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Spatially inhomogeneous condensate in asymmetric nuclear matter

A. Sedrakian
Kernfysisch Versneller Instituut, NL-9747 AA Groningen, The Netherlands

~Received 1 September 2000; published 19 January 2001!

We study the isospin singlet pairing in asymmetric nuclear matter with nonzero total momentum of the
condensate Cooper pairs. The quasiparticle excitation spectrum is fourfold split compared to the usual BCS
spectrum of the symmetric, homogeneous matter. A twofold splitting of the spectrum into separate branches is
due to the finite momentum of the condensate, the isospin asymmetry, or the finite quasiparticle lifetime. The
coupling of the isospin singlet and triplet paired states leads to further twofold splitting of each of these
branches. The gap equation is solved numerically in the isospin singlet channel in the case where the pairing
in the isospin triplet channel and the renormalization of the single particle energies are neglected. We find
nontrivial solutions with finite total momentum of Cooper pairs. The corresponding condensate has a periodic
spatial structure which carries a isospin density wave at constant total number of particles. The phase transition
from the BCS to the inhomogeneous superconducting phase is found to be first order and occurs when the
density asymmetrya[(rn2rp)/(rn1rp) ~defined in terms of partial densities of neutronsrn and protonsrp)
is increased above 0.25. The transition from the inhomogeneous superconducting to the unpaired normal state
is second order. The maximal values of the critical total momentum~in units of the Fermi momentum! and the
critical density asymmetry at which condensate disappears arePc /pF50.3 andac50.41~assuming free single
particle spectrum!. The possible spatial forms of the ground state of the inhomogeneous superconducting phase
are briefly discussed.

DOI: 10.1103/PhysRevC.63.025801 PACS number~s!: 21.65.1f, 21.30.Fe, 26.60.1c
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I. INTRODUCTION

The theory of fermion pairing when the fermions, whic
are bound in Cooper pairs, lie on different Fermi surfac
was addressed in the early 1960s in the context of met
superconducting alloys containing paramagnetic impuri
@1–4#. Recently, the theory has received renewed attentio
several contexts, including the pairing in asymmetric nucl
matter @5–11# and color superconductivity in flavor
asymmetric high-density QCD@12,13#.

This paper elaborates on an earlier suggestion@8# that the
ground state of the superconducting asymmetric nuclear m
ter at large asymmetries corresponds to a pair conden
with nonzero total momentum of the Cooper pairs. The
gument is based on the observation by Larkin and Ovch
nikov @14# and Fulde and Ferrell@15# who first showed, in
the context of the metallic superconductors, that
Bardeen-Cooper-Schrieffer~BCS! equations admit solution
with nonzero total momentum of Cooper pairs. In the co
figuration space such a condensate forms a periodic la
with finite shear modulus. The resulting spatially inhomog
neous superconducting state is called the Lark
Ovchinnikov-Fulde-Ferrell~LOFF! phase.

The occurrence of pair correlations crucially depen
upon the overlap between the neutron and proton Fermi
faces; the pairing gap is largest in the isospin-symmetric c
and is suppressed as the system is driven out of the sym
ric state. The thermal smearing of the Fermi surfaces p
motes the pairing, but, however, is ineffective when t
separation between the surfaces is large compared to
temperature. If the total momentum of the Cooper pairs
zero, the Fermi surfaces~for homogeneous systems! are lo-
cated on concentric spheres. If, however, a Cooper
moves with a finite momentum, the centers of the spheres
0556-2813/2001/63~2!/025801~6!/$15.00 63 0258
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shifted. This allows for the pairing, even for vastly differe
radii of the spheres, since now the nonconcentric sphe
may intersect. The overlap regions then provide the ki
matical phase space for pairing phenomena to occur.

The microscopic calculations, based on the BCS the
for the bulk nuclear matter show that the isospin-symme
matter supports Cooper-type pair correlations in the3S1-3D1
partial-wave channel due to the tensor component of
nuclear force. The energy gap is of the order of 10 MeV
the empirical saturation density~Refs.@5–11# and references
therein! if one assumes that the effective pairing interacti
can be approximated by the bare interaction and if the ren
malization of the single particle spectrum reduces the den
of the state at the Fermi surface by a factor of 2.

