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Meson-meson scattering in the quark model: Spin dependence and exotic channels
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We apply a quark interchange model to spin-dependent and exotic meson-meson scattering. The model
includes the complete set of standard quark model forces, including one-gluon exchange spin orbit and tensor
and scalar confinement spin orbit. Scattering amplitudes derived assuming simple harmonic oscillator~SHO!
and Coulomb plus linear plus hyperfine meson wave functions are compared. InI 52 pp we find approximate
agreement with theS-wave phase shift from threshold to 1.5 GeV, where we predict an extremum that is
supported by the data. Near threshold we find a rapid energy dependence that may reconcile theoretical
estimates of small scattering lengths with experimental indications of larger ones based on extrapolation of
measurements at moderatekp

2 . In pseudoscalar-vector scattering we find that the quark-quarkL•S andT forces
map ontoL•S and T meson-meson interactions, and theP-wave L•S force is large. Finally we consider
scattering inJPCn exotic channels, and note that some of the ‘‘Deck effect’’ mechanisms suggested as possible
nonresonant origins of thep1(1400) signal are not viable in this model.
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I. INTRODUCTION

The determination of scattering amplitudes between p
of mesons is an interesting problem in strong QCD. It is a

a complicated problem, because bothqq̄ annihilation to
s-channel resonances and ‘‘nonresonant’’ scattering are
portant effects, and it is often difficult to separate the vario
contributions. However, by specializing to annihilation-fr
channels such asI 52 pp and pr, I 53/2 Kp, KN, and
NN, one may study nonresonant scattering in relative iso
tion. The determination of resonance parameters, reac
mechanisms, and many other aspects of hadron physic
complicated by the presence of nonresonant scatter
which is treated as an~often poorly understood! initial-state
and final-state rescattering effect. Developing an accurate
scription of nonresonant scattering would help clarify ma
other aspects of hadron physics.

A further interesting possibility is that sufficiently attra
tive nonresonant scattering may lead to weakly bou
hadron-hadron or multihadron states, as does happen in
clei and hypernuclei. We may also find a rich spectrum
meson-meson bound states, the study of which will ext
nuclear physics into the largely unexplored field of ‘‘m
sonic nuclei’’ or ‘‘molecules’’ @1–3#.

An understanding of pseudoscalar-pseudoscalar~PsPs!,
pseudoscalar-vector~PsV! and other meson-meson scatteri
amplitudes is also important for the interpretation of no
QCD processes such as nonleptonic weak decays, since
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show evidence of important hadronic final-state interactio
The DI 51/2 rule is a well-known example. Similarly, a re

cent study ofD and Ds decays toKK̄p @4# found that the
Dalitz plots are dominated by two-meson isobars, includ

fp, K* K̄1H.c., andK0* (1430)K̄1H.c., and complex rela-
tive amplitudes are required to describe theD1 Dalitz plot.
Without final-state interactions~FSIs! one would expect rela-
tively real couplings to these final states.

One finds a surprising variety of approaches to stro
hadron-hadron scattering in the literature. There are m
studies using effective hadronic Lagrangians, such as
‘‘chiral perturbation theory’’ description of the PsPs secto
Although this method is convenient because it uses pertu
tive quantum field theory~QFT! techniques, it is incomplete
in that it takes effective Lagrangian vertex strengths from
data; one should be able to calculate these hadronic
plings directly from quark-gluon forces.

Second, there are studies that model the low-ene
hadron-hadron scattering mechanism, which include the
parently dissimilar meson exchange and quark-gluon
scriptions of hadronic forces. Meson exchange models
again attractive for their simplicity, since they use perturb
tive QFT techniques to determine scattering amplitudes. T
approach has been elaborated in greatest detail in mode
the NN force @5#, in which a large number of meson ex
changes is assumed. With this large parameter space a
description of this interaction is possible, although there i
concern that one may be parametrizing other scatte
mechanisms in addition tot-channel meson exchange. Alte
natively, one may calculate hadron-hadron forces direc
from the fundamental quark-gluon interaction, using qua
model hadron wave functions. This approach has also s
its most detailed development in studies of theNN interac-
©2001 The American Physical Society04-1
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tion @6#, and is most successful in describing the sho
ranged repulsive core. Maltman and Isgur@6# also found a
physically reasonable intermediate-ranged attraction fro
color van der Waals effect in the quark-gluon approa
which is not equivalent to the usualpp or s meson ex-
change explanation of this force. The quark description
hadron-hadron interactions is complicated by the comb
torics of matrix elements between quark bound states,
has the advantage that it can easily be extended to a
range of spin and flavor channels through a simple chang
the external hadron wave functions.

A third promising approach is to infer hadron scatteri
amplitudes from lattice gauge theory~LGT!. To date LGT
has seen little application to scattering problems becaus
the difficulty of treating systems that are not in their grou
states. Estimates of theI 50 andI 52 pp scattering lengths
have been obtained by exploiting a theoretical relation
finite-size effects@7#, and more recently very interesting re
sults for nuclear physics potentials in theBB system were
reported@8#. In the future it may be possible to improv
hadron scattering models through comparisons with sim
‘‘LGT data.’’

In this paper we are concerned with the derivation
meson-meson scattering amplitudes from quark-glu
forces. We derive meson-meson scattering amplitude
lowest order in the quark-quark interaction, which leads t
quark interchange model described by ‘‘quark Born d
grams’’ @9,10#. Since the quark-quark interaction is alrea
well established from hadron spectroscopy, our predicti
have little parameter freedom. In previous work we and o
ers @usually assuming one-gluon exchange~OGE! hyperfine
dominance# have shown that this approach gives a reas
ably accurate description ofS-wave scattering in a wide
range of channels withoutqq̄ annihilation, includingI 52
pp @9#, I 53/2 Kp @11#, I 50,1 KN @12#, I 50,1 BB @13#
~compared to LGT data!, and theNN repulsive core@6#. This
approach has also been applied topJ/c @14,15# and other
reactions relevant to heavy-ion collisions, where the exp
mental low-energy cross sections are as yet unclear.

The principal new contribution of this paper is a detail
analytical derivation of the meson-meson scattering am
tudes that follow from the complete quark-quark interactio
including color Coulomb, linear scalar confinement, OG
spin-spin, OGE spin-orbit, OGE tensor, and linear spin-o
forces. As a future application of these results, one mi
hope to clarify the relationship between meson exchange
quark interchange models by a detailed comparison of
spin dependence of hadron-hadron scattering amplitu
which we expect to be sensitive to the details of the scat
ing mechanism.

Here we consider both PsPs and PsV scattering.
former is a ‘‘standard benchmark’’ for meson scatteri
models, becauseI 52 pp low-energy scattering has n
s-channel resonances and has been the subject of man
perimental phase shift analyses. Although we find reason
agreement withS-waveI 52 pp scattering, this channel ha
no spin degree of freedom, and so cannot be used to tes
characteristic spin dependences predicted by the quark m
el’s OGE and linear scalar confinement forces.
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We find in contrast that PsV is an excellent theoreti
laboratory for the study of spin-dependent forces, as it
accommodate both meson-meson spin-orbit and tensor in
actions. The spin-dependent forces at the meson-meson
are closely related to the corresponding terms in the qu
quark interaction in our approach. Although the study of P
scattering is essentially a theoretical exercise at pres
these phase shifts are accessible experimentally, for exam
through measurement of the relativeS and D final-state
phases inb1→pv. Thus it should be possible to measu
PsV phase shifts from resonance decays to multiamplit
PsV final states.

Before we proceed to our detailed results, we note t
some work has already appeared on meson-meson scatt
in PsV systems. Numerical results for many lightS-wave
PsV meson channels were previously reported by Swan
@10# using a similar quark model approach that incorpora
OGE spin-spin and linear confinement forces. Theoret
results for PsV scattering (pr in particular! in a meson ex-
change model were published by Janssenet al. @16# and
Böckmannet al. @17#, assumingp, vector, anda1 exchange.
Since therpp, a1rp, andrvp vertex strengths are rela
tively well established, it was possible to evaluate these s
tering amplitudes numerically. These papers did not cons
the exotic I 52 channel, so a direct comparison with o
quark model PsV results is not possible at present.

II. MESON-MESON T MATRIX

A. General T matrix formula

We approximate the full hadron-hadron scattering am
tude by a single~Born-order! matrix element of the quark
quark interaction HamiltonianHI . SinceHI is TaTa in color,
one must then have quark line rearrangement to have a
vanishing overlap with two color-singlet mesons in the fin
state. In (qq̄)-(qq̄) scattering there are four independe
Born-order diagrams, which we label according to whi
pair of constituents interacted; these are ‘‘transfer1’’ ~T1!,
‘ ‘ transfer2’’ ~T2!, ‘‘capture1’’ ~C1!, and ‘‘capture2’’ ~C2!,
which are shown in Fig. 1. In the special case of identi

FIG. 1. The four quark interchange meson-meson scattering
grams.
4-2
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MESON-MESON SCATTERING IN THE QUARK MODEL: . . . PHYSICAL REVIEW C63 025204
quarksand identical antiquarks, which is relevant here, the
is a second set of four ‘‘symmetrizing’’ diagram
T1symm. . . C2symm, which are identical to T1. . . C2 except
that the quark lines are interchanged rather than the antiq
lines.

