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Identical relations among transverse parts of variant Green’s functions and the full vertices
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Identity relations among the transverse parts of variant vertex functions in gauge theories are derived by
computing the curl of the time-ordered products of three-point Green’s functions involving the vector, the
axial-vector, and the tensor current operators, respectively. Combining these transverse relations with the
normal (longitudina) Ward-Takahashi identities forms a complete set of Ward-Takahashi relations for three-
point vertex functions. As a consequence, the complete solutions for the vector, the axial-vector, and the tensor
vertex functions in the momentum space are consistently and exactly obtained by solving this complete set of
Ward-Takahashi relations. In the case of massless fermions, the full vector and the full axial-vector vertices are
expressed in terms of the fermion propagators only.
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In quantum field theory symmetries lead to relationsin Ref. [6], we studied the transverse WT relation for the
among the Green’s functions of the theory, which are revector vertex. It showed that in order to obtain the complete
ferred to as the Ward-TakahastWT) identities[1]. They  solution for the vector vertex one needs to build WT rela-
play an important role in proving renormalizability and in tions for the axial-vector and tensor vertices as well. In this
providing a consistent description in the perturbation apP@Per we present the complete set of WT relations for the

proach of any quantum field theory. But the normal WTvector, the axial-vector and the tensor vertex functious in
identities specify only the longitudinal part of Green’s func- gauge theories, from which we obtain the complete solutions

. leavi h d _ h for these vertex functions in gauge theories in four dimen-
tions, leaving the transverse part undetermifigfl There-  gjong |n particular, we find that in the chiral limit with zero

fore, to obtain the complete constraint on the vertex functermion masses the full vector and the full axial-vector ver-
tions and then to obtain the complete expressions for theex functions are expressed in terms of the fermion propaga-
vertex functions we need to study the WT type constraintors only.

relations for the transverse parts of variant vertices, which is We first provide the WT type identical relations among
of great significance. In this regard, a very interesting probthe transverse parts of variant three-point vertex functions,
lem relates to the Dyson-Schwinger equatidSE) ap- i._e., the transverse WT rela_tions for th_ree-point vertex func-
proach[3]. tions in gauge theories, which are derived by computing the

The Dyson-Schwinger equations embody the full strucSurl of the time-ordered products of three-point Green's
ture of any field theory and consequently provide a natura]‘unCtlons involving the vector,_the aXIa_I-vector, and_ the ten-
or current operators, respectivg®i. This approach is mo-

way o study the dynar_nics such as describing the dynamicqjvated by the fact that the normal WT identities which
chiral symmetry breaking, confinement, and other problemgpa ity the longitudinal part of the Green’s functions have

they relate then-point Green’s function to then(+1)-point  ordered products of the corresponding Green’s functjiéhs
function; at its simplest, propagators are related to threewe find three sets of transverse WT relations for the vector,
point vertices, thus leading to an infinite set of coupled equathe axial-vector, and the tensor vertex functions, respec-
tions. Therefore, one has to find some way to truncate this seively, which are coupled to each other. These relations are
of equations. If we can express the full three-point vertices irgiven in coordinate space as well as in momentum space.
terms of the two-point functions, these equations will form aThe latter form is partically useful. Combining these trans-
closed system for the two-point functions. How to solve ex-verse relations with the normébngitudina) WT identities
actly the transverse part of the vertex and thereby the fulfor the vector, the axial-vector, and the tensor vertex func-
vertex function then becomes a crucial problg2h Up to  tions leads to a complete set of WT type constraint relations
now this problem has not been solved. Although there havéor the fermion’s three-point functions. As a consequence,
been several attempts to construct the transverse part of thike complete expressions for the vector, the axial-vector, and
vertex by an ansatz which satisfies some constrdRyf],  the tensor vertex functions in the momentum space are then
however, all such attempts remaiad hocwithout consider-  consistently and exactly deduced by solving this complete
ing the constraint imposed by the symmetry of the systemset of WT relations without any ansatz.
The latter is the key point to understand the transverse part of Let us briefly describe the basic approach of computing
the vertex as in the case of the longitudinal part of the vertexthe curl of the time-ordered products of the fermion’s three-
point functions involving the vector, the axial-vector, and the
tensor current operators respectively. For convenience, we
*Electronic address: hxhe@iris.ciae.ac.cn introduce three bilinear covariant current operators:
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VM) = 50PN o () =i1[gM] () — "] "(X)g,)
1