There is little evidence for large gap isospin singlet pa
ing in ordinary nuclei@18#, which is evidently suppresse
due to the spin-orbit splitting@19#. The laboratory data do
not exclude the possibility that the bulk nuclear matter,
encountered in the supernovas and neutron stars, may
port large gap pairing in the isospin singlet channel. In
model of ‘‘nucleon stars’’@20# the kaon condensation im
plies nearly isospin-symmetric matter, in which case
isospin singlet pairing can play a major role in determini
the cooling and rotation dynamics of such objects. Howev
in the models without meson condensates the proton con
tration in supernova and neutron star matter is of the orde
5%–30% and these asymmetries are too large to allow
neutron-proton pairing. In the high-density regime, t
hyperon-rich neutron star matter may be much more sy
metric than at the densities around the saturation density@21#
and therefore can support neutron-proton pairing, most lik
due to the attractive3D2 partial-wave interaction@7#. If the
nucleon-hyperon and hyperon-hyperon interactions are
tractive, the pairing among fermions lying on different Fer
surfaces, and in particular the formation of the LOFF pha
©2001 The American Physical Society01-1
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A. SEDRAKIAN PHYSICAL REVIEW C 63 025801
could be a realistic possibility in hyperon-rich matter. F
nally, in superstrong magnetic fields of highly magnetiz
neutrons stars~magnetars! the Pauli paramagnetism wi
cause a splitting in the Fermi energies of the spin-up
spin-down fermions; in this case the pairing in the isos
triplet channel among theS-wave paired neutrons should e
hibit the properties of the LOFF phase.1

Before turning to the main body of the paper, we draw
reader’s attention to Ref.@16# who considered the color su
perconducting LOFF phase in the context of high-dens
QCD and Ref.@17# who considered the finite-momentu
pairing between quarks in the particle-hole channel~chiral
condensate!. Our work, to some extent, parallels the form
reference, but we do not attempt any comparison at
stage, as the formalisms and contexts are entirely differe

In Sec. II we derive the BCS equations, which include
effects of the finite momentum of the Cooper pairs, with
the finite-temperature real-time Green’s functions formalis
The numerical solutions of these equations are shown in
III. Section IV contains a summary of the results.

II. FORMALISM

Below, we shall use the real-time Green’s functions e
tended to the Nambu-Gor’kov space to account for pair c
relations. The single particle retarded Green’s function
this space is defined as usual:

iĜab~x1 ,x2![ i S Gab~x1 ,x2! Fab~x1 ,x2!

Fab
† ~x1 ,x2! Gab

† ~x1 ,x2!
D

5S ^Ttca~x1!cb
†~x2!& ^Ttca~x1!cb~x2!&

^Ttca
†~x1!cb

†~x2!& ^Ttcb
†~x1!ca~x2!&

D ,

~1!

wherea and b stand for discrete quantum numbers~spin,
isospin, etc.!, c† andc are the nucleon creation and annih
lation operators,x[(r,t) denotes the space-time coordina
andTt is the time-ordering symbol. The averaging is carri
out over the equilibrium ensemble at a fixed density a
temperature. The equation of motion for the matrix Gree
function is given by the time-dependent Dyson equation

Ĝa
21~x1!Ĝab~x1 ,x2!

51̂dabd~x12x2!1 i(
g
E d3x3Ŝag~x1,x3!Ĝgb~x3,x2!,

~2!

where 1̂ is a unit matrix in the Nambu-Gor’kov space, th
inverse free-particle propagator, and the self-energy matr
are

1This problem is currently under study.
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Ĝa
21~x!5S Ga

21~x! 0

0 @Ga
21~x!#* D ,

~3!

Ŝab~x1 ,x2![S Sab~x1 ,x2! Dab~x1 ,x2!

Dab
† ~x1 ,x2! Sab

† ~x1 ,x2!
D ,

where Ga
21(x)[ i ]/]t1“

2/2ma1ma , ma is the chemical
potential, andma is the bare mass. The self-energy matrix
defined according to the rules of the usual diagram techni
in the terms ofĜ and the four-fermion interaction vertexĜ.
In particular, the anomalous self-energy, which incorpora
the pair correlations, is given by

Dab~x1 ,x2!5(
gk

E Gabgk~x1 ,x2 ;x3 ,x4!

3Fgk~x3 ,x4!dx3dx4 . ~4!

