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Meson-meson scattering in the quark model: Spin dependence and exotic channels
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We apply a quark interchange model to spin-dependent and exotic meson-meson scattering. The model
includes the complete set of standard quark model forces, including one-gluon exchange spin orbit and tensor
and scalar confinement spin orbit. Scattering amplitudes derived assuming simple harmonic oésH&jor
and Coulomb plus linear plus hyperfine meson wave functions are compaied?2lm7 we find approximate
agreement with th&wave phase shift from threshold to 1.5 GeV, where we predict an extremum that is
supported by the data. Near threshold we find a rapid energy dependence that may reconcile theoretical
estimates of small scattering lengths with experimental indications of larger ones based on extrapolation of
measurements at moderkﬁe. In pseudoscalar-vector scattering we find that the quark-duaslkandT forces
map ontoL-S and T meson-meson interactions, and tRevave L-S force is large. Finally we consider
scattering inJ”n exotic channels, and note that some of the “Deck effect” mechanisms suggested as possible
nonresonant origins of the;(1400) signal are not viable in this model.
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[. INTRODUCTION show evidence of important hadronic final-state interactions.
The Al =1/2 rule is a well-known example. Similarly, a re-

The determination of scattering amplitudes between pairgent study ofD and D decays toKK « [4] found that the
of mesons is an interesting problem in strong QCD. It is alsqalitz plots are dominated by two-meson isobars, including

a complicated problem, because bajlg annihilation to 47 K*K+H.c., andK§(1430)|?+H.c., and complex rela-
s-channel resonances and “nonresonant” scattering are inyjye amplitudes are required to describe é Dalitz plot.
portant effects, and it is often difficult to separate the variousyithout final-state interaction$SIs one would expect rela-
contributions. However, by specializing to annihilation-freetive|y real couplings to these final states.

channels such as=2 w7 and wp, 1=3/2 K, KN, and One finds a surprising variety of approaches to strong
NN, one may study nonresonant scattering in relative isolanadron-hadron scattering in the literature. There are many
tion. The determination of resonance parameters, reactiogydies using effective hadronic Lagrangians, such as the
mechanisms, and many other aspects of hadron physics afgniral perturbation theory” description of the PsPs sector.
complicated by the presence of nonresonant scatteringyjthough this method is convenient because it uses perturba-
which is treated as afoften poorly understogdnitial-state  tjye quantum field theoryQFT) techniques, it is incomplete
and final-state rescattering effect. Developing an accurate dey that it takes effective Lagrangian vertex strengths from the
scription of nonresonant scattering would help clarify manygata: one should be able to calculate these hadronic cou-
other aspects of hadron physics. plings directly from quark-gluon forces.

A further interesting possibility is that sufficiently attrac-  Second, there are studies that model the low-energy
tive nonresonant scattering may lead to weakly bounthadron-hadron scattering mechanism, which include the ap-
hadron-hadron or multihadron states, as does happen in ngarently dissimilar meson exchange and quark-gluon de-
clei and hypernuclei. We may also find a rich spectrum ofscriptions of hadronic forces. Meson exchange models are
meson-meson bound states, the study of which will exten@gain attractive for their simplicity, since they use perturba-
nuclear physics into the largely unexplored field of “me- tive QFT techniques to determine scattering amplitudes. This
sonic nuclei” or “molecules”[1-3]. approach has been elaborated in greatest detail in models of

An understanding of pseudoscalar-pseudoscéfaP$,  the NN force [5], in which a large number of meson ex-
pseudoscalar-vectdPsV) and other meson-meson scattering changes is assumed. With this large parameter space a good
amplitudes is also important for the interpretation of non-description of this interaction is possible, although there is a
QCD processes such as nonleptonic weak decays, since thesencern that one may be parametrizing other scattering

mechanisms in addition techannel meson exchange. Alter-
natively, one may calculate hadron-hadron forces directly

*Electronic address: barnes@bethe.phy.ornl.gov from the fundamental quark-gluon interaction, using quark
"Electronic address: nblack@nomad.phys.utk.edu model hadron wave functions. This approach has also seen
*Electronic address: swansone@pitt.edu its most detailed development in studies of bl interac-
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tion [6], and is most successful in describing the short- 5 *~* ‘e
ranged repulsive core. Maltman and Isg@t also found a | y ¢ i \/
! |
|
color van der Waals effect in the quark-gluon approach, g P 4 '
change explanation of this force. The quark description of C1 CZ

hadron-hadron interactions is complicated by the combina-

torics of matrix elements between quark bound states, but

has the advantage that it can easily be extended to a wide

range of spin and flavor channels through a simple change of y \/

A third promising approach is to infer hadron scattering
amplitudes from lattice gauge theotGT). To date LGT
has seen little application to scattering problems because of T1 T2
the difficulty of treating systems that are not in their ground
states. Estimates of the=0 andl =2 = scattering lengths FIG. 1. The four quark interchange meson-meson scattering dia-
finite-size effectd 7], and more recently very interesting re-
sults for nuclear physics potentials in ti#8 system were We find in contrast that PsV is an excellent theoretical
reported[8]. In the future it may be possible to improve |aporatory for the study of spin-dependent forces, as it can
hadron scattering models through comparisons with similagcommodate both meson-meson spin-orbit and tensor inter-

LGT data. actions. The spin-dependent forces at the meson-meson level
meson-meson  scattering amplitudes from qua.rk-gluoggark interaction in our approach. Although the study of PsV
forces. We derive meson-meson scattering amplitudes &kattering is essentially a theoretical exercise at present,
lowest order in the quark-quark |r_1teract|or]‘, which leads t0 ghese phase shifts are accessible experimentally, for example,
quark interchange model described by “quark Born dia-through measurement of the relati®and D final-state
grams” [9,10]. Since the quark-quark interaction is alreadyphases inb,— mw. Thus it should be possible to measure
have little parameter freedom. In previous work we and othpgy final states.
ers[usually assuming one-gluon exchar@GE) hyperfine Before we proceed to our detailed results, we note that
dominancg have shown that this approach gives a reasongome work has already appeared on meson-meson scattering
ably accurate description (_ﬂ}wave scattering in a wide j, pgy systems. Numerical results for many lightvave
range of channels withoujq annihilation, includingl =2 PsV meson channels were previously reported by Swanson
(compared to LGT dajaand theNN repulsive corg¢6]. This  OGE spin-spin and linear confinement forces. Theoretical
approach has also been applied7d/¢ [14,15 and other  results for PsV scatteringa{p in particula) in a meson ex-
reactions relevant to heavy-ion collisions, where the experichange model were published by Jansstrmal. [16] and
mental low-energy cross sections are as yet unclear.  Bockmannet al.[17], assumingr, vector, anda; exchange.

The principal new contribution of this paper is a detailedSince thepw#, a,pm, and pw vertex strengths are rela-
tudes that follow from the complete quark-quark interactiontering amplitudes numerically. These papers did not consider
including color Coulomb, linear scalar confinement, OGEthe exoticl=2 channel, so a direct comparison with our
spin-spin, OGE spin-orbit, OGE tensor, and linear spin-orbitguark model PsV results is not possible at present.
forces. As a future application of these results, one might
hope to clarify the relationship between meson exchange and
spin dependence of hadron-hadron scattering amplitudes, A. General T matrix formula
which we expect to be sensitive to the details of the scatter- o . )
ing mechanism. We approximate the full hadrqn-hadron scattering ampli-

Here we consider both PsPs and PsV scattering. Thiide by a singlgBorn-ordej matrix element of the quark-
former is a “standard benchmark” for meson scatteringguark interaction HamiltoniaHl, . SinceH, is T*Tin color,
s-channel resonances and has been the subject of many e4anishing overlap with two color-singlet mesons in the final
perimental phase shift analyses. Although we find reasonabktate. In §q)-(qq) scattering there are four independent
agreement witts-wavel =2 7 scattering, this channel has Born-order diagrams, which we label according to which
no spin degree of freedom, and so cannot be used to test tipair of constituents interacted; these are “trangfe(T1),
characteristic spin dependences predicted by the quark motiransfer,” (T2), “capturg,” (C1), and “capturg” (C2),

physically reasonable intermediate-ranged attraction from a

which is not equivalent to the usuakrm or o meson ex- b d
the external hadron wave functions.

have been obtained by exploiting a theoretical relation tqyrams.