VAR (X) = S(x)[ ¥, 0*" ] ysth(X)
=i[g"*je(x)— g E(x)], 2

and

VA (x) = () ([N o Ty =y Ty a* D (x)
=M (%) — g (x), )

where j#(x)=$(X) y“¥(X), P£(X)=¥(X) y*ysi(x), and
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J#P(X) = p(X) o*Vi(X). Thus the curl of thel products of
the corresponding fermion’s three-point function is given by
KRTIVM(X) h(x1) (X2)] or TIVE(X) ¢h(x1) ¢(X2)] or
ATIVM(x) h(X1) (X5) ], whered} denotes the derivative
operator with respect to the argumentn terms of the defi-
nition for the time-ordered products and the equal-time anti-
commutation relations for fermion fields, it is not difficult to
carry out the above differential operations. The procedure of
deriving the transverse WT identity for the vector vertex in
gauge theory was given already in Ri]. With the similar
procedure we derive the transverse WT relations for the
axial-vector and the tensor vertices. We find the following
covariant identical relations in the operator form:

FETLTV(X) (Xe) P(X2) 1= AL TLIH(X) h(Xq) Ph(X5) ]

=i T (1) h(X2)18%( Xy

—X)+HIT[(Xg) h(X2) ] 84— X)

+TL(X) (1B — 1D () h(X) h(X1) h(X2)]

+1im (35— ) TLg(X" )Py, y5Up(X',X) h(X) (%) h(X2) ],

x" —x

(4)

LTI P(x0) h(X2) 1= AT (FEO P(X0) t(%2))

=i " ys TL(Xq) h(X2) 1 8% (X, —

X) =i TL(X0) (Xx) 1oH" y58% (X — X)

—TLP() (B " ys+ia# ysD,) (X) (X1) $(X2)]

+0im i (95— ) TL(X )My, Up(X X) (X) (1) (X2) ],

x" =X

and

(5

FETLTV ) (Xe) (%) 1= FRTLI 4 (X) h(X1) (X2 ]

=gl Py yeT[h(X1) Y(X2)]8%(Xq —

X) = TL(X0) h(X2) 1e#" %Py, y56*(Xa—X)

—TL(X) e %P(Dyy, vs+ ¥, YsD ) Y(X) (X1) () ]
—1im (3= F)TLP(X )M ysUp(X' ,X) (X) h(X1) (X2) ]

x'—x

= lim 5+ d5)TLP(X" ) U (X ,X) g(X) h(X1) h(X,) ],

X" —x

whereD ,=d,+igA, andD ,=d,—igA, are covariant de-
rivatives. In the QED casg=e andA,, is the photon field.

In the QCD caseg=g. andA,=AT* (a=1, ...,8),A]
are the color gluon fields and?® are the generators
of SU(3). group. The Wilson line Up(x’,x)

=P exq—igfildy"Ap(y)] is introduced in order that the cur-
rent operators in the last term of Edg),(5) and in the last
two terms of Eq.(6) are locally gauge invariant. Note that

(6)

such expressions are also useful for studying the Adler-Bell-
Jackiw anomaly9,10] contribution in the present case.

Taking into account the equations of motion for fermions
with massm, (i —m)¢=0, and ¢(iD +m)=0, which
have the same form for both QED and QCD, we arrive at the
identical relations among the transverse parts of the fermi-
on’s three-point functions, i.e., the transverse WT relations
for the fermion’s vertex functions in gauge theori@s co-
ordinate spade
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IO TJ () h(Xq) h(X2)|0) — IO Tj#(X) th(X1) h(X2)| O)
=170 Th(X1) h(X2)| 0) (X1 — X) +i (0| Teh(X1) ¢h(X2) |0y " 5*(x,— X)
+2m(0| Tgh(X) o h(X) h(X1) 1h(X2)| 0)

