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The initial distribution of gluons at the very early times after a high-energy heavy ion collision is described
by the bulk scal&, of gluon saturation in the nuclear wave function. The subsequent evolution of the system
towards kinetic equilibrium is described by a nonlinear Landau equation for the single particle distribations
H. Mueller, Nucl. PhysB572, 227(2000; Phys. Lett. B475 220(2000]. In this paper, we solve this equation
numerically for the idealized initial conditions proposed by Mueller, and study the evolution of the system to
equilibrium. We discuss the sensitivity of our results on the dynamical screening of collinear divergences. In
a particular model of dynamical screening, the convergence to the hydrodynamic limit is seen to be rapid
relative to hydrodynamic time scales. The equilibration time, the initial temperature, and the chemical potential
are shown to have a strong functional dependence on the initial gluon saturatiofQscale
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I. INTRODUCTION fields were compute@], and renormalization group meth-
0ds[7,10] devised to study how the classical parton distribu-

An outstanding problem in high-energy nuclear scatteringions in the nuclei changed with enerdgr equivalently,
is whether the hot and dense matter formed equilibrates twith x). The scal€Qs now depends or. This dependence is
briefly form a plasma of deconfined quarks and gluons—theepresented by a line in the-Q? plane—it separates the
quark gluon plasma. This problem is of great topical interestsaturated, nonlinear regime of QCD at high parton densities
with collisions already taking place at the Relativistic Heavyfrom that of linear QCD evolution. Thad, is a function of
lon Collider (RHIC) and scheduled to take place severalx, and grows as one goes to smalleror equivalently, to
years hence at the Large Hadron CollideHC). higher energies, will only be implicit in this work.

Whether or not a quark gluon plasma is formed depends In the classical effective field theory approach, the prob-
strongly on the highly nonequilibrium initial distributions of lem of initial conditions can be formulated as the problem of
partons formed immediately after the collision. Clearly, thesedinding solutions of the Yang-Mills equation with initial con-
distributions must influence the subsequent evolution of thelitions given by the classical fields of each of the nuclei
system towards equilibrium. Furthermore, the problem isbeforethe collision[11]. Since analytical expressions exist
complicated by the rapid expansion of the system as a wholéor the classical fields of the nuclei before the collision, the
The magnitude of the collision induced relaxation time rela-initial conditions are fully determined.
tive to the expansion time is what determines whether equi- Perturbative solutions of the Yang-Mills equations, which
librium is indeed reached. describe classical gluon production to lowest order, have

The study of equilibration in relativistic heavy ion colli- been discussed by several authdrs,12. These were found
sions is as old as the subject itself. However, very fw to be infrared divergent. Within the Yang-Mills approach, a
initio studies exist that attempt to follow the evolution of the fully nonperturbative treatment is therefore necessary. Non-
system, all the way, from the first instants of the collision toperturbative, numerical solutions of the Yang-Mills equa-
equilibrium [1-3]. This was so because it was not known tions have been found recentl{t3,14. In particular, one
how to treat, in a self-consistent manner, the small Bjosken now knows the initial number and energy distribution of glu-
“wee” parton modes that are responsible for particle pro-ons after a collisio{15]. An idealized form of the initial
duction at central rapidities. These smathodes provide the gluon distribution, in terms of the saturation scale of the
initial conditions for the space-time evolution of the partoniccolor glass condensat®,, was given recently Refl16].
matter formed in heavy ion collisions. These idealized distributions are sufficient for the purposes