In this paper we are concerned with the derivation Ofgre closely related to the corresponding terms in the quark-
well established from hadron spectroscopy, our predictionggy, phase shifts from resonance decays to multiamplitude
7 [9], 1=3/2 Kz [11], I1=0,1KN [12], I=0,1BB[13] [10] using a similar quark model approach that incorporated
analytical derivation of the meson-meson scattering amplitively well established, it was possible to evaluate these scat-
quark interchange models by a detailed comparison of the Il. MESON-MESON T MATRIX
models, becausé=2 == low-energy scattering has no one must then have quark line rearrangement to have a non-
el's OGE and linear scalar confinement forces. which are shown in Fig. 1. In the special case of identical
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= (a+a’)/2 I
A / ) Tﬁl(AB_>CD)=f Jd3qd3p<b’é(2p+q—C)d>’[‘,
a —» * a
1 - - - - - > - -
! X(2p—a—2A=C)Ty(q,p,—p+C)
| g=a-a=b-b - . - .
! XPa(2p—q—A)Pg(2p—q—A—2C),
|
| 3
b > ® b
p=(b+b))2 Tﬁz(AB—>CD)=J fd3qd3pq>g(—25+a+2A—é)
FIG. 2. The quark-quark matrix, showing three-momentum XCDB(—ZFS—&—C)TH(&,F;,—5—6)
definitions.

XD p(—2p+q+A)Dg
quarksandidentical antiquarks, which is relevant here, there
is a second set of four “symmetrizing” diagrams X (—2p+q+A-2C). (4)
Tlsymm- - - CZymm, Which are identical to T1.. C2 except
that the quark lines are interchanged rather than the antiquark, o quark Ty,

lines. _ _ which are defined in Fig. 2. In this paper we will evaluate
The hadron-hadrom-matrix elemently; for each diagram  hese gverlap integrals with standard Gaussian quark model
can conveniently be written as an overlap integral of the, e functions and the quark; for the complete set of
meson wave functions times the underlying quark These  oGE color Coulomb, linear scalar, OGE spin-spin, and OGE
overlap integralgspecializing Ref[13] to the case of equal ,nq jinear scalar confinement spin-orbit and OGE tensor in-

quark and antiquark masseare teractions. These interactions are given in Appendix A.

has momentum argumentg;;(q,p;,P»),

TfTil(ABHCD):J f d*qd®pdE(2p+q-C)df B. PsPs scattering

x (2p—q—2A—C)Tq(q,p,p—A-C) o LImemw T mank _
.. We specialize the general problem of PsPs scattering
X®p(2p—q—A)Pg without qq annihilation tol =2 77 because many experi-

ments have published phase shift analyses of this channel.

X (2p+q—A-2Cn), (1) = BT
The otherm channels have largechannelqq annihilation
contributions. The fulll=2 z7 Born-order T-matrix ele-
TfTiZ(AB—>CD)=f f d3qd®pdE(—2p+q+2A—-C) ment is determined by adding the individual contributions of
Appendix B, with PsPs spin matrix elements given in Ap-
X ®%(—2p—q-C)Tr(q,p,p—A+C) pendix C 2. There are also flavor and color factors for each
diagram and an overall “signature” phase of L), and a
XDp(—2p+q+A) Dy second set of “symmetrizing” diagrams for identical quarks
and identical antiquarks, as discussed in detail in f8fOn
X(—2p—q+A-2C), (2)  summing these contributions we find
|
Tag 2°

7
3 ~ 5 N ) 2 o
T2"= 4 —, (e—Qi/sﬁ +e 8B )+ e A3B
m 37/2

3?

ag 6

T 24 R R 2 a 22
+ ?2—( —§2[f1/2,3/iQi/8/32) +F112,34 Q2 188%) ] + 3T/2f1,2'3,2(A2/6,82))e Al2p

wh( 28 - R 23 R o,
" F( 11224 Q4 /18B%) 1 112,514 Q2 185%)] - 3T,2f1/z,3/z(A2/6/32)) e A2, (5)

where f, .(x) is an abbreviation for the confluent hypergeometkiammen function ;F;(a;c;x).

The three separate expressions above are the OGE spin-spin, color Coulomb, and linear confinement contributions, respec-
tively. The Q- terms come from the transfer diagrams, and the remaining, isotropic, terms come from the capture diagrams.

The spin-matrix elements of the spin-orbit and tensor terms vanish identically in the PsPs channel.
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Since Q. =C=A and|A|=|C|, one can equivalently write this amplitude as a function of the c.m. momentum and
scattering angle usin@izzﬁ\z(lt,u), whereu = cos(@c). The Bose symmetry required for thismr scattering amplitude

is evident.
2. 1=2 zrar phase shifts

We may derive the elastic Born-order2 7 phase shifts from E(q5), using the relation between phase shifts and the
T matrix given in Appendix D, especially ED17), and the integrals in Appendix G. The result we find for wave is

( 4
ag 11 s 2 _axi3 . .
kEwW(—?;(l_e X)_3T/2e X OGE spin-spin,
|=2mm as| 21 —2x 2° —4x/3
5 = kE”? -3 ;[fl,l/z( —2x)—e |- 3T/zf1,3/2( —2x/3)e OGE color Coulomb, (6)
b(11 Lo, 1 —axi3 i -
kE”F 7 ;[fzym(_z)()_e ]+3T,2f2,3/2(_2X/3)e linear confinement,
\

where we have introduced=A%/482. The total Born-order ~Scattering amplitudes and phase shifts numerically using
Swave phase shift is the sum of these three contributions. Coulomb plus linear plus hyperfinrggg wave functions and
This Swave phase shift is shown in Fig. 3 with our stan- Monte Carlo integration of the real-space integrals corre-
dard quark model parameter set=0.6, 8=0.4 GeV,m  sponding to thel-matrix integrals(1)—(4). As usual this re-
=0.33 GeV, andb=0.18 GeV. We also useM,=0.138  quires a “smearing” of the contact hyperfine termi(x)
GeV throughout. This confirms that the color Coulomb andﬂe—(;?rzlwsmaa/z to allow solution of the Schinger
Iine_ar confinement interactions make relatively small Cor‘tri'equation with an attractive delta-function interaction. In the
butions to thel =2 77 S wave at moderate energies. The jjieratyre the inverse smearing length is typically taken to be
weakly repulsive linear confining interaction in=2 @7 ;1 Gev. (A calculation of| =2 = scattering with this
near threshold was previously found numerically by Swany,iaraction ando=0.7 GeV was reported previously by
son[10]. . L . Swansor{10].) With our standard light-quark parameter set
One might be concerned about the approximation of using, _ 56 ph=0.18 Ge\?. andm=0.33 GeV. we found that
simple harmonic oscillatoiSHO) wave functions, especially ¢ " ) - - ' _
at higher-energy scales where there should be stron sho}cIEtIng the M,-M splitting required a value or=086
t g 9y ; : X 9 &ev. To illustrate the dependence of the scattering ampli-
distance components in the pion wave function due to th‘?ude on this parameter, in Fig. 4 we show the2 = S
attractive spin-spin hyperfine interaction. To test the SenSi\'Nave that follows fror’n our -standard quark model set
tivity to SHO wave functions we evaluated the=2 = (ag,b,m), with 0=0.7, 0.8, and 0.9 GeV. Clearly the pre-
S L 1 . 1 . 1 . .

dicted phase shift is rather similar to the SHO result of Fig.

15

color Cou.
3, [deg] (dots)
0 1 linear % [deq]
(dot—dash) ey
o=0.
(D-wave)
-15 -
1 6=0.7 Gev
total
30 _-| spin-spin 0=0.8 GeV
0=0.9 GeV
_45 L I . L
0.5 1 1.5 2 25
M, [GeV]

M_, [GeV]

FIG. 3. Theoretical contributions to the=-2 77 Swave phase
shift, Eq. (6), with SHO wave functions. The experimental phase  FIG. 4. Numerically evaluatet=2 77 S and D-wave phase
shifts of Coltonet al.[18] (inverted triangles Durusoyet al. [19] shifts with Coulomb plus linear plus hyperfine wave functions
(triangles, two extrapolations Hooglandet al. [20] (set B, dia-  (lines), compared to experimental phase shiggmbols as in Fig.
monds, and Lostyet al.[21] (squaresare shown. 3).
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3, although the effect of short-distance peaking in the
wave function is evident abovd . .~1 GeV.

0.00 T T T T
8/(kE/M,) x 3
. - . -0. - =
We also show most of the higher-statistics experimental  [fm]

02

meson exchange §_ S

~oXs *
Ay "
s

results for thd =2 77 Swave phase shift in Figs. 3 and 4. -0.04 | E
The references shown are Coltenal. [18], Durusoyet al. oo 1
[19] (OPE extrapolation, solid symbols; OPE DP form ) ot
factor, open symbols, slightly displaced xnfor visibility), -0.08 | 1
Hooglandet al.[20] (extrapolatiorB), and Lostyet al.[21].
Prukopet al. [22] found a wide range of results from three ~010 1
different off-shell extrapolations, so we simply quote their —0.12 | ]
fitted scattering length below.

