3S;-3D;-channel. The self-consistent
procedure of the determination of the gap function requires a
normalization condition for the net density=p,+ p, of the
system at a fixed temperature and the magnitude of the total
momentumP. The corresponding expression is provided by

d4
pup(P)=—23 f ﬁlmen/p(w,p,w(w)

d3
:; fﬁ{ugf(wi)ﬂﬁf(wJ}, (15

two factors, and shall neglect the last one, since the quasi-

particle approximation is valid in the density-temperature
range of interestdensities around the nuclear saturation den

sity and temperatures10 MeV). The solution of the Dyson
equation(5) is

2 2

Grp=——— P o
"Pw—wy_tin w—w_ t+in’

1 1

F=uy, — — — |, (11)
w—wi Tl w—w_+I7y
where the Bogoliubov amplitudes are
3 e e @2
2 2\es+]|A 2 2\es+]|A|

Let us turn to the solution of the gap equati@), which in
the quasiclassical limit takes the form

whereo stands for quasiparticle spin and the second equality

follows in the quasiparticle approximation. The coupled
equationg14) and(15) should be solved simultaneously.

To find the true ground state we have to minimize the free
energy of the system at fixed total density and temperature.
In the mean-field approximation the entropy of the system is
given by the combinatorical expression

S=-2kg>, {f(o)Inf(w)+f(o)Inf(w,)

+f(w_)Inf(o_)+f(w_)Inf(w_)}, (16)

Wheref_(wi)=[1—f(wi)], andkg is the Boltzmann con-
stant. The internal energy, defined as the grand canonical

statistical average of the Hamiltoniar)=(H—u(Mp,
—uPp,), reads
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1.0

d®p . ~
u=2f(2w)3[[e Mn(P)+ € Ny(p)]

37
+§ (ZT)3V||'(p:p’)V|(p)V|'(p') . (1Y)

0.6

4
=y ';'Z:'l:
where =1 'z'%'g'l}; ?3:
12 2 055
nn/p( p) = upf(wi) tvu pf ( W ): (18) l;ll”;[llllz;:z':':":iQ::“:“
v(p) =g ([ F(w) = F(w-)]). ] Inf:'fi,';g','gg:z::,::(;o;" ot
L
The first term in Eq(17) includes the kinetic and nonpairing ”'I;"z‘““““‘ ‘
energies of the quasiparticles. The second term includes th =3 'l"““" ‘
BCS mean-field interaction among the particles in the con- ":::JII"" ”
densate. The free ener@st fixed density and temperatiiie ":“:‘!A“‘h A “A
defined as 04 22
058
(F),g=U—-pB"1S. (19 06> 0.4

The true ground state of the system minimizes the free- FIG. 1. The pairing gap\(pg) in the S;-*D; partial-wave
energy difference 4F),, ; between the superconducting and channel as a function of the isospin asymmetry (p,— pp)/p and
normal stategthe free energy in the normal state follows total momentumP in units of the Fermi momentum. The pairing

from Egs.(16) and (17) whenA =0]. gap is normalized to its value in the symmetric and zero-total-
momentum casé\,o=14.38 MeV at fixed total density=0.16
Il RESULTS fm~2 and temperatur@ =3 MeV.