The occupation number of smallmodes in the nuclear of this paper. We will reserve a more quantitative analysis
wave functions is large and it was shown that classical methdsing the initial distributions of Ref.15] for a future work
ods could be used to compute their distributigds This  [17].
classical effective theory is, in exact analogy to a spin glass, The initial partonic system is completely out of equilib-
a color glass condensdt®,6], and is characterized by a bulk rium. The subsequent scattering and evolution of the system
scaleQs—the momentum scale at which gluon distributionstowards equilibrium was studied by Muellgt6,18. In Ref.
saturate. Analytical expressions for the parton distribution$18], he showed that, under the assumption that the system is
were obtained in Ref$7,8]. Subsequently, quantum correc- undergoing boost invariant expansion, the evolution of single
tions to the classical “non-Abelian Weizsker-Williams” particle distributions could be described by a nonlinear Lan-
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dau equation. At very early times, this equation can besures of equilibration are described and computed as a func-
linearized! and studied analytically. However, the analytical tion of the saturation scal®, and the couplingas. We
approximations soon break down, and the evolution of thesummarize our results in the final section and comment on
system cannot be followed analytically all the way to equi-their experimental ramifications. We will also discuss the
librium. various uncertainties that need to be further quantified, and

In this paper, we numerically solve the Landau equatioriheir likely impact on equilibration in high energy heavy ion
proposed by Mueller(Along the way, we compare our re- coII|S|qns. An appendix contains a detailed description of the
sults to Mueller's analytical results and show quantitativelynumerical method employed to solve the Landau equation.
where the analytical approach breaks dowwe are thus
able to follow the evolution of the system all the way to
equilibrium. We study the dependence of the equilibration
time, the initial temperature, and the chemical potential on
the saturation scal@, of the nuclear wave function, and on  The problem of initial conditions in heavy ion collisions
as. (Note: one may estimat®,~1 GeV at RHIC andQ, is as follows. Before the collision, the nucleus, as viewed in
~2-3 GeV at LHC[16,20.) We discuss the dynamical @ particular gauge, _is a _cohgrent superposition of various
screening of the collinear divergence arising from smallFock modes containing differing numbers of partdriar-
angle scattering. Our results for equilibration are obtainedtons in Fock modes containing a large number of partons
primarily, in a particular model of dynamical screenii]. lgga- - -qgggg - -qq), have small values of—in the lan-

To conclude whether local kinetic equilibrium is attained guage of the parton model, the momentum of the nucleus is
in a system undergoing boost invariafitt+1)-dimensional shared among a large number of constituents. Each parton
expansion, one should compare the equilibration igggto ~ has a+ momentumk™, andx=k"/P", whereP" is the
the hydrodynamic expansion timigyg,. Typically, tpq4, mMomentum of the nucleus. The large multiplicities at central
~R/c,, whereR is the radius of the nucleus, amg is the  rapidities—which correspond to smak—are obtained when
speed of sound in the system. For an ideal ultrarelativistithese smalk Fock modes “go on-shell.” One should note
gas, co=1/\/3. Our qualitative results suggest that for thethat even though the smallmodes carry small longitudinal
energies of interest at RHIC and LHGq<thyaro, thereby — momenta, their transverse momepiacan be large. .
indicating that favorable conditions may exist for the forma-  These smalk partons are highly delocalized in the longi-
tion of a hot gluon plasma at RHIC and at LHC. tudinal x~ directiom—they have large wavelengths relative

In studying the likelihood of equilibration, we have only to the Lorentz contracted width of the nucleus. In addition,
considered number conserving-2 processes. Naively, 2 these virtual fluctuations are very shortlived. Any attempt to
—3 processes will be suppressed by a powemgf and  treat them in a naively classical transport approach is there-
may be considered subleading. However;>2 processes fore problematic. An approach based on PQCD collinear fac-
may, in principle, be much more efficient than-2 pro- torization is also inadequate unless the partons also have
cesses in driving the system towards thermal equilibriunVe€ry large transverse momenta. This is because such a pic-
[1,22,23. Whether this is indeed the case is a dynamicafure is predicated on convolving the probabilities of parton
question we will not address in this work. Regardless, 2distributions in the two nuclei with the elementary parton-
—2 processes should set an upper bound on the equilibratid?grton scqttering cross section. It cannot describe coherence
time. Furthermore, it is likely that the numerical techniqueseffects which are important at smadl (For largep;, these
developed here can be adapted to quantitatively study th@ffects are sgppressezd. '
effects of number changing processes. _ It was realized some time ago t_hat the snxaﬂock states

