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Generalized polarizabilities of the proton in a constituent quark model revisited
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We study low-energy virtual Compton scattering off the proton within the framework of a nonrelativistic
constituent quark model. The Compton tensor is divided into two separately gauge-invariant contributions. The
first consists of the ground-state propagation in the direct and crossed channels together with an appropriately
chosen term to satisfy gauge invariance. The residual part contains the relevant structure information charac-
terized by the so-called generalized polarizabilities. We discuss two different schemes to obtain the generalized
polarizabilities from the residual term. Explicit predictions for the generalized polarizabilities are presented for
the Isgur-Karl model. Our results are compared with previous predictions in that model as well as other

approaches.
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I. INTRODUCTION RCS amplitude. For example, for a spin-1/2 system one finds

four additional constant&spin polarizabilities at third order

The electromagnetic polarizabilities (electrio and g [24-27 and four terms for the spin-averaged amplitude at
(magnetig of real Compton scatteringRCS [1] describe, to fourth order[27,28. Another option is to allow at least one
leading order in the photon frequency, the model-dependerihoton to be virtual. This second generalization, which was
response of a spin-0 or spin-1/2 system beyond the lowalready discussed in the 1970’s in the context of nyéel,
energy theorenfLET) [2—4]. Within a classical framework has recently been applied to the nucl¢80,31].
these quantities are accessible to an intuitive interpretation as As in all studies with electromagnetic probes, the inclu-
a “measure of the stiffness or rigidity of a systenj3].  sion of virtual photons substantially increases the possibili-
There have been considerable experimental efforts to detefies to investigate the structure of the target. The use of a
mine the proton polarizabilities from Compton scattering offVvirtual photon allows one to access longitudinal degrees of
the proton[6—9]. Until recently, the most precise values for freedom and to vary the three-momentum and energy trans-
the proton polarizabilities were derived in the work of fer to the target independently. The potential of investigating
MacGibbonet al. [9] and analyzed by means of dispersion electron-proton bremsstrahlung as a source of the virtual
relations at fixedt [10]. The results Were;p=(12.lt 0.8 C_ompton eff_ect amplituclje was already noticed by Berg and
+05)x10°* fm® and B,=(2.170.870.5)x 10~ fm? Lindner[32] in .the 1960's. In its most _general form for one

: . p ' ) ~ : real and one virtual photon, this amplitude can be described
Th_e analysis of Re{9] made use of the I_3a|d_|r_1_sum el by 12 form factors of three invarian{82]. A generalized
which relates_ the sum of th_e two polarizabilities to the_ tOtallow-energy theorenfGLET) analogous to the LET of RCS
p_hot&albsorptlon cross section. The sum rule constraint wa@_éﬂ was derived in Ref(33], where it was shown that, up
apt Bp=(14.2:0.5)x 10 * fm® [12], while more recent tg and including second order in the momenta, all 12 ampli-
analyses found (13.690.14)<10* fm® [13] and [14.0  tudes for the proton can be expressed in terms of the proton
+(0.3-0.5)]x10°* fm® [14]. New real-Compton- massM, the anomalous magnetic momentthe electromag-
scattering data below pion-production threshold have beepetic Sachs form factol6 andG,,, the mean square elec-
measured at the Mainz MicrotrdiMAMI). The new global  tric radiusr2, and the RCS electromagnetic polarizabilities
fit including these data results in the valueg=(12.24 4 andg.

+0.24+0.54+0.37)x10 4 fm® and Bp=(1.57+0.25 In Ref. [30], the model-dependent response beyond the

+0.52+0.37)x10"# fm® [15]. As there is no free neutron LET was analyzed by means of a multipole expansion. Only

target the experimental information on the neutron polarizterms contributing to first order in the frequency of the out-

abilities is much less certain. Results for the electric polarizgoing real photon were kept, and the result was expressed in

ability have been obtained from low-energy neutron scatterterms of ten generalized polarizabiliti€g&P9 which are

ing off the Coulomb field of a heavy nucleyd6-19. functions of the three-momentum of the virtual photon in the

Alternatively, the quasifree Compton scattering reactioninitial state. Further progress has been made with respect to

d(v,v'n)p [20-27 as well as elastic deuteron Compton implementing the constraints due to the discrete symmetries

scattering 23] have been investigated to extract informationin combination with particle crossing. In Refi34-34 it

on the neutron polarizabilities. was shown that only six of the original ten GPs are indepen-
Clearly, the concept of polarizabilities is open to gener-dent if charge-conjugation symmetry is combined with par-

alizations in, at least, two directions. One possibility consistdicle crossing.

of investigating higher-order terms in the expansion of the Following the very first calculation in the framework of a
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nonrelativistic quark modd30,37), there have been numer- whereX and py refer to internal quantum numbers and the
ous predictions for the GPs within various approaches, intgtal momentum of the system, respectively.

cluding phenomenological Lagrangiafi38,39, the linear The interaction with an external electromagnetic field is
sigma model[40], chiral perturbation theory{41], the introduced via minimal substitution. In addition, we include
Skyrme model[42], a relativistic constituent quark model a coupling to an intrinsic magnetic dipole momeﬁg

[43], and the so-called small scale expansjdd]. On the — - P fth . hew /2 is the Pauli spi
experimental side, first evidence for virtual Compton scatter-~ €= «/2M, Of the constituents, wheie,/2 s the Pauli spin

ing events was reported in R§A5]. The first results for two ~ OPerator. The resulting electromagnetic interaction Hamil-

structure functions involving linear combinations of GPs at!onian in the Schrdinger representation redds

Q?=0.33 Ge\f have been obtained from a dedicated VCS

experiment at MAMI[46]. Further experiments probing the

GPs at different values of momentum transfer are underway

at Jefferson Lalp4a7] and MIT-Bateg48]. H|,1:J d3xJ#(>Z)AM()Z), (4)
Our work is organized as follows. We start out in Sec. Il

with a general discussion of thieirtual) Compton scattering

tensor for_a no.nrelativistlic s_y_stem prarticle_s. W(_a propose H, ZZEI d3xf d3x’B’”(§,§’)A ()Z)Av()?), (5)

a separation into two individually gauge-invariant pieces. c 2 a

The first part consists of the ground state propagating in the .

direct and crossed channels, supplemented by an approprithere A*(x) is the second-quantized photon field and

ately chosen term to satisfy gauge invariance. The residual N

part contains the structure information contributing to the - s e,

GPs. Section Il deals with the multipole expansion of the J(x)=a§1 om

Compton tensor and the definition of the GPs according to “

Ref. [30]. Two schemes are presented to identify those

pieces of the residual term that actually yield contributions to -

the GPs. In Sec. IV we reconsider the calculation of the GPs

in the framework of the Isgur-Karl model, and Sec. V con- N

tains a short summary and some conclusions. The more tech- o\ 3ig_ ¢

nical details can be found in the Appendixes. p(X) aZl Bad (X~ Lo, 0

Hi=H, 1+H, 5, (3

-

N S
é\g(x—ra)(i——aaxva

<

V., - .
i—+0'a><va

53@-@}, (6)

0_ pOv_
Il. HADRONIC COMPTON SCATTERING TENSOR B =B"=0, ®
In this section we discuss the formalism to describe both L N g2 ..
: k> - BI(x,x')=8; > —83(x—r,)8%x'—r,)
real and virtual Compton scattering™ (w,q) +N(E;,p;) ' < m, a al

—y*(w’,q")+N(E¢,p;) off a composite system, denoted

by N, within the framework of nonrelativistic quantum me- The total HamiltoniartH=Hy+ H .4+ H, , whereH, 4 refers
chanics. We only consider the main steps to derive the hade the Hamiltonian of the radiation field, is time independent.
ronic tensor of Compton scattering and refer the interested The hadronic Compton tensor is obtained by calculating
reader to Refs[49-53 and the more recent work of Refs. the contributions oH, , andH, , in first-order and second-

[54,59 for a detailed discussion. order perturbation theory, respectivély,
The starting point is the nonrelativistic Hamiltonian for a
composite system d¥l particles with masses,, MX¥(q’,q,p)=SE"(q’,q)+ T4(q’,9,p), 9)
N (V*a)z whereq andq’ refer to the four-momenta of the initial and
Ho=— 2 5+ > Vag, (1) final photons. In Eq(9) we have also kept the dependence

=1 2My  a<p on a third independent three-momentum, namely, the aver-

. R age of the initial and final target momenge= (p; + p¢)/2.
wherer, and —iV,, refer, respectively, to the position and Usually this dependence is reexpressed in terms of the pho-
conjugate momentum of the particiein the coordinate rep- ton three-momenta when specifying the reference frame
reser;tatlon. We use na_tural_ gnlts, iksc=1, e_>0, and through 5={(ﬁ—d’)/2,6,—(ﬁ+5|’)/2} for the laboratory,
a=e“/47~1/137. For simplicity, we only consider a local
potential V4, i.e., the interaction between the constituents———
does not contain momentum-dependent and/or exchange
forces, and thus avoid the problem of exchange currents. The We adopt a covariant notation, even though a calculation within