+1im (35— )P0 Ty(x )y, ysUp(X' ,X) (X) h(X1) h(X2) | 0), (7)

x"—x

(0| Ti5(X) $(x2) t(X2)|0) = T O| TI&(X) (1) (X2 0)
=i UMV75<0|T¢(X1)E(X2)|0> 8 (xg—x) i <0|T¢(X1)Z(X2)|0>0’”’)’554(X2_ X)

+ lim i (35— 3% ) e P(0| Tyh(X') y,Up(X' ,X) h(X) h(X1) th(X2) |O), ®

and
IO T J(X) (X1) (X2)|0) — 35(O| T J#(X) h(X1) (X2) | O)
=17y e O Th(Xy) (X)|0) 8% (X —X) — (O Teh(X1) ¢h(X,)| 0) 7%y y5 8% (X, — X)

— lim (=& )M 0| (X ) ysUp(X' ,X) (X) h(X1) h(X2) 0

x"—=x

— lim (854 3%)(0| Tg(X" ) " U p(X' %) h(X) th(X1) ¥(X)|O), ©)

x" =X

where the vacuum expectation values are used. Equatiomsopagator of fermion. The third term in left-hand side of Eq.

(7)—(9) are valid for both QED and QCD. (12) comes from the Fourier transformation of the last term
The transverse WT relations can be written in more cleain Eq. (9).

and elegant form in the momentum space. By computing the To understand the physics implication of Eq$0),(11)

Fourier transformation of Eq$7)—(9) and using the standard more clearly, we multiply both sides of Eq4.0) and(11) by

definition for the three-point functions in momentum spaceiq, and move the terms proportional ¢I'y, andq,I'x into

[6], we get the transverse WT relations for the three-pointhe right-hand side of the equations, we then have
vertex functions in the momentum space

N : T4 (p1,P2) = 9“0, Y(p1,p2) 1+iSF H(p1)g, o
G T4(p1.p2) — 19" TL(P1,Py) q7T0(P1,P2) ="1A, (P2, P2) [ +1Se 7(P1)0, 0

S Y (py) o+ 0 h7SE N (py)+ 2mIE(py o) +i0,0""Sz (p2) +2ima,I'¢"(py,p2)
+(Pat P2) e PT 0 (P1.P2), (10 +i(Pint P2y T A (P1,P2), (13
ig“TX(P1,P2) — 19" T4(p1,P2) 9°TA(P1.P2) =0a“[a, I A(P1,P2)]
= S,;l(pl)a'“”yg,— 0"“’)/58,21( P2) + iSEl(pl)qV(r“"y5— iq VO"MV’YSSEl(pz)
+(port+p20) Ml y,(P1,P2), (12) +i(pit P2 P y,(P1,P2).  (14)
and Writing the full verticesl'{; andI'4 as

9T 7*(P1.P2) + " TT#(P1,P2) +q"TF" (1, p2)

= =S (p1)e* Py, ys 847y, vsSE (D)
I'X(p1,p2)=T4% o) +T4 ,P2), 16
+(Pirt Par) M Ts(PyyPa)s (12) A(P1,P2) =&y (P1,P2) +T'a(1)(P1,P2) (16)

L{(p1,p2) =T (P1,P2) +T{m(P1,P2), (19

whereq=p;—p,, ['%, % T# andls are the vector, the We then obtain from Eq€13) and (14)
axial-vector, the tensor and the psudoscalar vertex functions . ,
in momentum space, respectivel$:(p;) is the complete Fly(p1,p2)=d"“9“[d,I'y(p1,P2) ], 17
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Tm(P1.P2) =020, [iSe '(p) o +i0#S: H(py) A,.¢(P1,P2) =S: (1) — S H(p2), (2D
+2imI'e"(p,q, _ _ .

7(PuP2) Q,I4(P1.P2) = S X(Py) vs+ 7555 H(po) ~ 2imI's(py . py).

