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Generalized polarizabilities of the proton in a constituent quark model revisited
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We study low-energy virtual Compton scattering off the proton within the framework of a nonrelativistic
constituent quark model. The Compton tensor is divided into two separately gauge-invariant contributions. The
first consists of the ground-state propagation in the direct and crossed channels together with an appropriately
chosen term to satisfy gauge invariance. The residual part contains the relevant structure information charac-
terized by the so-called generalized polarizabilities. We discuss two different schemes to obtain the generalized
polarizabilities from the residual term. Explicit predictions for the generalized polarizabilities are presented for
the Isgur-Karl model. Our results are compared with previous predictions in that model as well as other
approaches.
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I. INTRODUCTION

The electromagnetic polarizabilitiesā ~electric! and b̄
~magnetic! of real Compton scattering~RCS! @1# describe, to
leading order in the photon frequency, the model-depend
response of a spin-0 or spin-1/2 system beyond the l
energy theorem~LET! @2–4#. Within a classical framework
these quantities are accessible to an intuitive interpretatio
a ‘‘measure of the stiffness or rigidity of a system’’@5#.
There have been considerable experimental efforts to de
mine the proton polarizabilities from Compton scattering
the proton@6–9#. Until recently, the most precise values f
the proton polarizabilities were derived in the work
MacGibbonet al. @9# and analyzed by means of dispersi

relations at fixedt @10#. The results wereāp5(12.160.8

60.5)31024 fm3 and b̄p5(2.170.870.5)31024 fm3.
The analysis of Ref.@9# made use of the Baldin sum rule@11#
which relates the sum of the two polarizabilities to the to
photoabsorption cross section. The sum rule constraint

āp1b̄p5(14.260.5)31024 fm3 @12#, while more recent
analyses found (13.6960.14)31024 fm3 @13# and @14.0
6(0.320.5)#31024 fm3 @14#. New real-Compton-
scattering data below pion-production threshold have b
measured at the Mainz Microtron~MAMI !. The new global
fit including these data results in the valuesāp5(12.24
60.2460.5460.37)31024 fm3 and b̄p5(1.5760.25
60.5260.37)31024 fm3 @15#. As there is no free neutron
target the experimental information on the neutron pola
abilities is much less certain. Results for the electric pola
ability have been obtained from low-energy neutron scat
ing off the Coulomb field of a heavy nucleus@16–19#.
Alternatively, the quasifree Compton scattering react
d(g,g8n)p @20–22# as well as elastic deuteron Compto
scattering@23# have been investigated to extract informati
on the neutron polarizabilities.

Clearly, the concept of polarizabilities is open to gen
alizations in, at least, two directions. One possibility cons
of investigating higher-order terms in the expansion of
0556-2813/2001/63~2!/025205~20!/$15.00 63 0252
nt
-

as

er-
f

l
as

n

-
-
r-

n

-
s
e

RCS amplitude. For example, for a spin-1/2 system one fi
four additional constants~spin polarizabilities! at third order
@24–27# and four terms for the spin-averaged amplitude
fourth order@27,28#. Another option is to allow at least on
photon to be virtual. This second generalization, which w
already discussed in the 1970’s in the context of nuclei@29#,
has recently been applied to the nucleon@30,31#.

As in all studies with electromagnetic probes, the inc
sion of virtual photons substantially increases the possib
ties to investigate the structure of the target. The use o
virtual photon allows one to access longitudinal degrees
freedom and to vary the three-momentum and energy tra
fer to the target independently. The potential of investigat
electron-proton bremsstrahlung as a source of the vir
Compton effect amplitude was already noticed by Berg a
Lindner @32# in the 1960’s. In its most general form for on
real and one virtual photon, this amplitude can be descri
by 12 form factors of three invariants@32#. A generalized
low-energy theorem~GLET! analogous to the LET of RCS
@2–4# was derived in Ref.@33#, where it was shown that, up
to and including second order in the momenta, all 12 am
tudes for the proton can be expressed in terms of the pro
massM, the anomalous magnetic momentk, the electromag-
netic Sachs form factorsGE andGM , the mean square elec
tric radiusr E

2 , and the RCS electromagnetic polarizabiliti

ā and b̄.
In Ref. @30#, the model-dependent response beyond

LET was analyzed by means of a multipole expansion. O
terms contributing to first order in the frequency of the o
going real photon were kept, and the result was expresse
terms of ten generalized polarizabilities~GPs! which are
functions of the three-momentum of the virtual photon in t
initial state. Further progress has been made with respe
implementing the constraints due to the discrete symmet
in combination with particle crossing. In Refs.@34–36# it
was shown that only six of the original ten GPs are indep
dent if charge-conjugation symmetry is combined with p
ticle crossing.

Following the very first calculation in the framework of
©2001 The American Physical Society05-1
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nonrelativistic quark model@30,37#, there have been nume
ous predictions for the GPs within various approaches,
cluding phenomenological Lagrangians@38,39#, the linear
sigma model @40#, chiral perturbation theory@41#, the
Skyrme model@42#, a relativistic constituent quark mode
@43#, and the so-called small scale expansion@44#. On the
experimental side, first evidence for virtual Compton scat
ing events was reported in Ref.@45#. The first results for two
structure functions involving linear combinations of GPs
Q250.33 GeV2 have been obtained from a dedicated VC
experiment at MAMI@46#. Further experiments probing th
GPs at different values of momentum transfer are under
at Jefferson Lab@47# and MIT-Bates@48#.

Our work is organized as follows. We start out in Sec.
with a general discussion of the~virtual! Compton scattering
tensor for a nonrelativistic system ofN particles. We propose
a separation into two individually gauge-invariant piec
The first part consists of the ground state propagating in
direct and crossed channels, supplemented by an appr
ately chosen term to satisfy gauge invariance. The resid
part contains the structure information contributing to t
GPs. Section III deals with the multipole expansion of t
Compton tensor and the definition of the GPs according
Ref. @30#. Two schemes are presented to identify tho
pieces of the residual term that actually yield contributions
the GPs. In Sec. IV we reconsider the calculation of the G
in the framework of the Isgur-Karl model, and Sec. V co
tains a short summary and some conclusions. The more t
nical details can be found in the Appendixes.

II. HADRONIC COMPTON SCATTERING TENSOR

In this section we discuss the formalism to describe b
real and virtual Compton scatteringg* (v,qW )1N(Ei ,pW i)
→g* (v8,qW 8)1N(Ef ,pW f) off a composite system, denote
by N, within the framework of nonrelativistic quantum me
chanics. We only consider the main steps to derive the h
ronic tensor of Compton scattering and refer the interes
reader to Refs.@49–53# and the more recent work of Refs
@54,55# for a detailed discussion.

The starting point is the nonrelativistic Hamiltonian for
composite system ofN particles with massesma ,

H052 (
a51

N
~¹W a!2

2ma
1 (

a,b
Vab , ~1!

whererWa and 2 i¹W a refer, respectively, to the position an
conjugate momentum of the particlea in the coordinate rep-
resentation. We use natural units, i.e.,\5c51, e.0, and
a5e2/4p'1/137. For simplicity, we only consider a loca
potentialVab , i.e., the interaction between the constitue
does not contain momentum-dependent and/or excha
forces, and thus avoid the problem of exchange currents.
eigenstates of Eq.~1!, denoted byuXpW X&, are normalized
according to

^X8pW X8uXpW X&5d3~pW X82pW X!dX8X , ~2!
02520
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whereX and pW X refer to internal quantum numbers and t
total momentum of the system, respectively.

The interaction with an external electromagnetic field
introduced via minimal substitution. In addition, we includ
a coupling to an intrinsic magnetic dipole momentmW a

5easW a/2ma of the constituents, wheresW a/2 is the Pauli spin
operator. The resulting electromagnetic interaction Ham
tonian in the Schro¨dinger representation reads1

HI5HI ,11HI ,2 , ~3!

HI ,15E d3xJm~xW !Am~xW !, ~4!

HI ,25
1

2E d3xE d3x8Bmn~xW ,xW8!Am~xW !An~xW8!, ~5!

whereAm(xW ) is the second-quantized photon field and

JW~xW !5 (
a51

N
ea

2ma
Fd3~xW2rWa!S ¹W a

i
2sW a3¹W aD

2S ¹Q a

i
1sW a3¹Q aD d3~xW2rWa!G , ~6!

r~xW !5 (
a51

N

ead3~xW2rWa!, ~7!

Bm05B0n50,
~8!

Bi j ~xW ,xW8!5d i j (
a51

N ea
2

ma
d3~xW2rWa!d3~xW82rWa!.

The total HamiltonianH5H01H rad1HI , whereH rad refers
to the Hamiltonian of the radiation field, is time independe

The hadronic Compton tensor is obtained by calculat
the contributions ofHI ,2 andHI ,1 in first-order and second
order perturbation theory, respectively,2

M f i
mn~q8,q,pW !5Sf i

mn~q8,q!1Tf i
mn~q8,q,pW !, ~9!

whereq andq8 refer to the four-momenta of the initial an
final photons. In Eq.~9! we have also kept the dependen
on a third independent three-momentum, namely, the a
age of the initial and final target momentapW 5(pW i1pW f)/2.
Usually this dependence is reexpressed in terms of the p
ton three-momenta when specifying the reference fra
through pW 5$(qW 2qW 8)/2,0W ,2(qW 1qW 8)/2% for the laboratory,

1We adopt a covariant notation, even though a calculation wit
the framework of nonrelativistic quantum mechanics does not p
vide a covariant result.