Clearly there is already reasonable agreement with the -0.14 ]
experimentalSwave phase shift at lower energies without 016 ; , ‘ , ,
fitting the quark model parameters. The model predicts a 0 0.2 0.4, ,0-6 08 1
rather dramatic extremum in this phase shift ndar . k, [GeV~]

=1.5 GeV, which is unfortunately beyond the limiting in-

A . . G. 5. A “generalized specific heat plot” of the=2 ==
variant mass of most of the experimental studies. There arg,, .e phase shift. The data of Fig. 3 are shown togetherath

some measurements of this phase shift at higher i_“Va“arHredictions:(a) LGT [7], Roy equation§25], (b) PCAC[26], y PT
mass with lower accuracy due to Durusetyal. [19], which [29]. Meson exchang€23,24 and quark modelEq. (6)] predic-
are also shown in the figure. The results of Durusdtal.  tions are also shown.

support our predicted extremum neldr,.=1.5 GeV; in-

deed, their phase shift abok,..=1.5 GeV appears to fall . I .
even more Fapidly than we predict. PP The Coulomb and linear contributions were independently

We have investigated optimal parameter fits of Shgave checked by Monte_CarIo integration qf thg corresponding
phase shift formuld6) to the data, but we find that these are '€@l-space overlap integrals. The relative sizes of these nu-
rather unstable because the color Coulomb and linear corfterical contributionsa posteriorijustify the approximation
finement contributions are small and are qualitatively similar®f neglecting the color Coulomb and linear termsii2
functions. In any case the data of Durusetyal. and Fig. 4 77 Scattering. _ _
show that the hyperfine smearing distamcés an important Thel=2 7 scattering length has been calculated previ-
parameter, and this will not be well determined until accurate?usly using many other theoretical approaches. A summary
phase shift data becomes available at higher invariant masgf some of these predictions is given belpwe use a current
An accurate measurement lof 2 7 scattering amplitudes value off =93 MeV in Weinberg's partial conservation of
near and abov® __=1.5 GeV would clearly be very useful axial ~ vector —current (PCAC) formula ag =
as a test of this and other models of meson-meson scattering.M w/lﬁﬂfi]-

3. =2 @r&r scattering lengths

The 1=2 == scattering length is defined byj =2

=limy__o8 >""/k,. The results we find from Ed6) are —0.0537) [fm], LGT[7],

_ —0.052[fm], meson exchand®3,24],
] , 8o lineory™ | _ 0 053[fm], Roy equation§25],
2 2° )\ ag _
- 1+ 5] am,, S8 0.063[fm], PCAC[26].
3 9)
22 2 o
1=2_ ) _Z2 | 2 4|28
ay 2= 32<31/2 1 ,BZMW' Coulomb, (7 V[GeV]1.2

2( 3% b
- = 1——>—|\/|7,, linear,
\ 3 2 | p*

and their numerical values with our standard quark model
parameters set are

—0.085[fm], S-S
o —0.007[fm], Coulomb, : _
% = —0.017[fm], linear, ® r [fm]

—0.109[fm], total. FIG. 6. The low-energy=2 77 Swave potential, Eq(13).
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Although f_. and other effective Lagrangian parameters 5:):2777:kwwa(as,m,b,ﬁ,X), (12
are normally taken from experiment, these parameters are of
course calculable from quark-gluon forces. As an example, _ _ _ _
our result foray? yields the following expression fdf,, : where f is a relatively slowly varying function ofx
=k,27/4,82. Thus the threshold behavior is approximately
proportional tok .E . rather than jusk,, and sinceM . is

1 25 22\ mag 2% 2 T quite small,.this leads to rapid \{ariation near threshold and
— =3—( 3/2> > 32( % ) > makes the lineak, extrapolation inaccurate. We suggest re-
= 3%/ m 3 B moval of all this dependence by displayiag/(k,E, /M)
versuskf,. The intercept in this plot is the scattering length,
25 3Y2\ 7b and the slope at intercept implies the effective range.
+ 3 1- 7)? (10) This generalized specific heat plot is shown in Fig. 5 for

=2 @ scattering. An extrapolation of the moderte-

data can now be seen to be much closer to the theoretical

The dominant contribution comes from tB§ as/m?) OGE  Scattering lengths. The smal- dependence ob,/k, was

S-S term. calculated by Donoghuet al. [29] in a chiral effective La-
Experimental determinations of the scattering length hav@rangian, which gave the Weinberg resultkat=0 and an

. . K . 2 H 2 2 [P
yielded results which are larger than theoretical expectationd?(k7) correction factor of (3 k7/2m7). This is just the
correction due to an overall factor &, so this predicts a

zero slope irk2 for 8,/(k,E /M) at threshold.

ay expt The Jiich meson exchange modg23], which is domi-
nated byt-channelp exchange in this process, also predicts
—0.132) [fm], Losty et al.[21], rapid variation ind,/k, near threshold. The prediction of
— 4+0.03 this model for 55/(k,E./M,) [24], shown in Fig. 5, is
—0.242),-0.22_, ,[fm], Prukopet al.[22].  rather similar to our quark model result.
(11

4. |=2 @ equivalent potentials

We speculate that this discrepancy is due to the use of a Low-energy “phase shift equivalent” Gaussias 2 7
simple 6=k a+ O(kf;) effective range formula in the ex- potentials, derived using the method of Mott and Massey
trapolation. The difficulty of extrapolating experimental [30] as described in Appendix E, are given below. We quote
phase shifts to threshold has been stressed by Morgan asdparate Gaussians for the transfer and capture contributions
Penningtor{ 27,28. We advocate the use of a “generalized from each of the three interactions, spin-spin contact, color
specific heat plot” of low-energy phase shifts for this pur- Coulomb, and linear hyperfine; however, their predicted
pose[12]. This plot takes into account the threshold behaviorphase shift decays more slowly at large momentum, probably

seen in Eq(6), due to the use of power law form factors in their vertices:
s 92 3
2 o
o LB 282 .S (ransten),
3cqs m
29/2 o 3
212 S_ge R, S-S (capture) ,
3°a m
211/2 -
- —6B°re/5
T a,fe , Coulomb (transfer),
— { m
V’JT’JT(r) - 21/23 12 L, (13)
+— a,Be PFTR Coulomb (capture),
Tr
29/23 1/2 b
—68%r°1 linear (transfer),

+———¢
73/2,“.1/2 ﬁ

2 1/23 5/2 b

- e
L 5 3/2,“.1/2 ﬁ

9872110, linear (capture).
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In Ref. [9] we derivedl =2 7 potentials for the spin-
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The low-energy Mott-Massely=2 = potential is shown

spin contact interaction using the “locality expansion” in Fig. 6 for our standard quark model parametegs- 0.6,
method of Ref[31]. This gave an identical result for the ph=0.18 Ge\?, andm=0.33 GeV. The spin-spin hyperfine

spin-spin transfer potential, because this amplitioefore
Bose symmetrizationis a function oft only. However, for

the capture diagrams the Mott-Massey approach used here
gives a different potential,since it is constrained to reproduce

the O(k®) series expansion of the phase shift in E8), but

contribution is dominant over the range shown.

5. 1=2 @@ phase shifts with >0
The higher partial waved &=2) may be evaluated simi-

the local approximation is not. The two capture potentialdarly. According to Eq.(5), these receive contributions only
reproduce the scattering length, but the local approximatiofrom the transfer diagrams. The Born-orderwave phase

gives an incorrect effective range.

shift with SHO wave functions is given by

( e o 1 1 1l+e® 1l-e” o5

7? ? X § X2 § X3 ’ ’
—2 -2 -2
e = % _;fl,llz(_zx)_e X %fly,l,z(—sz)—Fe X_ 325 f11,3,2(—23x)—e ) Coulomb,
i X 3 X X X ’
b[1fyy(—2x)—€ 2 1f, 1p(—2x)+€ 2 3 f, gy(—2x)—e %
KE, 2| 5 24 ) _ 1o ) 2= ) , linear.
\ 77B 3 X 5 5X7 X3

(14)

These three expressions are numerically rather small, antday indicate a problem with the measurements; the expected
their phases are such that they approximately cancel; ahreshold behavior okf, is much more rapid than the ob-

M,..=1.5 GeV they are, respectively; 0.8°, +0.2°, and
+0.4°. To see this more clearly, the Iead'ﬁgkf;) behavior
predicted by Eq(14) is

_ 1 [ e b
; | =27m) 5 _ -5 S - ™
ktToaz Ik 23X 3% 52| m2 +2as+3'32 ik

(15

and the three dimensionless combinatiag8?/m?, «, and

served energy dependence. Unfortunately the dispersion re-
lations represented by the Roy equations have technical dif-
ficulties with determinind and higher waveg25]. They do,
however, lead to predictions of gositive Dwave close to
threshold, which is not evident in the data. Thevave may

well have important meson exchange contributions, since
this type of model can accommodate the reported experimen-
tal phase shiff32].