The hadron-hadronT-matrix elementTf i for each diagram
can conveniently be written as an overlap integral of
meson wave functions times the underlying quarkTf i . These
overlap integrals~specializing Ref.@13# to the case of equa
quark and antiquark masses! are

Tf i
T1~AB→CD!5E E d3qd3pFC* ~2pW 1qW 2CW !FD*

3~2pW 2qW 22AW 2CW !Tf i~qW ,pW ,pW 2AW 2CW !

3FA~2pW 2qW 2AW !FB

3~2pW 1qW 2AW 22CW n!, ~1!

Tf i
T2~AB→CD!5E E d3qd3pFC* ~22pW 1qW 12AW 2CW !

3FD* ~22pW 2qW 2CW !Tf i~qW ,pW ,pW 2AW 1CW !

3FA~22pW 1qW 1AW !FB

3~22pW 2qW 1AW 22CW !, ~2!

FIG. 2. The quark-quarkT matrix, showing three-momentum
definitions.
02520
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Tf i
C1~AB→CD!5E E d3qd3pFC* ~2pW 1qW 2CW !FD*

3~2pW 2qW 22AW 2CW !Tf i~qW ,pW ,2pW 1CW !

3FA~2pW 2qW 2AW !FB~2pW 2qW 2AW 22CW !,

~3!

Tf i
C2~AB→CD!5E E d3qd3pFC* ~22pW 1qW 12AW 2CW !

3FD* ~22pW 2qW 2CW !Tf i~qW ,pW ,2pW 2CW !

3FA~22pW 1qW 1AW !FB

3~22pW 1qW 1AW 22CW !. ~4!

The quark Tf i has momentum argumentsTf i(qW ,pW 1 ,pW 2),
which are defined in Fig. 2. In this paper we will evalua
these overlap integrals with standard Gaussian quark m
wave functions and the quarkTf i for the complete set of
OGE color Coulomb, linear scalar, OGE spin-spin, and O
and linear scalar confinement spin-orbit and OGE tensor
teractions. These interactions are given in Appendix A.

B. PsPs scattering

1. IÄ2 pp T matrix

We specialize the general problem of PsPs scatte
without qq̄ annihilation toI 52 pp because many experi
ments have published phase shift analyses of this chan
The otherpp channels have larges-channelqq̄ annihilation
contributions. The fullI 52 pp Born-orderT-matrix ele-
ment is determined by adding the individual contributions
Appendix B, with PsPs spin matrix elements given in A
pendix C 2. There are also flavor and color factors for ea
diagram and an overall ‘‘signature’’ phase of (21), and a
second set of ‘‘symmetrizing’’ diagrams for identical quar
and identical antiquarks, as discussed in detail in Ref.@9#. On
summing these contributions we find
s, respec-
agrams.
Tf i
I 52pp51

pas

m2 F23

32~e2QW 1
2 /8b2

1e2QW 2
2 /8b2

!1
27

37/2
e2AW 2/3b2G

1
pas

b2 S 2
24

32 @ f1/2,3/2~QW 1
2 /8b2!1f1/2,3/2~QW 2

2 /8b2!#1
26

35/2
f1/2,3/2~AW 2/6b2!D e2AW 2/2b2

1
pb

b4 S 23

3
@ f21/2,3/2~QW 1

2 /8b2!1f21/2,3/2~QW 2
2 /8b2!#2

23

31/2
f21/2,3/2~AW 2/6b2!D e2AW 2/2b2

, ~5!

where fa,c(x) is an abbreviation for the confluent hypergeometric~Kummer! function 1F1(a;c;x).
The three separate expressions above are the OGE spin-spin, color Coulomb, and linear confinement contribution

tively. TheQ6 terms come from the transfer diagrams, and the remaining, isotropic, terms come from the capture di
The spin-matrix elements of the spin-orbit and tensor terms vanish identically in the PsPs channel.
4-3
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Since QW 65CW 6AW and uAW u5uCW u, one can equivalently write this amplitude as a function of the c.m. momentum
scattering angle usingQW 6

2 52AW 2(16m), wherem5 cos(uAC). The Bose symmetry required for thispp scattering amplitude
is evident.

2. IÄ2 pp phase shifts

We may derive the elastic Born-orderI 52 pp phase shifts from Eq.~5!, using the relation between phase shifts and
T matrix given in Appendix D, especially Eq.~D17!, and the integrals in Appendix G. The result we find for theS wave is

d0
I 52pp55

kEp

as

m2S 2
1

32

1

x
~12e22x!2

24

37/2
e24x/3D OGE spin-spin,

kEp

as

b2S 2
2

32

1

x
@ f1,1/2~22x!2e22x#2

23

35/2
f1,3/2~22x/3!e24x/3D OGE color Coulomb,

kEp

b

b4S 1

32

1

x
@ f2,1/2~22x!2e22x#1

1

31/2
f2,3/2~22x/3!e24x/3D linear confinement,

~6!
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where we have introducedx5AW 2/4b2. The total Born-order
S-wave phase shift is the sum of these three contribution

This S-wave phase shift is shown in Fig. 3 with our sta
dard quark model parameter setas50.6, b50.4 GeV, m
50.33 GeV, andb50.18 GeV2. We also useMp50.138
GeV throughout. This confirms that the color Coulomb a
linear confinement interactions make relatively small con
butions to theI 52 pp S wave at moderate energies. Th
weakly repulsive linear confining interaction inI 52 pp
near threshold was previously found numerically by Sw
son @10#.

One might be concerned about the approximation of us
simple harmonic oscillator~SHO! wave functions, especially
at higher-energy scales where there should be strong s
distance components in the pion wave function due to
attractive spin-spin hyperfine interaction. To test the se
tivity to SHO wave functions we evaluated theI 52 pp

FIG. 3. Theoretical contributions to theI 52 pp S-wave phase
shift, Eq. ~6!, with SHO wave functions. The experimental pha
shifts of Coltonet al. @18# ~inverted triangles!, Durusoyet al. @19#
~triangles, two extrapolations!, Hooglandet al. @20# ~set B, dia-
monds!, and Lostyet al. @21# ~squares! are shown.
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scattering amplitudes and phase shifts numerically us
Coulomb plus linear plus hyperfineqq̄ wave functions and
Monte Carlo integration of the real-space integrals cor
sponding to theT-matrix integrals~1!–~4!. As usual this re-
quires a ‘‘smearing’’ of the contact hyperfine term,d(xW )
→e2s2r 2

/p3/4s3/2, to allow solution of the Schro¨dinger
equation with an attractive delta-function interaction. In t
literature the inverse smearing length is typically taken to
s'1 GeV. ~A calculation of I 52 pp scattering with this
interaction ands50.7 GeV was reported previously b
Swanson@10#.! With our standard light-quark parameter s
as50.6, b50.18 GeV2, and m50.33 GeV, we found that
fitting the M r-Mp splitting required a value ofs50.86
GeV. To illustrate the dependence of the scattering am
tude on this parameter, in Fig. 4 we show theI 52 pp S
wave that follows from our standard quark model s
(as ,b,m), with s50.7, 0.8, and 0.9 GeV. Clearly the pre
dicted phase shift is rather similar to the SHO result of F

FIG. 4. Numerically evaluatedI 52 pp S- and D-wave phase
shifts with Coulomb plus linear plus hyperfine wave functio
~lines!, compared to experimental phase shifts~symbols as in Fig.
3!.
4-4
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3, although the effect of short-distance peaking in thep
wave function is evident aboveMpp'1 GeV.

We also show most of the higher-statistics experimen
results for theI 52 pp S-wave phase shift in Figs. 3 and 4
The references shown are Coltonet al. @18#, Durusoyet al.
@19# ~OPE extrapolation, solid symbols; OPE1 DP form
factor, open symbols, slightly displaced inx for visibility !,
Hooglandet al. @20# ~extrapolationB), and Lostyet al. @21#.
Prukopet al. @22# found a wide range of results from thre
different off-shell extrapolations, so we simply quote th
fitted scattering length below.

Clearly there is already reasonable agreement with
experimentalS-wave phase shift at lower energies witho
fitting the quark model parameters. The model predict
rather dramatic extremum in this phase shift nearMpp

51.5 GeV, which is unfortunately beyond the limiting in
variant mass of most of the experimental studies. There
some measurements of this phase shift at higher invar
mass with lower accuracy due to Durusoyet al. @19#, which
are also shown in the figure. The results of Durusoyet al.
support our predicted extremum nearMpp51.5 GeV; in-
deed, their phase shift aboveMpp51.5 GeV appears to fal
even more rapidly than we predict.