2For notational convenience we keep the four-momentaq andq8
as arguments, although their time components are related by en
conservation.
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Breit, and center-of-mass frame, respectively. This issue i
importance in the context of photon crossing as will
shown later.

Our normalization convention for the Compton tensor f
lows from theS-matrix element of RCSg(q,l)1N(pi ,s)
→g(q8,l8)1N(pf ,s8):

Sf i5d3~pW f2pW i !d
3~qW 2qW 8!ds8sdl8l2

i

8p2Avv8

3d4~pf1q82pi2q!em8 * ~l8!en~l!M f i
mn~q8,q,pW !.

~10!

Using the interaction representation with respect toH0
1H rad,3 the first-order contribution is a sum of th
‘‘seagull’’ terms
h

r-o

r

a
en

02520
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Sf i
mn~q8,q!5~2p!3^ f pW f uBmn~q8,q!u ipW i&, ~11!

where

Bmn~q8,q!5
1

2E d3z@e2 iqW 8•zWBmn~zW,0!1eiqW •zWBnm~zW,0!#.

~12!

The latter equation follows from translational invariance

Bmn~xW ,xW8!5e2 iPW •xW8Bmn~xW2xW8,0!e1 iPW •xW8,

wherePW refers to the total momentum operator of the co
posite system.

The second-order result from the direct and crossed ch
nels reads
Tf i
mn~q8,q,pW !5~2p!3(

X
E d3pX^ f pW f uJm~0!uXpW X&

~2p!3d3~pW X2pW i2qW !

Ef~pW f !1v82EX~pW X!
^XpW XuJn~0!u ipW i&

1~2p!3(
X

E d3pX^ f pW f uJn~0!uXpW X&
~2p!3d3~pW X2pW i1qW 8!

Ef~pW f !2v2EX~pW X!
^XpW XuJm~0!u ipW i&, ~13!
d
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with the energy of the intermediate stateuXpW X& given by
EX(pW X)5pW X

2/2M1DEX , M being the target mass andDEX

the excitation energy of the corresponding state. For furt
reference we note that Eqs.~11! and ~13! are symmetrical
under photon crossingqm↔2q8m andn↔m.4

By use of the standard procedure to separate cente
mass and internal motions@51,53#, the matrix element of the
current operator may be written as

^ f pW f uJm~0!u ipW i&[
1

~2p!3
^ f uJm~qW ,pW !u i &, ~14!

where

JW~qW ,pW !5 jW in~qW !1
pW

M
r~qW !,

J0~qW ,pW !5r~qW !, ~15!

with qW 5pW f2pW i . In Eq. ~15!, the intrinsic current operato
jW in(qW ) and the charge density operatorr(qW ) are

3Alternatively, we could have treated the electromagnetic field
a time-dependent external field and used the interaction repres
tion with respect toH0. Both approaches yield the same result.

4Sometimes the symmetry propertyBmn(xW ,xW8)5Bnm(xW8,xW ) is

used to express Eq.~12! as*d3ze2 iqW 8•zWBmn(zW,0) which, however, is
no longer manifestly symmetrical under photon crossing.
er

f-

jW in~qW !5(
a

ea

2ma
~$eiqW •rWa8 ,pW a8 %1 isW a3qW eiqW •rWa8 !, ~16!

r~qW !5(
a

eaeiqW •rWa8 , ~17!

where $a,b%[ab1ba is the standard anticommutator, an
rWa8 and pW a8 are the intrinsic coordinates and momenta of t
particles relative to the center of mass

rWa85rWa2RW , RW 5
1

M (
a

marWa , ~18!

pW a85pW a2
ma

M
PW , PW 5(

a
pW a . ~19!

We note that the intrinsic coordinates and momenta do
satisfy the canonical commutation relations

@r a,i8 ,pb, j8 #5 id i j S dab2
mb

M D . ~20!

From now on we assume that both initial and final stat
denoted byu0& and ^08u, respectively, correspond to th
ground state of the system. However, we explicitly allow f
a change in the spin projection. Inserting Eq.~14! into Eqs.
~11!–~13! and integrating over the center-of-mass mome
tum, the Compton tensor of Eq.~9! can be cast into the form5

5In the following we omit the subscriptf i .

s
ta-
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Tmn~q8,q,pW !5(
X

^08uJm~2qW 8,2pW f1qW 8!uX&
1

Ef~pW f !1v82EX~pW f1qW 8!
^XuJn~qW ,2pW i1qW !u0&

1(
X

^08uJn~qW ,2pW f2qW !uX&
1

Ef~pW f !2v2EX~pW f2qW !
^XuJm~2qW 8,2pW i2qW 8!u0&, ~21!
so
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Sm05S0n50, Si j 5d i j ^08u(
a

ea
2

ma
ei (qW 2qW 8)•rWa8 u0&. ~22!

Before calculating the GPs, we split the Compton ten
into two parts that are separately gauge invariant and s
metrical under photon crossing

Mmn5M̃ P
mn1M̃R

mn . ~23!

The modified pole termM̃ P
mn is defined as

M̃ P
mn5TP

mn1Gmn, ~24!

where the pole termTP
mn corresponds to the contribution o

the intermediate ground state in the direct and crossed c
nels andGmn reads

Gm0~q8,q!5G0n~q8,q!50,

Gi j ~q8,q!5d i j

1

M
^08ur~2qW 8!u08&^0ur~qW !u0&dM f Mi

.

~25!

A derivation of Gmn is given in Appendix A. In particular,
M̃ P

mn generates the correct Thomson amplitude in the li
q,q8→0.

The residual termM̃R
mn is then given by

M̃R
mn5TR

mn1S̃mn, ~26!

where TR
mn is the contribution of the excited states in th

direct and crossed channels, while the modified seagull t
is S̃mn5Smn2Gmn.

III. RESIDUAL COMPTON TENSOR AND GENERALIZED
POLARIZABILITIES

In this section we review the multipole expansion of t
residual tensor and define the GPs according to Ref.@30#. In
this context, we generalize the discussion of Ref.@30# by
allowing for a general spinI of the initial and final states
respectively. We then discuss two different schemes
evaluating the residual termM̃R

mn , the first one based on th
presentation of Ref.@37# and the second one on a systema
1/M expansion, which is capable of incorporating the co
straints of photon-crossing symmetry to leading order
M 21.
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A. Multipole expansion and generalized polarizabilities

The starting point of Ref.@30# for the definition of the
GPs is the multipole decomposition of the residual ter
which is to be evaluated in the center-of-mass frame defi
by pW i1qW 5pW f1qW 850,6

M̃R
mn~M f ,v8,qW 8;Mi ,v,qW !

54p (
r,L,M ,

r8,L8,M8

gr8r8V
m~r8L8M 8,q̂8!

3HR
(r8L8M8,rLM )~M f ,v8,uqW 8u;Mi ,v,uqW u!Vn* ~rLM ,q̂!grr ,

~27!

where$Vm(rLM ,q̂)% constitutes the four-dimensional bas
of the multipole expansion of four-vector fields as introduc
in Appendix C of Ref.@30#. In particular,r(r8) denotes the
type of the initial ~final! multipolarity (r50 scalar,r51
magnetic,r52 electric, andr53 longitudinal! and L,M
(L8,M 8) refer to the quantum numbers of the total angu
momentum of the initial~final! photon. Note that in Eq.~27!

the dependence on the argumentsqW andqW 8 also results from
the dependence ofM̃R

mn of Eq. ~26! on pW , given by pW

52(qW 1qW 8)/2 in the center-of-mass frame. This implies th
a naive substitution@m,v,qW #↔@n,2v8,2qW 8# in Eq. ~27! is
no longer equivalent to photon crossing, which assumes
pW is not affected by such a transformation. This can also
seen from energy conservation, where ‘‘naive’’ phot
crossing would imply

v85v1E~2qW !2E~2qW 8!°2v81E~qW 8!2E~qW !,

which clearly contradicts the correct relation under crossi
v8↔2v. We will come back to this point in Sec. III C.

Using the orthogonality property of the basis vecto
Vm(rLM ,q̂), the multipoles can be extracted from Eq.~27!
as

HR
(r8L8M8,rLM )~M f ,v8,uqW 8u;Mi ,v,uqW u!

5
1

4pE dq̂dq̂8Vm* ~r8L8M 8,q̂8!

3M̃R
mn~M f ,v8,qW 8;Mi ,v,qW !Vn~rLM ,q̂!.

~28!

6We repeat thatv andv8 are related by energy conservation.
5-4
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Since the residual term is gauge invariant,qm8 M̃R
mn50

5qnM̃R
mn , it is sufficient to consider scalar, magnetic, a

electric multipoles only@30#,

M̃R
mn~M f ,v8,qW 8;Mi ,v,qW !

54p (
r,r850

2

(
L,M ,

L8,M8

gr8r8W
m~r8L8M 8,q̂8!

3HR
(r8L8M8,rLM )~M f ,v8,uqW 8u;Mi ,v,uqW u!

3Wn* ~rLM ,q̂!grr , ~29!

where

Wm~rLM ,q̂!5Vm~rLM ,q̂!1dr0

v

uqW u
Vm~3LM ,q̂!,

r50,1,2.

Finally, the dependence on the target spin projections is
tracted by defining reduced multipoles7

HR
(r8L8,rL)S~v8,uqW 8u;v,uqW u!

5 (
Mi ,M f

(
M ,M8

~21!L1M1I 1M f^I 2M f ,IM i uSs&

3^L8 M 8,L 2M uSs&

3HR
(r8L8M8,rLM )~M f ,v8,uqW 8u;Mi ,v,uqW u!, ~30!

whereI is the spin of the target, and any of the 2S11 pro-
jectionss can be chosen. The selection rules due to the c
servation of total angular momentum and parity are

uL2L8u<S<L1L8, 0<S<2I ,

~21!dr11L5~21!dr811L8.