. - . the framework of nonrelativistic quantum mechanics does not pro-
eigenstates of Eq(l), denoted by|Xpy), are normalized vide a covariant result.
according to

2For notational convenience we keep the four-momenamd g’
. _ . . as arguments, although their time components are related by energy
(X" pyxr| XPx)=8%(Px: — Px) Ox'x » (2)  conservation.
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Breit, and center-of-mass frame, respectively. This issue is of SE(” a)=(2m) 3o B (a".a)ip. 11
importance in the context of photon crossing as will be fi'(a’.a)=(2mX(Tpi|B"(a". q)lip), @D
shown later. where

Our normalization convention for the Compton tensor fol-

lows from theS-matrix element of RCSy(q,\) +N(p;,o) BE%(q’ a)= 1f d3oe-i4 BE(3.0 67573 0
—>')’(q’,)\,)+N(pf,0"): (q ,q)—z z[e (Z, )+e (Z, )]
| (12)
St=8%(pr—Pi) 83(q— Q") 81y Sy — ————
" (P=P) XA~ 0") 2075001 8m\ww' The latter equation follows from translational invariance
X 8P+’ —p— el * (N )e,(MME'(Q',4,p). BX'(x,x')=e P X' Br(x—x',00e" P ¥,
(10)

whereP refers to the total momentum operator of the com-
Using the interaction representation with respectHip  posite system.

+H,.q,° the first-order contribution is a sum of the  The second-order result from the direct and crossed chan-

“seagull” terms nels reads

(2m)%8%(px—pi— Q)
E¢(ps)+ @' — Ex(px)
2m)28%(px—pi+q’)
E¢(ps) — @— Ex(px)

TH@ 0B =273 [ dp15II0) X (Xpx3(0)liB)

+<2w>3§ fd3px<f5fla”<0>|><6x>( (Xpx|3#(0)ipy), (13)

with the energy of the intermediate stgtépy) given by i o Ca (G it iad
Ex(ﬁx)zﬁ)ZJZM +AEy, M being the target mass andEy l (Q)_g 2ma({e “Pa} +io,xqet ), (16
the excitation energy of the corresponding state. For further

reference we note _that Eqgéll) and (13 arf symmetrical P(a)ZE eaeidf‘;’ (17)
under photon crossing“«— —q'# and v u. @

By use of the standard procedure to separate center—of—h bl=ab+ba is th dard anti q
mass and internal motioi§1,53, the matrix element of the Where{a,bj=ab+ba is the standard anticommutator, an

current operator may be written as r! andp,, are the intrinsic coordinates and momenta of the
particles relative to the center of mass
<f5f|JM<o>|i6i>z#uwa,ﬁ)m, (19 iR Re e S mi, a9
where bL=P.— 1B, B=3 p,. (19
J(a,p)=]"(q)+ %p(ﬁ). We note that the intrinsic coordinates and momenta do not

satisfy the canonical commutation relations

3o(0,p)=p(a), (15 [P =15,

Sup— %) . (20)

\_i\_ntheq: Pi—pi. In Eq. (15)’_ the mtrmsLC current operator From now on we assume that both initial and final states,
j'"(q) and the charge density operaje(q) are denoted by|0) and (0’|, respectively, correspond to the
ground state of the system. However, we explicitly allow for
a change in the spin projection. Inserting Etd) into Egs.
3Alternatively, we could have treated the electromagnetic field a§11)—(13) and integrating over the center-of-mass momen-
a time-dependent external field and used the interaction representi!m, the Compton tensor of E(P) can be cast into the form
tion with respect tdH,. Both approaches yield the same result.
“Sometimes the symmetry proper§*“(x,x')=B"*(x',x) is
used to express E(L2) as/d3ze "% ZB#*(z,0) which, however, is
no longer manifestly symmetrical under photon crossing. 5In the following we omit the subscrigt .
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Tﬂ”(q',q,r?):; (0"13%(—q",2pi+q")|X) ,)<X|JV<a,25i+&)|0>

Ei(pr)+ o’ —Ex(ps+q

- ——(X|3%(—q",2p;—q")|0), (21)
Ef(pf)_w_EX(pf_q)< | 1

+§ (0'137(q,2p;—q)|X)

- e . - A. Multipole expansion and generalized polarizabilities
§+0=5"=0, 5”:5“(0'@ m—é(qfq )"7e[0). (22) The starting point of Ref[30] for the definition of the
“ GPs is the multipole decomposition of the residual term,
yvhich is to be evaluated in the center-of-mass frame defined

Before calculating the GPs, we split the Compton tenso S 6
+9q=ps+q’' =0,

into two parts that are separately gauge invariant and synpy Pi

metrical under photon crossin Yig rar -
p 9 ME"(M¢,0',9";M;,0,q)
M#=ME"+ME". (23) .
=4 LZM g, V(p'L'M",q")
~ P,V
The modified pole ternM£” is defined as p' L'M

XHYE MMM o' [q' My, @,a) V7 (pLM,Q)g,,,,

2
where the pole ternT5” corresponds to the contribution of @D
the intermediate ground state in the direct and crossed chamhere{V*(pLM,q)} constitutes the four-dimensional basis

Mg"=Tg"+GH", (24

nels andG*” reads of the multipole expansion of four-vector fields as introduced
in Appendix C of Ref[30]. In particular,p(p’) denotes the
G*9%(q’,q)=G""(q’,q)=0, type of the initial (final) multipolarity (p=0 scalar,p=1

magnetic,p=2 electric, andp=3 longitudina) and L,M
- 1 . R (L",M") refer to the quantum numbers of the total angular
G'(q',q9)= & M(O’|p(—q’)|0’><0|p(q)|0)5MfMi. momentum of the initia(final) photon. Note that in Eq27)
(25) the dependence on~the argumenqtandq’ also results froem
the dependence oM&” of Eg. (26) on p, given by p

A derivation of G*” is given in Appendix A. In particular, =—(q+q’)/2 in the center-of-mass frame. This implies that

M#” generates the correct Thomson amplitude in the limita naive substitutiof, w,q]<—[v,— o', —q'] in EqQ.(27) is

9.9’ —0. no longer equivalent to photon crossing, which assumes that
The residual ternM 4" is then given by p is not affected by such a transformation. This can also be

seen_from energy conservation, where “naive” photon
Mar=Trr 4, (26) crossing would imply
. - . . 0'=w+E(-q)~E(-q)~>-o'+E(q) - E@Q),
where TR" is the contribution of the excited states in the

direct and crossed channels, while the modified seagull ter¥hich clearly contradicts the correct relation under crossing,
is S = qur_ RV o' —w. We will come back to this point in Sec. IlI C.

Using the orthogonality property of the basis vectors
V#(pLM,q), the multipoles can be extracted from Eg7)
Ill. RESIDUAL COMPTON TENSOR AND GENERALIZED as
POLARIZABILITIES
. . . . . H(P’L,M’J)LM) M 1a’'l'M: 3
In this section we review the multipole expansion of the R (Mp,0"[q" M@, al)

residual tensor and define the GPs according to [B€él. In 1 N

this context, we generalize the discussion of R&D] by :EJ dqdqg’Vy,(p'L'M",q")

allowing for a general spin of the initial and final states,

respectively. We then discuss two different schemes of XI\N/I’,{”(Mf,w’,ﬁ’;Mi,w,a)vy(pLM,&).
evaluating the residual teri 4", the first one based on the 28)

presentation of Ref37] and the second one on a systematic
1/M expansion, which is capable of incorporating the con-
straints of photon-crossing symmetry to leading order in
ML SWe repeat that» andw’ are related by energy conservation.
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Since the residual term is gauge invariam’l\?l’é”=0 ment of the initial-state photon is similar, except that one is
—q,M#7 | it is sufficient to consider scalar mggnetic andinterested in the behavior of the multipole for arbitrary val-
vV 1 1 1

electric multipoles onhf30], ues of|q. The genera}I relation between electric and longi-
tudinal multipoles is given by

o A o3 - 2L+1 ~
E@=Ly@+ Vi@, (32

L'\’ where&,(q), £k (q), andY3H(q) are electric and longitu-
"oy - - dinal vectors of the multipole expansion, and vector spheri-
(p'L'M',pLM) ’ ANVE . i . . .
X Hg (Mg, 0",[q"[;Mi, o,[ql) cal harmonics, respectively. While the first term on the right-

mgv(Mfiwrva,;Mi 10)1&)