The main focus of the numerical calculations shown bedzed to its value in the symmetric and zero-total-momentum
low is the effects of the finite momentum of the Cooper pairscaseAq=14.38 MeV at fixed total densitp=0.16 fm >
and the emergence of the LOFF phase in the asymmetrignd the temperatur8~ =3 MeV. The results reported here
nuclear matter. A number of simplifying assumptions wentare relevant for the low-temperature regimg ¢/Aq,
into these calculations: first, the pairing interaction is ap-=0.208<1); the temperature dependence of the LOFF
proximated by the bare interaction; i.e., the effects of thephase, in particular thg&— T, limit, will be discussed else-
screening of the pairing interaction are ignored. Second, w&here.
employ the quasiparticle approximation and set the effective The absolute magnitude of the gap is consistent with the
mass of the quasiparticles equal to their bare mass. Third, werevious results based on the free-single-particle spectrum
ignore the coupling between the pairing in the isospin triple{8] (note that the gap in Ref8] is by 15% smaller, since
and singlet states. The first two approximations change thtéhere a rank 4 potential has been used instead of the rank 1
absolute magnitude of the paring gap by affecting, respedgpotential used in this wojk A renormalization of the single
tively, the strength of the interaction and the density of stategarticle spectrum, for example within the Brueckner theory,
at the Fermi surface. To remove the dependence on the algads to a decrease of the gap by a factor of 2; see[BEf.
solute scale of the gap we present the results normalized tBhis reduction also affects the critical asymmetry at which
the pairing gap in the symmetric matter at zero total momenthe BCS state disappears, by reducing it, e.g., at nuclear satu-
tum of the pairs. The third approximation is valid wheneverration density, from 0.35 for the free-particle spectrum to
the pairing in the isospin singlet channel is much larger tha®.11 for the Brueckner-renormalized particle spectf@].
in the isospin triplet channel. This could be the case since th&herefore, the absolute magnitude of the asymmetry, at
strength of the interaction in th¢s;-3D in the free space is which the transition from the BCS to the LOFF phase occurs,
much larger than the one in tHé&, channel and these chan- and its critical value, at which the LOFF phase disappears,
nels are attractive in the same range of the energies. Thiill be reduced by roughly a factor of 3, if the renormaliza-
argument, however, implicitly assumes that effects of theion of the single particle spectrum is carried out within the
quasiparticle renormalization and the screening of the pairin@rueckner theory. For=0 the gap is maximal aP=0,
interaction are of the same order in both channels, whiclglecreases as the total momentum is increased, and vanishes
could be false. at the critical total momenturR; o= 0.558¢ . For P=0 the

Figure 1 shows the pairing gap(pg) in the 3S,-3D,  gap again decreases as a functiorwofind vanishes at. o
partial-wave channel as a function of the isospin asymmetry=0.37. The onset of the LOFF phase is signaled by the
defined asy=(p,—pp)/p and total momentur® in units of ~ change of the shape of the constantslices in thea-P
the Fermi momentum. The pairing interaction has been applane: fora=0.25 the maximum of the gap as a function of
proximated by a separable form of the Paris nucleon-nucleoR shifts from theP=0 to P# 0 values; i.e., the condensation
interaction(PEST1 of Ref[22]). The pairing gap is normal- energy becomes maximal f&# 0. The maximum is located
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(S,/S)/B

FIG. 2. The latent heat of transition as a function of isospin
asymmetrye and total momentur®. The remaining parameters are
the same as in Fig. 1.

FIG. 3. The difference of the free energies of the normal and
at P=0.3p and is not sensitive to the value a=0.25.  superconducting state5F) .z, normalized to its value in the sym-
Interestingly, fora=0.37 the pairing exists only for finite metric and zero-total-momentum sta@ ) 5= — 7.35 MeV. The
momentum states; i.e., there is a nonzero lower critical moremaining parameters are the same as in Fig. 1.
mentum at which the pairing disappears. The maximal criti-
cal values at which the pairing disappears in the wholP energy difference, as the maximum of the gap function, is
plane area.=0.41 andP.=0.3pr. The main conclusion located atP=0.3pr and is not sensitive to the value of
that can be drawn from the discussion above is that twe=0.25. The similarity of the functional dependence of the
phase transitions take place as the isospin asymmetry is ifree-energy difference and the pairing gap on the parameters
creased: first a phase transition from the BCS superfluid state andP is not accidental, asdf) . is dominated by the pair
with P=0 to the LOFF superfluid state with#0 and, sec- interaction(condensationenergy given by the second term
ond, a phase transition from the LOFF state to the normaih Eq. (17), which scales as pairing gap squared.

(unpaired state.

Figure 2 displays the latent heat of phase transitipn
=(§,—9)/B as a function of the isospin asymmetsy and
total momentunP. At the boundary of the phase transition  In this work we have analyzed the BCS solutions for the
from superfluid to the normal state in thhe P planeQ=0, neutron-proton pairing in the asymmetric nuclear matter
S.=S,; hence the phase transition is of the second ordewhen the Cooper pairs are allowed for a nonzero total mo-
(recall that this result holds in the mean-field approximationmentum. The quasiparticle excitation spectrum is fourfold
used in determining the entropyin contrast,Q+ 0, for the  split compared to the usual BCS spectrum of the symmetric,
phase transition from the BCS to the LOFF phase and thbomogeneous matter. The twofold splitting occurs due to the
phase transition is of the first order, except along the line ofinite momentum of the condensate and/or the isospin asym-
the intersection 0Q(«,P) surface with thex=0=P plane. metry and/or the finite quasiparticle lifetime; the simulta-
Note that this line marks the region with anomalous negativaneous pairing in the isospin single and triplet states leads to
sign of Q (i.e., in this region the entropy of the superfluid a further twofold splitting of the spectrum. The gap equation,
state is larger than that of the normal sjafEhis anomaly  which was solved numerically in the limiting case of vanish-
does not result in a metastable state, as the net change of timg isospin triplet pairing, has nontrivial solutions with finite
free energy shown below remains always negative. total momentum of the pairs. The corresponding nuclear