From now on we assume the final-state photon to be r
v85uqW 8u. The definition of the GPs requires to identify th
leading-order behavior inuqW 8u for any given multipole. In the
Siegert limit of uqW 8u→0, the final-state electric and longitu
dinal multipoles are related by

lim
uqW 8u→0

HR
(2L8,rL)S5 lim

uqW 8u→0

AL811

L8
HR

(3L8,rL)S , ~31!

which in turn can be expressed in terms ofHR
(0L8,rL)S by

gauge invariance. The leading-order behavior of a scala
magnetic multipole of orderL8 is given byuqW 8uL8. The treat-

7The right-hand side of Eq.~65! of Ref. @30# contains a typo-
graphic error and should include a summation over the projectios
@56#.
02520
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ment of the initial-state photon is similar, except that one
interested in the behavior of the multipole for arbitrary va
ues ofuqW u. The general relation between electric and lon
tudinal multipoles is given by

EWM
L ~ q̂!5LW M

L ~ q̂!1A2L11

L
YW M

LL11~ q̂!, ~32!

whereEWM
L (q̂), LW M

L (q̂), andYW M
JL(q̂) are electric and longitu-

dinal vectors of the multipole expansion, and vector sph
cal harmonics, respectively. While the first term on the rig
hand side of Eq.~32! can be expressed by the scal
multipole, the second term leads to the so-called mixed m
tipoles, which are neither of electric nor longitudinal typ
@30#

ĤR
(r8L8M8,LM )~M f ,v8,uqW 8u;Mi ,v,uqW u!

5
1

4pE dq̂dq̂8Vm* ~r8L8M 8,q̂8!

3M̃R
m i~M f ,v8,qW 8;Mi ,v,uqW u!@YW M

LL11~ q̂!# i , ~33!

with reduced multipoles analogous to Eq.~30!. The GPs of
Ref. @30# are now defined as

P(r8L8,rL)S~ uqW u!

5F 1

v8L8uqW uL
HR

(r8L8,rL)S~v8,uqW u!G
v850

~r,r850,1!,

P̂(r8L8,L)S~ uqW u!

5F 1

v8L8uqW uL11

ĤR
(r8L8,L)S~v8,uqW u!G

v850

~r850,1!.

~34!

Up to this point we have only incorporated constraints due
rotational symmetry, gauge invariance, and parity conse
tion. As such, the above analysis is valid in both a nonre
tivistic and a relativistic framework. However, additional r
strictions apply, once a covariant, field-theoretical appro
is chosen. In particular, if one assumes symmetry under
ticle crossing in combination with charge-conjugation inva
ance, one obtains a set of four independent linear equati
involving the ten generalized polarizabilities withL851
@34,35#.

B. Expansion of Liu, Thomas, and Guichon

Let us first reconsider the calculation of the GPs acco
ing to Ref.@37#, where the hadronic tensorM̃R

mn is split into
a leading and a recoil contribution. For that purpose o
defines the matrix elements of the charge density and cur
operators of Eqs.~14!–~17! between the ground state and th
intermediate statesXÞ0,
5-5
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rX~qW !5(
a

ea^XueiqW •rWa8 u0&,

PW X~qW !5(
a

ea

2ma
^Xu$eiqW •rWa8 ,pW a8 %u0&,

SW X~qW !5(
a

ea

2ma
^XusW aeiqW •rWa8 u0&. ~35!

With this convention the current matrix elements of the
rect channel~subscriptd) of Eq. ~21! read8

Jd,X0
0 ~qW ![^Xur~qW !u0&5rX~qW !,

JWd,X0~qW ![^XuJW~qW ,2qW !u0&5PW X~qW !1 iSW X~qW !3qW

2
qW

2M
rX~qW !,

Jd,0X
0 ~qW 8![^0ur~2qW 8!uX&5rX* ~qW 8!,

JWd,0X~qW 8![^0uJW~2qW 8,2qW 8!uX&5PW X* ~qW 8!2 iSW X* ~qW 8!3qW 8

2
qW 8

2M
rX* ~qW 8!. ~36!

In the crossed channel~subscriptc) the intermediate state
propagate with momentumpW X52qW 2qW 8, resulting in matrix
elements depending on bothqW and qW 8. As in Ref. @37#, we
write these matrix elements as

^XuJW~2qW 8,22qW 2qW 8!u0&[JW c,X0~qW 8!1dJW c,X0~qW ,qW 8!,

^0uJW~qW ,22qW 82qW !uX&[JW c,0X~qW !1dJW c,0X~qW ,qW 8!, ~37!

where

Jc,X0
0 ~qW 8!5rX~2qW 8!,

JW c,X0~qW 8!5PW X~2qW 8!2 iSW X~2qW 8!3qW 82
qW 8

2M
rX~2qW 8!,

Jc,0X
0 ~qW !5rX* ~2qW !,

8In the following we suppress the spin indices in our notation
02520
-

JW c,0X~qW !5PW X* ~2qW !1 iSW X* ~2qW !3qW 2
qW

2M
rX* ~2qW !,

dJc,X0
0 5dJc,0X

0 50,

dJW c,X0~qW ,qW 8!52
qW

M
rX~2qW 8!,

dJW c,0X~qW ,qW 8!52
qW 8

M
rX* ~2qW !. ~38!

In Ref. @37#, the leading part of the hadronic tensor is o
tained by neglecting thedJW c terms of Eqs.~38! in the
crossed-channel matrix elements and by only taking acco
of the leading terms in the expansion of the denominator
a power series inv8,9

1

Ef~2qW 8!1v82EX~0W !
5

21

DEX
F11

v8

DEX
1O~v82!G ,

1

Ei~2qW !2EX~2qW 2qW 8!2v8

5
1

Ei~qW !2EX~qW !
F11

1

Ei~qW !2EX~qW !
S v81

qW •qW 8

EX~qW !
D G

1O~v82!, ~39!

whereDEX is the excitation energy of the stateX. As a result
one finds@see Eq.~20! of Ref. @37##

M̃R leading
mn ~qW 8,qW !52 (

XÞ0
FJd,0X

m ~qW 8!Jd,X0
n ~qW !

DEX
G

2 (
XÞ0

F Jc,0X
n ~qW !Jc,X0

m ~qW 8!

EX~qW !2Ei~qW !
G1S̃mn.

~40!

The remaining contribution from the crossed channel is
cluded in the recoil part, which also contains addition
terms of first order inv8 from the expansion of the energ
denominators in Eqs.~39!. Accordingly, we obtain for the
recoil part

9In a nonrelativistic framework consistent with Eq.~1! one would

haveEi(qW )2EX(qW )52DEX . However, in Ref.@37# the relativistic

expressions Ei(qW )5AM21qW 2 and EX(qW )5A(M1DEX)21qW 2

have been used.
5-6
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M̃R recoil
mn ~qW 8,qW !52 (

XÞ0

v8

~DEX!2
Jd,0X

m ~qW 8!Jd,X0
n ~qW !1 (

XÞ0

1

@EX~qW !2Ei~qW !#2 Fv81
qW •qW 8

EX~qW !
G

3Jc,0X
n ~qW !@Jc,X0

m ~qW 8!1dJc,X0
m ~qW ,qW 8!#2 (

XÞ0

1

EX~qW !2Ei~qW !

3@Jc,0X
n ~qW !dJc,X0

m ~qW ,qW 8!1dJc,0X
n ~qW ,qW 8!Jc,X0

m ~qW 8!1dJc,0X
n ~qW ,qW 8!dJc,X0

m ~qW ,qW 8!#1O~v82!. ~41!
o
e

.

pe

n
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st

stly

ish
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t

-
te-

-

This result differs from Eq.~21! of Ref. @37# by the presence
of the first sum on the right-hand side, thedJ term of the
second sum, and thedJdJ of the third sum of Eq.~41!.
However, this difference has no bearing on the calculation
the ten GPs withL851. In this case we only need to analyz
terms of Eq.~41! that are linear inv85uqW 8u @see also Eqs
~34!#. Furthermore, it follows from Eqs.~28! and ~33! that
the projection involves angular integrals of the ty
*dq̂8Y1M8

* (q̂8)M̃R
0n and *dq̂8Y1m8

* (q̂8)M̃R
in for scalar and

magnetic final dipole radiation, respectively. The recoil co
tribution of Eq.~41! only modifies the GPs with a magnet
photon in the final state, as observed in Ref.@37#. In fact, for
m50 we need to considerJd,0X

0 , Jc,X0
0 , anddJc,X0

0 . Accord-
ing to Eq. ~38!, the last term vanishes identically. The fir
t

re
th
o

ha
fo
ut

al
u

rix
te

02520
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two terms have to be always evaluated atqW 850, because
they are multiplied by expressions that are either manife

or implicitly @dJW c,0X(qW ,qW 8)# of orderv8. From Eqs.~36! and
~38! we see that the corresponding overlap integrals van
due to the orthogonality of the excited states with respec
the ground state. In conclusion, theL851 scalar GPs do no
receive a contribution from Eq.~41!. For theL851 magnetic
GPs we need to considermÞ0. In this case the terms pro
portional tov8 do not contribute, because the angular in

gral of Y1m8
* multiplied by aqW 8-independent function van

ishes. Furthermore, sincedJW c,0X(qW ,qW 8) is of order v8, the
last term in Eq.~41! containingdJW c,X0(qW ,0W ) vanishes due to
orthogonality. In conclusion, one is left with
M̃R recoil
mn ~qW 8,qW !5 (

XÞ0

1

@EX~qW !2Ei~qW !#2

qW •qW 8

EX~qW !
Jc,0X

n ~qW !Jc,X0
m ~qW 8!2 (

XÞ0

1

EX~qW !2Ei~qW !