2
=4m X 2 g, ,WH(p'L'M",q")
pp'=0 LM

- I hand side of EQ.(32) can be expressed by the scalar
XW(pLM, )Gy, (29) multipole, the second term leads to the so-called mixed mul-
where tipoles, which are neither of electric nor longitudinal type
[30]
-~ - w ~
W"(pLM,q):V“(pLM,q)+5poﬁvf‘(3LM,q), H&p’L’M’,LM)(Mf ,w,,|a,|;Mi ,w,|&|)
1 NANI K IR N
p=01.2. =Ef dada’ Vi (p'L'M",q")
Finally, the dependence on the target spin projections is ex- ~ , =, S Ll A
tracted by defining reduced multipoles XMR (M, 0,0 Mi,,|dD[Yy (@], (33

H(p'L',pL)s(w, |a,|,w |ﬁ|) with reduced muItipo!es analogous to E§0). The GPs of
R BT Ref.[30] are now defined as

= 2 2 (DEMEEMG M IMiIS9 pe'LeDs((g))
Mi Mt M M7

x(L' M’,L —M|S9

1 o -
= H(Rp L ,PL)S(w/,qu (p,p’ZO,l),
XHEEMAMM 0’6 M w.]d]), (30) o"ql"

w

wherel is the spin of the target, and any of th&21 pro- Ig,(prLr,L)san

jectionss can be chosen. The selection rules due to the con-

servation of total angular momentum and parity are 1 o R

=| —— A" Y% ) (p'=0,1).
o L[q|L+1 o

(_1)501+L:(_1)§pr1+L'. (34)

[L—L'|<sSsL+L’, 0=S<2I,

From now on we assume the final-state photon to be real)p to this point we have only incorporated constraints due to
»'=|q’|. The definition of the GPs requires to identify the rotational symmetry, gauge invariance, and parity conserva-
leading-order behavior ihi’| for any given multipole. In the t!op._As such, the_ "’?b‘."’e analysis is valid in both a nonrela-

. I -, . . . tivistic and a relativistic framework. However, additional re-
Sllegert "“.“'t of|q’| -0, the final-state electric and longitu- strictions apply, once a covariant, field-theoretical approach
dinal multipoles are related by is chosen. In particular, if one assumes symmetry under par-

ticle crossing in combination with charge-conjugation invari-
H(R3L',pL)S (31) ance, one obtains a set of_four indep_endg_n_t Iinee}r equations,
' involving the ten generalized polarizabilities with’ =1

, L'+1
lim HE PDS= jim /——
la’|—0 la’|—0

[34,35.
which in turn can be expressed in terms k- #9S by
gauge invariance. The leading-order behavior of a scalar or B. Expansion of Liu, Thomas, and Guichon
magnetic multipole of ordet” is given bylq'|*". The treat- Let us first reconsider the calculation of the GPs accord-

ing to Ref.[37], where the hadronic tensdt4” is split into
a leading and a recoil contribution. For that purpose one
"The right-hand side of Eq(65) of Ref. [30] contains a typo- defines the matrix elements of the charge density and current
graphic error and should include a summation over the projections operators of Eqg14)—(17) between the ground state and the
[56]. intermediate stateX+0,

025205-5



B. PASQUINI, S. SCHERER, AND D. DRECHSEL PHYSICAL REVIEW &3 025205

-

px(@)=2 e (X" (0), 3o @)= PR (@) +iSH(— @) X G 50 pk (),

5,(q iq-1 57 832 0= 632 x=0,
Px(a)=2, 5 19T p!}0), X0~ 9Jc0x
0Jcx0(0,9") =~ MPX(_q ),
Sx(q)= E 7,69 74]0). (35)
With this convention the current matrix elements of the di- 536’0)((5,&,): _ Wi(‘a)- (39)

rect channelsubscriptd) of Eq. (21) read

In Ref. [37], the leading part of the hadronic tensor is ob-

tained by neglecting thesJ, terms of Egs.(38) in the
crossed-channel matrix elements and by only taking account
of the leading terms in the expansion of the denominators in

33 xo(@)=(X|p(1)|0) = px(q),

Jaxo(@)=(X|3(a,—)[0)=Px(q)+iZx(q)Xq

>

q R
—mpx(Q),

3§ ox(a)=(0]p(—a")|X)=p%(q"),

)=(0]3(—q’,—q")|X)=P%(q")—iZ%(q")xq’

-

!

_a

Jaox(@’

(36)

In the crossed channésubscriptc) the intermediate states
propagate with momentuuﬁx= —d—d’, resulting in matrix

elements depending on bothandq’. As in Ref.[37], we
write these matrix elements as

(X|3(=0q",—29-9")[0)=Jc x0(A") + 8Jc x0(9,0"),

(013(d,—29" —q)|X)=Jc ox(q) + 83c.0x(0,a"),  (37)
where
I so(@)=px(—q"),
3 = 5 = AN a,
Jexo(@)=Px(—q")—iSx(—q')Xq' - om Px(— q'),

J?,ox(ﬁ)=p§(—ﬁ),

8In the following we suppress the spin indices in our notation.

' 9

a power series i

! ~ e o)
E(—q)+o —Ex(0) AET AEc )
1
Ei(—a)—Ex(—d—q')— o’
el el
Ei(9)—Ex(aq) Ei(q)—Ex(q) Ex(q)
+0(w'?), (39

whereAEy is the excitation energy of the staXe As a result
one finds[see Eq.20) of Ref.[37]]

MHAY (] Q)=
MRIeadlng{q aQ) “o EX

{ q )Jd xo(Q)}

I ox(9) cxo(a’)l+~§w.
Ex(9)—Ei(q)

%70
(40)

The remaining contribution from the crossed channel is in-
cluded in the recoil part, which also contains additional
terms of first order inw’ from the expansion of the energy
denominators in Eqe39). Accordingly, we obtain for the
recoil part

%In a nonrelativistic framework consistent with §d) one would
haveE;(q) — Ex(q) = — AEy . However, in Ref[37] the relativistic
expressions E;(q)=VM2+q? and Ey(q)=V(M+AEy)%+q?

have been used.
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M ecoi(@',0) =~ o @S e+ I
X#0 (AEX)Z ' ! XZ0 [Ex(Q)_E.(Q)]Z Ex(Q)

. . 1
XJVOX(Q)[J xo(d")+ 5J5X0(q’q,)]_>§0 m
X i

X3 ox(A) 83 50(0,Q") + 8L (6,0 ) I 40(A') + 83X (0,0 ) 83 40(A,G") ]+ O(w'?).  (4)

This result differs from Eq(21) of Ref.[37] by the presence two terms have to be always evaluatedgat=0, because
of the first sum on the right-hand side, thd term of the  they are multiplied by expressions that are either manifestly
second sum, and théJsJ of the third sum of Eq.(41). r implicitly chyox(a,a,)] of ordere’. From Eqs(36) and

However, this 'difffarence ha§ no bearing on the calculation o 38) we see that the corresponding overlap integrals vanish

the ten GPs with.'= 1. In thls ca§e \fvf OP,Iy need to analyze due to the orthogonality of the excited states with respect to

terms of Eq.(41) thgt are linear inw’=[q’| [see also Egs. the ground state. In conclusion, thé=1 scalar GPs do not

(34)]. quth(_armore, it follows from E_qs(28) and (33) that receive a contribution from E¢41). For theL’ =1 magnetic

the projection involves angular integrals of the type GPs we need to consider£0. In this case the terms pro-
AV ATV 1% NAVZS SINRATY

Jda'Y1y(9")Mg" and Jda'Y7,, (a")Mg for scalar and  norional tow’ do not contribute, because the angular inte-

magnetic final dipole radiation, respectively. The recoil con- * o >, ) ]
tribution of Eq.(41) only modifies the GPs with a magnetic gral of Yy, multiplied by aq’-independent function van

photon in the final state, as observed in R&7]. In fact, for ~ ishes. Furthermore, SinC@jc,ox(Cj,ﬁ') is of orderw’, the
n=0 we need to conside]ﬁyox, ngxo, andb‘ngo. Accord-  last term in Eq(41) containingdJ. xo(d,0) vanishes due to
ing to Eqg.(38), the last term vanishes identically. The first orthogonality. In conclusion, one is left with

~ - s 1 q q - - 1
M& ecoi( ',0) = W DIFyo(@)— 2 ——————
fieeal 0 0= 21t & B @ B o V) S E e @
X[ 32 ox(A) 834 50(0,9") + 832 0x(0,0") I 4o(q") ]+ - - - + O(w'?), (42)

where the ellipsis denotes terms which do not contribute tgsee Eqs(14)—(17)]. As an example, let us consider the fol-
theL’'=1 GPs. lowing matrix element entering the direct channel

