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Collective modes in hadronic matter in a relativistic model with medium dependent coupling
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The propagation of the lightest mesons in hadronic matter is studied at finite temperature, by including Dirac
sea effects. The meson-nucleon interaction is described in a field theory model, which exhibits a residual
interaction beyond the ground state, with a medium dependent coupling constant. The effective meson masses,
the low lying collective excitations of nuclear matter, and the giant isoscalar resonances of a system with finite
particle number are studied and compared with other theoretical predictions. The effect of different regular-
ization prescriptions is also considered.
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[. INTRODUCTION tained in the mean field approximation and assumed to be-
come more and more precise as baryon density grows. How-
Properties of hadrons are expected to vary considerabl§ver qualitative discrepancies have shown that the inclusion
when immersed in a dense and/or hot medium. The study d¥f vacuum contributions is essential even at the lowest order.
the density dependence Of meson masses can provide infd]_?.urthermore technical difficulties in the summation of h|gher
mation about the underlying strong interaction, as has beeffder diagrams have spoiled the program of systematic cor-
suggested ini1]. In that paper a qualitative expression, the rections[15]. Despite these conceptual inconsistencies the
so-called Brown-Rho universal scaling law, is given for theSUccesses obtained in the description of nuclear phenomena
behavior of the in-medium hadronic masses, valid near th83Ve encouraged its development, until its current interpre-
chiral transition point. In later workf2,3] a relationship be- tieg'noen t'ﬂetgﬁegi”éfwork of effective field and density func-
tween the chiral picture and the hadronic language is pro- In this work we have selected a quantum hadrodynamics

approaches the chiral phase transitiwith the exception of 5 honholynomic parametrization. It has been used to study

the.pseudoscalar meson mags@ésis fact (_:ouId explain eX-  many body effects in several applicatioigs-11, related to
perimental results, for example on dilepton production.gp, effective quark description of hadronic propertjag],
Therefore it would be desirable that hadronic models thagng extended to include tensor couplifid]. The DSCM
work well far from the chiral limit, could reproduce these has two important features which distinguish it from the
features asymptotically. QHD-I. First it is nonrenormalizableb initio and there is no

In this work we intend to compare meson properties undefmmediate way to introduce vacuum corrections to the
extreme conditions of density and temperature, and to studyround state. This state is obtained in the mean field approxi-
collective phenomena of nuclear matter. For this purpose wenation, and the main properties of nuclear matter are suc-
have selected a model of the quantum hadrodynaifidits cessfully described. A possible interpretation of this fact is
which in its former versiofQHD-I) has no chiral invariance. that DSCM is more efficient than QHD-I for describing low-
However it has been argud8] that the predictions of the energy hadron physics, at this order of approximation. Sec-
model are intrinsically consistent with chiral symmetry. Sub-ondly, a residual interaction can be extracted beyond the
sequent developments have led to its present day interpretwest order solution, whose strength monotonically de-
tion as an effective field theorf6]. Specifically we have Creases with baryon density13]. This fact ensures the
used the derivative scalar coupling mo@@SCM) proposed ground state predominance at high density as assumed in
by Zimanyi and Moszkowskf7] and profusely applied to quantum hadrodynamics. The properties just enum_erat_ed
describe nuclear propertié8—14. motivated us to use DSCM to study meson propagation in

We organize this paper by presenting the DSCM beyond o0 JYCR LevEY S0 EEER e, e e
the lowest order approximation in Sec. Il, the evaluation of q P y

. A ons, scalar mesonog{), and vector mesond,) fields. But
the meson propaga_tors n the r_elat|V|st|c random phas_e aF?ésonanceﬁlO] hyperong 11], and heavier mesons can also
proximation(RRPA) is reviewed in Sec. Ill, results and dis- be included in,a more realisiic treatment

cussion are given in Sec. IV, and the conclusions are pre-  the pscM model consists of nucleon and meson fields in
sented in Sec. V. interaction, the simplest versigi] has a Yukawa typ®\l-
coupling and aN-o nonpolynomic termCy,;,
II. THE DSCM BEYOND THE MEAN FIELD