3@Jc,0X
n ~qW !dJc,X0

m ~qW ,qW 8!1dJc,0X
n ~qW ,qW 8!Jc,X0

m ~qW 8!#1•••1O~v82!, ~42!
l-

ere,
where the ellipsis denotes terms which do not contribute
the L851 GPs.

C. Nonrelativistic 1ÕM expansion

In this subsection we will consider a different procedu
of ordering the contributions of the excited states to
Compton tensor. Our aim is to analyze the implications
photon-crossing symmetry for the GPs. We will see t
some of the GPs will have to satisfy certain conditions
uqW u→0. At first, we will not specify the reference frame b
both photons will be allowed to be virtual@see Eq.~21! for
XÞ0#. Only at the end we will assume the initial and fin
photons to be virtual and real, respectively, and restrict o
selves to the center-of-mass frame.

The starting point is a separation of four-current mat
elements into an intrinsic current with respect to the cen
of-mass system and a center-of-mass convection current@53#
o

e
f
t
r

r-

r-

@see Eqs.~14!–~17!#. As an example, let us consider the fo
lowing matrix element entering the direct channel

^0uJm~2qW 8,2pW 1qW !uX&5^0uJm~2qW 8,0!uX&

1^0udJm~2qW 8,2pW 1qW !uX&,

with analogous expressions for the other combinations. H
we have defined for generic momentaaW andbW

m50: ^0udJ0~aW ,bW !uX&50,

mÞ0: ^0udJW~aW ,bW !uX&5
bW

2M
^0ur~aW !uX&.
5-7
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Using nonrelativistic kinematicsT(pW )5pW 2/(2M ), we sepa-
rate the energy denominators into excitation pieces and
netic contributions

1

Ef~pW f !1v82EX~pW f1qW 8!

52
1

DEX
F11

v8

DEX
1

T~pW f !2T~pW f1qW 8!

DEX

1
v82

~DEX!2
1O~3!G ,
n

in

02520
i-
1

Ef~pW f !2v2EX~pW f2qW !

52
1

DEX
F12

v

DEX
1

T~pW f !2T~pW f2qW !

DEX

1
v2

~DEX!2
1O~3!G ,

where O(3) refers to terms which are suppressed
1/(DEX)3, 1/@(DEX)2M #, etc. In this representation we hav
Tf i ;X
mn ~q8,q,pW !52 (

XÞ0

@^0uJm~2qW 8,0!uX&1^0udJm~2qW 8,2pW 1qW !uX&#@^XuJn~qW ,0!u0&1^XudJn~qW ,2pW 1qW 8!u0&#

DEX

3F11
v8

DEX
1

T~pW f !2T~pW f1qW 8!

DEX
1

v82

~DEX!2
1O~3!G

2 (
XÞ0

@^0uJn~qW ,0!uX&1^0udJn~qW ,2pW 2qW 8!uX&#@^XuJm~2qW 8,0!u0&1^XudJm~2qW 8,2pW 2qW !u0&#

DEX

3F12
v

DEX
1

T~pW f !2T~pW f2qW !

DEX
1

v2

~DEX!2
1O~3!G . ~43!
s

e

of
this
etric.

the
In order to expand Eq.~43! in powers of 1/M , we introduce
the following abbreviations for the direct-channel~d! terms

Ad
n5^XuJn~qW ,0!u0&,

dAd
n5^XudJn~qW ,2pW 1qW 8!u0&,

Bd
m5^0uJm~2qW 8,0!uX&,

dBd
m5^0udJm~2qW 8,2pW 1qW !uX&,

DTd5T~pW f !2T~pW f1qW 8!.

The corresponding expressions for the the crossed cha
~c! are obtained by simply replacingqW↔2qW 8 and m↔n.
We note that bothd andD terms count as order 1/M .

The terms of leading order in 1/M and arbitrary order in
1/DEX ,

Tf i ;X,LO
mn ~q8,q!52 (

XÞ0
S Bd

mAd
n

DEX2v8
1

Bc
nAc

m

DEX1v D , ~44!

do not depend onpW . Equation~44! is symmetric under ‘‘true
photon crossing,’’ but also under ‘‘naive photon crossing’’
any frame, because it is independent ofpW . As is shown in
nel

Appendix B, this property implies the following condition
on the leading behavior in 1/M for the reduced multipoles

HR,LO
(r8L8,rL)S~v8,uqW 8u;v,uqW u!

5gr8r8grr~2 !L1L82SHR,LO
(rL,r8L8)S~2v,uqW u;2v8,uqW 8u!.

~45!

Next we consider the 1/M corrections to Eq.~44! to arbi-
trary order in 1/DEX :

2 (
XÞ0

FBd
mdAd

n1dBd
mAd

n

DEX2v8
1

Bc
ndAc

m1dBc
nAc

m

DEX1v

1
Bd

mAd
n

DEX2v8

DTd

DEX2v8
1

Bc
nAc

m

DEX1v

DTc

DEX1vG . ~46!

The first line of Eq.~46! contains the modifications of th
current matrix elements to first order in 1/M whereas the
second line involves the center-of-mass kinetic energies
the final and the intermediate states, respectively. In
scheme, each order is separately photon-crossing symm
However, terms beyond leading order in 1/M will, in gen-
eral, not be symmetric under naive photon crossing in
center-of-mass frame.
5-8
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We now turn to the case of real photons in the final sta
v85uqW 8u, and explicitly specify the center-of-mass fram
As we are not interested in terms beyond linear order inv8
and 1/M , we make use of energy conservation

v.v82
qW 2

2M
,

to expand the crossed-channel terms as

1

DEX1v
5

1

DEX
F12

v8

DEX
1

qW 2

2MDEX
2

v8qW 2

~DEX!2M

1O~v82!G .

We then obtain from Eq.~44! up to and including terms
linear in v8 and 1/M

Tf i ;X,LO
mn ~qW 8,qW !52 (

XÞ0
F 1

DEX
S 11

v8

DEX
DBd

mAd
n

1
1

DEX
S 12

v8

DEX
DBc

nAc
m

1
qW 2

2M ~DEX!2
Bc

nAc
m2

v8qW 2

~DEX!3M
Bc

nAc
mG

1O~v82,1/M2!. ~47!

Note that via energy conservation, Eq.~44! has also gener
ated terms in Eq.~47! which are of higher order in 1/M .

For further evaluation of Eq.~46! we use

DTd5O~v82!, DTc52
qW 2

2M
2

qW •qW 8

M
,

and obtain

Tf i ;X,NLO
mn ~qW 8,qW !52 (

XÞ0
F 1

DEX
S 11

v8

DEX
D

3~Bd
mdAd

n1dBd
mAd

n!1
1

DEX
S 12

v8

DEX
D

3~Bc
ndAc

m1dBc
nAc

m!

2
qW 2

2M
Bc

nAc
m 1

~DEX!2 S 122
v8

DEX
D

2
qW •qW 8

M
Bc

nAc
m 1

~DEX!2G1O~v82,1/M2!.

~48!

The last two terms of Eq.~47! cancel with two corresponding
terms in Eq.~48! and the sum can be written as
02520
,
. Tf i ;X

mn ~qW 8,qW !52 (
XÞ0

FBd
mAd

n

DEX
1

Bc
nAc

m

DEX
G2 (

XÞ0

v8

~DEX!2
Bd

mAd
n

1 (
XÞ0

1

~DEX!2 Fv81
qW •qW 8

M
GBc

nAc
m

2 (
XÞ0

FBd
mdAd

n1dBd
mAd

n

DEX
1

Bc
ndAc

m1dBc
nAc

m

DEX
G

2 (
XÞ0

v8

~DEX!2
~Bd

mdAd
n1dBd

mAd
n2Bc

ndAc
m

2dBc
nAc

m!1O~v82,1/M2!. ~49!

As in the previous case we will now analyze which terms
Eq. ~49! actually generate a contribution to theL851 GPs
after angular integration with the spherical harmon
Y1m8

* (q̂8). Again, all terms explicitly proportional tov8 will
not contribute, because at leading order they are multip
by expressions which do not depend on the direction ofq̂8.
The dBd

m term vanishes form50 and is of orderv82 for m
Þ0, and one is left with

Tf i ;X
mn ~qW 8,qW !5Tf i ;X, leading

mn ~qW 8,qW !1Tf i ;X, recoil
mn ~qW 8,qW !,

~50!

where

Tf i ;X, leading
mn ~qW 8,qW !52 (

XÞ0
FBd

mAd
n

DEX
1

Bc
nAc

m

DEX
G , ~51!

Tf i ;X, recoil
mn ~qW 8,qW !52 (

XÞ0
FBd

mdAd
n1dBc

nAc
m

DEX
G

1 (
XÞ0

1

~DEX!2

qW •qW 8

M
Bc

nAc
m2 (

XÞ0

Bc
ndAc

m

DEX

1•••1O~v82,1/M2!, ~52!

where the ellipsis refer to terms which do not contribute
theL851 GPs. The terms in Eq.~51! generate contributions
to the GPs which result entirely from intrinsic currents. T
first line of the recoil term in Eq.~52! corresponds to 1/M
corrections of the virtual-photon absorption vertices in t
direct and crossed channel, respectively. The second
third sums are 1/M corrections of the crossed-channel ener
denominator and real-photon vertex, respectively. These
two corrections only affect GPs involving a magnetic phot
in the final state.