C. Nonrelativistic /M expansion (013%(=q",20+0)|X)=(0[*(—a".0)[X)
_ . L . +(0]83#(—q',20+a)|X),

In this subsection we will consider a different procedure

of ordering the contributions of the excited states to the
Compton tensor. Our aim is to analyze the implications of
photon-crossing symmetry for the GPs. We will see that”
some of the GPs will have to satisfy certain conditions for”€ have defined for generic momertandb

|q|—>0. At first, we will not specify the reference frame but
both photons will be allowed to be virtupdee Eq.(21) for .
X#0]. Only at the end we will assume the initial and final w=0:(0[63%a,b)|X)=0,
photons to be virtual and real, respectively, and restrict our-
selves to the center-of-mass frame.
The starting point is a separation of four-current matrix g
elements into an intrinsic current with respect to the center-
of-mass system and a center-of-mass convection cyB&ht w#0:(0) 5J(a b)|X>— <O|p(a)|x>

with analogous expressions for the other combinations. Here,
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Using nonrelativistic kinematicg(p) =p?(2M), we sepa-

rate the energy denominators into excitation pieces and Kki- _ 1 B
netic contributions E((Pr)— o—Ex(pr—q)

! L], e  Te)-T(pi—a)

Ef(Pr)+ o' —Ex(Pi+0") AEx|” AEx AEx
5 S.4q 2
o' T(p)—T(ps+q’) P
o T AE T ——+0@3)|,
AEX 1 AEX AEX (AEX)Z
12
+(AEX)2+O(3) ’ where O(3) refers to terms which are suppressed by

1/(AEy)®, 1[(AEy)?M], etc. In this representation we have

P [(0]3*(—q",0)[X)+(0]83*(—q".2p+ )| X)][(X]3(0,0)|0) +(X| 83"(q,2p+7")|0)]
THx(a",q,p)=— 2 AE
X#0 X
o' T(p)—T(ps+q") w'?

1+ + + +0(3
AEy AEy (AEy)? (3)

X

s [(013%(q,0[X) +(0 53"(d,2p—q") [X)I[(X|3*(—a",0|0) + (X| 83*(— ' ,2p— ) | 0)]
X#0 AEy

T(p)—T(ps—q 2
© (ps) — T(ps Q)+ w

X
AEX AEX (AEX)Z

1—

+O(3)

: (43

In order to expand Eg43) in powers of 1M, we introduce  Appendix B, this property implies the following conditions
the following abbreviations for the direct-chanrtd) terms on the leading behavior in ¥/ for the reduced multipoles

Al=(X]3"(q,0|0), H¢ L "D |q'];0.]q))

SA4=(X|83"(q,2p+7")|0), =0, Gpp( )Y TSHEE S~ 0, [qs— 0[]

- (45
B&=(0|3*(—qa",0)[X),

o Next we consider the M corrections to Eq(44) to arbi-
8Bg=(0|63*(—q',2p+q)|X), trary order in 1AEy:

ATy=T(p) = T(pi+q"). By 0Aq+ OBGAG  BoOAT+ OBCAT

+
AEX_(D’ AEx+w

The corresponding expressions for the the crossed channel*”°

(c) are obtained by simply replacing— —q’ and p«< v. BHAY AT BYAX AT,

We note that bothS and A terms count as order . + p -+ AE.To AE 1ol (46)
The terms of leading order in i and arbitrary order in AEx— o' AEx—w xT@AExTw

1/AEy,

The first line of Eq.(46) contains the modifications of the
current matrix elements to first order inM/whereas the

, (44)  second line involves the center-of-mass kinetic energies of
the final and the intermediate states, respectively. In this

R _ _ _ scheme, each order is separately photon-crossing symmetric.
do not depend op. Equation(44) is symmetric under “true  However, terms beyond leading order ifviLAill, in gen-

photon crossing,” but also under “naive photon crossing” in eral, not be symmetric under naive photon crossing in the
any frame, because it is independentpofAs is shown in  center-of-mass frame.

BGAG BAC
+
%70 \AEy— w0’ AExto

T Lo(a",q)=—

025205-8
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We now turn to the case of real photons in the final state, o BY Ad BLAX o'
w'=|q’|, and explicitly specify the center-of-mass frame. Tf'x(Q',q)= AE. T AE }— > BaAG
As we are not interested in terms beyond linear ordepin X0 x x1 %70 (AEy)
and 1M, we make use of energy conservation aa,
+ "+ ——|BcAE
RE X70 (AEy)? M
w=w' — =,
2M BLSAL+ SBEAYL  BUSAX+ SBIAY
to expand the crossed-channel terms as X#0 AEx AEx
’ ~2 1 §2 o’
1 _ 1 o q _o'q - 5 (ByoAG+ SBEAG—BLOAL
AExtw AEyx|  AEx 2MAEyx (AE M X70 (AEx)
— 8BIAM) +O(w'2,1IM?). (49)
12
+O0(0™)|. As in the previous case we will now analyze which terms of

We then obtain from Eq(44) up to and including terms

linear inw’ and 1M

Eq. (49) actually generate a contribution to thé =1 GPs
after angular integration with the spherical harmonics
Y’l‘m,(a’). Again, all terms explicitly proportional t@’ will

not contribute, because at leading order they are multiplied

!

w by expressions which do not depend on the directioq’of
1+ —) BLA), y &P P a

The 5B term vanishes fop=0 and is of order’? for u
#0, and one is left with

T Lo(A,Q)=— >,
X#0

AEy |~ AEy

1 w’
- [ VMR
* AEX<1 AEX) BCAC f| X(q Q) Tf| X, Ieadmg{q Q)+Tf| X, recoﬂ(q Q)
(50)
22 12
+—q VAL — _ea VAL where
2M(AEy)? (AEy )M
. B4A; BeAE
+0(0'21M?), (47) Thix leaandd' @)=~ 2 | TE"+ Tg |, (6D
Note that via energy conservation, E44) has also gener- 4 anv .
ated terms in Eq(47) which are of higher order in M. TE GG = - By 0Aq+ 6BcAL
For further evaluation of Eq46) we use fi;X, recoif ™ » =0 AEy
2 g.a 1 q-q BLSAX
q q-q v cOA¢
_ 12 7 + ——BYA*—
ATd O(w ), ATC 2M M ) o (AEX)Z M ch'c <=0 AEX
and obtain +o +O0(w'2,1M?), (52
, where the ellipsis refer to terms which do not contribute to
O w ’
Ta )= — 1+ ) theL’=1 GPs. The terms in E451) generate contributions
fixnold’d) go AEy AEy to the GPs which result entirely from intrinsic currents. The
) first line of the recoil term in Eq(52) corresponds to M
X (BESAL+ SBEAY) + —— . (1 @ ) corrections of the virtual-photon absorption vertices in the
d 7 AEy AEy direct and crossed channel, respectively. The second and

X(BYSAX+ SBLAX)

2 o'
- RVAM__ ——
2m Defe (AEX)2(1 °AEx

S|+ O(w0'?,1M?).

(48)

third sums are M corrections of the crossed-channel energy
denominator and real-photon vertex, respectively. These last
two corrections only affect GPs involving a magnetic photon
in the final state.

Finally, by taking the nonrelativistic limit of the energies
in the scheme of Ref37],

N2

M+

2
M +q oM

Ei(q)=

The last two terms of Eq47) cancel with two corresponding
terms in Eq.(48) and the sum can be written as

=2
Ex(d)= MG+ =M+ AByct o1,
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TABLE I. Mixing parameters for thég and 25) representation of the-wave baryon resonances.

X N(37,1535) N(37,1650) N(37,1520) N(37,1700) A(37,1620) A(3,1700)
ay 0.85 0.53 0.99 0.11 1.0 1.0
it is straightforward to verify that the two expansion schemes . 3 TR
coincide up to and including terms of order and 1M. 2x(@)=5— | dpdhe " PyosQdy,  (56)
They only differ in their separation into leading and recoll a
terms. where

IV. GENERALIZED POLARIZABILITIES IN A NRCQM ~ .1 1
. . . . ¢N=¢N<pa)\1§1M1§yTN);
In this section we discuss the GPs of the nucleon in the
framework of a nonrelativistic system consisting of three .
constituent quarks. As in Ref37] we restrict ourselves to dx= dx(p,N,Ix,Mx,lx,7x)
the inclusion of theA(1232) resonance and the low-lying
negative-parity baryon®,5(1520), S;,(1535), S3,(1620), denote the internal wave functions of the nucleon and the

S11(1650), S;5(1700), andD34(1700). excited states, respectively, with an obvious notation for spin
and isospin labels. We have introduced the standard Jacobi
A. Matrix elements in the Isgur-Karl model Coordinatesp=(r1—r2)/\/§ and\=(r+ r2—2r3)/\/§, and

To be specific, we employ the model of Isgur and Karlmade use ofrg=rz—R= —\J2/3X. Furthermore,Q=(1/6
[57] which describes the quark-quark potential by a+ 73/2) and o3 denote the charge operator and the Pauli
harmonic-oscillator term plus a spin-dependent hyperfine inmatrices of the third quark, respectively. Explicit expressions
teraction. The baryon states are expressed in a basis(@) SU for the contributions of th@-wave negative-parity states are
harmonic-oscillator wave functions, with the @Y multip-  given in Appendix C.
lets generated by the combination of SW(g) and
SU(3)avor Multiplets. In particular, the nucleon and the  B. GPs in the framework of Liu, Thomas, and Guichon
A(1232) resonance belong to the ground-state spin-1/2 octet,
28, and the spin-3/2 decuplet10, of the56 SU®6) super-
multiplet, respectively. The multiplet of states associate
with the negative-parity orbital excitation is classified in
terms of a70 supermultiplet of S(6) which decomposes
into 21, 28, #8, and?10 multiplets. According to Ref57],
the strength of the hyperfine interaction is fixed to reproduc
the experimental mass splitting &f and A(1232) states,
while the remaining orbital excitations of tif® multiplet are
constructed with mixing parameters describing the empiric able |
spectrum quite well. s . , . .