C. PsV scattering

1. 1I=2 @rp T matrix

b/? are comparable in size. We have also evaluated this For simplicity we will initially quote results only foi
D-wave phase shift using Coulomb plus linear plus hyperfine=2 7p. The other isospin channels are simply related by
wave functions. The result is shown in Fig. 4, and is numeriflavor factors, which we will discuss subsequently. We as-

cally similar to the SHCD wave, Eq.(14).

In comparison the experiment@l waves reported by Du-

rusoy et al. [19] and Hooglandet al. [20] are ~—3° at

M, .=1.5 GeV(see Fig. 4 (Losty et al.[21] report a rather
larger but inconsistent low-enerdy wave) This is clearly

sume identical spatial wave functions, so only {hespin
degree of freedom and difference in phase space distinguish
this case frommr7r. Summing the individual contributions in
Appendix B with the appropriate flavor and color factors and
the (—1) signature phase, and using the PsV spin-matrix

larger than our prediction, although the rather slow variatiorelements of Appendix C 3, we find, for the=2 7p T ma-

of the Durusoyet al. and Hooglandet al. Dwaves withM .

trix,
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7 -
T\ 27Tp_+ TS +2—(Se Q% r8p2 _ o~ Q% 182 i 2 eA2/3/32)

39/2

T 24 > > 26 > 221h 02
+'8_23 - ?[fl/2,3/2(Qg/8B2) +F110,54 Q1 /85%)] +3T,2f1/2,3/2(A2/632)) e AT

b( 28 23
+; ( T 12 QU18B%) +1 125 O218H) ] = 5 1o il A /63%) A2

mas | 22 22 1602 2* K2 e A228Y & i(Ax @
m?5? _?fB/Z,SIiQ-#/SIB )~ Zoi 3972 fa1054 A%168%) | € [S,-i(AXC)]
7b 2 22 1002 R2 e A228Y & Li(Ax G
+m2,84 +?f1/2,5/2(Q+/8,3 )— 352 f1254 A’165°) | e [S,-i(AXC)]
ges 2 ol 2] = > > N 2_,
Tz BS(+32X5f5/27/iQ 18 )) Baled [SP'Q—SP'Q——gQZ}
Ta 2° 20 (2 a2 - 2. foaa o 2.
Jrmzlgsz +39/2 o071 A2163 )) AR [(Sp'ASp'A_g 2I|+|s,C p'C_§C2} (16)

The individual contributions in this result are, respectively,cise, although integrals of special functions and a careful
OGE spin-spin, OGE color Coulomb, linear confinement,angular analysis of the spin-orbit and tensor terms are re-
OGE spin-orbit, linear scalar confinement spin-orbit, OGEquired; the details are discussed in Appendices G and H.
tensor (transfer diagrams and OGE tensofcapture dia- This matrix element is diagonal ihexcept for the tensor
grams. In all these we list transfer followed by capture con- interaction, which has both diagonal and off-diagoftiens-
tributions. S, is the p meson spin vectorA and C are the fer) and fully off-diagonal (capturg contributions. The
initial and final = momenta,B=—A andD=—C are the I-diagonal results, again showing transfer diagram contribu-

_— , > s s . tions followed by capture, are
initial and finalp momenta, an@. =C*A as inwm. Since y cap

this result was derived in the c.m. frampd|=|B|=|C|

=|D|. This Ty; evidently describesrp spin-orbit and tensor
interactions, in addition to spin-independent scattering. It is
interesting that there is a one-to-one mapping between the

j 77'20(5 26- —X 29 —4x/3
Tils.s= 2| (1+8i,0ad3311(¥)e Jr5|,o—39,2€‘ :
(18)
spin-orbit and tensor terms. This simple result need not be

Tj| _T s -5 —7 {X)
II1Cou ,82 I,euen32 1/2,3/.

quark-quark spin-orbit and tensor interactions and these 2, ( 6

true in general; a given spin-dependent interaction at the
quark level may give rise to a different type of hadron-
hadron interaction. As an example, a mapping of a tensor
nucleon-nucleon force into a nucleon-nucleus spin-orbit in-
teraction was discussed by Stancu, Brink, and Flo€3agdl

To evaluate phase shifts and inelasticities it is convenient
to calculate the matrix element of oawp T matrix, Eq.(16)
between generajls) states, which gives the reduced matrix
element

T, =(jm,I's|T|jm,Is)= >, (jm|l'u’,1s})

M#: _
e Thloce L.s=
><<jm||,L,1sz>f f dQ'dQyy,,.(Q")

X(1sy| Tri(Q",Q)[1s,)Y,,(Q), (17)

as discussed in Appendix D. This is a straightforward exer-
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2

25
F( 5I,even§~7'-(l)1/2,3/2(x)

25
o 031,21c 12,342x/3) | e ) (20)

mas, . o[ 2° 1 (1-1)
m2 —~(L-S)| - 3? (2|+1)X[]:3/2 5/2(X)

28
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TII|I|n L.S= _2_2< X[-7:1|/2 é/)z(x)

>(3 (21+1)

gl/;é/)ix)]) ( Xf1/2 5/2(2X/3)>

(22

2 4
. T g 2
ThOGE T =7z AT = 1) 53X

2I+1) 5/27/2()(
2l )

T 2rTa)” sendX)
(21— 1) N

+(2|+1)(2|+3) (5|/2%/)2(X)) (23)

and the off-diagonal tensor matrix elements are

2
; m
] transfer_ +1
Ty 2iloGE T —2—(5|J 181 41t 8 j+100 1) (—1)]

2* [j(j+1)]1*
32.5 (2j+1)

+2F 0y %)+ FU3 M%) e, (24)

1
X[ F o 74X

72
T g
A 6j1( 81201701 6106)/2)

capture_
TI’#I OGE T

219/2

X PV fsrp7d2x/3)e™ 2. (25)
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FIG. 7. The theoretical=
wave functions, Eq(28).

2 mp Swave phase shift with SHO

1, j=1+1,
(Ty=3 —(21+3)/1, i=I, 26)
(+1)(2143)/1(21-1), j=1—-1

and the integral
1
FOx= f_ldMH(M) iF@cex(1+up) (27

is evaluated in Appendix G.

2. 1=2 @p S-wave phase shifts

In Swave toSwave scattering the spin-orbit and tensor
7rp T-matrix contributions vanish, and we are left with color

In these formulas(x) is a modified spherical Bessel Coulomb, linear, and spin-spin contributions, just as in the

function, the tensofT) matrix element betweelj,l,s=1)
p States is

| =2 7rar case. Thd =2 mp Swave phase shifts that result
from these interactions, again using EB17), are

)
KE_E, « 221 26
TP TS| S T a2y S o—4xi3 )
Js W( 33 x(1 e ™) 39/2e ) ) S-S,
KE,E, as/ 2°1 25
S2mr={ STl TSl S I~ 2X) — e 2] — ——f, i — 2x/3)e#3|,  Coulomb, 28)
Js B 3% x 3512
KE,E, b 22 _
[le/z( 2X) —e” X+ ——f, 35 — 2x/3)e" 3], linear,
Js ,84 3112
\

where/s=(E,+ E,), and againk=A2/442. In Fig. 7 we show these individual components and the ®tahve phase shift
with our standard quark model parameter set and meson massssess throughoutof M ,=0.138 GeV andM ,=0.77 GeV.
The forces considered here evidently lead to strong repulsion ih=ttee7rp channel.