Finally, by taking the nonrelativistic limit of the energie
in the scheme of Ref.@37#,

Ei~qW !5AM21qW 2.M1
qW 2

2M
,

EX~qW !5AMX
21qW 2.M1DEX1

qW 2

2M
,
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TABLE I. Mixing parameters for the28 and 210 representation of theP-wave baryon resonances.

X N( 1
2

2,1535) N( 1
2

2,1650) N( 3
2

2,1520) N( 3
2

2,1700) D( 1
2

2,1620) D( 3
2

2,1700)

aX 0.85 0.53 0.99 0.11 1.0 1.0
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ee
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it is straightforward to verify that the two expansion schem
coincide up to and including terms of orderv8 and 1/M .
They only differ in their separation into leading and rec
terms.

IV. GENERALIZED POLARIZABILITIES IN A NRCQM

In this section we discuss the GPs of the nucleon in
framework of a nonrelativistic system consisting of thr
constituent quarks. As in Ref.@37# we restrict ourselves to
the inclusion of theD(1232) resonance and the low-lyin
negative-parity baryonsD13(1520), S11(1535), S31(1620),
S11(1650), S13(1700), andD33(1700).

A. Matrix elements in the Isgur-Karl model

To be specific, we employ the model of Isgur and K
@57# which describes the quark-quark potential by
harmonic-oscillator term plus a spin-dependent hyperfine
teraction. The baryon states are expressed in a basis of S~6!
harmonic-oscillator wave functions, with the SU~6! multip-
lets generated by the combination of SU(2)spin and
SU(3)flavor multiplets. In particular, the nucleon and th
D(1232) resonance belong to the ground-state spin-1/2 o
28, and the spin-3/2 decuplet,410, of the56 SU~6! super-
multiplet, respectively. The multiplet of states associa
with the negative-parity orbital excitation is classified
terms of a70 supermultiplet of SU~6! which decomposes
into 21, 28, 48, and210 multiplets. According to Ref.@57#,
the strength of the hyperfine interaction is fixed to reprod
the experimental mass splitting ofN and D(1232) states,
while the remaining orbital excitations of the70 multiplet are
constructed with mixing parameters describing the empir
spectrum quite well.

Since we are interested in the nonstrange sector only
assume that all three quarks have equal massesmq . In addi-
tion, when calculating the matrix elements of the electrom
netic current of Eqs.~16! and~17!, we take advantage of th
overall symmetry of the SU~6! harmonic-oscillator wave
function. This allows us to simplify the matrix elements
one-body operators

^Au(
i 51

3

Ôi uB&53^AuÔ3uB&. ~53!

As a result, the overlap integrals of Eq.~35! can be written as

rX~qW !53E drW dlW e2 iA(2/3)qW •lW fX
†Q̂fN , ~54!

PW X~qW !5A2

3

3

2mq
E drW dlW e2 iA(2/3)qW •lW fX

†~ i¹W l2 i¹Q l!Q̂fN ,

~55!
02520
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SW X~qW !5
3

2mq
E drW dlW e2 iA(2/3)qW •lW fX

†sW 3Q̂fN , ~56!

where

fN5fNS rW ,lW ,
1

2
,M ,

1

2
,t

ND ,

fX5fX~rW ,lW ,JX ,MX ,I X ,tX!

denote the internal wave functions of the nucleon and
excited states, respectively, with an obvious notation for s
and isospin labels. We have introduced the standard Ja
coordinatesrW 5(rW12rW2)/A2 andlW 5(rW11rW222rW3)/A6, and
made use ofrW385rW32RW 52A2/3lW . Furthermore,Q̂5(1/6

1t3/2) and sW 3 denote the charge operator and the Pa
matrices of the third quark, respectively. Explicit expressio
for the contributions of theP-wave negative-parity states ar
given in Appendix C.

B. GPs in the framework of Liu, Thomas, and Guichon

We first discuss the results for the proton GPs that
obtain with the same conventions used by Ref.@37# for the
separation into leading and recoil terms. Following Ref.@57#,
we use mq5350 MeV for the quark mass anda
5320 MeV for the oscillator parameter. As was pointed o
in Ref. @37#, the proton polarizabilities do not receive an
contribution from theN(48) multiplets. The mixing param-
etersaX encoding theN(28) andD(210) composition of the
resonant states are taken from Ref.@57# and are listed in
Table I.

With these assumptions we find for the leading contrib
tions to the Compton tensor of Eq.~40!

P(01,01)S5
1

18

1

a2 e2q2/6a2

(
X5N* ,D*

aX
2S Zd

S,JX

M2MX

1
Zc

S,JX

E~q!2EX~q!
D , ~57!

P(01,12)15
1

36
A3

5

1

mqa2 e2q2/6a2

(
X5N* ,D*

aX
2 ~21! I x21/2

2I x

3S Zad
2,S,JX

M2MX
1

Zac
2,S,JX

E~q!2EX~q!
D , ~58!

Ppara
(11,11)S5

4

27

1

mq
2 e2q2/6a2S ZD

S

M2MD
1~21!S

ZD
S

E~q!2ED~q!
D ,

~59!
5-10
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Pdia
(11,11)S5dS0

1

3A6

1

mqa2 e2q2/6a2
. ~60!

The angular coefficientsZ of the leading contributions ar
given in Table II. The diamagnetic term of Eq.~60! origi-
nates from the modified seagull termS̃mn and contributes in
the spin-independent case only. The mixed GPs are give
the sum of two terms, corresponding to the contributio
from the convective (P̂F

(01,1)S) and spin (P̂S
(01,1)S) terms of

the current at the virtual-photon vertex

P̂(01,1)S5 P̂F
(01,1)S1 P̂S

(01,1)S , ~61!

P̂F
(01,1)S5

A2
108A3

1

mqa2 e2q2/6a2

(
X5N* ,D*

aX
2

3S Zd
S,JX

M2MX
1

Zc
S,JX

E~q!2EX~q!
D , ~62!

P̂S
(01,1)S52

1

36A3

1

mqa2 e2q2/6a2

(
X5N* ,D*

aX
2

3
~21! I x21/2

2I x
S Zad

1,S,JX

M2MX
1

Zac
1,S,JX

E~q!2EX~q!
D .

~63!

In the scheme of Ref.@37# the spin-dependent GPsP(11,02)1,
P(11,00)1, and P̂(11,2)1, all of which lead toM1 radiation in
the final state, vanish identically at leading order.

The recoil corrections are exclusively generated by
crossed-channel diagrams and only modify the GPs wit
magnetic final photon@37# ~see the discussion at the end
Sec. III B!. To start with, the two GPsP(11,00)1 andP(11,02)1

receive a nonvanishing recoil contribution

Precoil
(11,00)152

1

A3

q2

mq
e2q2/6a2

3 (
X5N* ,D*

aX
2Z1100

JX

EX~q!@E~q!2EX~q!#2

3F12
EX~q!@E~q!2EX~q!#

3a2 G , ~64!

TABLE II. Angular coefficients for the leading contribution t
the GPs.

L S JX Zd
S,JX Zc

S,JX Zad
L,S,JX Zac

L,S,JX ZD
S

1 0 1/2 A2/3 A2/3 22/A3 2/A3
1 0 3/2 2A2/3 2A2/3 2/A3 22/A3 A6
1 1 1/2 2/3 22/3 22A2/3 22A2/3
1 1 3/2 22/3 2/3 2A2/3 2A2/3 21
2 1 3/2 A30/3 A30/3
02520
as
s
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Precoil
(11,02)152

1

A3

1

mq
e2q2/6a2

3 (
X5N* ,D*

aX
2Z1102

JX

EX~q!@E~q!2EX~q!#2

3F12
EX~q!@E~q!2EX~q!#

3a2 G . ~65!

When discussing the recoil contribution to the remaini
three polarizabilitiesPrecoil

(11,11)S andP̂recoil
(11,2)1, it is useful to dis-

tinguish between terms which result from the sp
independent~C! and the spin-dependent (S) part of the
virtual-photon vertex. We find

Precoil
(11,11)S5Precoil,C

(11,11)S1Precoil,S
(11,11)S , ~66!

Precoil,C
(11,11)S5

1

18

a2

mq
2 e2q2/6a2

(
X5N* ,D*

aX
2Z1111,C

S,JX

EX~q!@E~q!2EX~q!#2

3F12
2EX~q!@E~q!2EX~q!#

3a2 G , ~67!

Precoil,S
(11,11)S5

1

18

q2

mq
2e2q2/6a2

(
X5N* ,D*

aX
2

3
~21! I x21/2

2I x

Z1111,S
S,JX

EX~q!@E~q!2EX~q!#2

3F12
EX~q!@E~q!2EX~q!#

3a2 G , ~68!

P̂recoil
(11,2)S5 P̂recoil,C

(11,2)S1 P̂recoil,S
(11,2)S , ~69!

P̂recoil,C
(11,2)152

1

6A5

1

mq
2 e2q2/6a2

3 (
X5N* ,D*

aX
2Z1102

JX

EX~q!@E~q!2EX~q!#2

3F12
EX~q!@E~q!2EX~q!#

3a2 G , ~70!

P̂recoil,S
(11,2)15

1

2A5

1

mq
2 e2q2/6a2

(
X5N* ,D*

aX
2

3
~21! I x21/2

2I x

Z1102
JX

EX~q!@E~q!2EX~q!#2

3F12
EX~q!@E~q!2EX~q!#

3a2 G . ~71!