The paper is organized as follows. We begin in Sec. Il byl nuclei responsible for multiparticle production at central
discussing the initial conditions for gluon production in rapidities are states of high occupation number. As a conse-
nuclear collisions. After the collision, particle production is duence, their distributions in the nuclei are described by a
described by the space-time evolution of classical gaugglassical effective field theor{EFT) [4]. The classical dis-
fields. At late times, when the system is dilute, one can detributions in a single nucleus can be solved and an analytical
fine partons, and study their interactions in a kinetic apform for the distributions obtaine{d,8]. The classical gluon
proach. The kinetic transport equation derived by Mueller isdistribution falls off as I at large transverse momentuq
described in Sec. IIl. In the following section, we discuss thebut saturates at smallek,—growing only slowly as
problem of dynamical screening of collinear divergences|n(asu/k)/as. The infrared structure of the EFT is analogous
and describe the particular model of screening that is emto that of a spin glass in condensed matter syst@hsit is
ployed in this work. In Sec. V, we first briefly outline the thus a colored glass condensgié
numerical method, and compare results for a linearized The EFT approach was used in Rfgf1] to treat the prob-
(Fokker-Planck version of the Landau equation with Muel- lem of initial conditions in nuclear collisions. It consists of
ler's analytical results. We next discuss numerical results
from the solution of the full Landau equation. Various mea-

II. THE INITIAL CONDITIONS FOR PARTON
EVOLUTION

2For an illuminating exposition of this point of view, see Ref.
[24].
To a Fokker-Planck equatidi9]. 31f P* is the momentum of the nucleus
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solving the Yang-Mills equations in the forward light cone, (2m)° dN

after the collision, with initial conditions given by the f(x,p)= 2(N2—1) Ppdx’

(known) gauge fields of the nuclei before the collision. ¢
Gluons at central rapidities are produced classicallyto, yhe single particle distributiori(x,p), one finds at late

(boost invariance is assumedPerturbative computations of times that

the transverse momentum distributions of classically pro-

duced gluonglowest order ineg and lowest nontrivial order c 1

in asQs/p;) were first computed in Refl1], and later by fx,p)= - 79(P2) 0(QZ—pp). (€

several authorfl2]. In these computations, the number dis- se

tribution is found to be infrared divergent. They agree with 5 |5te times, the occupation number of partons in the trans-

the lowest order mini-jet predictions at large.” verse plane becomes small, and their evolution can no longer

Whenp,<Qs, all orders inQs/p, contribute equally. The e followed on the lattice. However, when the occupation
perturbative computations, to lowest order @y/p; are  ymper is not too large, transport theory can be applied to
therefore not sufficient. Thus, even at lowest ordeiaiy  stydy the further evolution of the system. The initial condi-
one needs to resum all orders@/p;. An analytic solution {jon for this evolution is given by the single particle distri-
to this nonperturbative problem has not been found. Howytion in Eq.(3).

ever, the problem was recently formulated as(2a-1)- Using the results of Ref14], which determined the time

dimensional classical effective field theory and solved nu-t which gluons come on-shell after a collision, we can esti-
merically [for an SU2) gauge theoryon a two-dimensional  mate the time at which small angle scattering between the
transverse lattic13]. The evolution of gauge fields is com- giyons can be described by the Boltzmann equation. The

puted in real time, and at late times, the enef@] and the  formation times, usingQ.=1 GeV for RHIC and Q.
number[15] of produced gluons at central rapidities can be_>_3 GeV for LHC. are

computed. The initial distribution of gluons, from our nu-
merical simulation$15], is as follows. At low values op;, t,~1.40 GeV! for RHIC, t~0.62 GeV ! for LHC.
pP:=Qq it is remarkably similar to the Bose-Einstein distri- (4)
bution for a gas of massive particles in two dimensions. The
gluons acquire a screening mass due to strong nonlined¥ext, we suppose that a transport theory based treatment of
interactions—this also renders the distributions infrared fi-gluon scattering is applicable when the gluon occupation
nite. At largep;, pi>Q,, the distribution is a power law number is less than unity. Letting» be dp=dz/t;=1 or
Q%/p{. The Born-PQCD prediction for the gluon distribu- dz=t;, and usingdN/d*xd°k from Ref.[18] at z=0, we
tion is therefore obtained, as expected, in the lgrgbmit.  find