M 1
APPROXIMATION LDSCM:J(M_J_-FQ—O'/NI_gvd) yt5dtod,0o
S
QHD was originally outlined as a renormalizable theory
with a very restricted set of free parameters used to fit bulk _ lmzaz— EF“”F +£m2w“w 1)
nuclear matter properties. The ground state solution is ob- 23 4 rro20n we
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where y(x), is the nucleon fieldM is the nucleon mass and lll. THE MESON PROPAGATORS IN THE RRPA
05,9, are a dimensional coupling constants. As usual in

?nl;ﬁ?gn%:t?g:?gyggglr?;’egh?ng?umnsars]t%ﬁ dfo; h?&?ﬁ}iﬁgﬂ%uced by means of the relativistic random phase approxima-
bp 'tion. This is a nonperturbative scheme of solution which uses

considering the meson fields as classical quantities and e Dyson-Schwinger equation to sum up the lowest order

similating them to effecpve'nucleon properties. Thus we car. cleon fing diagrams. Due 10- mixing It is more ad-
separate-number contributions

equate to unify scalar and vector propagators in a five dimen-
sional matrix notation:

Corrections to the free meson propagators can be intro-

o=0y%+S, 2
AO 0 ab
_ DY = (8
U)#—(J)Oaﬂo+wﬂ, (3) ab 0 D'(l)“) !

where 0, w, are the classical mean field values e/,  wherea,b=—1,4 andu,v=0,4. The index—1 is assigned
the quantum fluctuations which are not included in theto scalar meson contribution ang=0,4, to thex compo-
ground state. Expressions faf and wg can be evaluated by nent of the vector field. The free meson propagators are
taking statistical mean values of the Euler-Lagrange equaA®(p)=1/(p?—m2+ie), Diy(p)zgﬂy/(pz—mﬁﬂs),
tions for the mesons and requiring self-consistency. In thigyith pzzpﬂpu and &,,= p#py/mg_gw_ The nucleon
way we obtain propagator at finite temperatufein the mean field approxi-
mation is given by
gs/m?

=(1+g—/M)2<E(X) (X)), (4)
sOo

[0]

1
GO = +M* N T S—
w(P)=(P ) {pZ—M*ZJris

wo=%<w‘f(x>w<x)>. (5) +2mi 8(p*~ M*2>nF<po>1, ©

rfhe first term between square brackets is usually labeled the

field which in turn depends omr, through the effective Feynman componer@g(p) and the second one the density
nucleon masdM* =M/(1+g.oo/M). In Eq. (5) the term dependent pai&(p), althoughGg(p) also depends on the

between angular brackets represents the conserved baryBHedium properties throughM*. Here ng(po) is the
density. Fermi  occupation  number ng(po)=0(pg)n+(Po)

A residual nucleons interaction arises beyond the mean +©(—Po)n_(po), N+ (pg) = (1+eFIPol=m)~1 with 4 the
field approximatior{ 13] by introducing Eq.(2) into Eq.(1), chemical potential which takes into account the conservation

thus theN-o coupling becomes of the baryon density ang=1/T.
The Schwinger-Dyson equation for the full meson propa-

gator D(p) reads Dyp="Do+DII1Dy,, with II,, the
proper polarization insertion. This equation can formally be
solved to give

Here ¢(x) denotes the ground state solution for the nucleo

Lno=—pOOM* (X)+ Lyes, (6)

YX)SP(X)
Cres: g: —gsS'

1+m V

(7) Dap=U,3D%,, (10)

where Uyp=gap— D2 J1%. In the RRPA approximation
only the nucleon ring diagrams are included in the polariza-
wherem* =M*/M andg? =gsm*? is an effective coupling tion II,,. Due to baryon current conservation its compo-
constant. Thu£y,,, besides the nucleon effective mass term,nents are linked by the relatiom,I1#”=0. Furthermore if
generates a residual interactidi,s with a medium depen- we select the external momentwpn=(po,p,0,0), then isot-
dent coupling constant. Variable couplings arise naturally iropy avoids the mixing of transversal components among
nuclear many-body calculatior]d46,17], and on the other them and with scalar, temporal, and longitudinal compo-
hand this is an expected feature whenever hadron substrupents. There are only four independent elements which we
ture becomes relevafii8—20d. The expression fol,.s is  select asll,=Ilyy, IIy=I1_15, H=I1_,_4, and II;
nonpolynomic and cannot be directly used in a diagrammatie=1I1,,=I155. Within this choice we find that dé¥ is factor-
expansion, although restriction to the physical regime folized into two terms det/= EL€12'1