The values for the angular coefficientsZ of the recoil contri-
butions are given in Table III.
5-11
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C. Comparison with Liu, Thomas, and Guichon

We now compare our results with those of Ref.@37#.10 As
has been stated in Sec. III A, the spin-dependent polariza
ities differ by an overall factor of three due to the differe
definition of the reduced multipoles in Eq.~30!. In contrast
with Ref. @37#, we find, at leading order, two simple relation
for the angular coefficients of the direct and crossed chan
@see Eqs.~57!–~63!#,

Zc
S,JX5~21!SZd

S,JX , ~72!

Zac
L,S,JX5~21!S11Zad

L,S,JX . ~73!

In particular, as a result of Eq.~72! combined with the rela-
tive phases between the direct- and crossed-channel co
butions to Ppara

(11,11)1, the leading term of theP(01,01)1 and
P(11,11)1 polarizabilities vanishes at the real-photon poi
This is in agreement with the constraint by photon cross
as derived in Eq.~B3! of Appendix B, but in contrast to the
results of Ref.@37#. In addition, in our calculation the dia
magnetic contributionPdia

(11,11)1 is only 3/7 of the result of

Ref. @37#. We also find different expressions forP̂(01,1)S, in
particular for the relative phase of the direct- and cross
channel contributions. Furthermore, the angular coefficie
Z1100

JX andZ1102
JX occurring inPrecoil

(11,00)1andPrecoil
(11,02)1are smaller

by a factor of 1/2. In addition, we find a recoil contributio
to Precoil

(11,11)S for both spin-flip and no-spin-flip transitions
while in Ref. @37# such a contribution is absent forS51.

The numerical results of Eqs.~57!–~71! are shown in
Figs. 1 and 2 together with the calculation of Ref.@37#. For
the generalized electric polarizability

a~ uqW u!52
e2

4p
A3

2
P(01,01)0~ uqW u!,

the two results are in agreement~full line of Fig. 1!. The
discrepancies inP(01,01)1, P(11,11)1, and P(01,12)1 originate
from the contributions of the crossed channel relative to
direct one. The different results for the generalized magn
polarizability

10We stress that both calculations start from the same model
use the same parameters and approximations.

TABLE III. Angular coefficients for the recoil contribution to
the GPs.

S JX Z1100
JX Z1102

JX Z1111,C
S,JX Z1111,S

S,JX

0 1/2 A 2
3

1/A6

0 3/2 2A 2
3

21/A6

1 1/2 1/27 1/27A2 21/3 21/6

1 3/2 21/27 21/27A2 1/3 1/6
02520
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b~ uqW u!52
e2

4p
A3

8
P(11,11)0~ uqW u!

nd

FIG. 1. GPs in the NRCQM as a function of virtual-photo

momentum q5uqW u. Full lines: our results in the scheme of LTG
taking account of leading and recoil terms; dashed lines: calcula
of Ref. @37#. Note that the two calculations coincide in the case
a.

FIG. 2. GPs in the NRCQM as a function of virtual-photo

momentum q5uqW u. Full lines: our results in the scheme of LTG
taking account of leading and recoil terms; dashed lines: calcula
of Ref. @37#.
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are mainly due to the discrepancy in the calculation of
diamagnetic term, while the different evaluations of the
coil terms result only in small deviations. Finally, the diffe
ences in calculating theP̂(01,1)S and P̂recoil

(11,2)1 polarizabilities
give rise to discrepancies of almost one order of magnitu
In particular, theP̂recoil

(11,2)1 polarizability receives its main con

tribution from P̂recoil,S
(11,2)1 which has been neglected in Ref.@37#.

D. Comparison with other calculations and experiment

In Figs. 3 and 4 we compare the two expansion sche
of Secs. III B and III C. In each graph the solid line repr
sents the full result according to the scheme of Liu, Thom
and Guichon. Recall that in this framework the energy
nominators of the crossed channel contributions are wri
using relativistic kinematics. The dashed line correspond
a consistent nonrelativistic expansion up to and includ
terms linear in 1/M . The relevant expressions can be fou
in Appendix D. The contributions of leading order in 1/M
@see Eqs.~51! and ~52!# are separately displayed as dott
lines.

FIG. 3. GPs in the NRCQM as a function of virtual-photo

momentum q5uqW u. Full lines: our results in the scheme of LTG
including the leading and recoil contributions; dashed lines: non
ativistic 1/M expansion of the Compton tensor, obtained from
sum of the leading and recoil terms; dotted lines: leading contr
tions. Note that dotted lines are only included if the leading con
bution is finite and different from the total result. To the ord
considered, the polarizabilitiesa, P(01,12)1, and P(01,01)1 receive
only contributions from the leading terms of Eq.~51!, whereas
P(11,02)1 consists only of a recoil contribution from Eq.~52!.
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First of all, we note that due to photon-crossing symme
the leading contributions to bothP(01,01)1andP(11,11)1vanish
identically. The use of relativistic expressions in the ene
denominators for the crossed-channel terms leads to
nounced differences between the two schemes, as soon a
leading term is vanishing or small. A striking example
given by the difference between the solid and dashed line
P(01,01)1 of Fig. 3, which is entirely due to this differen
treatment of the crossed-channel energy denominators
nally, at the real-photon point, the leading contributions
both expansion schemes are equal, whereas the recoil t
differ by the contribution of second-order terms in 1/M . Fig-
ures 5 and 6 display our results~full lines! together with the
predictions of the linear sigma model@40# ~dashed lines!, an
effective Lagrangian model@39# ~dotted lines!, and heavy-
baryon chiral perturbation theory@44# ~dashed-dotted lines!.

An unpolarized measurement can be analyzed in term
three structure functionsPLL , PTT , and PLT @30,35,46#
which are products of the GPs and the electromagnetic S
form factorsGE andGM ,11

PLL~ uqW u!522A6MGE~Q0
2!P(01,01)0~ uqW u!, ~74!

11The fourth structure functionPLT8 of Ref. @30# is related toPLT

if symmetry under particle crossing and charge conjugation is
plied @35#.

l-

-
-

FIG. 4. GPs in the NRCQM as a function of virtual-photo

momentum q5uqW u. Full lines: our results in the scheme of LTG
including the leading and recoil contribution; dashed lines: non
ativistic 1/M expansion of the Compton tensor, obtained from t
sum of leading and recoil terms; dotted lines: leading contributio
Note that dotted lines are only included if the leading contribut
is finite and different from the total result. To the order consider

P̂(01,1)1 receives only a contribution from the leading terms of E

~51!, whereasP(11,00)1 and P̂(11,2)1 consist only of a recoil contri-
bution from Eq.~52!.
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FIG. 5. Results for GPs in different model calculations as
function of squared momentum transfer atv850, Q0

25Q2uv850.
Full lines: our results in the NRCQM with the scheme of LTG
dashed lines: linear sigma model@40#; dotted lines: effective La-
grangian model@39#; dashed-dotted lines: heavy-baryon chiral p
turbation theory@44#.

FIG. 6. Results for GPs in different model calculations as
function of squared momentum transfer atv850, Q0

25Q2uv850.
Full lines: our results in the NRCQM with the scheme of LTG
dashed lines: linear sigma model@40#; dotted lines: effective La-
grangian model@39#; dashed-dotted lines: heavy-baryon chiral p
turbation theory@44#.
02520
PTT~ uqW u!5
3

2
GM~Q0

2!$2v0P(01,01)1~ uqW u!

1A2uqW u2@A3P̂(01,1)1~ uqW u!1P(01,12)1~ uqW u!#%

53GM~Q0
2!uqW u2@A2P(01,12)1~ uqW u!

2P(11,11)1~ uqW u!/v0#, ~75!

PLT~ uqW u!5A3

2

M uqW u

AQ0
2

GE~Q0
2!P(11,11)0~ uqW u!

1
A3

2

AQ0
2

uqW u
GM~Q0

2!F P(11,00)1~ uqW u!

1
uqW u2

A2
P(11,02)1~ uqW u!G

5A3

2

M uqW u

AQ0
2

GE~Q0
2!P(11,11)0~ uqW u!

1
3

2

AQ0
2uqW u

v0
GM~Q0

2!P(01,01)1~ uqW u!, ~76!

where v05vuv8505M2AM21uqW u2 and Q0
252q2uv850

522Mv0. We note that the second equations of Eqs.~75!
and ~76!, respectively, rely on symmetry under partic
crossing and charge conjugation@see Eqs.~21c! and~21d! of
Ref. @35## which is not satisfied in the NRCQM. Table IV
contains the predictions for the three response functions
uqW u5(0,240,600) MeV, corresponding to the real-phot
point, MIT-Bates@48#, and MAMI @46# kinematics, respec-
tively. For the Sachs form factors we used the parametr
tion of Ref. @58#. For PTT and PLT we quote both results
obtained from Eqs.~75! and ~76!, respectively.

Finally, in Table V we compare the predictions with th
first experimental information obtained at MAMI@46# for the
linear combinationPLL2PTT /e andPLT at uqW u5600 MeV.

E. Particle crossing, charge conjugation, and gauge invariance

The original definition of the GPs of Ref.@30# was based
on angular momentum conservation, parity conservation,
gauge invariance. In Refs.@34,35# it was shown that only six
of the original ten GPs are independent if particle-cross

a

-

a

-

TABLE IV. Structure functionsPLL , PTT , andPLT in GeV22.
The two entries forPTT andPLT originate from the first and secon
equations of Eqs.~75! and ~76!, respectively.