In the following we shall be interested in stationary~time-
independent! and spatially inhomogeneous solutions of t
equations above in the quasiclassical approximation. T
approximation holds when the characteristic length scale
the spatial variations of the macroscopic condensate
much larger than the inverse of the momenta involved in
problem;pF , wherepF is the Fermi momentum. The qua
siclassical counterparts of the equations above are obta
by going over to the center of massX5(x11x2)/2 and rela-
tive x5x12x2 coordinates in the two-point functions an
carrying a Fourier transform with respect to the relative c
ordinates:Ĝ(x,X)→Ĝ(v,p,R,T), wherev,p are the relative
frequency and momentum, andX[(R,T). As the variations
of the propagators and self-energies are slow on the scale
the order ofR, keeping the leading order terms in the grad
ent expansion is accurate to order;O@(pFR)21#. Carrying
out a Fourier transformation with respect toR, we arrive at
the Dyson equation for the quasiclassical functions:

(
g

S v2eag
1 2Dag

2Dag
† v1eag

2 D S Ggb Fgb

Fgb
† Ggb

† D 5dab1̂, ~5!

where

eab
6 5~P/26p!2/2ma2ma6ReSab2Im Sab , ~6!

and ReSab[(Sab2Sab
† )/2, ImSab[(Sab1Sab

† )/2; all
propagators and self-energies are functions ofv, p, and P
~the dependence on center-of-mass time is dropped in
stationary limit!. Equation~5! is a (434) matrix in the spin-
isospin space in general. The number of degrees of free
can be reduced since the fermionic wave function of pai
fermions must be antisymmetric. In the case of spin a
isospin conserving forces the normal Green’s functions
self-energies are diagonal in the spin and isospin spaces.
sufficient to consider the anomalous propagators, e.g., in
isospin space, since the resulting spin structure, forS-wave
interactions, is uniquely determined for each isospin com
1-2
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SPATIALLY INHOMOGENEOUS CONDENSATE IN . . . PHYSICAL REVIEW C63 025801
nation. The quasiparticle excitation spectrum is determi
in the standard fashion by finding the poles of the propa
tors in Eq.~5!:

v665eA

6AeS1
1

2
Tr~DD†!6

1

2
A@Tr~DD†!#224 Det~DD†!.

~7!

Here D[Dab , eS5(e11e2)/2, andeA5(e12e2)/2. The
new quasiparticle spectrum has four branches. The four
splitting of the BCS spectrum is due to~a! isospin asymme-
try and/or the finite momentum of the condensate and/or
finite lifetime of the quasiparticles and~b! the coupling of
the pairing gaps in different isospin channels. If we rest
ourselves to the neutron-proton pairing in the3S1-3D1 chan-
nel, which is justified whenDnn ,Dpp!Dnp , then Dab
5sxD (sx is the first component of the vector of Pauli m
trixes!. The spectrum, in this case, simplifies to

v65eA6AeS
21uDu2, ~8!

where the symmetric and asymmetric parts of the spect
~which are even and odd with respect to the time-reve
symmetry! are defined as

eS[P2/8m1p2/2m1ReS2m,

eA[P•p/2m1Im S2dm. ~9!

Here m5(mn1mp)/2, dm5(mn2mp)/2 and ReS[(Snn

2Spp
† )/2, ImS[(Snn1Spp

† )/2 ~subscriptsp and n refer to
protons and neutrons!. The limit eA→0 corresponds to the
BCS pairing in the isospin symmetric nuclear matter. It
explicit now that the spectrum~8! is twofold split due to
three factors, the isospin asymmetry (dmÞ0), the finite-
momentum of the Cooper pair (PÞ0), and the finite lifetime
of the quasiparticle (ImSÞ0). Below, we shall keep the firs
two factors, and shall neglect the last one, since the qu
particle approximation is valid in the density-temperatu
range of interest~densities around the nuclear saturation d
sity and temperatures;10 MeV!. The solution of the Dyson
equation~5! is

Gn/p5
up

2

v2v1/21 ih
1

vp
2

v2v2/11 ih
, ~10!

F5upvpS 1

v2v11 ih
2

1

v2v21 ih D , ~11!

where the Bogoliubov amplitudes are

up
25

1

2
1

eS

2AeS
21uDu2

, vp
25

1

2
2

eS

2AeS
21uDu2

. ~12!