which quantum fluctuations are negligible as compared to

the mean valueoy enables us to approximat&, e €T=1+HTD80. 11

:g;*J(x)Szp(x). This linearized version can be used to
study the bosonic excitations of the system as it approaches e, =(1—TI,A%)(1+ p?I1,D3y/p3) + p?I15A°DS/p3.
an eventual chiral phase transition. (12
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8.0

For practical purposes the terp)LpV/mﬁ is not consid- 8
ered in the vector meson propagator in Edsl) and (12),
since it gives null contribution due to baryon current conser- 7
vation.

The formulas for the polarization components are

.2 d4q . . uD\‘IJ L
Hv(p)=—lgv5f —— TG () %G (p+a) yol, 5
(2m) i
) d4q * (b)
My(p)=ig,08 5f ZTG%a) ¥oG (p+a)], i
(2m) 3 ——t 80l ——1 .
0 1 -] 3 4 0 50 100 150 200

‘ p/Po T [MeV]

d
Hs(p)=—ig§25J 2 q) T GG (p+a)],

m)* FIG. 1. The effective coupling? as a function of the medium
properties.(a) The relative baryon density dependence for several
temperatures; the curves with full, large-dashed, and short-dashed
lines correspond td=0, 100, and 200 MeV, respectivelih) The

temperature dependence at zero baryon density.

where the trace runs over the Lorentz indices. The isospin

degeneration is taken into account by the faeterl,2, for by the condition det/=0. That is, it corresponds to the
neutron or nuclear matter, respectively. The evaluation oftates which break down the relati¢h0). In this work we
these expressions using E(P), splits them into several neglect the imaginary part of the polarization insertions, this
terms  containing the  products Gg(q)Ge(p+q), is an exact result in the range<®?<4M*?2 where imagi-
Gr(9)Gp(p+q), and Gp(q)Gp(p+q), which represents nary parts are rigorously null.

particle-antiparticle, Pauli blocking, and particle-hole effects,
respectively. From these, only the first one diverges and re-
quires some regularization procedure. We restrict ourselves
to extract divergences by a well defined method and eventu- In order to obtain numerical results we have takén
ally additional free parameters could be fixed using experi=939 MeV,mg=550 MeV, andn,=783 MeV for the in-
mental data. In the framework of dimensional regularizationvacuum nucleong-meson, andv-meson masses. The cou-
[21] it can be demonstrated that the finite part of Feynmarpling constantgs,g, are fixed in order to obtain the binding
contribution toll,, is identically zero, while for the remain- energyeg=—16 MeV at the saturation baryon densjiy
ing three we impose null contribution at zero density and at=0.15 fm 2 in the mean field approximation. In such a way

4

d
HT(p)=—igf5f 2 q) T G%a) y,G°(p+0) 2],

77_4

IV. RESULTS AND DISCUSSION

the meson mass sheﬂ?=m§yu for the regularization point.
Thus we obtain the following results for the finite parts:
M*2—z(1—2z)p?

M2—z(1—2z)m?

. 25 1
)= %pzfo dz 21—-2)In
ar

. p2 )
"(p)= FH'f’m(p)’

*2
S

; g
i (p)=x -

39*25 1
m*2m2—p?)— —— sz
772( s—P°) 2.2 o

M*2—z(1—2z)p?

X M*Z—Z 1-z 2In—
[ Ol v

In I1{"(p) the constank is not uniquely determined and
we take it as a free parameter, in particilar 1 ensures the

we getg,=7.845, g,=6.671 and we obtain the effective
nucleon massM*=0.89M and the compressibilityx
=225 MeV at the normal density,.