PLL PTT PLT

uqW u50 MeV 37.0 20.1 0.0 211.2 215.8

uqW u5240 MeV 28.7 22.8 21.4 28.8 212.4

uqW u5600 MeV 9.9 25.8 23.1 23.2 24.5
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GENERALIZED POLARIZABILITIES OF THE PROTON . . . PHYSICAL REVIEW C63 025205
symmetry in combination with charge-conjugation inva
ance is imposed. As a result a set of four linear equati
was obtained,

P̂(01,1)052
v0

uqW u2 FA2

3
P(01,01)01

1

A6
P(11,11)0G , ~77!

P̂(11,2)152
1

uqW u2 FA2

5
P(11,11)11A3

5
v0P(11,02)1G ,

~78!

P̂(01,1)152
1

uqW u2 FA2

3
v0P(01,01)11A2

3

uqW u2

v0
P(11,11)1

2
1

A3
uqW u2P(01,12)1G , ~79!

P(11,00)15A3
uqW u2

v0
P(01,01)12

1

A2
uqW u2P(11,02)1, ~80!

wherev05vuv850. Following common use, we choose fo
the six independent GPsa, b, P(01,01)1, P(11,11)1, P(01,12)1,
andP(11,02)1 as given in Figs. 1, 3, and 5.

However, in a nonrelativistic framework particle crossi
is not a symmetry of the Compton tensor~see Sec. 2.3 o
Ref. @55#!. Thus one cannot expect the relations of E
~77!–~80! to be satisfied in the NRCQM. Having definedD i
( i 51,2,3,4) as the difference between the left-hand a
right-hand sides of Eqs.~77!–~80! normalized to their right-
hand sides, we show the discrepanciesD i in Fig. 7 as func-
tion of uqW u. Clearly, the relations of Eqs.~77!–~80! are
strongly violated on the average.

Finally, another important limitation of the NRCQM i
due to a violation of gauge invariance. This problem can
traced back to essentially two causes: first, the Isgur-K
model includes some effects of the anharmonic terms in
qq potential only perturbatively in the energy but not in t
wave functions. Such a treatment leads to a mismatch
tween the resonance masses in the energy denominato
the Compton amplitude and the baryon states which ente
the current matrix elements. Second, the actual calcula
truncates the configuration space to only few intermed
states, while gauge invariance requires, in principle, the
set of intermediate states. The well-known example in t

TABLE V. Structure functionsPLL2PTT /e and PLT for uqW u
5600 MeV in GeV22 (e50.62). The two entries forPLL

2PTT /e and PLT in our calculation originate from the first an
second equation of Eqs.~75! and ~76!, respectively.

PLL2PTT /e PLT

This calculation 19.2 14.9 23.2 24.5
NRCQM of @37# 11.1 23.5
Experiment@46# 23.7 25.0

62.260.664.3 60.861.161.4
02520
s

.

d

e
rl
e

e-
of

in
n

te
ll
is

context is, of course, the low-energy Thomson limit whi
requires the inclusion of the sum over all electric-dipole e
citations~including the negative-energy states of a relativ
tic theory!.

V. SUMMARY AND CONCLUSIONS

We discussed the general form of the virtual Compt
scattering tensor for a nonrelativistic composite system
particular, we focused attention on the generalized pola
abilities of the proton, defined from the multipole expansi
of the Compton tensor. We performed a consistent nonr
tivistic expansion of the structure-dependent amplitude
lowing us to identify the constraints due to photon crossi
As a model calculation, we reconsidered the proton GPs
nonrelativistic constituent quark model. The model satisfi
the constraint due to photon crossing at the real photon po
but does not provide the relations among the GPs due
nucleon crossing in combination with charge conjugation.
a consequence of its limitations regarding relativity, gau
invariance and chiral symmetry, the results of the mo
should be treated with some care. There clearly is room
improvement in any of the above mentioned shortcomin
Nonetheless, the predictions provide an order-of-magnit
estimate for the nucleon resonance contributions and as
are complementary to the results of the linear sigma mo
and chiral perturbation theory emphasizing pionic degree
freedom and chiral symmetry.
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FIG. 7. Violation of the relations of Eqs.~77!–~80! as a function

of q5uqW u.
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APPENDIX A: GAUGE-INVARIANT MODIFIED GROUND-
STATE POLE TERMS

Here we derive the result of Eq.~25! for Gmn which, in
combination with the ground-state pole terms, constitutes
gauge-invariant tensorM̃ P

mn . We start with the expressio
@see Eqs.~8a!,~8b! of Ref. @52# with the replacementk→q8
andk8→2q#

Tf i
mn~q8,q,pW !52 i ~2p!3E d4zeiq8•z

3^0M fpW f uT@Jm~z!Jn~0!#u0MipW i&,

whereJm(x)5exp(iH0t)J
m(xW)exp(2iH0t). In general, we al-

low for a change in the spin projection fromMi to M f . The
ground-state pole contribution is given by

TP, f i
mn ~q8,q,pW !52 i ~2p!3(

M
E d3PE d4zeiq8•z

3@u~z0!^0M fpW f uJm~z!u0M PW &

3^0M PW uJn~0!u0MipW i&

1u~2z0!^0M fpW f uJn~0!u0M PW &

3^0M PW uJm~z!u0MipW i&#. ~A1!

The following procedure is very similar to the one used
deriving Ward-Fradkin-Takahashi identities@59–61# in
quantum field theory@see, e.g., Chap. 6.1 of Ref.@62##. Let
us contract Eq.~A1! with qm8 ~arguments suppressed!,

qm8 TP, f i
mn 52 i ~2p!3(

M
E d3PE d4z~2 i ]meiq8•z!@•••#.

Symbolically this expression is of the type

E d4z~]meiq8•z! f m~z!52E d4zeiq8•z]m f m~z!,

where we made use of a partial integration, and assumed
the interaction is ‘‘adiabatically’’ switched on and off to g
rid of the surface terms atz056`. Similarly, use of the
divergence theorem has been made. After applying this re
to the above case,

qm8 TP, f i
mn 5~2p!3(

M
E d3PE d4zeiq8•z]m@•••#,

we use the relation

]m@u~6z0!gm~z!#56d~z0!g0~z!1u~6z0!]mgm~z!,

and obtain
02520
e

at

ult

qm8 TP, f i
mn 5~2p!3(

M
E d3PE d4zeiq8•z@u~z0!

3^0M fpW f u]mJm~z!u0M PW &^0M PW uJn~0!u0MipW i&

1u~2z0!^0M fpW f uJn~0!u0M PW &

3^0M PW u]mJm~z!u0MipW i&

1d~z0!^0M fpW f ur~z!u0M PW &^0M PW uJn~0!u0MipW i&

2d~z0!^0M fpW f uJn~0!u0M PW &

3^0M PW ur~z!u0MipW i&#.

With ]mJm(z)50 as an operator identity, the first two term
on the right-hand side of the equation vanish. Performing
integration with respect toz0, applying translational invari-

ance as r(zW)5exp(2iPŴ •zW)r(0)exp(iPŴ •zW), integrating first
with respect tozW and then with respect toPW , the two remain-
ing terms yield

qm8 TP, f i
mn 5~2p!6(

M
@^0M fpW f ur~0!u0MpW f1qW 8&

3^0MpW f1qW 8uJn~0!u0MipW i&

2^0M fpW f uJn~0!u0MpW i2qW 8&

3^0MpW i2qW 8ur~0!u0MipW i&#.

Finally, the operatorr of Eq. ~8! is diagonal in the spin
projections and we obtain

qm8 TP, f i
mn 5~2p!6@^0M fpW f ur~0!u0M fpW f1qW 8&

3^0M fpW f1qW 8uJn~0!u0MipW i&

2^0M fpW f uJn~0!u0MipW i2qW 8&

3^0MipW i2qW 8ur~0!u0MipW i&#. ~A2!

First we consider Eq.~A2! for n50:

qm8 TP, f i
m0 5@^0M f ur~2qW 8!u0M f&^0M f ur~qW !u0Mi&

2^0M f ur~qW !u0Mi&^0Mi ur~2qW 8!u0Mi&#

50, ~A3!

where we inserted Eqs.~14! and ~17! and made use of the
diagonal nature ofr. Similarly, inserting Eqs.~14!–~17! for
n5 j we obtain
5-16
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qm8 TP, f i
m j 5^0M f ur~2qW 8!u0M f&F ^0M f u j in, j~qW !u0Mi&

1
pf

j 1q8 j1pi
j

2M
^0M f ur~qW !u0Mi&G

2F ^0M f u j in, j~qW !u0Mi&

1
pf

j 1pi
j2q8 j

2M
^0M f ur~qW !u0Mi&G

3^0Mi ur~2qW 8!u0Mi&

5^0M f u j in, j~qW !u0Mi&@^0M f ur~2qW 8!u0M f&

2^0Mi ur~2qW 8!u0Mi&#

1
q8 j

M
^0M f ur~2qW 8!u0M f&^0M f ur~qW !u0M f&dMi M f

5
q8 j

M
^0M f ur~2qW 8!u0M f&^0Mi ur~qW !u0Mi&dMi M f

,

~A4!

where we made use of the fact that the ground-state ma
elements ofr are diagonal and do not depend on the proj
tion.

The calculation ofqnTP, f i
mn proceeds in a completel

analogous fashion. Equations~A3! and ~A4! suggest to add
is

02520
ix
-

the term of Eq.~25!,

Gm0~q8,q!5G0n~q8,q!50,

Gi j ~q8,q!5d i j

1

M
^0M f ur~2qW 8!u0M f&

3^0Mi ur~qW !u0Mi&dMi M f
,

with the result thatM̃ P
mn5TP, f i

mn 1Gmn is gauge invariant. In

particular,M̃ P
mn depends on ground-state properties only.