We have investigated optimal parameter fits of theS-wave
phase shift formula~6! to the data, but we find that these a
rather unstable because the color Coulomb and linear
finement contributions are small and are qualitatively sim
functions. In any case the data of Durusoyet al. and Fig. 4
show that the hyperfine smearing distances is an important
parameter, and this will not be well determined until accur
phase shift data becomes available at higher invariant m
An accurate measurement ofI 52 pp scattering amplitudes
near and aboveMpp51.5 GeV would clearly be very usefu
as a test of this and other models of meson-meson scatte

3. IÄ2 pp scattering lengths

The I 52 pp scattering length is defined bya0
I 52

5 limkp→0d0
I 52pp/kp . The results we find from Eq.~6! are

a0
I 5255

2
2

32 S 11
23

33/2D as

m2 Mp , S•S,

2
22

32 S 2

31/2
21D as

b2
Mp , Coulomb,

2
2

3 S 12
31/2

2 D b

b4
Mp , linear,

~7!

and their numerical values with our standard quark mo
parameters set are

a0
I 5255

20.085@ fm#, S•S

20.007@ fm#, Coulomb,

20.017@ fm#, linear,

20.109@ fm#, total.

~8!
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The Coulomb and linear contributions were independen
checked by Monte Carlo integration of the correspond
real-space overlap integrals. The relative sizes of these
merical contributionsa posteriori justify the approximation
of neglecting the color Coulomb and linear terms inI 52
pp scattering.

The I 52 pp scattering length has been calculated pre
ously using many other theoretical approaches. A summ
of some of these predictions is given below@we use a current
value of f p593 MeV in Weinberg’s partial conservation o
axial vector current ~PCAC! formula a0

I 525

2Mp /16p f p
2 ].

a0
I 52u theory55

20.053~7! @ fm#, LGT @7#,

20.052@ fm#, meson exchange@23,24#,

20.053@ fm#, Roy equations@25#,

20.063@ fm#, PCAC@26#.
~9!

FIG. 5. A ‘‘generalized specific heat plot’’ of theI 52 pp
S-wave phase shift. The data of Fig. 3 are shown together witha0

I 52

predictions:~a! LGT @7#, Roy equations@25#, ~b! PCAC @26#, x PT
@29#. Meson exchange@23,24# and quark model@Eq. ~6!# predic-
tions are also shown.

FIG. 6. The low-energyI 52 pp S-wave potential, Eq.~13!.
4-5



rs
e
pl

av
n

of
-
al
a
d
r-
io

ly

nd
e-

h,

for

tical

ts
f

ey
ote
tions
lor
ed
bly
:

T. BARNES, N. BLACK, AND E. S. SWANSON PHYSICAL REVIEW C63 025204
Although f p and other effective Lagrangian paramete
are normally taken from experiment, these parameters ar
course calculable from quark-gluon forces. As an exam
our result fora0

I 52 yields the following expression forf p :

1

f p
2 5

25

32S 11
23

33/2D pas

m2 1
26

32S 2

31/2
21D pas

b2

1
25

3 S 12
31/2

2 Dpb

b4
. ~10!

The dominant contribution comes from theO(as /m2) OGE
S•S term.

Experimental determinations of the scattering length h
yielded results which are larger than theoretical expectatio

a0
I 52uexpt

5H 20.13~2! @ fm#, Losty et al. @21#,

20.24~2!,20.22
10.03
20.04 @ fm#, Prukopet al. @22#.

~11!

We speculate that this discrepancy is due to the use
simple d5kpa1O(kp

3 ) effective range formula in the ex
trapolation. The difficulty of extrapolating experiment
phase shifts to threshold has been stressed by Morgan
Pennington@27,28#. We advocate the use of a ‘‘generalize
specific heat plot’’ of low-energy phase shifts for this pu
pose@12#. This plot takes into account the threshold behav
seen in Eq.~6!,
02520
of
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e
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a

nd

r

d0
I 52pp5kpEp f ~as ,m,b,b,x!, ~12!

where f is a relatively slowly varying function ofx
5kp

2 /4b2. Thus the threshold behavior is approximate
proportional tokpEp rather than justkp , and sinceMp is
quite small, this leads to rapid variation near threshold a
makes the linear-kp extrapolation inaccurate. We suggest r
moval of all this dependence by displayingd0 /(kpEp /Mp)
versuskp

2 . The intercept in this plot is the scattering lengt
and the slope at intercept implies the effective range.

This generalized specific heat plot is shown in Fig. 5
I 52 pp scattering. An extrapolation of the moderate-kp

data can now be seen to be much closer to the theore
scattering lengths. The small-kp dependence ofd0 /kp was
calculated by Donoghueet al. @29# in a chiral effective La-
grangian, which gave the Weinberg result atkp50 and an
O(kp

2 ) correction factor of (11kp
2 /2mp

2 ). This is just the
correction due to an overall factor ofEp , so this predicts a
zero slope inkp

2 for d0 /(kpEp /Mp) at threshold.
The Jülich meson exchange model@23#, which is domi-

nated byt-channelr exchange in this process, also predic
rapid variation ind0 /kp near threshold. The prediction o
this model for d0 /(kpEp /Mp) @24#, shown in Fig. 5, is
rather similar to our quark model result.

4. IÄ2 pp equivalent potentials

Low-energy ‘‘phase shift equivalent’’ GaussianI 52 pp
potentials, derived using the method of Mott and Mass
@30# as described in Appendix E, are given below. We qu
separate Gaussians for the transfer and capture contribu
from each of the three interactions, spin-spin contact, co
Coulomb, and linear hyperfine; however, their predict
phase shift decays more slowly at large momentum, proba
due to the use of power law form factors in their vertices
~13!
4-6
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In Ref. @9# we derivedI 52 pp potentials for the spin-
spin contact interaction using the ‘‘locality expansion
method of Ref.@31#. This gave an identical result for th
spin-spin transfer potential, because this amplitude~before
Bose symmetrization! is a function oft only. However, for
the capture diagrams the Mott-Massey approach used
gives a different potential,since it is constrained to reprod
the O(k3) series expansion of the phase shift in Eq.~6!, but
the local approximation is not. The two capture potenti
reproduce the scattering length, but the local approxima
gives an incorrect effective range.
a
l;

th
n
r

-

io
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The low-energy Mott-MasseyI 52 pp potential is shown
in Fig. 6 for our standard quark model parametersas50.6,
b50.18 GeV2, and m50.33 GeV. The spin-spin hyperfin
contribution is dominant over the range shown.

5. IÄ2 pp phase shifts with LÌ0

The higher partial waves (L>2) may be evaluated simi
larly. According to Eq.~5!, these receive contributions onl
from the transfer diagrams. The Born-orderD-wave phase
shift with SHO wave functions is given by
d2
I 52pp55

kEp

as

m2S 2
1

32

12e22x

x
1

1

3

11e22x

x2
2

1

3

12e22x

x3 D , S•S,

kEp

as

b2S 2
2

32

f1,1/2~22x!2e22x

x
1

2

32

f1,21/2~22x!1e22x

x2
2

2

335

f1,23/2~22x!2e22x

x3 D , Coulomb,

kEp

b

b4S 1

3

f2,1/2~22x!2e22x

x
2

1

5

f2,21/2~22x!1e22x

x2
1

3

537

f2,23/2~22x!2e22x

x3 D , linear.

~14!
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These three expressions are numerically rather small,
their phases are such that they approximately cance
Mpp51.5 GeV they are, respectively,20.8°, 10.2°, and
10.4°. To see this more clearly, the leadingO(kp

5 ) behavior
predicted by Eq.~14! is

lim
kp→0

d2
I 52pp/kp

5 5
1

23333352S 25
asb

2

m2 12as13
b

b2D Mp

b6 ,

~15!

and the three dimensionless combinationsasb
2/m2, as , and

b/b2 are comparable in size. We have also evaluated
D-wave phase shift using Coulomb plus linear plus hyperfi
wave functions. The result is shown in Fig. 4, and is nume
cally similar to the SHOD wave, Eq.~14!.

In comparison the experimentalD waves reported by Du
rusoy et al. @19# and Hooglandet al. @20# are '23° at
Mpp51.5 GeV~see Fig. 4!. ~Losty et al. @21# report a rather
larger but inconsistent low-energyD wave.! This is clearly
larger than our prediction, although the rather slow variat
of the Durusoyet al.and Hooglandet al. Dwaves withMpp
nd
at

is
e
i-

n

may indicate a problem with the measurements; the expe
threshold behavior ofkp

5 is much more rapid than the ob
served energy dependence. Unfortunately the dispersion
lations represented by the Roy equations have technical
ficulties with determiningD and higher waves@25#. They do,
however, lead to predictions of apositive Dwave close to
threshold, which is not evident in the data. TheD wave may
well have important meson exchange contributions, si
this type of model can accommodate the reported experim
tal phase shift@32#.