The gluons produced at central rapidities are completely
out of equilibrium. The study of the evolution of this system ¢ __c
towards equilibrium was initiated in Refgl6,18. For sim- 0" N,
plicity, Mueller chose idealized initial conditions—a con-
stant instead of a Bose-Einstein distribution flp=Qg, and  Herety>t; is the time where the gluon occupation number is
zero for p;>Q¢—namely, the theta functiog(Qg_pf)_ In dilute enough that their subsequent interactions can be de-
this work, we will consider only these idealized distributions. scribed as the small angle scattering of on-shell gluons.
In a later work[17], we will consider more realistic distribu-

)

t. (5

tions computed very recently from the lattice simulations of Ill. THE LANDAU TRANSPORT EQUATION
Ref. [15]. In general, the initial spatial distribution per unit i , i
rapidity is At times t>t,, wheret, was defined in Eq.5), a

Boltzmann-like transport equation is appropriate for describ-
ing the late-time evolution of the highly anisotropic initial
1 dN Nﬁ—l ) gluon distribution discussed in the previous section. We will
FWZCMZ—%NCQS' oy show below that, for central high-energy heavy ion colli-
sions, assuming boost invariance, the transport equation re-
duces to a Landau-type transport equafid8.
whereL ? is the transverse areg,is the space-time rapidity, ~ In the problem of interest, the typical scale of spatial
andc, determined nonperturbatively, is a weak function ofvariations is large compared to the typical scale of gluon-
QsR. For an SW2) gauge theory, it was computed recently in gluon scattering. The evolution of the system can therefore
Ref.[15] to bec=1.29+0.09 in the regime of interest. be described by a local Boltzmann-like kinetic equation for
The initial distributions are highly anisotropic, with the the single particle gluon distributiof(x,p,t), which gives
produced partons having zero longitudinal momentoym
Assuming boost invariance, and using the relation

5The s-function distribution is of order ¥p,. We shall see later,
from the early time analytical solution of the Fokker-Planck equa-
“For detailed comparisons, see the papers by Gyulassy artibn, that the longitudinal momentum changes little in the time in
McLerran, and by Guo, in Ref12]. takes for the occupation number to decrease below unity.
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the density of excitations of momentumat a point ,t). We shall now consider the collision ter@[f] on the
The Boltzmann equation is right-hand side of the above equation. If we assume that the
changes in momenturg in a collision are small, namely,
g/Qs<<1, we can treat the collision integral as simple diffu-
sion in momentum space. Following the discussion in Lif-
shitz and Pitaevskii19], one can write
where C(f) is the collision integral which represents the
change, due to collisions, per unit time, in the number of dS,
particles per unit phase space volume. Clfl=- T (12)

Let us first consider the left-hand side of the above equa-
tion. We will assume that the transverse dimensions of thevhere the flux
collision volume in central heavy ion collisions are suffi-
ciently large that the initial expansion of the system is one-

af B
E-i—v Vi=C(f), (6)

aN;\? szl . OF of
EJ’ d°p| f— =
™ ﬂpﬁ ¢9pﬁ

dimensional. The distributiof then only depends on the Sa™=
coordinate corresponding to the collision axis. Since it is
independent of the transverse coordingte Eq. (6) has the X[ 8 ,;(1—5-5’)+v vtvgl] (13)
form “ “ «
. Note thatv = p/|p|.
9f(p.2.1 + 7(p.2, )_C[f(p z,0], 7) We have used in Eq(13) the cross section for gluon-
ot Pz dz gluon elastic scattering, which in the limit of small momen-

> o tum transfer squareg®= —1, is
wherev, = p,/|p|. A further simplification follows from the q d

assumption that the central rapidity region is approximately do aN:\2 (2m)® 1
Lorentz invariant under boosf&5]. As was pointed out by — == ( - > = (14
Baym many years agf®6], this assumption greatly simpli- dt 2(Ne—1) t

fies the problem of solving Eq7) since it relates the distri-
bution function at different’s in the central region. It there-
fore suffices to computé in the zero-rapidity slice alone.
Becausd is a scalar under Lorentz transformations, it satis-
fies the relation