Mean field results can be obtained by solving the self-
consistent conditiod) for given values of the temperatufe
and the chemical potentiad, which is related to the baryon
densityp through

d’p ) )
P—5f m[m(E )—n_(E")], 13

with E* =\/p?+M*2. Once the mean value, is known,

the effective couplinggz can be evaluated for subsequent
application to the RRPA. In Fig.(&) the effective coupling

is drawn in terms of the baryon density for several tempera-
tures. It can be seen that it is a monotonously decreasing
function of the density for all the range of temperatures 0
<T<200 MeV, a shift down of approximately 40% is ob-

condition 9T14/9p?=0 at zero density and at the scalar me-served at the density=4p, relative to its vacuum value. In

son mass shell.

Fig. 1(b) the zero density results fayz are examined in

The formalism just described can be used to find the colterms of the temperature, it has an approximately constant
lective modes. These are self-sustained density fluctuatiort®havior untilT=150 MeV is reached, from here on a fast
of the whole system, whose dispersion relation can be foundecrease is observed.
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FIG. 2. The vector-meson effective mass as a function of theT_ 3 B 7
density for the temperaturés=0, 100, and 200 MeV. Line con- g
ventions are the same as in Figall The results corresponding to —
neglecting the Dirac sea contributiofsase(a)] and those obtained E”’ 2.5 - .
by regularizing on the vector-meson mass sHelise (b)] are
included.
2.0 L 1 L | L 1 N 2.0 L | N 1 L | L
The meson propagators evaluated in the RRPA can be et o2 3 40128t
used to extract the effective masses, which are defined as th P/ Po P/ Po
roots of the inverse meson propagator at zero vector momen-
tum, i.e., thep, solutions of FIG. 3. The scalar-meson effective mass as a function of the
density for the temperaturéé=0, 100, and 200 MeV. Line con-
Dfl(po p=0)= Dofl(po p=0)—T,4(Po,p=0)=0 ventions are the same as in Figall The results corresponding to
aa 1 aa 1 aa l )

neglecting the Dirac sea contributiojtase(a) | and regularizing on
the o-meson mass shell for values of the regularizing parameter

fora=-1,1. . . =1 [case(b)], A\=10[case(c)], and\ =50 [case(d)] are included.
The behavior of the lightest mesons massesyp) has

been studied in the framework of the QHD-I model, since themedium dependent coefficient is assigned to the effective
early work of Chin[22] and under different approximations coupling therg On the other hand, by choosiig=50 in our
[23-27. calculations, an asymptotically decreasimgneson mass is
The density dependence of the vector meson effectivebtained. This contrasts with the QHD-I model results of
mass is shown in Fig. 2, where we compare results obtainef@5,27).
by completely neglecting divergent vacuum contributions Thermal effects diminish the rate of variation with den-
[Fig. 2@] with those given by the on shell regularized po- sity. The significance of thee meson in hadronic models is
larization [Fig. 2(b)]. From Fig. Za) it can be seen that at unclear at present. It has been interpreted as a correlated
zero temperature the vector meson mass increases with te&change of many pior{28], this hypothesis could explain
density, at higher temperatures the growth becomes weakahe success of models like QHD-I which do not include
The inclusion of the vacuum inverts this trend for densitiespions explicitly. In other contexts this meson is regarded as
below a certain value, which changes with the temperaturethe chiral partner of the pion. In any case the scalar meson
For higher densitiem, turns increasing, but for all the range seems to be linked to the manifestation of chiral symmetry in
of densities and temperatures studied it remains below iteadronic physics, and a dropping of themass with density
vacuum value. Similar results have been found for thes generally accepted.
QHD-I model calculations, see for exam|25-27. The Collective excitations in nuclear matter have been previ-
same comparison for the scalar meson is done in Fig. Jusly investigated within the relativistic QHD-I model
Since the regularized scalar polarization depends on the fr§@2,23,25,27,2p A very rich structure of the dispersion re-
parameten, we have included the casgs=1, 10, and 50. lations has been classified [23] as zero sound, meson-
For the scalar meson the situation is not so clear, differentranch modes, and instabilities. We have found similar re-
values of the parameter produce dissimilar density varia- sults at zero temperature, but at higher temperatures only the
tions. In Fig. 3 the three cas@s=1,10,50 are shown. With so-called meson-branch modes survive. We have studied the
these values we have obtained in the first case1) a range 6<py, p<2 GeV of the momentum.
nonmonotonic density variation, for=10 an almost con- A brief digression on the so-called Landau ghost poles is
stant function for both density and temperature, finally foropportune here. The presence of spacelike singularities in
A =50, a monotonously decreasing function is the outcomemeson propagators was reported long E&f@. Several reci-
The results without Dirac sea contribution can be comparegies to extract spurious contributions have been stated
for example with those di9], where different versions of the [31,32. However the imaginary part of the inverse meson
DSCM are used at zero temperatyreote that a different propagators is nonzero f@<0, and the existence of Lan-
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FIG. 4. The dispersion relations for longitudinal collective
modes aff=0 (a) andT=200 MeV (b). In both figures the cases 0 1 1 1 1 . 1 .
A=1 andA =10 are represented by solid and dotted lines, respec- 0 600 1000 1500 2000
tively. Here the presence of the so-calleéndw excitation modes,
as explained in the text, can be appreciated. P [MeV/c]