Let us turn to the solution of the gap equation~4!, which in
the quasiclassical limit takes the form
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D~p,P!52E dv8d3p8

~2p!4
G~v8,p,p8,P!Im F~v8,p8,P! f ~v8!,

~13!

where f (v)5@exp(bv)11#21 is the Fermi distribution
function andb is the inverse temperature; the effective pa
ing interactionG is assumed real and will be replaced by t
bare interaction below. Thev integration is straightforward
in the quasiparticle approximation, since the frequency
pendence of the propagator is constrained by the on-s
condition. Further progress requires partial-wave decomp
tion of the interaction, which can be done after an an
averaging in the remainder functions on the right-hand s
of the Eq.~13!. The result of this procedure is

D l~p,P!52(
l 8

E dp8p82

~2p!2
Vll 8~p,p8!

D l 8~p8,P!

2AeS
21D~p8,P!2

3^@ f ~v1!2 f ~v2!#&, ~14!

where^•••& denotes the average over the angle between
relative and total momenta, andD(p,P)2[D0(p,P)2

1D2(p,P)2 is the angle-averaged gap. Here the pairing
teraction is approximated by the bare neutron-proton inte
tion V(p,p8) in the 3S1-3D1-channel. The self-consisten
procedure of the determination of the gap function require
normalization condition for the net densityr[rn1rp of the
system at a fixed temperature and the magnitude of the
momentumP. The corresponding expression is provided

rn/p~P!522(
s

E d4p

~2p!4
Im Gn/p~v,p,P! f ~v!

5(
s

E d3p

~2p!3
$up

2 f ~v6!1vp
2 f ~v7!%, ~15!

wheres stands for quasiparticle spin and the second equa
follows in the quasiparticle approximation. The coupl
equations~14! and ~15! should be solved simultaneously.

To find the true ground state we have to minimize the f
energy of the system at fixed total density and temperat
In the mean-field approximation the entropy of the system
given by the combinatorical expression

S522kB( $ f ~v1!ln f ~v1!1 f̄ ~v1!ln f̄ ~v1!

1 f ~v2!ln f ~v2!1 f̄ ~v2!ln f̄ ~v2!%, ~16!

where f̄ (v6)5@12 f (v6)#, and kB is the Boltzmann con-
stant. The internal energy, defined as the grand canon
statistical average of the Hamiltonian,U5^Ĥ2m (n)r̂n

2m (p)r̂p&, reads
1-3
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A. SEDRAKIAN PHYSICAL REVIEW C 63 025801
U52E d3p

~2p!3 H @e1nn~p!1e2np~p!#

1(
l l 8

d3p8

~2p!3
Vll 8~p,p8!n l~p!n l 8~p8!J , ~17!

where

nn/p~p![up
2 f ~v6!1vp

2 f ~v7!,
~18!

n~p![upvp^@ f ~v1!2 f ~v2!#&.

The first term in Eq.~17! includes the kinetic and nonpairin
energies of the quasiparticles. The second term includes
BCS mean-field interaction among the particles in the c
densate. The free energy~at fixed density and temperature! is
defined as

~F !r,b5U2b21S. ~19!

The true ground state of the system minimizes the fr
energy difference (dF)r,b between the superconducting an
normal states@the free energy in the normal state follow
from Eqs.~16! and ~17! whenD50#.

III. RESULTS

The main focus of the numerical calculations shown
low is the effects of the finite momentum of the Cooper pa
and the emergence of the LOFF phase in the asymm
nuclear matter. A number of simplifying assumptions we
into these calculations: first, the pairing interaction is a
proximated by the bare interaction; i.e., the effects of
screening of the pairing interaction are ignored. Second,
employ the quasiparticle approximation and set the effec
mass of the quasiparticles equal to their bare mass. Third
ignore the coupling between the pairing in the isospin trip
and singlet states. The first two approximations change
absolute magnitude of the paring gap by affecting, resp
tively, the strength of the interaction and the density of sta
at the Fermi surface. To remove the dependence on the
solute scale of the gap we present the results normalize
the pairing gap in the symmetric matter at zero total mom
tum of the pairs. The third approximation is valid whenev
the pairing in the isospin singlet channel is much larger th
in the isospin triplet channel. This could be the case since
strength of the interaction in the3S1-3D1 in the free space is
much larger than the one in the1S0 channel and these chan
nels are attractive in the same range of the energies.
argument, however, implicitly assumes that effects of
quasiparticle renormalization and the screening of the pai
interaction are of the same order in both channels, wh
could be false.