The collision integral contains a logarithmic collinear diver-
gence arising from small angle scattering. It is represented
here byL, defined as

L= f fmar A9 (15)

f(pt!pzrz:t):f(ptipért)' (8) Amin q

Here p,=y(p,—up), the transformation velocityy=z/t, =~ The minimal momentum transfer igmin=Qsfmin, Where
and y=(1—u)~Y2=t/7, where the proper time=t?—2z2.  Omin IS the minimum scattering angle. Alst,,is the maxi-

Computingdf/dz using Eq.(7), the Lorentz transforma- Mum momentum transfer. How one may deterntpg, and
tion relation, 97/9z|,-o=0, and dp./dz|,—o=—p/t, one  Gmaxis discussed in the next section.

finds[26] at z=0, Having started from Eq(6), combining Egs.(10) and
(13), we arrive at the considerably simpler expression, the
of  p, of g Landau equatiofl9,27]
U9zt op,’ © ot p, of
z
The Boltzmann equation now reduces to # T tap, MY S AN ALV (o), (16)
a(pe,pz, )| [ d P ; . with the definitions
ot ot (9p (Pt,Pz.1)
Pat d3p .
0-36 [ 1.5
=CLf(pi,p. 1)]. (10 0=c | 5 3ftP
Note that, as a consequence of our manipulations, assuming Eo f(LE
uniform distributions in the transverse direction and boost n l(t)ngJ p ftp
invariance in the longitudinal direction, the single particle (2m)° |p| '
distributionf (x,p,t) is now expressed as a functionﬁnbnd
t alone. The kinetic equation above, in the absence of colli- ) NZ
sions, has the free streaming solution f¢26], namely, ?\=27Tasm- (17
C
f(t,p)=exp — Bo\p> + P2t 3), 11 . . .
(t.p) = Bovpi+ Pzt 7o) (D Here, gG=2(N§—1) and V; refers to differentiation with
where 8, and y, are constants. respect tq3.
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Multiplying both sides of Eq(16) by d3p and integrating, casN |23 Qg
one finds Mﬁ;( ) 575 (23)
™ (Qst)
&(tn) =0, (18  Amore general expression, for any arbitrary number density,
is easily derived to be
namely, the number density of gluons has the behamior
«1/t. Taking the second moment of E.6), one finds the 5 asN:\? (2m)° 23
following exact relation in the central regi¢@6]: M= ( - ) >——-n(t) (24)
2(Ni—1)
de (e+P))
EJF t =0, (19 Alternately, one can use the more conventional prescrip-
tion of regulating the logarithmic collinear divergence/n
where the local energy density is given by through the exchange of dressed gluons characterized by a
Debye screening mass. A kinetic theory expression for the
d3 Debye screening mass can be derived from the screening of a
e(t)=ng 3pf(p,t), (20)  timelike gluon propagator in a medium of gluon excitations
(2m) [21]. One obtains
and the longitudinal pressure is -
o asNe S [
&p p2 mp=— = !lm d p(i 5q-fo(t,p). (25
= Iz lal—0 '
PL(D)=0c f my p PO (D)

One can check that for an equilibrium Bose distribution, one
In the hydrodynamic regime where_= €/3, the ideal gas recovers the standard resuti =4mwasN.T2/3. For our ini-
equation of state gives~t~*3. We will return to a discus- tial conditions, it is the screening of the longitudinal gluons
sion of these quantities later on in the paper. in the transverse direction that is relevant. Performing an
It is convenient to define the quantities=tn and »_,;  integration by parts, this transverse Debye mass is given by
=tn_;. The Landau equation can thus be rewritten as the expression28]

N, [ d®
_Ee [ P, (26)

af(t,p af(t,p .
) (t.p) ( p)=>\n£Vf;f(t,p) , ’
=* J |p|

at P p, m;=

+2N - () LV [vf(t,p)].
' P At the very early stage of the-22 scattering, the expres-