C. PsV scattering

1. IÄ2 pr T matrix

For simplicity we will initially quote results only forI
52 pr. The other isospin channels are simply related
flavor factors, which we will discuss subsequently. We
sume identical spatial wave functions, so only ther spin
degree of freedom and difference in phase space disting
this case frompp. Summing the individual contributions in
Appendix B with the appropriate flavor and color factors a
the (21) signature phase, and using the PsV spin-ma
elements of Appendix C 3, we find, for theI 52 pr T ma-
trix,
4-7
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Tf i
I 52pr51

pas

m2 S 1
23

33 ~3e2QW 2
2 /8b2

2e2QW 1
2 /8b2

!1
27

39/2
e2AW 2/3b2D

1
pas

b2 S 2
24

32 @ f1/2,3/2~QW 2
2 /8b2!1f1/2,3/2~QW 1

2 /8b2!#1
26

35/2
f1/2,3/2~AW 2/6b2!D e2AW 2/2b2

1
pb

b4 S 1
23

3
@ f21/2,3/2~QW 2

2 /8b2!1f21/2,3/2~QW 1
2 /8b2!#2

23

31/2
f21/2,3/2~AW 2/6b2!D e2AW 2/2b2

1
pas

m2b2S 2
22

32
f3/2,5/2~QW 1

2 /8b2!2
24

39/2
f3/2,5/2~AW 2/6b2!D e2AW 2/2b2

@SW r• i ~AW 3CW !#

1
pb

m2b4S 1
2

32
f1/2,5/2~QW 1

2 /8b2!2
2

35/2
f1/2,5/2~AW 2/6b2!D e2AW 2/2b2

@SW r• i ~AW 3CW !#

1
pas

m2b2S 1
2

3235
f5/2,7/2~QW 2

2 /8b2! De2AW 2/2b2FSW r•QW 2SW r•QW 22
2

3
QW 2

2 G
1

pas

m2b2S 1
25

39/235
f5/2,7/2~AW 2/6b2!D e2AW 2/2b2F S SW r•AW SW r•AW 2

2

3
AW 2D G1FSW r•CW SW r•CW 2

2

3
CW 2G . ~16!
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The individual contributions in this result are, respective
OGE spin-spin, OGE color Coulomb, linear confineme
OGE spin-orbit, linear scalar confinement spin-orbit, OG
tensor ~transfer diagrams!, and OGE tensor~capture dia-
grams!. In all these we list transfer followed by capture co
tributions. SW r is the r meson spin vector,AW and CW are the
initial and final p momenta,BW 52AW and DW 52CW are the
initial and finalr momenta, andQW 65CW 6AW as inpp. Since
this result was derived in the c.m. frame,uAW u5uBW u5uCW u
5uDW u. This Tf i evidently describespr spin-orbit and tensor
interactions, in addition to spin-independent scattering. I
interesting that there is a one-to-one mapping between
quark-quark spin-orbit and tensor interactions and thesepr
spin-orbit and tensor terms. This simple result need not
true in general; a given spin-dependent interaction at
quark level may give rise to a different type of hadro
hadron interaction. As an example, a mapping of a ten
nucleon-nucleon force into a nucleon-nucleus spin-orbit
teraction was discussed by Stancu, Brink, and Flocard@33#.

To evaluate phase shifts and inelasticities it is conven
to calculate the matrix element of ourpr T matrix, Eq.~16!
between generalu j ls& states, which gives the reduced matr
element

Tl 8 l
j [^ jm,l 8suTu jm,ls&5 (

mm8
szsz8

^ jmu l 8m8,1sz8&

3^ jmu lm,1sz&E E dV8dVYl 8m8
* ~V8!

3^1sz8uTf i~V8,V!u1sz&Ylm~V!, ~17!

as discussed in Appendix D. This is a straightforward ex
02520
,
,

s
he

e
e

or
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nt
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cise, although integrals of special functions and a care
angular analysis of the spin-orbit and tensor terms are
quired; the details are discussed in Appendices G and
This matrix element is diagonal inl except for the tensor
interaction, which has both diagonal and off-diagonal~trans-
fer! and fully off-diagonal ~capture! contributions. The
l-diagonal results, again showing transfer diagram contri
tions followed by capture, are

Tll
j uS•S5

p2as

m2 S ~11d l ,odd!
26

33 i l~x!e2x1d l ,0

29

39/2
e24x/3D ,

~18!

Tll
j uCou5

p2as

b2 S 2d l ,even

26

32F 1/2,3/2
( l ) ~x!

1d l ,0

28

35/2
f 1/2,3/2~2x/3!D e22x, ~19!

Tll
j u l in5

p2b

b4 S d l ,even

25

3
F 21/2,3/2

( l ) ~x!

2d l ,0

25

31/2
f 21/2,3/2~2x/3!D e22x, ~20!

Tll
j uOGE L•S5

p2as

m2 ^LW •SW &S 2
25

32

1

~2l 11!
x@F 3/2,5/2

( l 21)~x!

2F 3/2,5/2
( l 11)~x!#2d l ,1

28

311/2
x f3/2,5/2~2x/3!D e22x,

~21!
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Tll
j u l in L •S5

p2b

m2b2^LW •SW &S 24

32

1

~2l 11!
x@F 1/2,5/2

( l 21)~x!

2F 1/2,5/2
( l 11)~x!# D2d l ,1S 25

37/2
x f1/2,5/2~2x/3!D e22x,

~22!

Tll
j uOGE T

trans f er5
p2as

m2 ^T&~21! l 11
24

3335
xS l

~2l 11!
F 5/2,7/2

( l 21)~x!

1
2l

~2l 13!
F 5/2,7/2

( l ) ~x!

1
l ~2l 21!

~2l 11!~2l 13!
F 5/2,7/2

( l 11) ~x! De22x, ~23!

and the off-diagonal tensor matrix elements are

Tl 8Þ l
j uOGE T

trans f er5
p2as

m2 ~d l , j 21d l 8, j 111d l , j 11d l 8, j 21!~21! j 11

3
24

32
•5

@ j ~ j 11!#1/2

~2 j 11!
x@F 5/2,7/2

( j 21) ~x!

12F 5/2,7/2
( j ) ~x!1F 5/2,7/2

( j 11)~x!#e22x, ~24!

Tl 8Þ l
j uOGE T

capture5
p2as

m2 d j 1~d l2d l 801d l0d l 82!

3
219/2

311/235
x f5/2,7/2~2x/3!e22x. ~25!

In these formulasi l(x) is a modified spherical Besse
function, the tensor̂T& matrix element betweenu j ,l ,s51&
pr states is
02520
^T&5H 1, j 5 l 11,

2~2l 13!/ l , j 5 l ,

~ l 11!~2l 13!/ l ~2l 21!, j 5 l 21 ,

~26!

and the integral

F a,c
( l ) ~x![E

21

1

dmPl~m! 1F1„a;c;x~11m!… ~27!

is evaluated in Appendix G.

2. IÄ2 pr S-wave phase shifts

In S-wave toS-wave scattering the spin-orbit and tens
pr T-matrix contributions vanish, and we are left with col
Coulomb, linear, and spin-spin contributions, just as in
I 52 pp case. TheI 52 pr S-wave phase shifts that resu
from these interactions, again using Eq.~D17!, are

FIG. 7. The theoreticalI 52 pr S-wave phase shift with SHO
wave functions, Eq.~28!.
-

ed
d0
I 52pr55

kEpEr

As

as

m2S 2
22

33

1

x
~12e22x!2

26

39/2
e24x/3D , S•S,

kEpEr

As

as

b2S 2
23

32

1

x
@ f1,1/2~22x!2e22x#2

25

35/2
f1,3/2~22x/3!e24x/3D , Coulomb,

kEpEr

As

b

b4S 22

32

1

x
@ f2,1/2~22x!2e22x#1

22

31/2
f2,3/2~22x/3!e24x/3D , linear,

~28!

whereAs5(Ep1Er), and againx5AW 2/4b2. In Fig. 7 we show these individual components and the totalS-wave phase shift
with our standard quark model parameter set and meson masses~used throughout! of Mp50.138 GeV andM r50.77 GeV.
The forces considered here evidently lead to strong repulsion in theI 52 pr channel.

3. IÄ2 pr phase shifts with LÌ0

The spin-orbit and tensor terms in Eqs.~21!–~23! all contribute to l .0 pr scattering, and there is also an oddl ,
j-independent term due to the OGE spin-spin interaction in Eq.~18!, which is not symmetric underm→2m. The color
Coulomb and linear confinement spin-independent terms, Eqs.~19! and ~20!, contribute only to evenl.

Adding the various diagonal matrix elements of Eqs.~18!–~23! and using Eq.~D17! gives phase shifts for each3LJ partial
wave. In Fig. 8 we show results for allP-wave channels and forJ5L61 in D andF waves. Note that there is a large, invert
4-9
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spin-orbit force in theP wave, so the3P0 phase shift is
widely separated from3P2, and has an even larger max
mum phase shift than theS wave. The higher-L channels
show decreasing phase shifts with increasingL, as expected
for short-ranged quark-gluon forces.

The relative importance of the individual contributions
the spin-dependent force is of considerable interest. In Fi
we show the various spin-dependent contributions to thI
52 3P2 pr phase shift. The largest contribution arises fro
the OGE spin orbit, in particular from the transfer diagram
The OGE and confinement spin-orbit capture diagrams g
smaller contributions of the same sign. Finally, the confi
ment spin-orbit transfer diagrams have a sign opposite to
these and reduce the total spin-orbit force somewhat. T
dominance of the PsV spin-orbit by OGE is an interest
result, especially since Mukhopadhyay and Pirner@34# found
the opposite result inKN. In that system they concluded th
confinement, not OGE, makes the largest contribution to
spin-orbit force. The OGE tensor inI 52 3P2 pr is weakly
repulsive; it makes a much larger contribution to3P1 and
3P0, where the tensor matrix element is, respectively,25
and 10 times as large. The OGE tensor is evident in Fig. 8
the departure of the ratio (3P22 3P1):(3P12 3P0) from the

FIG. 8. TheoreticalI 52 pr phase shifts inP, D, andF waves.
3P2 , 3P1 , 3P0, andJ5L61 phase shifts are shown.
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pure spin-orbit value of 2:1 at higher energies.
There is also an off-diagonal coupling due to the OG

tensor terms, given by Eqs.~24! and ~25!, but we have ne-
glected this in calculating phase shifts because we find th
is numerically a small effect. The largest coupling at lo
energies is3S1↔ 3D1, which leads to an inelasticity of only
hSD50.97 byMpr53.0 GeV@calculated using Eqs.~D18!–
~D20!#.