3. I=2 @rp phase shifts with =0

The spin-orbit and tensor terms in EqR1)—(23) all contribute tol>0 wp scattering, and there is also an ddd-
j-independent term due to the OGE spin-spin interaction in (E§), which is not symmetric undex— — x. The color
Coulomb and linear confinement spin-independent terms, @§sand(20), contribute only to eveh

Adding the various diagonal matrix elements of E@)—(23) and using Eq(D17) gives phase shifts for each.; partial
wave. In Fig. 8 we show results for &twave channels and fdr=L =+ 1 in D andF waves. Note that there is a large, inverted
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15
Sydegl o ——mTTT 3D3 8ldeg]
e e — 3F4 10| JOGEL'S
=
-15 1 3P2
3P1 5r
-30 N
—-45 b o= —— - ___ __ OGE Tensor
3P0 lin.L'S
-60 ‘ ‘
1 2 3 -5
M,, [GeV]
FIG. 8. Theoretical =2 mrp phase shifts if?, D, andF waves. -10 ] 5 3

3p,, 3P;, 3Py, andJ=L*1 phase shifts are shown. M [Gev]
spin-orbit force in theP wave, so the®P, phase shift is FIG. 9. OGE spin-orbit, confining spin-orbit, and OGE tensor
widely separated frontP,, and has an even larger maxi- contributions to the’P, | =2 mp phase shift.
mum phase shift than th8 wave. The highet- channels ) ) ) _
show decreasing phase shifts with increadings expected Pure spin-orbit value of 2:1 at higher energies.
for short-ranged quark-gluon forces. There is alsc_> an off-diagonal coupling due to the OGE
The relative importance of the individual contributions to tensor terms, given by Eq&24) and (25), but we have ne-
the spin-dependent force is of considerable interest. In Fig. glected this in calculating phase shifts because we find that it
we show the various spin-dependent contributions tolthe iS numerically a small effect. The largest coupling at low
=2 3P, mp phase shift. The largest contribution arises fromenergies is’S,« Dy, which leads to an inelasticity of only
the OGE spin orbit, in particular from the transfer diagrams.”sp=0.97 byM ;,=3.0 GeV|[calculated using Eq¢D18)—
The OGE and confinement spin-orbit capture diagrams givéD20)].
smaller contributions of the same sign. Finally, the confine-
ment spin-orbit transfer diagrams have a sign opposite to all
these and reduce the total spin-orbit force somewhat. This We may determine low-energy Gaussian equivalept
dominance of the PsV spin-orbit by OGE is an interestingpotentials from the phase shifts, as discussed in Appendix E.
result, especially since Mukhopadhyay and Pifi3&] found ~ The most interesting potential phenomenologically is the
the opposite result iKN. In that system they concluded that spin-orbit one, since the origin of the spin-orbit interaction in
confinement, not OGE, makes the largest contribution to thehe NN system is a long-standing and still poorly understood
spin-orbit force. The OGE tensor In=2 3P, mp is weakly  problem. In particular we derived Gaussian potentials corre-
repulsive; it makes a much larger contribution ¥8; and  sponding to theP-wave phase shifts due to the OGE and
3Py, where the tensor matrix element is, respectivehf linear scalar confinement spin-orbit interactions, using Eq.
and 10 times as large. The OGE tensor is evident in Fig. 8, ifE4) of Appendix E. The results for the transfer and capture
the departure of the rati¢P,— 3P;):(°P,— P,) from the  contributions to these potentials are

4. 1=2 @p P-wave spin-orbit potentials

B 211/255/2 asﬁ3
32752112 m2
3
a

__ = PP op 3\, 5854
392112 m2 (L-S)e ’

(E-§>6710B2"2ﬁ, OGE (transfer),

55/2
OGE (capture) ,

Vir;o;(r) = { 29/255/2 bﬁ (29)
—— 7 (L-SYe™ 10827219 linear (transfer),
3igiem

5/2
5 b,3<l-:‘§>e,15ﬁzl,2/14

linear (capture) .

21275012 m?

The OGE, linear, and total spin-orbit potentials for fte, wave ofl =2 #p are shown in Fig. 10 for our standard parameter
set. The largest contribution to thep spin-orbit force comes from OGE transfer diagrams; the linear confinement spin-orbit
from the transfer diagrams is about half as large and opposite in sign, and the two capture diagram contributions are much
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smaller. Since the confinement capture and transfer diagranus these nonstrangd”“» exotic PsV channels. Thg chan-
have opposite signs, the net result is dominance of the PsMels are relatively weak because only the part of the 7
spin-orbit by the OGE contribution. contributes to these diagonal scattering amplitudes;sthe

component leads to open-strange final state’sﬁ, for ex-
D. Scattering in J°% exotic PsV channels ample after quark line interchange.

The recent evidence far”C» exotic resonances; (1400) Regarding candidate exotic resonances, there have been
and 7,(1600) [35] has made the study of scattering ampli- speculations that the determination of the mass and width of
tudes in exotic channels especially interesting. The surprisN€ exotic candidater,(1400) may have been compromised
ingly low mass of ther;(1400) in particular has led to sug- by inelastic rescattering effedt37], analogous to th_e Deck
gestions that it might not be a “hybrid” gluonic excitation, effect” proposed as a nonresonant explanation of the
since these are expected atl.8—2.0 GeV[36]. Another ~21(1260). For example, crossing theh, threshold at~1.4

possibility is that ther;(1400) is a “multiquark,” perhaps a €V in the processrp— b, — 7 might mimic resonant
meson-meson bound state in a very attractive channel. Waseé motion if this process has a rapidly varying inelastic-

can test the plausibility of this type of assignment by calcuty. We can test this and other nonre;onant possibilitigs by
lating meson-meson scattering amplitudes in the various ex¢alculating the elementary-22 scattering amplitudes using
otic channels. our quark model approach.

The exotic channels accessible to the lightest nonstrangﬁ Some important results follow from simple flavor factors.
PsV meson pairs are listed in Table(We do not tabulate ote in particular that the nonresonant scattering amplitude

light PsPs exotic amplitudes because they are zero in thi@°— 7p vanishes in any=1 channel, including ther,
model. The PsPs exotic channels are bddsy, 77', and exonc one. Th|s is a ge.neral result whenevgr the quarl_< line
nn', whereas the quark interchange model PsPs scatterirffadram of Fig. 1 dominates; clearly a pair of oppositely
amplitudes are eveh assuming identical spatial wave func- charged, nonstrangeq mesonsA“B~ cannot scatter into
tions) We generally expect the largest scattering amplitude@nother charged pai€ "D~ under quark interchange. A
to be in the lower partial waves. In PsV tRewave has the ~comparison with isospin matrix elements shows that this im-
first exotics, which are)’“n=0"" (all channels except  plies that scattering of any twqq isovectors inl =1 van-
=1 mp) and JP=1"" (1=1 =p only). Calculation of ishes. This isospin selection rule eliminates two subprocesses
these scattering amplitudes simply requires changing the extiscussed by Donnachie and P4§&] as Deck effect back-
ternalqq flavor states attached to the Feynman diagrams o@rounds that might shift a higher-mass exotic resonance to an
Fig. 1. The results relative to tHe=2 mp case treated in the apparentr;(1400), mp— 7b,— 7y andmp— mp— 7.
paper are summarized in Table II. Independent of any scattering model, one should note that
Inspection of the tables shows that the largest exotic scathe couplingmp— mb, is probably small because of the
tering amplitude should be in the=2 7p 0~ ~ P wave. The strong VES experimental limifreported by Dorofeey35])
elastic phase shift in this channel is thB, curve in Fig. 8.  Of
The large negative phase shift shows that this is a strongly
repulsive channel; the maximum phase shift is predicted to
be a quite large~ —50° ex_tMWp§3.1 GeV, which excgeds Since m,—p is a large moddB=31(4)% [39]], if mp
even theSwave _phase shift maximum. Th_e largestractive — arb, rescattering were important, we would also expect to
exotic phase shift we have found in PsV is 10 partner, observe a larger,— b, branching fraction.

which is —1/2 of =2, giving a maximum phase shift of We also expect the final background process suggested by

§+25 at the same mass. YVe do not Imd sufficient attracq - chie and Pagerp— 77— m7) to be small, because
tion to form a meson-meson “molecular” bound state in any

the direct time orderingr »— 77 vanishes in thé®> wave in
this model. Finally, the rescattering process they propose,

B(m,(1670— 7b;)<0.19% (20 C.L).  (30)

02 ' 1(1600)— b, — n7r, does not vanish in the quark inter-
ViGeV] [--—-—._ M change model, although the requiradi=1 and suppressed
_— T n flavor factor may nonetheless make this a relatively weak
- amplitude. A calculation of this and related scattering ampli-
oiag tudes is planned for a future publication.
—02 7 1
total i TABLE I. J”%n exotic states in PsV.
i
v o
-0.4 - /;GE ] Channel Exotic quantum numbers
| Meson pair |, S P D F G
06 L L . ‘ TP 0,2 - 0~ 2*" - 4"
0 0.2 0.4 0.6 0.8 1 . .
¢ ] 1 - 1 - 3
T, 7P 1 - 0~ 2" - 4+
FIG. 10. Spin-orbit potentials in the=2 mp 3P, channel, Eq. nw 0 - 0~ 2t — 47~
(29.
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TABLE II. Overall flavor factors in diagonal PsV scattering.  shown to be in reasonable agreement with experiment in
Swave scattering, and an extremum predicted niday,