Since we are interested in the nonstrange sector only, we With these assumptions we find for the leading contribu-

assume that all three quarks have equal masgedn addi- tions to the Compton tensor of E¢10)

We first discuss the results for the proton GPs that we
Gobtain with the same conventions used by R8&T] for the
separation into leading and recoil terms. Following R&7],
use my=350 MeV for the quark mass andv

=320 MeV for the oscillator parameter. As was pointed out
é'n Ref. [37], the proton polarizabilities do not receive any
contribution from theN(“8) multiplets. The mixing param-
etersay encoding theN(?8) andA(210) composition of the
esonant states are taken from Rjg&7] and are listed in

tion, when calculating the matrix elements of the electromag- 11 7S9x
netic current of Eqs(16) and(17), we take advantage of the pOLOLE_ = — o~ SEC a2 d
overall symmetry of the S(B) harmonic-oscillator wave 18 « X=N* A* M—Mx
function. This allows us to simplify the matrix elements of Sy
one-body operators n Zg ) (57)
3 E(q)—Ex(a)/’
<A|2 6i|B>:3<A|©3|B>- (53 I —1/2
i=1 1 31 2ia 2 (_ 1) x
p(01,129)1 — /2 atea? g2
. . 36 V5mya?® = X2
As a result, the overlap integrals of E85) can be written as 4 X=N7.A X
728.3x 728.3x
> S s i A~ ad ac
Px(Q):3J dpdhe RN b L Q gy, (54) x M—MX+E(q)—EX(q))’ 8)
R N 41 o o Z3 zZ3
— - —iV(@23)g-N 4t s i (11,115~ — A—q/6a _1\S.__ e
Px(q) \[32mqf dpdre dx(iVy =1V )Qdy, Ppara 27 mge (M—MA+( 1) E(q)—Ex(q)/’
(55) (59
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TABLE Il. Angular coefficients for the leading contribution to 1 1 -

the GPs. pLOL. _ — — g~ a/6a
V3 Mg
B A i
aXleOZ

1 0 12 213 23 -21\3 213 X > 5
1 0 32 228 2023 23 23 6 x=N*,a* Ex(Q)[E(Q) —Ex(q)]
1 1 12 23 -23 -2J2/13 -22/3 Ex(Q)[E(q)—Ex(q)]
1 1 32 -2i3 23 —\213 —-\J213 -1 X|1= 302 : (65
2 1 312 V3073 V3073

When discussing the recoil contribution to the remaining

three polarizabilitie® 11+ and PLL2?, it is useful to dis-
Pfﬁ“lﬁ: 1 1 o~ 0%/6a? (60) tinguish between terms which result from the spin-
i .

S03\/5 mqa2 independent(C) and the spin-dependen&] part of the

virtual-photon vertex. We find
The angular coefficientZ of the leading contributions are
given in Table Il. The diamagnetic term of E60) origi- Placsii ™= Placsid + Placois, (66)
nates from the modified seagull tef&” and contributes in
the spin-independent case only. The mixed GPs are given as 1 o?
N . . P(ll 115 _
the sum of two terms, corresponding to the contributions "recoilC =78 12

from the convective R0 and spin L") terms of

S.Jx
aXlellC

x=n* a* Ex()[E(q)—Ex(q)]?

—q2/6a2

the current at the virtual-photon vertex 2Ex(q)[E(q) —Ex(q)]
p(OLUS_ pOLLS |5(201,1)s' (61)
19°
pULLLE_ = 2 o=0?6a a2
pOLIS_ V2 Lze*qzl(iaz Soa fecoll> 18 mj X:NE*,A* x
108\/5 mqa X:N*,A* l—12 S,Jx
(1)« Zirnny
ZS,JX ZS,JX X 2 >
| —4 4 c 62 I Ex(q)[E(a)—Ex(a)]
: (62)
M—My  E(q)—Ex(q) E(@[E(Q) — Ex(q)]
x|1- X4 312 x (69)
|5(201,1)s: _ 1\/_ 1 e—q2/6a2 2 a)z(
36y3 Mqo —N* A* .
o Plecoi = Placone+ Placais (69)
(_1)|x—1/2( zi'dS:Jx Z;’CSva )
X + .
2, \M—My  E(@)-Ex(@) parzn__ 1 L - quee
recoil,C \/— 2
(63) a
In the scheme of Ref37] the spin-dependent GR*1.02)1 xS AZ3
p(L00L and P11 3| of which lead toM 1 radiation in x=n*.a* Ex(@)[E(q)—Ex(q)]?
the final state, vanish identically at leading order.
The recoil corrections are exclusively generated by the x| 1— Ex([E(q) —Ex(9)] (70)
crossed-channel diagrams and only modify the GPs with a 3a? '
magnetic final photofi37] (see the discussion at the end of
Sec. Il B). To start with, the two GPB(11.001 gnd p(11.02)1 11
. s . I B(11,2)1_ g dl6a 2 2
receive a nonvanishing recoil contribution Plecoils == 2 ay
\/_ q X=N* A*
(11,00)1 1 q2 —g2%/6a? (— 1)|X—1/2 7%
Precoil =~ ﬁ m_e > 1102
! 2lx Ex(@)[E(q)—Ex(a)]?
aleloo Ex(q)[E E
% E . w|1— x([E(q)— X(Q)] (71)
x=N*a* Ex(Q)[E(q) —Ex(q)] 3a?
~ Ex(@)[E(q)—Ex(a)] The values for the angular coefficieriof the recoil contri-

(64)

3a? ' butions are given in Table III.

025205-11



B. PASQUINI, S. SCHERER, AND D. DRECHSEL PHYSICAL REVIEW &3 025205

TABLE Ill. Angular coefficients for the recoil contribution to  — — 67
the GPs. E £
J J SJ SJ vé ?2
S * Z1100 Z1%02 ATETS Zits = =
0 1/2 NA 1/\6 | J
g —_ oo b by b by 7\\\|\\\‘||\|\\|||\\
0 312 2 3 1/\/6 0 0 02 04 06 08 1 0 0 02 04 06 038 1
1 1/2 1/27 1272 -1/3 —-1/6 ~ s ~ or
1 32 —127 1272 13 1/6 E A -
» 0 “« S C
= b R
- st - o
C. Comparison with Liu, Thomas, and Guichon ‘% ok 5; -15 ‘ .

We now compare our results with those of R&7].2° As o I
has been stated in Sec. Il A, the spin-dependent polarizabil 0 02 04 06 08 1 0 02 04 06 08 1
ities differ by an overall factor of three due to the different .~ 2 T f
definition of the reduced multipoles in E(O). In contrast & £
with Ref.[37], we find, at leading order, two simple relations o =
for the angular coefficients of the direct and crossed channel:—— -

[see Eqs(57)-(63)], = s
% B
S,J S,J 1 [ i1 _:‘ I R | .
Zc X:(_ 1)Szd X, (72) 60 02 04 06 08 1 20 02 04 06 08 1
q [GeV ] q [GeV]
L,SJy_ S+1-L,SJ
Zac *=(-1) Zad X. (73 FIG. 1. GPs in the NRCQM as a function of virtual-photon

momentum & |q|. Full lines: our results in the scheme of LTG,
In particular, as a result of E§72) combined with the rela- taking account of leading and recoil terms; dashed lines: calculation
tive phases between the direct- and crossed-channel contff Ref.[37]. Note that the two calculations coincide in the case of
butions to P{LLIV!, the leading term of the(®%Yt and  a.
P(LIDL polarizabilities vanishes at the real-photon point.
This is in agreement with the constraint by photon crossing 2 I3
as derived in Eq(B3) of Appendix B, but in contrast to the B(la)=— _\ﬁp(11,11)0(|a|)
results of Ref[37]. In addition, in our calculation the dia- 4m V8

magnetic contributiorP{--*Yt is only 3/7 of the result of

Ref.[37]. We also find different expressions f8f°L1S, in

particular for the relative phase of the direct- and crossedw;

channel contributions. Furthermore, the angular coefficients =

Z%,andz%,,occurring inPEL0  and P92 are smaller 2

by a factor of 1/2. In addition, we find a recoil contribution z . [
%,

0

05 L

to PULIYS for poth spin-flip and no-spin-flip transitions, 2 N\

while in Ref.[37] such a contribution is absent f&=1. SERS

The numerical results of Eq$57)—(71) are shown in
Figs. 1 and 2 together with the calculation of Re¥7]. For
the generalized electric polarizability