dau ghost at low densities could be a signal of nuclear matter FIG. 5. The transverse mode dispersion relation for collective
instability against the gas-liquid phase transiti®8]. At excitations in symmetric nuclear matter for=0 (solid line) and

high densities these poles occur at several times the freE=200 MeV (dashed ling

nucleon mass and possibly its presence sets up the limit of

applicability of the model. Notwithstanding, the numerical tem with a finite particle numbek can be given in terms of
calculations in31] show a negligible influence on the lower the previous results. For this purpose we have based our

momentum applications. results on the approach developed in RE3S,34], which is
The zeros of del/ can be classified as zeros of HE41l)  founded on the identification of the Landau-Migdal param-
(transverse mode excitationsr as zeros of Eq(12) (longi-  eters in the expression of the RRPA dielectric function. This
tudinal mode excitationsIn the last case a two branch pat- is a suitable procedure for sufficiently high The expres-
tern is found, recognized as tlwe and w-meson modes. sion obtained by taking the limp—0 of Eqg.(12) at T=0

As an example of high density results, the dispersion recan be compared with the longitudinal dielectric function of
lation for the longitudinal collective excitations at twice the the Landau liquid model
normal density are shown in Fig. 4. The casedef0 and
T=200 MeV correspond to Figs.(@ and 4b), respec-
tively. Two different values of the regularizing constait ( €.=C
=1,10) have been used. The negligible magnitudH gfas
compared tdIg andII,, produces a too smadt-w mixing.

o . where ®(x)

As a consequence the longitudinaimeson mode is almost
independent of th& parameter. This fact is evident in Fig. 4
where the curves for the mode corresponding to=1 and
A =10 are indistinguishable. The same fact can be observ
for the zero mode in the left-bottom corner of Figa®
which is nearly unaffected by the value »of

On the other hand, a lower-energy regime startingat
=600 MeV for\ =10 replaces the scalar-meson curve start-
ing at pp=950 MeV for A\=1. Finite temperature effects
are almost negligible for the meson branches, although zero
modes are drastically suppressed with temperature. In Fig. 5 Fo= { F,—Fs
the curves for the transverse mode dispersion relation are
displayed forT=0 and 200 MeV. This component does not
depend on\. As in the previous case, temperature effects are F,
small and are more apparent for lower momenta. These re- Fi=— W

v

X°F, ”
1+d(x)| Fo+ , (14)

1+F,/3

is the Linhardt function of argumenk
=po/pve andc,Fy,F, are the Landau-Migdal parameters.
' The Fermi velocityv is defined in terms of the Fermi mo-

era1entum fe) and energy Epz\/p2F+ M*2) through vg
=pe/Eg. By these means we obtain

l—v,2:
4U|:

1+U|:
1_UF

3
——v§—3

5 In

c=1+F4

on).