4. IÄ2 pr P-wave spin-orbit potentials

We may determine low-energy Gaussian equivalentpr
potentials from the phase shifts, as discussed in Appendi
The most interesting potential phenomenologically is
spin-orbit one, since the origin of the spin-orbit interaction
theNN system is a long-standing and still poorly understo
problem. In particular we derived Gaussian potentials co
sponding to theP-wave phase shifts due to the OGE a
linear scalar confinement spin-orbit interactions, using
~E4! of Appendix E. The results for the transfer and captu
contributions to these potentials are

FIG. 9. OGE spin-orbit, confining spin-orbit, and OGE tens
contributions to the3P2 I 52 pr phase shift.
ter
-orbit
re much
~29!

The OGE, linear, and total spin-orbit potentials for the3P2 wave ofI 52 pr are shown in Fig. 10 for our standard parame
set. The largest contribution to thepr spin-orbit force comes from OGE transfer diagrams; the linear confinement spin
from the transfer diagrams is about half as large and opposite in sign, and the two capture diagram contributions a
4-10
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smaller. Since the confinement capture and transfer diagr
have opposite signs, the net result is dominance of the
spin-orbit by the OGE contribution.

D. Scattering in JPCn exotic PsV channels

The recent evidence forJPCn exotic resonancesp1(1400)
and p1(1600) @35# has made the study of scattering amp
tudes in exotic channels especially interesting. The surp
ingly low mass of thep1(1400) in particular has led to sug
gestions that it might not be a ‘‘hybrid’’ gluonic excitation
since these are expected at'1.8–2.0 GeV@36#. Another
possibility is that thep1(1400) is a ‘‘multiquark,’’ perhaps a
meson-meson bound state in a very attractive channel.
can test the plausibility of this type of assignment by cal
lating meson-meson scattering amplitudes in the various
otic channels.

The exotic channels accessible to the lightest nonstra
PsV meson pairs are listed in Table I.~We do not tabulate
light PsPs exotic amplitudes because they are zero in
model. The PsPs exotic channels are odd-l ph, ph8, and
hh8, whereas the quark interchange model PsPs scatte
amplitudes are evenl, assuming identical spatial wave fun
tions.! We generally expect the largest scattering amplitu
to be in the lower partial waves. In PsV theP wave has the
first exotics, which areJPCn5022 ~all channels exceptI
51 pr) and JPCn5121 (I 51 pr only!. Calculation of
these scattering amplitudes simply requires changing the
ternalqq̄ flavor states attached to the Feynman diagram
Fig. 1. The results relative to theI 52 pr case treated in the
paper are summarized in Table II.

Inspection of the tables shows that the largest exotic s
tering amplitude should be in theI 52 pr 022 P wave. The
elastic phase shift in this channel is the3P0 curve in Fig. 8.
The large negative phase shift shows that this is a stron
repulsive channel; the maximum phase shift is predicted
be a quite large'250° at Mpr'3.1 GeV, which exceeds
even theS-wave phase shift maximum. The largestattractive
exotic phase shift we have found in PsV is theI 50 partner,
which is 21/2 of I 52, giving a maximum phase shift o
'125° at the same mass. We do not find sufficient attr
tion to form a meson-meson ‘‘molecular’’ bound state in a

FIG. 10. Spin-orbit potentials in theI 52 pr 3P2 channel, Eq.
~29!.
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of these nonstrangeJPCn exotic PsV channels. Theh chan-
nels are relatively weak because only thenn̄ part of theh
contributes to these diagonal scattering amplitudes; thess̄

component leads to open-strange final states (K* K̄, for ex-
ample! after quark line interchange.

Regarding candidate exotic resonances, there have
speculations that the determination of the mass and widt
the exotic candidatep1(1400) may have been compromise
by inelastic rescattering effects@37#, analogous to the ‘‘Deck
effect’’ proposed as a nonresonant explanation of
a1(1260). For example, crossing thepb1 threshold at'1.4
GeV in the processpr→pb1→ph might mimic resonant
phase motion if this process has a rapidly varying inelas
ity. We can test this and other nonresonant possibilities
calculating the elementary 2→2 scattering amplitudes usin
our quark model approach.

Some important results follow from simple flavor factor
Note in particular that the nonresonant scattering amplit
pr→pr vanishes in anyI 51 channel, including thep1
exotic one. This is a general result whenever the quark
diagram of Fig. 1 dominates; clearly a pair of opposite
charged, nonstrangeqq̄ mesonsA1B2 cannot scatter into
another charged pairC1D2 under quark interchange. A
comparison with isospin matrix elements shows that this
plies that scattering of any twoqq̄ isovectors inI 51 van-
ishes. This isospin selection rule eliminates two subproce
discussed by Donnachie and Page@37# as Deck effect back-
grounds that might shift a higher-mass exotic resonance t
apparentp1(1400), pr→pb1→ph andpr→pr→ph.

Independent of any scattering model, one should note
the couplingpr→pb1 is probably small because of th
strong VES experimental limit~reported by Dorofeev@35#!
of

B„p2~1670!→pb1…,0.19% ~2s C.L.!. ~30!

Since p2→pr is a large mode@B531(4)% @39##, if pr
→pb1 rescattering were important, we would also expect
observe a largep2→pb1 branching fraction.

We also expect the final background process suggeste
Donnachie and Page (pr→ph→ph) to be small, because
the direct time orderingph→ph vanishes in theP wave in
this model. Finally, the rescattering process they propo
p1(1600)→pb1→hp, does not vanish in the quark inte
change model, although the requiredD l 51 and suppressed
h flavor factor may nonetheless make this a relatively we
amplitude. A calculation of this and related scattering amp
tudes is planned for a future publication.

TABLE I. JPCn exotic states in PsV.

Channel Exotic quantum numbers
Meson pair I tot S P D F G

pr 0, 2 2 022 212 2 412

1 2 121 2 321

pv, hr 1 2 022 212 2 412

hv 0 2 022 212 2 412
4-11
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E. Experimental prospects for measuring PsV phase shifts

Although there is little experimental information abo
PsV interactions at present, these phase shifts actually
experimentally accessible in existing data, for example,
relative FSI phases in theD and S amplitudes inb1→vp.
These are usually, and incorrectly, taken to be relatively
amplitudes. The relative phase including the FSIs isD/S
5uD/Suei (dD2dS) @38#, and is observable for example as
reduction in the strength of theSD cross term in thepv
angular distribution by cos(dS2dD). Since this method re
quires individual measurements of theS2, D2, andSD cross
term in the angular distribution, it should be applicable
cases such asb1(1230)→pv and b1(1600)→pv whereS
and D are of comparable magnitude@40#. The dSD5dS
2dD phases we predict at these masses~which are calculated
from 11/2 times the3S1 and 3D1 I 52 pr phases in Figs. 7
and 8! are dSD

pv(Mpv51.23 GeV)5214° and dSD
pv(Mpv

51.60 GeV)5217°.
This proposed technique is similar to that used inK e4

decays@27#, in which the low-energyI 50 pp S-wave phase
shift is actually observed as the difference between thI
50 S-wave andI 51 P-wavepp FSI phases.

One may also extract FSI phases at fixed energies f
hadronic final states observed in nonleptonic heavy-qu
decays. There is already experimental information on
relative phases between isospin states in several PsPs,
and VV systems from nonleptonicD andDs decays@42#, and
the realization that these phases are important inCP experi-
ments @43# should motivate future experimental measu
ments of elastic phase shifts fromD, Ds, andB decays.

III. SUMMARY AND CONCLUSIONS

In this paper we have derived meson-meson scatte
amplitudes, including spin-dependent forces, from a calc
tion of the Born-order matrix element of the quark-qua
interaction between two-meson states. Sinceqq̄ annihilation
is not included in the model, it describes scattering that d
not involve coupling tos-channel resonances. This include
for example,I 52 and the nonresonant backgrounds in
channels, including exoticJPCn.

We considered the cases of PsPs and PsV scattering
derived the scattering amplitudes in allj ,l ,s channels for
these cases. The parameters of the model were previo
fixed by quark model studies of hadron spectroscopy. Wh
possible we have compared the results to experiment.

In I 52 pp ~the best studied PsPs case! the results were

TABLE II. Overall flavor factors in diagonal PsV scattering.