- e’ /3 -
alil)=— S 2pemonq g,

the two results are in agreemefitill line of Fig. 1). The
discrepancies iP(0%0D1 p(LIDNL gng pOL121 griginate
from the contributions of the crossed channel relative to the SO o
direct one. The different results for the generalized magnetic 002 04 06 08 | 002 04 06 03 1
polarizability q1GeV] q[Gev]

oL [103 fm4]

_2.55..‘|..‘\‘..|H 1

FIG. 2. GPs in the NRCQM as a function of virtual-photon

momentum e |q|. Full lines: our results in the scheme of LTG,
9we stress that both calculations start from the same model anthking account of leading and recoil terms; dashed lines: calculation
use the same parameters and approximations. of Ref.[37].
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<

8

=N

M’_| c’\’_‘ N’_‘
E E &
= T T 05
= =] =
3 @ g at
i
15 -
0 1 Ly 1 1
0 02 04 06 08 1
—_— —_ 2 L 1 | 1
“ o oL emmmmmmmmmommmooo 0 02 04 06 08 1
E g 0 _
5 @ ’ - 0
= S af =
z z =
g 3 =
s = 2 =
B 1 B =
<
3E B
2 L L L L EL L L L L
0 02 04 06 08 1 0 02 04 06 08 1
—_ 0r —_ 0
-+ - F
E -1 E _ L L L . L 25 L | ! L
o« F w 0 0.2 04 06 08 1 0 02 04 06 08 1
o 2F =)
= = q [GeV ] q [GeV ]
=, =
) 3
I 4 = . . .
A %, L FIG. 4. GPs in the NRCQM as a function of virtual-photon
. E X b momentum ¢ |q|. Full lines: our results in the scheme of LTG,
0 02 04 06 08 1 0 02 04 06 08 1 including the leading and recoil contribution; dashed lines: nonrel-
q [GeV 1 q [GeV] ativistic 1M expansion of the Compton tensor, obtained from the

sum of leading and recoil terms; dotted lines: leading contributions.
FIG. 3. GPs in the NRCQM as a function of virtual-photon Note that dotted lines are only included if the leading contribution
is finite and different from the total result. To the order considered,

momentum e |q|. Full lines: our results in the scheme of LTG, 0111 ) S i
including the leading and recoil contributions; dashed lines: nonrelP" ~ receives only a contribution from the leading terms of Eq.

ativistic 1M expansion of the Compton tensor, obtained from the(51), whereasP(*:99* and P(**?1 consist only of a recoil contri-
sum of the leading and recoil terms; dotted lines: leading contribubution from Eq.(52).

tions. Note that dotted lines are only included if the leading contri-

bution is finite and different from (g?fz)tfta' res‘(JO'}'OlT)f the order st of all, we note that due to photon-crossing symmetry
considered, the polarizabilities, P, and P % receive ) leading contributions to bo®(®%091and P11 1yanish
only contributions from the leading terms of E(p1l), whereas

P(102)1 consists only of a recoil contribution from E€52). identically. The use of relativistic expressions in the energy

denominators for the crossed-channel terms leads to pro-
nounced differences between the two schemes, as soon as the
leading term is vanishing or small. A striking example is

are mainly due to the discrepancy in the calculation of thegiven by the difference between the solid and dashed lines in
diamagnetic term, while the different evaluations of the re-P(°*®Y* of Fig. 3, which is entirely due to this different
coil terms result only in small deviations. Finally, the differ- treatment of the crossed-channel energy denominators. Fi-

ences in calculating the(©-9S and P12 polarizabilities nally, at the real-photon point, the leading contributions of

give rise to discrepancies of almost one order of magnitude?0th €xpansion schemes are equal, whereas the recoil terms
In particular, theP({2:2* polarizability receives its main con- differ by the contribution of second-order terms i1/ Fig-
T S 1T ) ures_5 _and 6 dlsplgy our resu[tﬁmll lines) together Wlth the
tribution from Procgi's which has been neglected in RE87].  predictions of the linear sigma model0] (dashed lines an
effective Lagrangian moddRB9] (dotted line$, and heavy-
D. Comparison with other calculations and experiment baryon chiral perturbation theofy#4] (dashed-dotted lings

In Figs. 3 and 4 we compare the two expansion scheme An unpolarized measurement can be analyzed in terms of

of Secs. IlIB and Il C. In each graph the solid line repre-t ree structure function®,,, Prr, and Py [30’35'.46
sents the full result according to the scheme of Liu, ThomasWhICh are products of theflGPS and the electromagnetic Sachs
and Guichon. Recall that in this framework the energy de_form factorsGe andGy,
nominators of the crossed channel contributions are written > 2yp(01,01)q |~

using relativistic kinematics. The dashed line corresponds to PLi(lah)=—2BMGE(Q)) P d]), (74)

a consistent nonrelativistic expansion up to and including

terms linear in M. The relevant expressions can be found

in Appendix D. The contributions of leading order inML/ IThe fourth structure functioR| ; of Ref.[30] is related toP, 1
[see Egs(51) and (52)] are separately displayed as dottedif symmetry under particle crossing and charge conjugation is ap-

lines. plied [35].
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o 10 =)
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g E
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0 COM*100
1 1 | 10 L | | |

0 0.2 04 0.6 0.8 0 0.2 0.4 0.6 0.8
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E E 25F
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FIG. 5. Results for GPs in different model calculations as a

function of squared momentum transferat=0, Q§=Q2|,,,,:0.
Full lines: our results in the NRCQM with the scheme of LTG;
dashed lines: linear sigma modél0]; dotted lines: effective La-
grangian mode[39]; dashed-dotted lines: heavy-baryon chiral per-
turbation theoryf44].

0

plLoO! [ 102 fmz]

L COM*10
gl
0.2 04

0.6 0

POLLO 110 fm* |
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04 0.6 0.8

Q) [GeV* ]

JR 77 1) SN EE
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0.6 0.8
Q [GeV* ]

FIG. 6. Results for GPs in different model calculations as a

function of squared momentum transfer@t=0, Q3=Q?, —o.
Full lines: our results in the NRCQM with the scheme of LTG;
dashed lines: linear sigma model0]; dotted lines: effective La-

grangian mode]39]; dashed-dotted lines: heavy-baryon chiral per-

turbation theory[44].
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TABLE IV. Structure functions, , P, andP 1 in GeV 2
The two entries foPt andP 1 originate from the first and second
equations of Eqs(75) and(76), respectively.

P Prr Pt
lg|=0 MeV 37.0 -0.1 0.0 —-11.2 —15.8
|g|=240 MeV 28.7 -28 —14 -8.8 —12.4
|g|=600 MeV 9.9 -5.8 —3.1 -3.2 —45

.. 3 -
Prr(lal) =5 Gu(Qo){20oP ™M (q])

+1/2|q|[ V3POLVY|g|) + PO |q)) T}
=3G(Q3)|al?[ V2PCL12Y(|q|)
— PULIDY|q])/ wo],

. [3M]q
Pur(la)) = EW
0

K Q3

2 d

(79

Ge(Q3) P |q)

Gu(Q3)| P10 gl

9 pnomy g
2

2Q5
VQjdl
o

Ge(Q3) PN |q))

3 N
+5 Gu(Q)PCY|g)), (76

where wo=wl,_o=M—VM?+|q|? and Q2=-0?, _o
=—-2Muw,. We note that the second equations of E@%)

and (76), respectively, rely on symmetry under particle
crossing and charge conjugatisee Eqgs(21c) and(21d) of

Ref. [35]] which is not satisfied in the NRCQM. Table IV
contains the predictions for the three response functions for

|gq|=(0,240,600) MeV, corresponding to the real-photon
point, MIT-Bates[48], and MAMI [46] kinematics, respec-
tively. For the Sachs form factors we used the parametriza-
tion of Ref.[58]. For P+t and P+ we quote both results
obtained from Eqs(75) and(76), respectively.

Finally, in Table V we compare the predictions with the
first experimental information obtained at MANM6] for the

linear combinatiorP, | — Pr1/€ and P, 7 at|q|=600 MeV.