Channel Relative amplitude =15 GeV is supported by the data. Rapid variation of
5ok, is predicted near threshold, which may reconcile the-

mp =2 +1 . . . .
1 0 oretical expectations of a small scattering length with larger
0 _1 reported experimental values based on extrapolatidxﬁin
o 1 112 The experimentaD wave, although quite small, is clearly
larger than the model predicts.
np 1 +1/4 . . .
o o 1/ The PsV system is a convenient theoretical laboratory for

studying spin-dependent forces, since it can accommodate
both spin-orbit and tensor interactions, and is simpler than
KN or NN. We derived analytical results for these spin-
dependent PsV interactiond (matrices and phase shifts
Although there is little experimental information about given SHO wave functions and the standard spin-dependent
PsV interactions at present, these phase shifts actually atgiark model forces. The quark-quark spin-orbit and tensor
experimentally accessible in existing data, for example, asorces map directly onto spin-orbit and tensor PsV interac-
relative FSI phases in the and S amplitudes inb;— . tions. We find that the OGE spin-orbit force in the PsV sys-
These are usually, and incorrectly, taken to be relatively realem is quite large in thé wave, and so is expected to be
amplitudes. The relative phase including the FSIDKS  large in many other hadron-hadron systems as well.
=|D/Se'(®v=?9 [38], and is observable for example as a  There is no PsV phase shift data at present. We noted,
reduction in the strength of th8D cross term in therw  however, that PsV phase shifts actually can be measured in
angular distribution by co$t—dp). Since this method re- multiamplitude resonance decays to PsV final states, so it
quires individual measurements of t88 D?, andSDcross  should be possible to test theoretical predictions for PsV
term in the angular distribution, it should be applicable toscattering amplitudes in future experimental studies.
cases such as;(1230)— 7w andb,(1600)— 7w whereS Our predictions for scattering ié”“n exotic channels are
and D are of comparable magnitudelO]. The dsp=5s  of current interest because the reported exotics might be
— 6p phases we predict at these magsesich are calculated complicated by large and rapidly varying nonresonant inelas-
from +1/2 times the®S; and 3D, 1 =2 mp phases in Figs. 7 ticities. One speculation is that the,(1400) parameters
and § are 625(M,,=1.23 GeV)=—14° and 635(M,,  might be strongly affected by the opening of inelastic cou-
=1.60 GeV)y=—17°. plings to thewb,; channel. In our mode(and in anyqq
This proposed technique is similar to that usedkip,  constituent interchange modeleveral of these nonresonant
decayd 27|, in which the low-energy=0 77 Swave phase processes can be rejected as significant complications be-
shift is actually observed as the difference betweenlthe cause of vanishing flavor factors.
=0 Swave and =1 P-wave w7 FSI phases. In the future we plan to extend our calculations to other
One may also extract FSI phases at fixed energies froraxotic meson-meson channels, suctsasP, to test whether
hadronic final states observed in nonleptonic heavy-quarktrong attractive interactions are predicted that might support
decays. There is already experimental information on themultiquark exotics” such asS+ P molecules. We also plan
relative phases between isospin states in several PsPs, Ps¥.apply the current approach to the study of spin-dependent
and VV systems from nonleptoniz andD decay§42], and interactions in other hadronic systems, includikty, NN,
the realization that these phases are importai@Rrexperi-  and light-hadrort charmonium systems.
ments [43] should motivate future experimental measure-
ments of elastic phase shifts froby D, andB decays. ACKNOWLEDGMENTS
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APPENDIX A: QUARK-LEVEL T MATRICES AND WAVE FUNCTIONS
The various contributions to the quark-quark (with color factors ofTT2 removed are

r

8may, . . . .
3,7 L5152, OGE spin-spin,
darag
= OGE color Coulomb,
q
6mb ;
—_ linear confinement,
4
q
Tfi(q,Pl,Pz): < dimag| . R l;l R R R R 52 ) .
+ —1S1-|gX!=—py | |+S2-|gX\ pr—=]|{, OGE spin-orbit,
m?q? 2 2
3imb . . . O . . .
——=; 151 (gXp1) =58, (gXp3)] linear spin-orbit,
m-q
Ate| 5 s = Jes,s
+——|S:-¢S,-g—=¢%5,-S, |, OGE tensor.
272 3
\ m-q
(A1)
|
The standardjq quark model Gaussian wave function is 2. OGE spin-spin hyperfine contribution
given by These simple contact matrix elements were evaluated pre-
viously, for example, in Refl9] [in an equivalent form, but
- 1 2 i i i
D (o)) = o prel,g[,z, (A2) incorporating color factors and the signature phase, as Egs.
w3432 (71)—(73) of that referenck The results are
; 23 TAs =209 > o
where in general TfTilz T e Q3§ (B1)
. Mgpg—MgPg
= A3 T2_ TT1 R 2
Prei (Mg +mg)/2 (A3) T =T (C—~-0), (B2
and, for our special case of equal quark and antiquark c1 2° mag _ipgtra &
1 B .
masses, Tsi 352 m2 © [S1-S], (B3)
Prei=Pq~ Pq- (A4) TE2=TEL (B4)
1. Results included The contribution of the OGE color Coulomb interaction to

In this appendix we give the explicit meson-mesonthe meson-mesoh matrix follows from the evaluation of the

T-matrix elements that follow from the overlap integrals, Nt€grals, Eqs(1)—(4) with the second quark-quarks; in
Egs. (1)=(4), with Gaussian wave functions and the variousEd: (A1). The results are
quark T-matrix elements. The OGE spin-spin hyperfine,

color Coulomb, and linear confinement results were derived TfTilz +22W_L;Sfllz‘slz(Q*g/gl[gZ)ef/iZ/ZBz, (B5)
previously [13]. For completeness we quote the formulas B

here, as well as giving the new spin-orbit and tensor results. 1o 1L = -

The multiplicative diagram-dependent color and flavor fac- T =T (C—-0), (B6)
tors and the signature phasehich is (— 1) for these meson- .

meson scattering diagramare not included in the results c1 |, 2 mas 720 02 o A2/2B2

given below. These formulas abbreviate the confluent Ti=+ 312 B2 f12,3A A°IBB7) € : (B7)
hypergeometric function;F,(a;c;x) as f (x), and Q.

—(C=A). TH=T5" (B8)
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4., Linear confinement contribution

. ) . . . TC1= b f A2/632 — A2j2p2
The linear confinement integrals were carried out in coor- fi— T 2% 312 m2B° 1/2,5:AA°I6B%)e
dinate space, since the Fourier transform of the linear poten-
tial is singular. The results are X[($,—S,) i(AxC)], (B19)
b - -
Ti=— 6ga -12ad Q2 18p%)e A2, (B9) The=—Th" (B20)
7. OGE tensor contribution
TI2=TI{C—-0), (B10) Finally, for the OGE tensof;; [the last entry in Eq(A1)]
we find
b > A2/232
TH=—-3%—7,f_ A%l6p?)e A72E° (B11) 1 7a . 22
fi I 12,34 A°I6B TH= 4 mzﬂsz oo 7 O2 188%) A28
TH=Ti (B12 O
X151°Q-5Q-—3Q%S,- S, (B21)
One may also obtain these results using the momentum space
integrals, Eqs(l)—(4), but t'he 1¢* quark-quarkai in Eq. TI2=TI{E—-0O), (B22)
(A1) must include a long-distance regularization in the inter-
mediate stages of the integration. The final result is well 25 o
defined due to the Gaussian damping provided by the wave T 5% A2/652) e~ A28
functions. We have checked both the linear and color Cou- " 352x 5 m°B sz ATOB
lomb Ty; results by comparing expressiof(B5)—(B12) with
Monte (_Zarlo evaluations of the corresponding real-space x| §,-AS, - A— lAzgl. éz} (B23)
overlap integrals. 3

c2_ —C1
5. OGE spin-orbit contribution Ta=Tg" (B24)

The four OGE spin-orbit overlap integrals can be evalu-  The tensor matrix elements in the capture diagrams, Egs.
ated similarly using the fourth quark-quafk; in Eq. (A1),  (B23) and(B24), are the only cases in which we have found

which gives a post-prior discrepancy in these PsPs and PsV scattering
amplitudes; the post forms of these matrix elements involve
T > e . 2 >
Tit= —Hﬁzfg,z,yz(Qz_/Sﬂz)e—Azmﬂz a tensor inC rather thar,
= = - = 5 Tog > _R2 2
X[(S1+S,) - 1(AXC)], (B13 T{CL post— . 35 mz—lng5,2,7,2(A2/6ﬁz)e A28
T2_ 7T A _ A N N o IR
Ti=Ta(C>=C), (B14) x[8,-CS,-6— 16%§,.5,]. (B25)

c1 4 Tag ©2 1 2 e 21262 These capture tensor terms vanish in the PsPs channel. They
Ti=+ 35% 22 fa0,5d A°I68%) € do make a small, off-diagonal contribution to PsV scattering,
albeit only in the 3S;— 3D, amplitude.