Figure 3 shows the difference of the free energies of the.OFF phase is the true ground state of the system for density
normal and superconducting staté¥{,,;, which is normal- ~asymmetries larger than 0.25. The minimum of the free en-
ized to its value in the symmetric and zero-total-momentunergy corresponds to the total momentum of the condensate
case ©OFqg),z=—7.35 MeV atp=0.16 fm3andB =3 P=0.3pr independent of the value af. For sufficiently
MeV. The onset of the LOFF phase is seen by examining thé&arge asymmetriesa=0.3) the condensate can exist only in
constanta slices of the ¢F),; surface. The onset of the the state with finite momentum; i.e., apart from a upper criti-
LOFF phase is signaled by the change of the shape of theal total momentum for vanishing of the condensate, there is
these curves: forr=0.25 the minimum of §F) ,; as a func-  a lower one at which condensate sets in. The maximal values
tion of P shifts from theP=0 to P#0 values; i.e., the of the total momentum and asymmetry that the condensate
ground state energy corresponds to the state with a total nogan sustain ar® =0.3pr anda=0.41. The actual value af
zero momentum of the pairs. The minimum of the free-found for the nonrenormalized single particle spectrum could

IV. SUMMARY AND OUTLOOK
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be reduced by a factor of 3 if a renormalization is carried inwhere the lengths of the “basis vector§P,| are equal.

the Brueckner theory of nuclear matter.
Thus, in a definite region of tha-P plane the neutron-

Fulde and Ferrell studied in detail the thermodynamics of the
LOFF phase with the order parameter containing a single

proton condensation occurs at nonzero momentum of thBarmonic:A(r)=Aqe'™ [15]. Perhaps on symmetry grounds
Cooper pairs, which leads to the formation of a spatiallyone can argue that a symmetric ans&{z) =A(—r), which
inhomogeneous phase of nuclear matter. This implies a pémplies a real gap function, is the case. In the latter case the
riodic (translationally and rotationally invariant with respect most general form of the harmonic expansion is
to the basis vectoyspatial structure of the condensate which
carries an isospin density wave at constant total number of
particles. One of the consequences of the periodic structure is
that the quasiparticle velocities in certain directions could be
close to zero, which implies a strong anisotropy of the ki-The limiting case of a single harmoni&(r) =2A, cos(Pr)
netic coefficients of the matter and larger heat capacity thaRas been studied by Larkin and OvchinnikpM]; in this
in the homogeneous phase. case one finds a layered structure. Perhaps, a cubic structure,
The phase transition from the LOFF phase to the normajn which caseA (r)=2A[cos(Px) + cosPy) +cos(P2)], is
(nonsuperconductingphase is a transition of the second or- preferred to the layered one if there are no preferred direc-
der. However, the phase transition from the BCS to the&ions in the problem. To conclude, the periodic structure of
LOFF phase turns out to be of the first order; i.e., there is ahe LOFF phase has been studied only for limited configu-
latent heat of transition associated with this phase transitionations or spatial dimensions so far. The determination of the

In a certain region of thex-P plane the latent heat has an true ground state structure of this phase remains for the fu-
anomalous negative sign. However, this does not affect thgre work.

stability of the LOFF phase, since its energy budget is domi-
nated by the pair-condensation energy.

What lattice structure prefers the nuclear LOFF phase?
The problem of the energetically most favorable structure of | am grateful to Umberto Lombardo for discussions in the
the LOFF phase has not been solved so far in general. F@fourse of our collaboration on the pairing in nuclear matter
small gaps the integral equati¢@3) is linear and we can and to Krishna Rajagopal for discussions on the LOFF phase
seek the solutions in terms of a Fourier expansion and for pointing out Ref.16]. This work has been supported
by the Stichting voor Fundamenteel Onderzoek der Materie
of the Nederlandse Organisatie voor Wetenschappelijk
Onderzoek.
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A(r)=22 A,cogP,r).
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