E. Particle crossing, charge conjugation, and gauge invariance

The original definition of the GPs of R€f30] was based
on angular momentum conservation, parity conservation, and
gauge invariance. In Refg34,35 it was shown that only six
of the original ten GPs are independent if particle-crossing
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TABLE V. Structure functionsP,, —Pr/e and P, for |q 4 OF 5 Ur
=600 MeV in GeV? (e=0.62). The two entries forP i

02 - 025
—P+1/e and Pt in our calculation originate from the first and [ E
second equation of Eq$75) and (76), respectively. -0.4 / 05 [
Pu—Prrle Pr e b 07 7
This calculation 19.2 14.9 -32 —-45 s e
NRCQM of [37] 11.1 -35 ) T S T AT B
N 0.2 04 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Experiment{46] 23.7 -5.0 . 0 - 05
+2.2+0.6x4.3 +0.8+1.1x1.4 < <

02 F

[ 0 L
0.4 - L
symmetry in combination with charge-conjugation invari- r /

ance is imposed. As a result a set of four linear equations 06 |

was obtained, s /// !

N 2 1 I T N R AR A R R I B B
p(0L10_ _ (1:_02 \ﬁp(01,01)0+_p(11,11)01, (77 ! 02 04 06 08 1 ! 02 04 06 08 1
[¢] 3 J6 q [GeV ] q [GeV |
1 2 3 FIG. 7. Violation of the relations of Eq$77)—(80) as a function
p(11,2)1_ _ “p(11,11)1 - (11,02)1 _a
P |9|2 5P + SwOP , of g=|q|.
q
(78 context is, of course, the low-energy Thomson limit which
. requires the inclusion of the sum over all electric-dipole ex-
p1n1_ _ ! \ﬁwop(m,m)gL E@ p(1111)1 c_itaﬂonséincluding the negative-energy states of a relativis-
|q|2 3 3 wg tic theory).
B i|a|zp(01,12)11, (79 V. SUMMARY AND CONCLUSIONS
3

We discussed the general form of the virtual Compton
|a|2 1 . scattering tensor for a nonrelativistic composite system. In
pULOOL= [3 = p(O10D1_ — |q12p(110291  (8)  particular, we focused attention on the generalized polariz-
®o 2 abilities of the proton, defined from the multipole expansion
) of the Compton tensor. We performed a consistent nonrela-
where wo=wl,—o. Following 0%71121)01” U(Sl?vll‘;"le C(hocl’?gﬁ for tivistic expansion of the structure-dependent amplitude al-
the S|xll|r2)9?pend.ent GRs, g, P05 PRR20S P25 lowing us to identify the constraints due to photon crossing.
and P91 as given in Figs. 1, 3, and 5. _ ~ As a model calculation, we reconsidered the proton GPs in a
~ However, in a nonrelativistic framework particle crossing nonrelativistic constituent quark model. The model satisfies
is not a symmetry of the Compton tens@ee Sec. 2.3 of he constraint due to photon crossing at the real photon point,
Ref. [55]). Thus one cannot expect the relations of Eqspyt does not provide the relations among the GPs due to
(77)-(80) to be satisfied in the NRCQM. Having definad  nycleon crossing in combination with charge conjugation. As
(i=1,2,3,4) as the difference between the left-hand angy consequence of its limitations regarding relativity, gauge
right-hand sides of Eqs$77)—(80) normalized to their right-  jnvariance and chiral symmetry, the results of the model
hand sides, we show the discrepandgsn Fig. 7 as func-  should be treated with some care. There clearly is room for
tion of |g|. Clearly, the relations of Eqs(77)—(80) are  improvement in any of the above mentioned shortcomings.
strongly violated on the average. Nonetheless, the predictions provide an order-of-magnitude
Finally, another important limitation of the NRCQM is estimate for the nucleon resonance contributions and as such
due to a violation of gauge invariance. This problem can beare complementary to the results of the linear sigma model
traced back to essentially two causes: first, the Isgur-Karand chiral perturbation theory emphasizing pionic degrees of
model includes some effects of the anharmonic terms in théeedom and chiral symmetry.
gq potential only perturbatively in the energy but not in the
wave functions. Such a treatment leads to a mismatch be-
tween the resonance masses in the energy denominators of
the Compton amplitude and the baryon states which enter in We would like to thank P. A. M. Guichon for useful com-
the current matrix elements. Second, the actual calculatioments on the manuscript. B.P. is grateful to A. Metz and M.
truncates the configuration space to only few intermediat&anderhaeghen for stimulating discussions. This work was
states, while gauge invariance requires, in principle, the fulsupported in part by the Deutsche Forschungsgemeinschaft
set of intermediate states. The well-known example in thiSFB 443.
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APPENDIX A: GAUGE-INVARIANT MODIFIED GROUND-

STATE POLE TERMS

PHYSICAL REVIEW &3 025205

q,TE=2m)% Jd3pf ‘27 6(zo)
M

Here we derive the result of ER5) for G*¥ which, in R R R R
combination with the ground-state pole terms, constitutes the X(OMp¢|d,I*(2)|OMP)(OM P|J*(0)|OM;p;)

gauge-invariant tensd?/l’;”. We start with the expression
[see Eqs(8a),(8b) of Ref.[52] with the replacemerk—q’

andk’ — —q]

Tﬁv(q’,q,ﬁ):—i(zﬂsf dAZé‘q/,Z

X (OM ¢p¢| T[I#(2)3*(0)]|OM;p;),

+ 6(—20)(OMp¢|3”(0)|OM P)
X(OMP|d,J*(z)|OM;p;)

+ 8(20){OM ¢P1| p(2) OM P)(OMP|J"(0)|OM; p;)
— 8(20)(0Mpy|37(0)|OMP)
X(OMP|p(2)|0M;p;)].

whereJ"(x)=eprHot)J“(i)exp(—iHot). In general, we al-
low for a change in the spin projection from; to M¢. The  With 4,J%(z)=0 as an operator identity, the first two terms

ground-state pole contribution is given by

Teh(aa.p) = —i2m° Jd3Pfd“zéQ"Z
X[ 60(29)(OM ¢p¢|3*(2)|OM P)
X(OMP|J*(0)|0M;p;)

+ 6(—20)(OM ¢py|3"(0)|OM P)

on the right-hand side of the equation vanish. Performing the
integration with respect ta,, applying translational invari-

ance asp(z)=exp(~iP-2)p(0)exp{P-2), integrating first
with respect ta and then with respect t8, the two remain-
ing terms yield

A, Thi=(2m° 2, [(OMpi]p(0)|OMpy+4)

X (OM P|3#(2)|OM,p)]. (A1) X (OMps+q’'[37(0)|OM;p;)

The following procedure is very similar to the one used in

deriving Ward-Fradkin-Takahashi identitieg59—61]

guantum field theorysee, e.g., Chap. 6.1 of RéB2]]. Let

us contract Eq(A1) with q,, (arguments suppressed

amen=—12m?S [ & [ da-ig,en

Symbolically this expression is of the type

f d4z(5ﬂeiq"z)f“(z)=—J'd4zéq"zaﬂf“(z),

where we made use of a partial integration, and assumed that x(OM;p;i—q’'[p(0)|OM;p;)].

_<0Mf5f|JV(O)|OM5i_a’>
n X(OMp;—q'[p(0)|OM;p;)].

Finally, the operatop of Eq. (8) is diagonal in the spin
projections and we obtain

q, TE%=(2m)[(OMp¢|p(0)|OM p;+q')
X(OMps+q'[3"(0)|OM;p;)
—(OMp;|37(0)|OM;p;—q")

(A2)

the interaction is “adiabatically” switched on and off to get

rid of the surface terms aty= *=o. Similarly, use of the
divergence theorem has been made. After applying this result

to the above case,
T | [ ateet e,

we use the relation

3,0 0(£20)9*(2)]= % 8(20)9%(2) + 6( £ 20) 9,9*(2),

and obtain

First we consider EqA2) for v=0:

q;T’ST’fF[(OMpr(—ﬁ’)IOMf><0Mf|p(G)|0Mi>

—(OM|p(@)|OM;)(OM;|p(—q")|OM )]
=0, (A3)

where we inserted Eq$l4) and (17) and made use of the
diagonal nature op. Similarly, inserting Eqs(14)—(17) for
v=| we obtain

025205-16



GENERALIZED POLARIZABILITIES OF THE PROTON. . ..

q;T‘sfﬁ=<0Mf|p<—&')lomf>[<0Mf|ji"’i<6>|0Mi>

pi+q’l+pl

5M <0Mf|P(a)|0Mi>}

—[<0Mf|ji”'j(ﬁ)|0'\/h>

pi+pl—q’)
2M

<0Mf|p<6>|0Mi>}
X (OM;|p(—q")|OM;)
=(OM|j™I(q)|OM;)[(OM¢|p(—q")|OM )
—(OM;|p(—q")|OM})]

q' ., .
+ 31 (OMilp(=a")[OM)(OM | p()|OM ) S,

q’ ., :
W (OMilp(—a")[OM)(OM;[p(c)[OM;) Sy,

(Ad)

PHYSICAL REVIEW ®3 025205

the term of Eq.(25),

G*%a’,q)=G"(q’,q)=0,

- 1 -
G"(q’,0)= & M<0Mf|P(_qr)|OMf>
X<0Mi|p(a)|0Mi>5MiMfi

with the result thatl4”=T#&% +G*” is gauge invariant. In
particular,lT/Iﬁ” depends on ground-state properties only.