X[(§1—$,)-i(AxXC)], (B15)
APPENDIX C: MAPPING QUARK SPINS
Tﬁz= _Tﬁl‘ (B16) INTO HADRON SPINS
1. Spin-matrix elements
6. Scalar confinement spin-orbit contribution In these scattering amplitude calculations the matrix ele-

ments of spin-dependent quark interactiditse spin-spin,
spin-orbit, and tensor forcevolve matrix elements of lin-
ear and bilinear quark spin operators. Since the quark spins

The matrix elements, Eq$l)—(4), of the scalar confine-
ment spin-orbit interaction in EqAL) are

1 wb . L are not directly observed, it is useful to replace them by the

Ti=+ > Ff]_/ZB/iQZ_/SBZ)eiA 125 spins of the external hadrons. This appendix gives the
B (diagram-dependentmapping from quark spins to hadron
X[(S,+S,)-i(AxC)], (B17) spins in the PsPs and PsV cases considered in this paper.

The spin-matrix elements we require dres(1)’, S(2)',
T 71 = - and S(1)'S(2)' between general initial and final PsPs and
T =T;(C——-C), (B18)  PpsV spin states. Our convention for the diagrafis. 1) is
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that mesonsA and C are always Pge.g.,7w), andB andD hence
are Ps or V(e.g., 7 or p).

2. PsPs (PsP$S(1)-S(2)|PsPy
First, in PsPs scattering there are no external meson spins, 3
so the quark spin matrix elements are proportional to geo- _ 3 TLT2 Thymm T2symm (Ca)
?rtztncal tensors such @ . The matrix elements by diagram — 3%, C1,C2 Clymm Cymm
(PsP#l|PsP$= + > all diagrams, (C1)  Note that the spin-orbit and tensor terms vanish identically in

PsPs scattering; this follows from applying E4€2) and
_ _ (C3) to Eq.(Al).
(PsP§S(1)'|PsP$=(PsP$S(2)'|PsP$=0, all diagrams,
(C2
3. PsV
(PsP§S(1)'S(2)!|PsP$ )
- In PsV scattering the vectde.g.,p) meson spir5, pro-
+50, TL T2, Thymm T2ymm vides an additional degree of freedom, and the linear and
= 1 di quadratic quark spin matrix elements can be expressed in
—50" CLC2 Clymm CZymm terms of the p spin matrix elements(p¢S,|p;) and
(C3)  (p¢|S,S)|pi). The mapping of quark to meson spins is

((mp)ill(mp)i)="+3(pilllp;), all diagrams, (C5)
T (o
T mTp)i)= .
- . +2(pddS,lpi), T2 Tlymm C2, Chymm
((mp)e|S(2)'|(mp)i)=+1(ps|S,|pi), all diagrams, (C7)

( +%5ij<Pf|||pi>+%ifijk<pf|s;k;|pi>_%(Pf|SLSJ;)|Pi>a T1, T2%ymm
- +580(psllpi)+ 51 €™(psl Sl pi), T2, Tlymm
ig(2)] N ) )
(moIISCISIITRI=Y — 40 pyl1 1)~ i (oS0, C1.C2ynm (D

- %5ij<Pf|| |Pi>_ %i 6ijk<Pf|SE|Pi>+ 711<Pf|3ipSL|Pi>a CZ’C]Symm

APPENDIX D: PHASE SHIFTS AND INELASTICITIES In the special case of spinless scattering these basis states are
FROM THE T MATRIX eigenstates of orbital angular momentum
Since total angular momentum is conserved, Thaatrix
is block diagonal in a total angular momentum basis, and can Im) = f dQY,(Q)|Q) (D3)
be written '

so theT matrix is given by
=2 lim)T(jm. (D)

Tz% |Im>T|<Im|=% ffdgdmﬂ')

The coefficients{T;} can be determined by evaluating the XY im(Q) T YE (Q)(Q)] (D4)
matrix element Im Mim ‘

The T matrix can also be written in terms of the scattering
T;=(im[T|jm). (D2)  amplitudeT;(Q,Q") between momentum eigenstates,
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=J JdeQ’m’)Tfi(Q,Q’)(QL (D5)
soT;(Q,Q") andT, are related by
Ti(Q,09)=2 T2 Yin(Q)Yii(Q)
—2 T. (1) (D6)

and hence

Ti=(Im|T[Im)= ffdeQ Yi(Q)TH(Q2,Q)Yim(Q),
(D7)

where u= cosfqq: .

result follows from fixing the incident directioft =z in Eq.
(D6) and integrating over final angles withRy(u) weight,
which gives

1 ~
T|:27Tf_l duP(u)Ts(z,Q"). (D8)

Since we defind;(Q2,Q") by

<CQ/ ,D,QI|S|AQ ,B,Q>: 5f|_|(277)45(4)

X (A+B—C—D)T;;, (D9)

it is related to the Lorentz invariant-22 scattering ampli-
tude M defined by the PDG39] [their Eq.(35.8] by

M

Ti=——
H 2E )1/2

(D10)

and hence to the c.m. scattering amplitidk, 6) [their Eq.
(35.48] by

8
Tii=——=f(k,0).

Vs

(Herek is the c.m. momentum of any particle=|A|=|B|
=|C|=|Dn|.) The partial-wave expansion df(k,6), Eq.
(35.44),

(D11)

f(k,0)=2l (21+1L)aPy(u), (D12)

and the relation between a diagonal partial-wave amplitud

a, and the phase shift,

e2i5| -1
2i

a= (D13)

A more familiar quantum-mechanical

PHYSICAL REVIEW G3 025204

allow us to determineS, from T;;. For purely elastic scat-
tering and assuming small phase shifts so that 5, Egs.
(D6)—(D13) give

1 KExEg

6=— . fdMPKM)Tf.(ZQ)

1 KEAE
=, PT (D14)

872 \/g !

This relation was used previously to determine, for example,
K [11] andl-diagonalKN [12] elastic phase shifts. In the
case of elastic scattering of identical bosons, such=a3

7, there is an additional factor of 2 for identical particles
[38], so the relation between the Born-order phase shift and
the T-matrix element becomes

B KEA ((+1
5I|ident__m 71Tfip/(,u«)d/¢¢- (D15)

Since the angular integral in E¢D14) is proportional to
the amplitudgIm|T|Im), we may also write the Born-order
elastic phase shiftfor distinguishable particlesdirectly in
terms of theT matrix,

1 KEAE
PE X
8w \/g

This formula has a straightforward generalization to the
case of external hadrons with spin, which we use to evaluate
7p phase shifts and inelasticities. In the case ofl-aand
s-diagonal interaction this is

m|T|Im). (D16)

8 \/—

This is adequate for diagonal forces such as oyr spin-
orbit interactions. The tensor force however is hdtagonal,

so for this case we must introduce a more general parametri-
zation. Since the tensor interaction couglg$ channel pairs
which have the samgbut differ by || —1'|=2, it leads to
2X2 S matrices. These can be parametrized as

. €* i1- 7, el@ran
i 1_ﬂﬁrei(5l+5l,) 2i 6 :

Sjis=—

(jm;ls|T|jm;ls). (D17)

Si=
i€
(D18)

In our calculation, both of the phase shifts and the inelas-
ticity ¢, =+v1— 77|2|/ are O(H,), so to this order we can
relate these linearly to the matrix elementdhf. The Born-

Qrder phase shift formuléD17) remains valid for both chan-

nels, and the inelasticity is

=gz = \/_ (jm;1"s|T|jm;ls). (D19
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The overall phase o, is dependent on the state normal- find that our phase shifts are sufficiently “hard” at high
izations, but the familiar energies to require singular potentials; this is presumably an
artifact of our approximations, such as assuming a contact
spin-spin interaction. For this reason we do not completely
me=|\1— 52” /| (D20) invert the phase shift relatiofiE1), and instead simply fit an
_ _ assumed Gaussian form
is unique.
V(r)=Vge " (E2)
APPENDIX E: POTENTIALS FROM THE T MATRIX

to our theoreticalow-energyphase shift. The two Gaussian
Potentials provide a very useful representation of hadrons .o aters are determined from 1B¢k) and O(k3) terms

hadron interactions. They have a clear intuitive meaning, ang, {he expansion of the phase shift near threshold, which in
can easily be used in the nonrelativistic Selinger equation the Swave case are equated to ’

in searches for bound states or in coupled-channel problems.
Unfortunately, one may define hadron-hadron potentials

in many different ways. Ideally they should reproduce phase 12
shifts or T-matrix elements, at least in the low energy limit. lim 8y(k)=— T,uv rikl 1- —r2k2+ okY|. (E3)
The assumption of a unique, purely local potential is in gen- k—0