sults can be compared with previous calculations using the 1+

Walecka mode]25-27. A qualitative agreement can be ob- 3

served, but a global enhancement of all modes is revealed in

the DSCM. The choicé =10 in our calculations improves Wwith Ng= 8prE /72 the density of states at the Fermi sur-

the coincidence between both models. face, Fs=Ng(gs/ms)?, F,=Ng(g,/m,)?, and Areg COMES
A qualitative description of the giant resonances of a sysfrom the regularized part dfl

m

v

025206-5



R. AGUIRRE PHYSICAL REVIEW C 63 025206

TABLE I. Comparison of the coefficienty, andag . The first  those given by34]. The result obtained fow,, is roughly
column is the experimental accepted values, see for exal@fle  twice the expected value, Whereaftb is more well de-
the second column corresponds to theoretical estimatioi83)f  scribed. In Ref[35] it has recently been reported that the

without Dirac sea contribution, the third column is obtained fromincjusjon of nonlocal pionic contributions improves the value
the numerical values ifi34] which includes vacuum corrections, of .,

and the last three columns are our results for regularizing parameter Q-
A= 1, 10, and 50, respectively. V. CONCLUSIONS
Expt. KS1 KS2 A=1 =10 \=50 We have investigated the collective properties of hadronic

matter in a relativistic model with density dependent
nucleon-meson interaction. The effective meson masses as
functions of the density and temperature of the hadronic me-
dium have been evaluated by means of the proper polariza-
tion insertion. These polarizations have been constructed in
the RRPA, including vacuum contributions. The effective
w-meson mass at zero temperature decreases for densities
below 1.5 p,, the behavior of ther meson is strongly af-
6 — mg fected by the value of the parameterused in the regular-
+o VAMT—mg arcta N (15 ization. The contribution of the Dirac sea to the RRPA po-
) S Mg o larization is significative, as can be seen by comparing with
The giant monopoleEy and quadrupoléEq excitation  gimjlar calculationg9]. The dispersion relations for collec-
energies can be approximately described in terms of the pajve excitations are qualitatively similar to those obtained

ay [MeV] 80 160 115 149 161 167.7
ag [MeV] 63 87.8 56.2 527 52.7 52.7

2

1—v,2: A
+6In(M/M*)—6

S
Mo |31

rametersk, andF; previously obtained by with the QHD-I model, although the absolute magnitude of
the scalar mode of the longitudinal component depends on
__VUF J(A+Fg)(3+Fy) = —1/3 the regularizing parameter used. The appearance of ghost
=——J(1+ TFy)=
Ew 1.2A183 (1+Fo)(3+F)=anA™ poles at relative high momena=3-3.5 GeV occurs far

from the range of the present work. Isoscalar giant reso-

Ve nances evaluated in terms of the relativistic Landau-Migdal

EQ:—M;\/2(3+ F.)/5= aQA‘1’3. parameters, are qualitatively described. However, a more re-
1.2A alistic model could give a better quantitative agreement.

The coefficients ofA~ %3 can be extracted from the experi-
mental data. In order to estimatg, andag we have evalu-
ated the expressions above at the saturation density. As can This work was partially supported by the CONICET,
be seen in Table I, our results are of the same magnitude &rgentina.

ACKNOWLEDGMENTS

[1] G.E. Brown and M. Rho, Phys. Rev. Le@6, 2720(1991). Mares, Phys. Rev. 61, 1784(1999; P. Bernardos, R.J. Lom-
[2] R. Rapp, G. Chanfray, and J. Wambach, Nucl. P#&17, bard, M. Lopez-Quelle, S. Marcos, and R. Niemhiod. 62,
472(1997). 024314(2000.

[3] G.E. Brown, C.Q. Li, R. Rapp, M. Rho, and J. Wambach, Acta [9] A. Bhattacharyya and S. Raha, Phys. Re\63>522(1996.
Phys. Pol. B29, 2309 (1998; B. Friman, M. Lutz, and G. [10] S.K. Choudhury and R. Rakshit, Phys. Rev4& 598 (1993.
Wolf, LANL Report No. nucl-th/9811040; Y. Kim, R. Raap, [11] M. Barranco, R.J. Lombard, S. Marcos, and S.A. Moszkowski,

G.E. Brown, and M. Rho, Phys. Rev. &2, 015202(2000. Phys. Rev. G44, 178(199).
[4] B.D. Serot and J.D. Walecka, Int. J. Mod. Phys.6E515 [12] R. Aguirre and M. Schvellinger, Phys. Lett.Z80, 245(1999.
(1997. [13] R. Aguirre, A.L. de Paoli, and O. Civitarese, Nucl. Phys.