Figure 1 shows the pairing gapD(pF) in the 3S1-3D1
partial-wave channel as a function of the isospin asymme
defined asa[(rn2rp)/r and total momentumP in units of
the Fermi momentum. The pairing interaction has been
proximated by a separable form of the Paris nucleon-nucl
interaction~PEST1 of Ref.@22#!. The pairing gap is normal
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ized to its value in the symmetric and zero-total-moment
caseD00514.38 MeV at fixed total densityr50.16 fm23

and the temperatureb2153 MeV. The results reported her
are relevant for the low-temperature regime (b21/D00
50.208!1); the temperature dependence of the LO
phase, in particular theT→Tc limit, will be discussed else-
where.

The absolute magnitude of the gap is consistent with
previous results based on the free-single-particle spect
@8# ~note that the gap in Ref.@8# is by 15% smaller, since
there a rank 4 potential has been used instead of the ra
potential used in this work!. A renormalization of the single
particle spectrum, for example within the Brueckner theo
leads to a decrease of the gap by a factor of 2; see Ref.@6#.
This reduction also affects the critical asymmetry at wh
the BCS state disappears, by reducing it, e.g., at nuclear s
ration density, from 0.35 for the free-particle spectrum
0.11 for the Brueckner-renormalized particle spectrum@8,9#.
Therefore, the absolute magnitude of the asymmetry,
which the transition from the BCS to the LOFF phase occu
and its critical value, at which the LOFF phase disappe
will be reduced by roughly a factor of 3, if the renormaliz
tion of the single particle spectrum is carried out within t
Brueckner theory. Fora50 the gap is maximal atP50,
decreases as the total momentum is increased, and van
at the critical total momentumPc,050.558pF . For P50 the
gap again decreases as a function ofa and vanishes atac,0
50.37. The onset of the LOFF phase is signaled by
change of the shape of the constanta slices in thea-P
plane: fora>0.25 the maximum of the gap as a function
P shifts from theP50 to PÞ0 values; i.e., the condensatio
energy becomes maximal forPÞ0. The maximum is located

FIG. 1. The pairing gapD(pF) in the 3S1-3D1 partial-wave
channel as a function of the isospin asymmetrya[(rn2rp)/r and
total momentumP in units of the Fermi momentum. The pairin
gap is normalized to its value in the symmetric and zero-to
momentum caseD00514.38 MeV at fixed total densityr50.16
fm23 and temperatureb2153 MeV.
1-4
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SPATIALLY INHOMOGENEOUS CONDENSATE IN . . . PHYSICAL REVIEW C63 025801
at P.0.3pF and is not sensitive to the value ofa>0.25.
Interestingly, fora>0.37 the pairing exists only for finite
momentum states; i.e., there is a nonzero lower critical m
mentum at which the pairing disappears. The maximal c
cal values at which the pairing disappears in the wholea-P
plane areac50.41 andPc50.3pF . The main conclusion
that can be drawn from the discussion above is that
phase transitions take place as the isospin asymmetry i
creased: first a phase transition from the BCS superfluid s
with P50 to the LOFF superfluid state withPÞ0 and, sec-
ond, a phase transition from the LOFF state to the nor
~unpaired! state.

Figure 2 displays the latent heat of phase transitionQ
5(Sn2Ss)/b as a function of the isospin asymmetrya and
total momentumP. At the boundary of the phase transitio
from superfluid to the normal state in thea-P planeQ50,
Ss5Sn ; hence the phase transition is of the second or
~recall that this result holds in the mean-field approximat
used in determining the entropy!. In contrast,QÞ0, for the
phase transition from the BCS to the LOFF phase and
phase transition is of the first order, except along the line
the intersection ofQ(a,P) surface with thea505P plane.
Note that this line marks the region with anomalous nega
sign of Q ~i.e., in this region the entropy of the superflu
state is larger than that of the normal state!. This anomaly
does not result in a metastable state, as the net change o
free energy shown below remains always negative.

Figure 3 shows the difference of the free energies of
normal and superconducting states (dF)rb , which is normal-
ized to its value in the symmetric and zero-total-moment
case (dF00)rb527.35 MeV atr50.16 fm23 and b2153
MeV. The onset of the LOFF phase is seen by examining
constanta slices of the (dF)rb surface. The onset of th
LOFF phase is signaled by the change of the shape of
these curves: fora>0.25 the minimum of (dF)rb as a func-
tion of P shifts from theP50 to PÞ0 values; i.e., the
ground state energy corresponds to the state with a total
zero momentum of the pairs. The minimum of the fre

FIG. 2. The latent heat of transition as a function of isos
asymmetrya and total momentumP. The remaining parameters ar
the same as in Fig. 1.
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energy difference, as the maximum of the gap function
located atP.0.3pF and is not sensitive to the value ofa
>0.25. The similarity of the functional dependence of t
free-energy difference and the pairing gap on the parame
a andP is not accidental, as (dF)rb is dominated by the pair
interaction~condensation! energy given by the second term
in Eq. ~17!, which scales as pairing gap squared.