Channel Relative amplitude

pr I 52 11
1 0
0 21/2

pv 1 11/2
hr 1 11/4
hv 0 11/4
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shown to be in reasonable agreement with experimen
S-wave scattering, and an extremum predicted nearMpp

51.5 GeV is supported by the data. Rapid variation
d0 /kp is predicted near threshold, which may reconcile th
oretical expectations of a small scattering length with lar
reported experimental values based on extrapolation inkp

2 .
The experimentalD wave, although quite small, is clearl
larger than the model predicts.

The PsV system is a convenient theoretical laboratory
studying spin-dependent forces, since it can accommo
both spin-orbit and tensor interactions, and is simpler th
KN or NN. We derived analytical results for these spi
dependent PsV interactions (T matrices and phase shifts!
given SHO wave functions and the standard spin-depen
quark model forces. The quark-quark spin-orbit and ten
forces map directly onto spin-orbit and tensor PsV inter
tions. We find that the OGE spin-orbit force in the PsV sy
tem is quite large in theP wave, and so is expected to b
large in many other hadron-hadron systems as well.

There is no PsV phase shift data at present. We no
however, that PsV phase shifts actually can be measure
multiamplitude resonance decays to PsV final states, s
should be possible to test theoretical predictions for P
scattering amplitudes in future experimental studies.

Our predictions for scattering inJPCn exotic channels are
of current interest because the reported exotics might
complicated by large and rapidly varying nonresonant ine
ticities. One speculation is that thep1(1400) parameters
might be strongly affected by the opening of inelastic co
plings to thepb1 channel. In our model~and in anyqq̄
constituent interchange model! several of these nonresona
processes can be rejected as significant complications
cause of vanishing flavor factors.

In the future we plan to extend our calculations to oth
exotic meson-meson channels, such asS1P, to test whether
strong attractive interactions are predicted that might sup
‘‘multiquark exotics’’ such asS1P molecules. We also plan
to apply the current approach to the study of spin-depend
interactions in other hadronic systems, includingKN, NN,
and light-hadron1 charmonium systems.
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APPENDIX A: QUARK-LEVEL T MATRICES AND WAVE FUNCTIONS

The various contributions to the quark-quarkTf i ~with color factors ofTaTa removed! are

~A1!
is

a

on
ls
us
e

ve
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lt
c

-
s
en

pre-

Eqs.

to
The standardqq̄ quark model Gaussian wave function
given by

F~pW rel!5
1

p3/4b3/2
e2pW rel

2 /8b2
, ~A2!

where in general

pW rel5
mq̄pW q2mqpW q̄

~mq1mq̄!/2
~A3!

and, for our special case of equal quark and antiqu
masses,

pW rel5pW q2pW q̄ . ~A4!

APPENDIX B: EXPLICIT OVERLAP INTEGRALS

1. Results included

In this appendix we give the explicit meson-mes
T-matrix elements that follow from the overlap integra
Eqs.~1!–~4!, with Gaussian wave functions and the vario
quark T-matrix elements. The OGE spin-spin hyperfin
color Coulomb, and linear confinement results were deri
previously @13#. For completeness we quote the formul
here, as well as giving the new spin-orbit and tensor resu
The multiplicative diagram-dependent color and flavor fa
tors and the signature phase@which is (21) for these meson
meson scattering diagrams# are not included in the result
given below. These formulas abbreviate the conflu
hypergeometric function1F1(a;c;x) as fa,c(x), and QW 6

5(CW 6AW ).
02520
rk

,

,
d

s.
-

t

2. OGE spin-spin hyperfine contribution

These simple contact matrix elements were evaluated
viously, for example, in Ref.@9# @in an equivalent form, but
incorporating color factors and the signature phase, as
~71!–~73! of that reference#. The results are

Tf i
T152

23

3

pas

m2 e2QW 1
2 /8b2

@SW 1•SW 2#, ~B1!

Tf i
T25Tf i

T1~CW →2CW !, ~B2!

Tf i
C152

26

35/2

pas

m2 e2AW 2/3b2
@SW 1•SW 2#, ~B3!

Tf i
C25Tf i

C1. ~B4!

3. OGE color Coulomb contribution

The contribution of the OGE color Coulomb interaction
the meson-mesonT matrix follows from the evaluation of the
integrals, Eqs.~1!–~4! with the second quark-quarkTf i in
Eq. ~A1!. The results are

Tf i
T15122

pas

b2 f1/2,3/2~QW 2
2 /8b2!e2AW 2/2b2

, ~B5!

Tf i
T25Tf i

T1~CW →2CW !, ~B6!

Tf i
C151

23

31/2

pas

b2 f1/2,3/2~AW 2/6b2!e2AW 2/2b2
, ~B7!

Tf i
C25Tf i

C1. ~B8!
4-13
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4. Linear confinement contribution

The linear confinement integrals were carried out in co
dinate space, since the Fourier transform of the linear po
tial is singular. The results are

Tf i
T1526

pb

b4 f21/2,3/2~QW 2
2 /8b2!e2AW 2/2b2

, ~B9!

Tf i
T25Tf i

T1~CW →2CW !, ~B10!

Tf i
C15233/2

pb

b4 f21/2,3/2~AW 2/6b2!e2AW 2/2b2
, ~B11!

Tf i
C25Tf i

C1. ~B12!

One may also obtain these results using the momentum s
integrals, Eqs.~1!–~4!, but the 1/q4 quark-quarkTf i in Eq.
~A1! must include a long-distance regularization in the int
mediate stages of the integration. The final result is w
defined due to the Gaussian damping provided by the w
functions. We have checked both the linear and color C
lomb Tf i results by comparing expressions~B5!–~B12! with
Monte Carlo evaluations of the corresponding real-sp
overlap integrals.

5. OGE spin-orbit contribution

The four OGE spin-orbit overlap integrals can be eva
ated similarly using the fourth quark-quarkTf i in Eq. ~A1!,
which gives

Tf i
T152

pas

m2b2 f3/2,5/2~QW 2
2 /8b2!e2AW 2/2b2

3@~SW 11SW 2!• i ~AW 3CW !#, ~B13!

Tf i
T25Tf i

T1~CW →2CW !, ~B14!

Tf i
C151

4

35/2

pas

m2b2 f3/2,5/2~AW 2/6b2!e2AW 2/2b2

3@~SW 12SW 2!• i ~AW 3CW !#, ~B15!

Tf i
C252Tf i

C1. ~B16!

6. Scalar confinement spin-orbit contribution

The matrix elements, Eqs.~1!–~4!, of the scalar confine-
ment spin-orbit interaction in Eq.~A1! are

Tf i
T151

1

2

pb

m2b4 f1/2,5/2~QW 2
2 /8b2!e2AW 2/2b2

3@~SW 11SW 2!• i ~AW 3CW !#, ~B17!

Tf i
T25Tf i

T1~CW →2CW !, ~B18!
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Tf i
C151

1

2331/2

pb

m2b4 f1/2,5/2~AW 2/6b2!e2AW 2/2b2

3@~SW 12SW 2!• i ~AW 3CW !#, ~B19!

Tf i
C252Tf i

C1. ~B20!

7. OGE tensor contribution

Finally, for the OGE tensorTf i @the last entry in Eq.~A1!#
we find

Tf i
T151

1

5

pas

m2b2 f5/2,7/2~QW 2
2 /8b2!e2AW 2/2b2

3FSW 1•QW 2SW 2•QW 22
1

3
QW 2

2 SW 1•SW 2G , ~B21!

Tf i
T25Tf i

T1~CW →2CW !, ~B22!

Tf i
C151

25

35/235

pas

m2b2 f5/2,7/2~AW 2/6b2!e2AW 2/2b2

3FSW 1•AW SW 2•AW 2
1

3
AW 2SW 1•SW 2G , ~B23!

Tf i
C25Tf i

C1. ~B24!

The tensor matrix elements in the capture diagrams, E
~B23! and~B24!, are the only cases in which we have foun
a post-prior discrepancy in these PsPs and PsV scatte
amplitudes; the post forms of these matrix elements invo
a tensor inCW rather thanAW ,

Tf i
(C1, post)51

25

35/235

pas

m2b2f5/2,7/2~AW 2/6b2!e2AW 2/2b2

3@SW 1•CW SW 2•CW 2 1
3 CW 2SW 1•SW 2#. ~B25!

These capture tensor terms vanish in the PsPs channel.
do make a small, off-diagonal contribution to PsV scatteri
albeit only in the 3S1↔ 3D1 amplitude.

APPENDIX C: MAPPING QUARK SPINS
INTO HADRON SPINS

1. Spin-matrix elements

In these scattering amplitude calculations the matrix e
ments of spin-dependent quark interactions~the spin-spin,
spin-orbit, and tensor forces! involve matrix elements of lin-
ear and bilinear quark spin operators. Since the quark s
are not directly observed, it is useful to replace them by
spins of the external hadrons. This appendix gives
~diagram-dependent! mapping from quark spins to hadro
spins in the PsPs and PsV cases considered in this pap

The spin-matrix elements we require areI, S(1)i , S(2)i ,
and S(1)iS(2) j between general initial and final PsPs a
PsV spin states. Our convention for the diagrams~Fig. 1! is
4-14
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that mesonsA andC are always Ps~e.g.,p), andB andD
are Ps or V~e.g.,p or r).