+i(pint+P2)eM Pl a,(p1,p2)],  (18) (22

and In addition to these two identities, the WT identity for the
u 2w , tensor vertex is also needed. By the procedure similar to that
Fawy(P1,P2) =0 "a*[q,I'A(P1,P2) ], (19 of deriving Egs.(21) and(22), we find
FAm(P1,p2) = q-20,[iSF Y (py) o* ys—i 0" y5S: H(p2) i, T4"(p1,p2) = Sk H(P1) ¥+ ¥#Se H(po) +2mIE(py,p,)

+i(piyt+P2n)e™ Ty, (p1,p2) 1. (20

By using the antisymmetry property of*” ande**?, it is ' _
easy to check théqﬂrgmzo a”quFK(T):O, which show Wherel'g is the scalar vertex function. o N
that['¢), andI'4 1, are indeed the transverse components of Now we have the normal Ward-Takahashi identities

the corresponding vertex functions. Note tHar, and (21)—(23), describing the longitudinal part of the three-point

FK(T) correspond, respectively, to the right-hand side of Eqs\_/ertex functions, and the transverse WT relatith®—(12),

(10) and (11) except the factorq~2q, . Therefore, Eqs(10) describing the identical relations among transverse parts of

and (11) [and the corresponding expressions in coordinaté’a”am three-point vertex functions. They form a complete

space, Eqs(7) and (8)] describe the relations among the Set of WT type constraint relations for the fermion’s three-

transverse parts of the vector and the axial-vector vertei?OInt vertex fl_mct|ons In gauge theories. As a consequence,
functions and other Green's functions. Equatiai@s and We can consistently derive the complete solusions for the

i moTH nv i i
(10) show that the transverse part of the vector vertex funcyertex functiond’y,, I'y, andl’r", by solving this complete

tion is related to the inverse of the fermion propagator, the>€t Of relations without any ansatz. ,
tensor and the axial-vector vertex functions, while E@s. In fact, by syb_sntutlng Eq(“) Into I_Eq. (13 and using
and (11) show that the transverse part of the axial-vectorEqS'(_21)_(23)’ it is not difficult to Ok?ta”? the complete ex-
vertex function is related to the inverse of the fermion propapressmn for the vector-vertex function in the case of mass-
gator and the vector vertex function. Thus, the transversi¥SS fermions
parts of variant vertex functions are coupled to each other.
As a result, the full vector and the full axial-vector vertex LH(p1,p2) =Ty (P1,P2) + T (P1,P2) (24
functions are also coupled to each other and form a set of
coupled equations, which is described by E4S) and(14).  with
The WT relation(12) can be similarly discussed.

In Egs. (13—(19), q,I'y and q,I'} satisfy the well- Ty (P1.P2) =0~ 20“[S: *(p) — S H(p2) ],
known Ward-Takahashi identities (25

+(PL+ P s(P1,P2), (23

T (p1.p2) ={a?+ (p1+p2)?~[(pP1+p2)-ql’q 3t
X{[ S H(p1) = SE M (P ILA*((P1+P2) - @)%A 2~ (P4 +pS) (P1+P2) -l 2
+[Sr*(po)+SeH(p2)I[PY+ PS5 —a*(p1+p2)-qq %]
+iSg H(py) ota, +i0q, S H(P2) +i[SE H(py) ot = o# S H(P2) 1(Pan+ P2))
+i[Se Py o™= oS H(P2)1a,(Pant P29 A
—i[SeY(py) o~ 0*'S: H(p2)19,(P1+ P2)-aq 2 (26)

Similarly, substituting Eq924)—(26) into Eq.(14) and using Eq(22), we can write the full axial-vector vertex function in the
massless fermion case as

La(P1,P2) =T a1y (P1,P2) + T'aey(P1,P2) 27
with
TAwL(P1,P2) =072a*[Se ' (P1) 5+ 55k (P2)], (28)
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Lam(P1.P2) ={a*+(p1+P2)°—[(P1+P2)-qlPq % F
X{i[Se H(p1) ys0H" = " ysSe H(P2) 10, — [ St (1) yso”
+ 0" ysSE (P2 1A,(P1+P2) - Aq ™ 2+i[ S H(P1) Y50 + 0  ysSE H(P2) 1(P1y + P2r)
+i[Se (1) 5™+ 0™ ¥5SE (P2)10,(P1r + P2r) A4
+Hi[SE (P ¥50 = oM ysSE (P2 10, (P1a+ P2 PE + P —a*(P1tp2)- g 2]q %) (29)

We see that in the chiral limit with zero fermion masses the full vector and the full axial-vector vertex functions are now
expressed in terms of fermion propagators only.
Finally, by using Eqs(12) and(23) we can get the complete expression for the tensor vertex function:

Q24" (p1,p2) =iSE (P (a“y" =" y*)
+i(g Y= q"y*) SE H(po) + 2im[ TPy, P2) — A" TH(P1,P2) ]
+i[g*(py+p3) —a"(ph+ pE) 1T s(P1.P2) — Sk H(P1)e” P40, Ys

+ &0, Y, YsSE H(P2) + (P1at P2) et *# T's(P1,P2), (30)
|
whereF\’j(V) is given by Eqs(24)—(26). functions(the fermion propagatoronly. Applying these re-
Before concluding, | would like to give the following sults to the Dyson-Schwinger equations will lead to that
comments. these equations form a closed system for the fermion

(i) The transverse WT relations for the vector vertex func-Propagators in QED and classical QCD. In QCD we
tion, Egs.(7) and (10), involve the mass term arising from usually ~ consider _ the vertex function |nv0IV|'ng the
the equations of motion. This is similar to the normal Ward-Current —operator j#(x)=¢(x) y*(\*/2)#(x) or j&(x)
Takahashi identity for the axial-vector vertisee Eq(22)]. = #(X) ¥*vs(\*/2)¢(x), wherer® are flavor generators. In
On the contrary, the transverse WT relations for the axialSuch case, the results of present work will be modified sim-
vector vertex function, Eq€8) and(11), have no mass term, PIY just by putting\/2 into the suitable position in each
i.e., they are independent of the dynamics, which is similaf€m of the correspoding identical relations. For the case of

. . : effective QCD with Faddeev-Popov ghost fields, there seems
to the WT identity for the vector vertex functidisee Eq. to be more vertices. The transverse WT type relations for

(21)_],' ) , these new vertices and the full vertices need to be studied
(ii) The transverse WT relations for the three-point func-g, ther.

tions, Eqs(7)—(12), have been derived in QED and the clas-  |n symmary, we have derived the transverse Ward-
sical QCD(without Faddeev-Popov ghost fiejdit remains  Takahashi relations for the fermion’s three-point vertex func-
to show if these identical relations will be modified by tions in coordinate space as well as in momentum space.
higher-order correction terms in perturbation theory. It isThese transverse WT relations together with the noftoat
well-known that the normal WT identity for the axial-vector gitudinal) Ward-Takahashi identities form a complete set of
vertex, Eq.(22), is modified due to the Adler-Bell-Jackiw WT type constraint relations for three-point vertex functions.
anomaly[9]. As a result, the WT identity for axial-vector As a consequence, the complete expressions for the vector,
vertex function, Eq(22), should add the anomaly term con- the axial-vector, and the tensor vertex functions in the mo-
tribution. By applying the approach of deriving ABJ mentum space have been consistently and exactly deduced
anomaly[9,10] to the present case, we find that the ABJDby solving this complete set of WT relations. In particular, in
anomaly does not contribute to the transverse WT relationthe case of massless fermions, the full vector, and the full
for the vector vertex, Eq$7) and(10). For Eqgs.(7) and(10), ax_ial—vector vertex functions are expressed in tgrms of fer-
the modification by higher-order correction happens only tgnion propagators only. Applying these expressions of the
the tensor vertex term due to the renormalization of the tenfull vertex functions to the Dyson-Schwinger equations will
sor current operator, which leads to the appearance c;t,ead_to that these equations form a closed system fo'r the
anomalous dimension in the tensor vertex term. But suckgrmion propagators. It shows that these full vertex functions
modification does not affect the transverse WT relation forVill be very useful to the nonperturbative study of gauge
the vector vertex function in the chiral limit with zero fer- fi€ld theories by using the Dyson-Schwinger equation ap-
mion masses. Is there the contribution from anomaly to otheProach and its application to hadronic physics.
transverse WT relations? This prOblem needs to be studied The author is very gratefu| to Y. Takahashi and F.C.
further. Khanna for useful discussions during his visit at the Univer-
(i) In the chiral limit with zero fermion masses, the sjty of Alberta, where part of this work was done. This work
complete expressions for the vertex functiohy and s supported in part by the National Natural Science Founda-
I'y, are expressed in terms of the fermion's two-pointtion of China.
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