eral overly restrictive, as it leads to a scattering amplitude
that is a function ot only. In general we find 2:2 scatter- "€ generalization to highér also using Eq(E1), is
ing amplitudes that depend on batlandt. One approach to

this problem is to introduce nonlocal “gradient” corrections

2 |
to the potentia[31], which can be expressed for example as lim &,(k) = WUZMV (3 (rg/2) 54y
V(r)L-S terms; this approach leads to the familiar Breit- K—0 2 921+ 1)1
Fermi Hamiltonian for one-photon and one-gluon exchange, 1
fine h -h ials i -
and was used to define hadron-hadron potentials in our pre w|1- —r§k2+0(k4) _ (E4)

vious work[9,13].
Alternatively one may project the scattering amplitude
onto a given angular channélso that onlys dependence In determining the Gaussian potentials that correspond to
remains, and find a loc&lwave potential that describes the our derived phase shifts such as E@, (14), and(28), we
scattering in that channel. This definition of potentials wasset the external factors &, andE, equal tom, andm,
discussed by Mott and Massg30], and is equivalent to the before expanding ik. This corresponds to using nonrelativ-
definition we shall use here. This approach was previouslystic phase space and nonrelativistic external hadron line nor-
used by Swansom10] to define meson-meson potentials malizations in ouT-matrix calculations, which we assume is
from scattering amplitudes. the appropriate choice for the derivation of a nonrelativistic
The quantum-mechanical relation between the phase shi@quivalent potential.
6,(k) and the radial wave functioR,(r) in potential scatter-
ing of a massu particle (which becomes the reduced mass APPENDIX F: THE POST-PRIOR DISCREPANCY

below) in first Born approximation is i ) . . .
The “post-prior discrepancy” is a familiar problem in

rearrangement collisions; the diagrams of Fig. 1 treat the
B 5 ) scattering as due to an interaction between the initial hadrons
o= _ZMKJ redrv(n)j(kr)®. (ED) A andB (“prior” ), but we could equally well have written
the interaction between the two final hadro@sand D
Since ourT-matrix elements implicitly determine the elastic (“Post”). The postT matrices may be obtained from the
scattering phase shifts, for example, the2 7o Swave in ~ Prior ones by exchanging the initial and final mesons and
Eq.(6), we can invert this formula for eadho determine the transforming the momenta—C, C—A, andg— —q. Thus
corresponding-wave local potentiaV(r). In practice we for example the post CT matrix is

T{CLPSY AB—.CD) = ffd3qd3pq> (2p+q—C)®%(2p+q—2A—C)Tr(q,p,—p+A)
XD A(2p—q—A)Dg(2p+q—A—2C) (F)

—TicL p”or)(AB—>CD)|(¢>A By B DF) (0% BF W) (F2

args A*?C C~>A Qﬂ q
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One may show that the post and prior results for the scattering amplitude are equal provided that the external wave
functions are eigenfunctions of the Hamilton{ai]. Swansorj10] shows an example of convergence of post and prior results
for meson-meson scattering amplitudes derived from quark Born diagrams as the external wave functions approach exact
Hamiltonian eigenstates. Of course the Gaussian wave functions we use to derive our analytical results are only approxima-
tions to the eigenfunctions of the full OGE plus linear Hamiltonian, so in general we can expect to find a post-prior
discrepancy. In this study we actually find such a discrepancy only in part of the tensor interaction in PsV scattering, for which
we take the mean of the two results,

T (AB—CD)=3[TP°{AB—CD)+ T (AB—CD)]. (F3)

APPENDIX G: Y |y EXPANSIONS AND RELATED INTEGRALS

It is useful in the partial wave decomposition of scattering amplitudes to expand functions of the sum and difference
momentum transfer@.=C=A (here|A|=|C|) in spherical harmonics,

f(éi>=2 wﬁ; YE(QOY /m(Q), (G

QD=2 (~D FAADY Yin(Q0)Y /m(Qn). (G2
This expansion may be inverted to determine the coefficient func(ibﬂs&z)},

. 1 . 1 .
f/(AZ):Zﬂf_ldﬂp/(ﬂ)f(Qi):Zﬁj_ldﬂp/(ﬂ)f(2A2(1+M))

1 -
—2m(~1) f | duP (@A~ ), G3

Many of the scattering amplitudes derived in this paper are proportional to confluent hypergeometric funoﬁ&nsrin

Q? , and their partial-wave decomposition requires the integral of a Legendre polynomial times a shifted confluent hypergeo-
metric function. This integral is given Hybbreviating; F,;(a;c;x) asf, ¢(x)]

() (a)—m-1 fa—m—l,cfmfl(ZX)—l—(_ ]_)/+m+1

1 /
FQo0= [ duPwtacxa+m= 3 o

4
A C— X1 e
|
where APPENDIX H: SPIN-ORBIT AND TENSOR MATRIX
ELEMENTS
(—=1)™ (/+m)! As noted in Appendix D, when evaluating phase shifts
() _ :

(G5  and inelasticities it is useful to determiffematrix elements
between|jls) states. In the PsV system there are spin-orbit
and tensor contributions to thE matrix, and determination
of the j,l,s-basis matrix elements of these terms is a com-
plicated problem in angular analysis. Here we show how
these matrix elements may be evaluated.

I'(a—n) 1 First conside_r the spi_n-orbit terms in thep T matrix, Eq.

(a)_p= @ =— (G6)  (16). The generic term is of the form

IT a—k
k=1

Cm’ = 2Pml (/—m)!

and the Pochhammer symbol of negative index is

Ta=f(Q)[iS, (AXC)], (H1)

In numerical evaluations it is often useful to transform the\’\’here?z+ :»(;TA' (A(.jdltlongl.dependenc.e on the rotational
confluent hypergeometric function in E¢G4) to a more scalarA<=C* is a trivial modification of this angular decom-
rapidly converging negative-argument form, usifg.(2x) position) To proceed, we expanﬁ(Qi) in spherical har-
=fe_ac(—2x)e%, monics, as in Eq(G1),
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. - This result has the overalL - S) dependence that one would
2\ 2 *
f(Q+)_E/ fAA )% Yom( Q)Y m(Qa), - (H2) expect from a spin-orbit force.
We may similarly evaluate the matrix elements of the
and introduce spherical components for the spin and momertensor terms in Eq(16). It suffices to consider the two cases
tum vectors,

- a an . 2. e a2 2.
(1s)lS,18)=—2(1s)l1u,1s),  (HY) T?E”Z”QZ)([SP'ASP'A‘ﬁ MK CSP'C‘écz})

H8)

s 4\/577 (

(AXC),=—3—A? 2 (1p',1p"|1p) and
s
>< ’ " - - - > - 2—) -
Y1 (Qp)Y1,(Qc), (H4) TR 1(G2)| 8, A8, C 2 ,C}_ HO)
and the usual state vector expansion,

Both tensor matrix elements hal/& |’ contributions, unlike
|jm'|s(ps\/)>=z <|Malsz|jm>Ylu(QA)|lsz>- (H5) the other interactions we have considered. The general re-
1457 sults in terms of Wigner (B and{6j} symbols are

With these substitutions one may determine the 12y 5112

(j'l 's|Tyi]jls) matrix eIement:E_anangous to the spinless ma- G s| T8V jls)y = (— 1)1+ +1TA*2(]=I +1,)
trix elementT, of Eq. (D7)] for the spin-orbit term{H1). The

result involves a sum over a product of six Clebsch-Gordon

s . . 2 I’
cogfﬂuents, and can be_wrltten as the product of two Wigner x 21+ 121" +1) )
(3j) symbols and twd6j} symbols, 0 0 O
o ; j+ilp a2 / 2 112
(il's|Talils)=(~ 11" 6AZY, (-1)7f(2/+1) ST (H10)
I I 1 /
XAN2I+1)(21"+1
( )( ) 00 0 and
11" 7 1 1 1 1 1 1 <j|rs|-|—$(}2)|j|s>:(_1)j+155\22 f/(2/+l)
“to o oy 1" Z{y1 1" jf- ’
I I 11 7
XAN(2I+1)(21"+1
(HE) Jasner+nl, o
The constraints of the (3 and{6j} symbols force this ma- 101 (1 1 2
trix element to be diagonal ihl’, and imply that the only y : ’
radial components of(Q2) in Eq. (H2) that contribute are 0 0 o1 1" 7/
f,—1+1. Substitution of the explicit (B and{6j} symbols
gives our final result foPsV matrix elements of spin-orbit 1 1 2
(H1) type, S (H1D
N G+ -1(1+1)-2] .,
(sl Talils)=an: 2(21+1) A1~ Tied)- gybstitution for the (p) and{6j} symbols gives the results
(H7) quoted in Eqs(23)—(25) in the text.
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