[5] T.D. Cohen, R.J. Furnstahl, and K. Griegel, Phys. Rev. Lett. A597, 593 (1996.
67, 961 (1991); G.E. Brown and M. Rho, Nucl. Phy#596, [14] T.S. Biro and J. Zimanyi, Phys. Lett. 891, 1 (1997.

503(1996. [15] R.J. Furnstahl, R.J. Perry, and B.D. Serot, Phys. Re¥0C
[6] R.J. Furnstahl and B.D. Serot, LANL Report No. 321(1989.

nucl-th/0005072. [16] R. Brockmann and H. Toki, Phys. Rev. Lef8, 3408(1992);
[7]3J. Zimanyi and S.A. Moszkowski, Phys. Rev. 42, 1416 R. Fritz, H. Muther, and R. Machleidthid. 71, 46 (1993;

(1990. G.Q. Li, R. Machleidt, and Y.Z. Zhuo, Phys. Rev.48, 1062
[8] J.-K. Zhang and D.S. Onley, Phys. Rev.4@, 2230 (199J); (1993.

M.M. Sharma, S.A. Moszkowski, and P. Ringjd. 44, 2493  [17] H. Lenske and C. Fuchs, Phys. Lett.3B5 355(1995; F. de

(1991; N.K. Glendenning, F. Weber, and S.A. Moszkowski, Jong and H. Lenske, Phys. Rev.52Z, 3099 (1998; 58, 890

ibid. 45, 844(1992; K. Miyazaki, Prog. Theor. Phy91, 1271 (1998, and references therein.

(1994); 93, 137 (1995; R.J. Lombard, S. Marcos, and J. [18] M.K. Banerjee, Phys. Rev. @5, 1359(1992; M.K. Banerjee

025206-6



COLLECTIVE MODES IN HADRONIC MATTER INA . .. PHYSICAL REVIEW C63 025206

and J.A. Tjon,bid. 56, 497 (1997). (1999; P. Schuck, Z. Aouissat, F. Bonutti, G. Chanfray, N.

[19] A.M. Rakhimov, F.C. Khanna, U.T. Yakhshiev, and M.M. Grion, and J. Wambach, LANL Report No. nucl-th/9806069.
Musakhanov, Nucl. Phy#643, 383(1998. [29] M. Nielsen, C. Providencia, and J. da Providencia, Phys. Rev.

[20] K. Saito and A.W. Thomas, Phys. Lett. 87, 9 (1994. C 47, 200(1993.

[21] L.H. Rayder,Quantum Field TheoryCambridge University [30] R.J. Furnstahl and C.J. Horowitz, Nucl. Phys485, 632
Press, Cambridge, 1985 (1988.

[22] S.A. Chin, Ann. Phys(N.Y.) 108 301 (1977. [31] K. Tanaka, W. Bentz, and A. Arima, Nucl. Phy&528, 676

[23] K. Lim and C.J. Horowitz, Nucl. PhysA501, 729 (1989. (19921.

[24] R.J. Furnstahl and C.J. Horowitz, Nucl. Phys485, 632 [32] J. Caro, E. Ruiz Arriola, and L.L. Salcedo, Phys. Revb%;
(1988; S. Gao, Y.-J. Zhang, and R.-K. Su, Phys. Re\6Z; 1767 (1997; A. Mishra, P.K. Panda, S. Schramm, J. Rein-
380(1995. hardt, and W. Greineiibid. 56, 1380(1997).

[25] K. Saito, T. Maruyama, and K. Soutome, Phys. Revi02407  [33] S. Nishizaki, H. Kurasawa, and T. Suzuki, Nucl. Phyd62,
(1989. 687 (1987).

[26] H.C. Jean, J. Piekarewicz, and A.G. Williams, Phys. Rev. C[34] H. Kurasawa and T. Suzuki, Phys. Lett. &84, 262 (2000,
49, 1981(1994. and references therein.

[27] K. Saito, K. Tsushima, A.W. Thomas, and A.G. Williams, [35] T. Maruyama and S. Chiba, Phys. Rev. &, 037301
Phys. Lett. B433 243(1998. (2000.

[28] C. Schutz, K. Holinde, and J. Speth, Phys. Revb1> 1374  [36] J. P. Blaizot, Phys. Re[64, 171 (1980.

025206-7