2. PsPs

First, in PsPs scattering there are no external meson s
so the quark spin matrix elements are proportional to g
metrical tensors such asd i j . The matrix elements by diagram
are

^PsPsuI uPsPs&51
1

2
, all diagrams, ~C1!

^PsPsuS~1! i uPsPs&5^PsPsuS~2! i uPsPs&50, all diagrams,
~C2!

^PsPsuS~1! iS~2! j uPsPs&

5H 1 1
8 d i j , T1, T2, T1symm, T2symm,

2 1
8 d i j , C1, C2, C1symm, C2symm,

~C3!
ca

e

02520
ns,
-

hence

^PsPsuSW ~1!•SW ~2!uPsPs&

5H 1 3
8 , T1, T2, T1symm, T2symm,

2 3
8 , C1, C2, C1symm, C2symm.

~C4!

Note that the spin-orbit and tensor terms vanish identically
PsPs scattering; this follows from applying Eqs.~C2! and
~C3! to Eq. ~A1!.

3. PsV

In PsV scattering the vector~e.g.,r) meson spinSW r pro-
vides an additional degree of freedom, and the linear
quadratic quark spin matrix elements can be expresse
terms of the r spin matrix elements^r f uSr

i ur i& and
^r f uSr

i Sr
j ur i&. The mapping of quark to meson spins is
^~pr! f uI u~pr! i&51 1
2 ^r f uI ur i&, all diagrams , ~C5!

^~pr! f uS~1! i u~pr! i&5H 2 1
4 ^r f uSr

i ur i&, T1, T2symm, C1, C2symm ,

1 1
4 ^r f uSr

i ur i&, T2, T1symm, C2, C1symm,
~C6!

^~pr! f uS~2! i u~pr! i&51 1
4 ^r f uSr

i ur i&, all diagrams , ~C7!

^~pr! f uS~1! iS~2! j u~pr! i&55
1 1

8 d i j ^r f uI ur i&1 1
8 i e i jk^r f uSr

kur i&2 1
4 ^r f uSr

i Sr
j ur i&, T1,T2symm,

1 1
8 d i j ^r f uI ur i&1 1

8 i e i jk^r f uSr
kur i&, T2,T1symm,

2 1
8 d i j ^r f uI ur i&2 1

8 i e i jk^r f uSr
kur i&, C1,C2symm,

2 1
8 d i j ^r f uI ur i&2 1

8 i e i jk^r f uSr
kur i&1 1

4 ^r f uSr
i Sr

j ur i&, C2,C1symm.

~C8!
s are

ng
APPENDIX D: PHASE SHIFTS AND INELASTICITIES
FROM THE T MATRIX

Since total angular momentum is conserved, theT matrix
is block diagonal in a total angular momentum basis, and
be written

T5(
jm

u jm&Tj^ jmu. ~D1!

The coefficients$Tj% can be determined by evaluating th
matrix element

Tj5^ jmuTu jm&. ~D2!
n

In the special case of spinless scattering these basis state
eigenstates of orbital angular momentum

u lm&5E dVYlm~V!uV&, ~D3!

so theT matrix is given by

T5(
lm

u lm&Tl^ lmu5(
lm

E E dVdV8uV8&

3Ylm~V8!TlYlm* ~V!^Vu. ~D4!

The T matrix can also be written in terms of the scatteri
amplitudeTf i(V,V8) between momentum eigenstates,
4-15
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T5E E dVdV8uV8&Tf i~V,V8!^Vu, ~D5!

so Tf i(V,V8) andTl are related by

Tf i~V,V8!5(
l

Tl(
m

Ylm~V8!Ylm* ~V!

5(
l

2l 11

4p
Tl Pl~m! ~D6!

and hence

Tl5^ lmuTu lm&5E E dVdV8Ylm* ~V8!Tf i~V,V8!Ylm~V!,

~D7!

where m5 cosuVV8 . A more familiar quantum-mechanica
result follows from fixing the incident directionV5 ẑ in Eq.
~D6! and integrating over final angles with aPl(m) weight,
which gives

Tl52pE
21

1

dmPl~m!Tf i~ ẑ,V8!. ~D8!

Since we defineTf i(V,V8) by

^CV8 ,D2V8uSuAV ,B2V&5d f i2 i ~2p!4d (4)

3~A1B2C2D!Tf i , ~D9!

it is related to the Lorentz invariant 2→2 scattering ampli-
tudeM defined by the PDG@39# @their Eq.~35.8!# by

Tf i5
M

)
n51

4

~2En!1/2

~D10!

and hence to the c.m. scattering amplitudef (k,u) @their Eq.
~35.48!# by

Tf i52
8p

As
f ~k,u!. ~D11!

~Herek is the c.m. momentum of any particle,k5uAW u5uBW u
5uCW u5uDW nu.! The partial-wave expansion off (k,u), Eq.
~35.44!,

f ~k,u!5(
l

~2l 11!al Pl~m!, ~D12!

and the relation between a diagonal partial-wave amplit
al and the phase shift,

al5
e2id l21

2i
, ~D13!
02520
e

allow us to determined l from Tf i . For purely elastic scat-
tering and assuming small phase shifts so thatal'd l , Eqs.
~D6!–~D13! give

d l52
1

4p

kEAEB

As
E dmPl~m!Tf i~ ẑ,V8!

52
1

8p2

kEAEB

As
Tl . ~D14!

This relation was used previously to determine, for examp
Kp @11# and l-diagonalKN @12# elastic phase shifts. In the
case of elastic scattering of identical bosons, such asI 52
pp, there is an additional factor of 2 for identical particle
@38#, so the relation between the Born-order phase shift
the T-matrix element becomes

d l u ident52
kEA

16pE21

11

Tf i Pl ~m!dm. ~D15!

Since the angular integral in Eq.~D14! is proportional to
the amplitudê lmuTu lm&, we may also write the Born-orde
elastic phase shift~for distinguishable particles! directly in
terms of theT matrix,

d l52
1

8p2

kEAEB

As
^ lmuTu lm&. ~D16!

This formula has a straightforward generalization to t
case of external hadrons with spin, which we use to evalu
pr phase shifts and inelasticities. In the case of anl- and
s-diagonal interaction this is

d j ls52
1

8p2

kEAEB

As
^ jm; lsuTu jm; ls&. ~D17!

This is adequate for diagonal forces such as ourpr spin-
orbit interactions. The tensor force however is notl diagonal,
so for this case we must introduce a more general param
zation. Since the tensor interaction couplesl ,l 8 channel pairs
which have the samej but differ by u l 2 l 8u52, it leads to
232 S matrices. These can be parametrized as

S j5F h l l 8e
2id l iA12h l l 8

2 ei (d l1d l 8)

iA12h l l 8
2 ei (d l1d l 8) h l l 8e

2id l 8
G .

~D18!

In our calculation, both of the phase shifts and the inel
ticity e l l 8[A12h l l 8

2 are O(HI), so to this order we can
relate these linearly to the matrix elements ofHI . The Born-
order phase shift formula~D17! remains valid for both chan
nels, and the inelasticity is

e l l 852
1

4p2

kEAEB

As
^ jm; l 8suTu jm; ls&. ~D19!
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The overall phase ofe l l 8 is dependent on the state norma
izations, but the familiar

h l l 85uA12e l l 8
2 u ~D20!

is unique.

APPENDIX E: POTENTIALS FROM THE T MATRIX

Potentials provide a very useful representation of hadr
hadron interactions. They have a clear intuitive meaning,
can easily be used in the nonrelativistic Schro¨dinger equation
in searches for bound states or in coupled-channel proble

Unfortunately, one may define hadron-hadron potent
in many different ways. Ideally they should reproduce ph
shifts orT-matrix elements, at least in the low energy lim
The assumption of a unique, purely local potential is in g
eral overly restrictive, as it leads to a scattering amplitu
that is a function oft only. In general we find 2→2 scatter-
ing amplitudes that depend on boths andt. One approach to
this problem is to introduce nonlocal ‘‘gradient’’ correction
to the potential@31#, which can be expressed for example
V(r )LW •SW terms; this approach leads to the familiar Bre
Fermi Hamiltonian for one-photon and one-gluon exchan
and was used to define hadron-hadron potentials in our
vious work @9,13#.

Alternatively one may project the scattering amplitu
onto a given angular channell so that onlys dependence
remains, and find a locall-wave potential that describes th
scattering in that channel. This definition of potentials w
discussed by Mott and Massey@30#, and is equivalent to the
definition we shall use here. This approach was previou
used by Swanson@10# to define meson-meson potentia
from scattering amplitudes.

The quantum-mechanical relation between the phase
d l(k) and the radial wave functionRl(r ) in potential scatter-
ing of a massm particle ~which becomes the reduced ma
below! in first Born approximation is

d l522mkE
0

`

r 2drV~r ! j l~kr !2. ~E1!