IV. SUMMARY AND OUTLOOK

In this work we have analyzed the BCS solutions for t
neutron-proton pairing in the asymmetric nuclear mat
when the Cooper pairs are allowed for a nonzero total m
mentum. The quasiparticle excitation spectrum is fourfo
split compared to the usual BCS spectrum of the symme
homogeneous matter. The twofold splitting occurs due to
finite momentum of the condensate and/or the isospin as
metry and/or the finite quasiparticle lifetime; the simult
neous pairing in the isospin single and triplet states lead
a further twofold splitting of the spectrum. The gap equatio
which was solved numerically in the limiting case of vanis
ing isospin triplet pairing, has nontrivial solutions with finit
total momentum of the pairs. The corresponding nucl
LOFF phase is the true ground state of the system for den
asymmetries larger than 0.25. The minimum of the free
ergy corresponds to the total momentum of the conden
P50.3pF independent of the value ofa. For sufficiently
large asymmetries (a>0.3) the condensate can exist only
the state with finite momentum; i.e., apart from a upper cr
cal total momentum for vanishing of the condensate, ther
a lower one at which condensate sets in. The maximal va
of the total momentum and asymmetry that the conden
can sustain areP50.3pF anda50.41. The actual value ofa
found for the nonrenormalized single particle spectrum co

FIG. 3. The difference of the free energies of the normal a
superconducting state (dF)rb , normalized to its value in the sym
metric and zero-total-momentum state (dF00)rb527.35 MeV. The
remaining parameters are the same as in Fig. 1.
1-5
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A. SEDRAKIAN PHYSICAL REVIEW C 63 025801
be reduced by a factor of 3 if a renormalization is carried
the Brueckner theory of nuclear matter.

Thus, in a definite region of thea-P plane the neutron-
proton condensation occurs at nonzero momentum of
Cooper pairs, which leads to the formation of a spatia
inhomogeneous phase of nuclear matter. This implies a
riodic ~translationally and rotationally invariant with respe
to the basis vectors! spatial structure of the condensate whi
carries an isospin density wave at constant total numbe
particles. One of the consequences of the periodic structu
that the quasiparticle velocities in certain directions could
close to zero, which implies a strong anisotropy of the
netic coefficients of the matter and larger heat capacity t
in the homogeneous phase.

The phase transition from the LOFF phase to the nor
~nonsuperconducting! phase is a transition of the second o
der. However, the phase transition from the BCS to
LOFF phase turns out to be of the first order; i.e., there
latent heat of transition associated with this phase transit
In a certain region of thea-P plane the latent heat has a
anomalous negative sign. However, this does not affect
stability of the LOFF phase, since its energy budget is do
nated by the pair-condensation energy.

What lattice structure prefers the nuclear LOFF pha
The problem of the energetically most favorable structure
the LOFF phase has not been solved so far in general.
small gaps the integral equation~13! is linear and we can
seek the solutions in terms of a Fourier expansion

D~r!5(
n

DneiPnr, ~20!
.
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where the lengths of the ‘‘basis vectors’’uPnu are equal.
Fulde and Ferrell studied in detail the thermodynamics of
LOFF phase with the order parameter containing a sin
harmonic:D(r)5D0eiPr @15#. Perhaps on symmetry ground
one can argue that a symmetric ansatzD(r)5D(2r), which
implies a real gap function, is the case. In the latter case
most general form of the harmonic expansion is

D~r!52(
n

Dn cos~Pnr!. ~21!

The limiting case of a single harmonicD(r)52D0 cos(Pr)
has been studied by Larkin and Ovchinnikov@14#; in this
case one finds a layered structure. Perhaps, a cubic struc
in which caseD(r)52D0@cos(Px)1cos(Py)1cos(Pz)#, is
preferred to the layered one if there are no preferred dir
tions in the problem. To conclude, the periodic structure
the LOFF phase has been studied only for limited confi
rations or spatial dimensions so far. The determination of
true ground state structure of this phase remains for the
ture work.
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