APPENDIX B: PHOTON CROSSING CONSTRAINTS AT
LEADING ORDER IN 1 /M

In Sec. IlIC we have seen that the leading term of the
residual amplitude, in a M4 expansion, satisfies the photon
crossing constrairtsee Eq.(44)]

TH% o(a",a) =T¢x 1o(—a,—0a"). (B1)

Because Eq(B1) does not depend on the average target
momentum, it is also symmetric under “naive photon cross-
ingn

T Lo(M¢ 0',q";M;,0,q)

where we made use of the fact that the ground-state matrix

elements op are diagonal and do not depend on the projec-

tion.

=T§7L0(Mf,—w,—ﬁ:Mi,—w’,—ﬁ’).

The calculation ofqg,Tp’; proceeds in a completely which in terms of the multipole expansion of E@7) im-

analogous fashion. Equatioa3) and (A4) suggest to add

plies

gppvv(pLMI_a)Hg(p,t'\OAp LM )(Mfi_w7|c_i|;Mi 1_w’1|a,|)vﬂ*(p,L,Mri_a’)gp’p'

(—)E MM L =M, G OHEES M (M — 0, |al My~ ' |G )V (oL =ML 3) g

4w LZM gp’p’vﬂ(p,L,Mria,)Hg(’TI’_gM,’pLM)(Mf1w,1|a,|;Mi1w!|a|)vy*(pLM1a)gpp
p,L, M,
p,,L,,M/
=4 E
p,LM,
p/,L’,M,
=4 2
p,.L,M,
p’,L’,M’

In the last step we made use of
VE* (pLM, = @) =g,,(—)" " MV(pL—M,q).

With the orthogonality property of the multipole basis
{V#(pLM,q)} (see Appendix C of Ref30]) we find

HEEM MM o', My, ,|d)

L-M+L" —M’
() 970 9pp

XHPEM LMY M~ w,|q); My, — @', q']).
(B2)
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Because of the orthogonality relations of Clebsch-Gordan
coefficients we finally obtain for the reduced multipoles

HY 6 "S(My,0',[a' ;M w,|dl)
— L+L'—S
_(_) " gp’p’gpp

XHPEE S S(My,—,]aliMi, —o',|q']).

(B3)

PHYSICAL REVIEW &3 025205

We stress that the above derivation holds only for those

pieces that are independent ﬁnf It is only in this case that
true photon crossing is equivalent to naive photon crossing in

the center-of-mass frame.

APPENDIX C: OVERLAP INTEGRALS OF THE
CURRENT OPERATOR IN THE NRCQM

The contribution of the S(B) multiplets to the overlap

integrals defined in Eq$54)—(56) is given by @=|q|)

(CD

V8 ¢ 2162
Prpe) (@)= —i—5— e T (~ VM2, + 1
1 1 Jx R
X ™M, —m (4,
My—my My —My M, —my(d
> > . \/g a 25 2
Prn( @ =15 e T (- )20, 41
q
1 1 J R
x e I N (o7
Mx—my my —My/ 7% "w
V2w q 2162
S oD =i 5 e T (L ar)
XD (—1)¥2 M2, +1
N
A S
X Yim, - u(Q)
Myx—u p  —My <
X(Xal 73l X)), (C3)

Vma
e

=2 > . 2/6(1/2
2 D="15— (1-27)

X2 (—1)VE X205+ 1
y23

toEo K @
X M q
Myx—u p —My <
XX 3l xm ) (Ca)

S (@)= (22 5 xh ). (C5)
1 R

A(zm)(q) 27 nezey D) (Ce)

(zlo)(Q) = (28)((1) (C7)

iA(ZIO)(q) = 1_,_—47.,\‘2 N(zg)(Q)y (C8

whereém is the spherical basis vector amdthe oscillator
parameter. The eigenstates of the total spiof the three
quarks have been denoted lvi’z for S=3/2, andXi;N for

S=1/2, with \ indicating symmetry under interchange of the
(12) quark pair. We note that the definitions for the overlap
integrals introduced in Eqg54)—(56) differ by a factor 3
from the corresponding expressions in E@—(11) of Ref.
[37]. In addition, we found a different result in the explicit

calculation of the integral entering intﬁN(ZS)(ﬁ) [the inte-
gral in Eq.(14) of Ref.[37] is smaller than our result by a
factor 2/2], while we agree with the results for the integrals

contributing to the remaining terms given in E¢%2) and
(13) and Eqgs(15—(19) of Ref.[37].

APPENDIX D: POLARIZABILITIES IN THE
NONRELATIVISTIC 1 /M EXPANSION

In this Appendix we collect the results for the polarizabil-
ities obtained from the multipole expansion of the Compton
tensor in the W nonrelativistic limit. The leading contribu-

tions corresponding to the terms in E§1) read @=|q|)

2
p(0L015_ — 11 e —92/6a? ax
18a2 X:N*,A* M_MX
XZSH[1+(-1)9], (D)
3 1 2/82
p(o1, 12)1_ e ¢ 6 E a2
18 V 5mya? Xohrar
( 1)lx-172 ZZSJX
(D2)
21y M—My’
4 1 z3
P(ll 1ms_ e—q 1602 1+ _1)5 , (D3)
para 27 m M — A[ ( ]

1 1
PUIMR= 5y

7q2/6a2
3 \/E mqaze ) (D4)
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1 1

pOLIS_ _ —g%/60? 2 a2
> 36,3 Mga’ XNF Ak
(—1)'x 12 ZldSJx
X .
o Mo (D% (09

Comparing these results with Eq5.7)—(62) for the lead-
ing contributions of the polarizabilities in the convention of
Ref. [37], we notice thatP(®-0%5, pOLIDS = ang p(01121

involve the same matrix elements of the current in both
expansion schemes, while for the propagator in the crossed

channel we now have M—My) ! instead of

[E(@)—Ex] ™.
The diamagnetic contribution tB*+9° from the two-
photon interaction does not change in thél1léxpansion.

The polarizability P°* has a leading contribution only
from the spin-dependent term of the curréP)™S, while

the contribution from the convective current corresponds to
1/M corrections that are taken into account in the recoil term.

PHYSICAL REVIEW ®3 025205

The recoil contributions can be obtained from the respec-

tive terms of Eq.(52),

1
5(01,1)S_ \/z —2%/6a? 2
Precoi 108\/§ We x=N2*,A* ay
z3 .
X —
VYR (D6)
2
pULOOL _ q_efq2/6a2 aXleoo
recol \/§ mq X:N*,A* M[M_MX]2
M[M—M]
X e ———
322 ) (D7)
P(11,(_)2)1: i 1 —qz/ﬁa aXZnoz
recoil \/—mq X=NF A M[M—MX]2
M[M—My]
x| 1= 32 | (D8)

255,y
p(11118 & —g%¥6a? aXZnnF
rec0|IC 18 mé x=n*,a* M[M—My]?
2M[M —My]
e (9
2 1, —1/2
P(llvllﬁziq_ —92/6a® D az(_l) X
recoil,> 18 mé X o o X—ZIX
SJ
Zans [ MIM—My] 010
_ 2 3a? '
M[M—M]
. 1 1 a 279x
Pt ™ 2 e
q X=N* A* — Wy
(D11)
" 1 260 ( 1)I x— 12
P%clé?l?zl _\/—_ze —ahe . NEA a>2<2—lx
q =N* A*
J
Zil0o ~ M[M-My] (D12
M[M — MX]2 3a? )

Comparing with the results in Eq&64)—(71), we find the
same expressions fap(*1001 p(1L091 Zng pALiDL gfter
the substitutions [E(q)—Ex(q)] *—=[M—Myx]" ! and
Ex (LE(Q) —Ex(a)] =M [M=My] "%

As noticed previously, the additional recoil term for

P(OLD1 corresponds to the°* D term in Eq.(62). Further-

more, P52 does not contain the contribution from the

convective current at the virtual-photon vertex resulting from
the term proportional td «(q) 83%i(q') in Eq. (42), be-
cause this contribution corresponds to a higher-order correc-
tion in 1M.
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