Since ourT-matrix elements implicitly determine the elast
scattering phase shifts, for example, theI 52 pp S wave in
Eq. ~6!, we can invert this formula for eachl to determine the
correspondingl-wave local potentialVl(r ). In practice we
02520
-
d
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find that our phase shifts are sufficiently ‘‘hard’’ at hig
energies to require singular potentials; this is presumably
artifact of our approximations, such as assuming a con
spin-spin interaction. For this reason we do not complet
invert the phase shift relation~E1!, and instead simply fit an
assumed Gaussian form

V~r !5Vge2r 2/r g
2

~E2!

to our theoreticallow-energyphase shift. The two Gaussia
parameters are determined from theO(k) and O(k3) terms
in the expansion of the phase shift near threshold, which
the S-wave case are equated to

lim
k→0

d0~k!52
p1/2

2
mVgr g

3kS 12
1

2
r g

2k21O~k4! D . ~E3!

The generalization to higherl, also using Eq.~E1!, is

lim
k→0

d l~k!52
p1/2

2
mVgr g

3
~r g

2/2! l

~2l 11!!!
k2l 11

3S 12
1

2
r g

2k21O~k4! D . ~E4!

In determining the Gaussian potentials that correspon
our derived phase shifts such as Eqs.~6!, ~14!, and~28!, we
set the external factors ofEp and Er equal tomp and mr

before expanding ink. This corresponds to using nonrelativ
istic phase space and nonrelativistic external hadron line
malizations in ourT-matrix calculations, which we assume
the appropriate choice for the derivation of a nonrelativis
equivalent potential.

APPENDIX F: THE POST-PRIOR DISCREPANCY

The ‘‘post-prior discrepancy’’ is a familiar problem in
rearrangement collisions; the diagrams of Fig. 1 treat
scattering as due to an interaction between the initial hadr
A and B ~‘‘prior’’ !, but we could equally well have written
the interaction between the two final hadronsC and D
~‘‘post’’ !. The postT matrices may be obtained from th
prior ones by exchanging the initial and final mesons a
transforming the momentaAW →CW , CW →AW , andqW→2qW . Thus
for example the post C1T matrix is
Tf i
(C1,post)~AB→CD!5E E d3qd3pFC* ~2pW 1qW 2CW !FD* ~2pW 1qW 22AW 2CW !Tf i~qW ,pW ,2pW 1AW !

3FA~2pW 2qW 2AW !FB~2pW 1qW 2AW 22CW ! ~F1!

5Tf i
(C1,prior)~AB→CD!u(FA ,FB ,F

C* ,F
D* )→(F

C* ,F
D* ,FA ,FB),

args AW →CW ,CW →AW ,qW→2qW

. ~F2!
4-17
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One may show that the post and prior results for the scattering amplitude are equal provided that the extern
functions are eigenfunctions of the Hamiltonian@41#. Swanson@10# shows an example of convergence of post and prior res
for meson-meson scattering amplitudes derived from quark Born diagrams as the external wave functions approa
Hamiltonian eigenstates. Of course the Gaussian wave functions we use to derive our analytical results are only ap
tions to the eigenfunctions of the full OGE plus linear Hamiltonian, so in general we can expect to find a pos
discrepancy. In this study we actually find such a discrepancy only in part of the tensor interaction in PsV scattering, fo
we take the mean of the two results,

Tf i~AB→CD!5 1
2 @Tf i

post~AB→CD!1Tf i
prior~AB→CD!#. ~F3!

APPENDIX G: Y LM EXPANSIONS AND RELATED INTEGRALS

It is useful in the partial wave decomposition of scattering amplitudes to expand functions of the sum and dif
momentum transfersQW 65CW 6AW ~hereuAW u5uCW u) in spherical harmonics,

f ~QW 1
2 !5(

l
f l ~AW 2!(

m
Yl m* ~VC!Yl m~VA!, ~G1!

f ~QW 2
2 !5(

l
~21! l f l ~AW 2!(

m
Yl m* ~VC!Yl m~VA!. ~G2!

This expansion may be inverted to determine the coefficient functions$ f l (AW 2)%,

f l ~AW 2!52pE
21

1

dmPl ~m! f ~QW 1
2 !52pE

21

1

dmPl ~m! f „2AW 2~11m!…

52p~21! l E
21

1

dmPl ~m! f „2AW 2~12m!…. ~G3!

Many of the scattering amplitudes derived in this paper are proportional to confluent hypergeometric functions inQW 1
2 or

QW 2
2 , and their partial-wave decomposition requires the integral of a Legendre polynomial times a shifted confluent hy

metric function. This integral is given by@abbreviating1F1(a;c;x) as f a,c(x)]

F a,c
(l )~x!5E

21

1

dmPl ~m! f a,c„x~11m!…5 (
m50

l

cm
(l ) ~a!2m21

~c!2m21

f a2m21,c2m21~2x!1~21! l 1m11

xm11
, ~G4!
he

fts

bit

m-
ow

al
-

where

cm
(l )5

~21!m

2mm!

~ l 1m!!

~ l 2m!!
~G5!

and the Pochhammer symbol of negative index is

~a!2n5
G~a2n!

G~a!
5

1

)
k51

n

~a2k!

. ~G6!

In numerical evaluations it is often useful to transform t
confluent hypergeometric function in Eq.~G4! to a more
rapidly converging negative-argument form, usingf a,c(2x)
5 f c2a,c(22x)e2x.
02520
APPENDIX H: SPIN-ORBIT AND TENSOR MATRIX
ELEMENTS

As noted in Appendix D, when evaluating phase shi
and inelasticities it is useful to determineT-matrix elements
betweenu j ls& states. In the PsV system there are spin-or
and tensor contributions to theT matrix, and determination
of the j ,l ,s-basis matrix elements of these terms is a co
plicated problem in angular analysis. Here we show h
these matrix elements may be evaluated.

First consider the spin-orbit terms in thepr T matrix, Eq.
~16!. The generic term is of the form

Tf i5 f ~QW 1
2 !@ iSW r•~AW 3CW !#, ~H1!

whereQW 15CW 1AW . ~Additional dependence on the rotation
scalarAW 25CW 2 is a trivial modification of this angular decom
position.! To proceed, we expandf (QW 1

2 ) in spherical har-
monics, as in Eq.~G1!,
4-18
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f ~QW 1
2 !5(

l
f l ~AW 2!(

m
Yl m* ~VC!Yl m~VA!, ~H2!

and introduce spherical components for the spin and mom
tum vectors,

^1sz8uSmu1sz&52A2^1sz8u1m,1sz&, ~H3!

i ~AW 3CW !m5
4A2p

3
A2 (

m8m9
^1m8,1m9u1m&

3Y1m8~VA!Y1m9~VC!, ~H4!

and the usual state vector expansion,

u jm,ls~PsV!&5(
m,sz

^ lm,1szu jm&Ylm~VA!u1sz&. ~H5!

With these substitutions one may determine thepr
^ j l 8suTf i u j ls& matrix elements@analogous to the spinless m
trix elementTl of Eq. ~D7!# for the spin-orbit term~H1!. The
result involves a sum over a product of six Clebsch-Gord
coefficients, and can be written as the product of two Wig
(3 j ) symbols and two$6 j % symbols,

^ j l 8suTf i u j ls&5~21! j 116AW 2(
l

~21! l f l ~2l 11!

3A~2l 11!~2l 811!S 1 l l

0 0 0D
3S 1 l 8 l

0 0 0D H 1 1 1

l l 8 l J H 1 1 1

l l 8 j J .

~H6!

The constraints of the (3j ) and$6 j % symbols force this ma-
trix element to be diagonal inl ,l 8, and imply that the only
radial components off (QW 1

2 ) in Eq. ~H2! that contribute are
f l 5 l 61. Substitution of the explicit (3j ) and $6 j % symbols
gives our final result forPsV matrix elements of spin-orbi
~H1! type,

^ j l 8suTf i u j ls&5d l l 8

@ j ~ j 11!2 l ~ l 11!22#

2~2l 11!
AW 2~ f l 212 f l 11!.

~H7!
g
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This result has the overall^LW •SW & dependence that one woul
expect from a spin-orbit force.

We may similarly evaluate the matrix elements of t
tensor terms in Eq.~16!. It suffices to consider the two case

Tf i
(t1)5 f ~QW 2

2 !S FSW r•AW SW r•AW 2
2

3
AW 2G1FSW r•CW SW r•CW 2

2

3
CW 2G D

~H8!

and

Tf i
(t2)5 f ~QW 2

2 !FSW r•AW SW r•CW 2
2

3
AW •CW G . ~H9!

Both tensor matrix elements havelÞ l 8 contributions, unlike
the other interactions we have considered. The genera
sults in terms of Wigner (3j ) and$6 j % symbols are

^ j l 8suTf i
(t1)u j ls&5~21! j 1 l 11

21/2351/2

31/2
AW 2~ f l1 f l 8!

3A~2l 11!~2l 811! S 2 l l 8

0 0 0D
3H 1 1 2

l l 8 j J ~H10!

and

^ j l 8suTf i
(t2)u j ls&5~21! j 115AW 2(

l
f l ~2l 11!

3A~2l 11!~2l 811!S 1 l l

0 0 0D
3S 1 l 8 l

0 0 0D H 1 1 2

l l 8 l J
3H 1 1 2

l l 8 j J . ~H11!

Substitution for the (3j ) and$6 j % symbols gives the result
quoted in Eqs.~23!–~25! in the text.
D.
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