APPENDIX B: PHOTON CROSSING CONSTRAINTS AT
LEADING ORDER IN 1 ÕM

In Sec. III C we have seen that the leading term of t
residual amplitude, in a 1/M expansion, satisfies the photo
crossing constraint@see Eq.~44!#

Tf i ;X,LO
mn ~q8,q!5Tf i ;X,LO

nm ~2q,2q8!. ~B1!

Because Eq.~B1! does not depend on the average tar
momentum, it is also symmetric under ‘‘naive photon cro
ing’’

TX,LO
mn ~M f ,v8,qW 8;Mi ,v,qW !

5TX,LO
nm ~M f ,2v,2qW ;Mi ,2v8,2qW 8!,

which in terms of the multipole expansion of Eq.~27! im-
plies
4p (
r,L,M ,

r8,L8,M8

gr8r8V
m~r8L8M 8,q̂8!HX,LO

(r8L8M8,rLM )~M f ,v8,uqW 8u;Mi ,v,uqW u!Vn* ~rLM ,q̂!grr

54p (
r,L,M ,

r8,L8,M8

grrVn~rLM ,2q̂!HX,LO
(rLM ,r8L8M8)~M f ,2v,uqW u;Mi ,2v8,uqW 8u!Vm* ~r8L8M 8,2q̂8!gr8r8

54p (
r,L,M ,

r8,L8,M8

~2 !L1M1L81M8Vm~r8L82M 8,q̂8!HX,LO
(rLM ,r8L8M8)~M f ,2v,uqW u;Mi ,2v8,uqW 8u!Vn* ~rL2M ,q̂!gr8r8 .
In the last step we made use of

Vm* ~rLM ,2q̂!5grr~2 !L1MVm~rL2M ,q̂!.

With the orthogonality property of the multipole bas

$Vm(rLM ,q̂)% ~see Appendix C of Ref.@30#! we find
HX,LO
(r8L8M8,rLM )~M f ,v8,uqW 8u;Mi ,v,uqW u!

5~2 !L2M1L82M8gr8r8grr

3HX,LO
(rL2M ,r8L82M8)~M f ,2v,uqW u;Mi ,2v8,uqW 8u!.

~B2!
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Because of the orthogonality relations of Clebsch-Gord
coefficients we finally obtain for the reduced multipoles

HX,LO
(r8L8,rL)S~M f ,v8,uqW 8u;Mi ,v,uqW u!

5~2 !L1L82Sgr8r8grr

3HX,LO
(rL,r8L8)S~M f ,2v,uqW u;Mi ,2v8,uqW 8u!.

~B3!

We stress that the above derivation holds only for th
pieces that are independent ofpW . It is only in this case that
true photon crossing is equivalent to naive photon crossin
the center-of-mass frame.

APPENDIX C: OVERLAP INTEGRALS OF THE
CURRENT OPERATOR IN THE NRCQM

The contribution of the SU~3! multiplets to the overlap
integrals defined in Eqs.~54!–~56! is given by (q5uqW u)

r
N(28)

~qW !52 i
A8p

3

q

a
e2q2/6a2

t
N
~21!1/21MXA2JX11

3S 1 1
2 JX

MX2mN mN 2MX
D Y1MX2mN

* ~ q̂!,

~C1!

PW
N(28)

~qW !52 i
A6

3

a

mq
e2q2/6a2

t
N
~21!1/21MXA2JX11

3S 1 1
2 JX

MX2mN mN 2MX
D eW MX2m

N

* , ~C2!

SW
N(28)

~qW !5 i
A2p

3

q

a
e2q2/6a2

~114t
N
!

3(
m

~21!1/21MXA2JX11

3S 1 1
2 JX

MX2m m 2MX
D Y1MX2m* ~ q̂!

3^xm
l usW 3uxmN

l &, ~C3!

SW
N(48)

~qW !52 i
Ap

6

q

a
e2q2/6a2

~122t
N
!

3(
m

~21!21/21MXA2JX11

3S 1 3
2 JX

MX2m m 2MX
D Y1MX2m* ~ q̂!

3^xm
3/2usW 3uxmN

l &, ~C4!
02520
n

e

in

SW
D
~qW !5e2q2/6a2

^xmD

3/2usW 3uxmN

l &, ~C5!

r
D(210)

~qW !5
1

2t
N

r
N(28)

~qW !, ~C6!

PW
D(210)

~qW !5
1

2t
N

PW
N(28)

~qW !, ~C7!

SW
D(210)

~qW !5
21

114t
N

SW
N(28)

~qW !, ~C8!

whereeWm is the spherical basis vector anda the oscillator
parameter. The eigenstates of the total spinS of the three
quarks have been denoted byxm

3/2 for S53/2, andxsN

l for

S51/2, withl indicating symmetry under interchange of th
~12! quark pair. We note that the definitions for the overl
integrals introduced in Eqs.~54!–~56! differ by a factor 3
from the corresponding expressions in Eqs.~9!–~11! of Ref.
@37#. In addition, we found a different result in the explic
calculation of the integral entering intoSW

N(28)
(qW ) @the inte-

gral in Eq. ~14! of Ref. @37# is smaller than our result by a
factor 2A2#, while we agree with the results for the integra
contributing to the remaining terms given in Eqs.~12! and
~13! and Eqs.~15!–~19! of Ref. @37#.

APPENDIX D: POLARIZABILITIES IN THE
NONRELATIVISTIC 1 ÕM EXPANSION

In this Appendix we collect the results for the polarizab
ities obtained from the multipole expansion of the Compt
tensor in the 1/M nonrelativistic limit. The leading contribu
tions corresponding to the terms in Eq.~51! read (q5uqW u)

P(01,01)S5
1

18

1

a2 e2q2/6a2

(
X5N* ,D*

aX
2

M2MX

3Zd
S,JX@11~21!S#, ~D1!

P(01,12)15
1

18
A3

5

1

mqa2 e2q2/6a2

(
X5N* ,D*

aX
2

3
~21! I x21/2

2I x

Zad
2,S,JX

M2MX
, ~D2!

Ppara
(11,11)S5

4

27

1

mq
2 e2q2/6a2 ZD

S

M2MD
@11~21!S#, ~D3!

Pdia
(11,11)S5dS0

1

3A6

1

mqa2 e2q2/6a2
, ~D4!
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P̂S
(01,1)S52

1

36A3

1

mqa2 e2q2/6a2

(
X5N* ,D*

aX
2

3
~21! I x21/2

2I x

Zad
1,S,JX

M2MX
@12~21!S#. ~D5!

Comparing these results with Eqs.~57!–~62! for the lead-
ing contributions of the polarizabilities in the convention
Ref. @37#, we notice thatP(01,01)S, Ppara

(11,11)S , and P(01,12)1

involve the same matrix elements of the current in b
expansion schemes, while for the propagator in the cros
channel we now have (M2MX)21 instead of

@E(qW )2EX#21.
The diamagnetic contribution toP(11,11)0 from the two-

photon interaction does not change in the 1/M expansion.
The polarizability P̂(01,1)S has a leading contribution onl
from the spin-dependent term of the current,P̂S

(01,1)S , while
the contribution from the convective current corresponds
1/M corrections that are taken into account in the recoil te

The recoil contributions can be obtained from the resp
tive terms of Eq.~52!,

P̂recoil
(01,1)S5

A2
108A3

1

mqa2 e2q2/6a2

(
X5N* ,D*

aX
2

3
Zd

S,JX

M2MX
@11~21!S#, ~D6!

Precoil
(11,00)152

1

A3

q2

mq
e2q2/6a2

(
X5N* ,D*

aX
2Z1100

JX

M @M2MX#2

3F12
M @M2MX#

3a2 G , ~D7!

Precoil
(11,02)152

1

A3

1

mq
e2q2/6a2

(
X5N* ,D*

aX
2Z1102

JX

M @M2MX#2

3F12
M @M2MX#

3a2 G , ~D8!
C

02520
h
ed

o
.
-

Precoil,C
(11,11)S5

1

18

a2

mq
2 e2q2/6a2

(
X5N* ,D*

aX
2Z1111,F

S,JX

M @M2MX#2

3F12
2M @M2MX#

3a2 G , ~D9!

Precoil,S
(11,11)S5

1

18

q2

mq
2 e2q2/6a2

(
X5N* ,D*

aX
2 ~21! I x21/2

2I x

3
Z1111,S

S,JX

M @M2MX#2 F12
M @M2MX#

3a2 G , ~D10!

P̂recoil,C
(11,2)152

1

6A5

1

mq
2 e2q2/6a2

(
X5N* ,D*

aX
2Z1102

JX

M @M2MX#2
,

~D11!

P̂recoil,S
(11,2)15

1

2A5

1

mq
2 e2q2/6a2

(
X5N* ,D*

aX
2 ~21! I x21/2

2I x

3
Z1102

JX

M @M2MX#2 F12
M @M2MX#

3a2 G . ~D12!

Comparing with the results in Eqs.~64!–~71!, we find the
same expressions forP(11,00)1, P(11,02)1, and P(11,11)1 after
the substitutions @E(q)2EX(q)#21→@M2MX#21 and
EX

21(q)@E(q)2EX(q)#22→M 21@M2MX#22.
As noticed previously, the additional recoil term fo

P̂(01,1)1 corresponds to theP̂F
(01,1)1 term in Eq.~62!. Further-

more, P̂recoil,C
(11,2)1 does not contain the contribution from th

convective current at the virtual-photon vertex resulting fro
the term proportional toJc, f X

n (qW )dJc,Xi
m (qW 8) in Eq. ~42!, be-

cause this contribution corresponds to a higher-order cor
tion in 1/M .
.
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