220 sionin Eq.(26) is, in principle, less reliable since the system
. . . . . is completely out of equilibrium. However, at later times, as
ey b eperdent ofme, e SAUELGN 1 e system approsches equibrum, shoid b moe el
would be the diffusion cbefﬁcient while that of the secondable' One could attempt to parametrize the infrared cutoff of
would be the coefficient of friction, smal! a_ngle scattering such that it mt_erpolates be_twee_n the
' two limits. However, at present there is no theoretical justi-
fication of any particular form. Since collisions become more
IV. SCREENING OF COLLINEAR DIVERGENCES IN THE frequent as one approaches equilibrium, it is likely that the
LANDAU TRANSPORT EQUATION Debye mass is a more reliable cutoff to use. At any rate, it is
Bmportant that one at least have the right limit as the system
approaches equilibrium.
In Refs.[16,18, the value ofq, is held fixed at early
times. This is because if one rewritésin Eq. (15) as

In the one gluon exchange approximation, as in Coulom
scattering, the transport integral in E§3) has a logarithmic
collinear divergence—represented iy In Ref. [16], the
condition applied at early times was that in the maximal
distance 1d,,, corresponding to the minimal momentum
transfer g,,;,, one has at most one scatterfh@rom this £=In<@> 27)
condition, by using the initial gluon distribution, Mueller my /)’
finds at the earliest times that

it is argued, on the basis of analytical approximations to Eq.
(31) below, that(p;)/Qs changes appreciably only over a

6This condition satisfies the requirement that the soft fidlee to ~ 10Ng time scale t~e'\#s). Since the Debye mass has a
all the other hard gluonghat a particular hard gluon scatters off be Stronger time dependencg grows with time. On account of
at most of size 4. This is so because the freed gluons come fromthe approximations made in arriving at this conclusion, it is
the saturated component of the nuclear wave function of sizaiseful to check whether this behavior 6fis obtained by

1/g—see the discussion in Sec. Il. computing(p,) andm; self-consistently at each step in our
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a=0.3,¢c=1.3,Q,= 1.0 (GeV)
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time (Gev™)

0.8 FIG. 1. The dynamical screening massés,

from Eq.(24) obtained from Ref[16] and them;

06 _ from Eg. (26) obtained from linear response
04 - theory[21] plotted as functions of time in GeV
0.2 L units. Also plotted versus time are the logarithms
A T D S NS B T L, and £, obtained by combining Eq$24) and
5 10 15 20 25 3Q 35 40 45 50 (26), respectively, with Eq(27).
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numerical simulationéWe indeed do find, as shown in Fig. To check the consistency of our numerical simulation, we
1, that £ grows rapidly initially as a function of time but will compare, in detail, the numerical solution of the Fokker-
levels out to a constant as the system approaches equililflanck equation to the early time analytical solution found in

rium. Refs.[16,18. We will discuss solutions to the nonlinear
In Fig. 1, we plot the infrared masses in Eq24) and Landau equations in the next section.
(26), as well as the corresponding contributidrto the col- We first definef =tf, £=1 In(t/ty)=3¢, wheret, is a con-

lision integral, as a function of timén units of 1Qs). One  stant defined in Eq(5). (As discussed in the previous sec-

sees that while the relative difference at early times is largeion, this assumption is justified at early timeScaling\ /3
it is much less so at later times. We have also solved the.\ | we can rewrite Eq(22) as

transport equation using both cutoffs. While there is some
quantitative difference between the two, they do not affect a d \u P —
our qualitative conclusions. For the rest of this work, we will (a_g - a_pzpz) f=NneV t+2hy_1£V;-(vf). (28
therefore use the Debye mass in E26).

Debye screening occurs due to the exchange_ of longitudiequation (28) is a Fokker-Planck equation if_; is held
nal gluons. One may worry whether the screening of transfiyed. If one integrates Eq28) with respect tad®p, d3ppf

verse gluons will introduce an additional scale since the,q d®pp? we obtain Eqs(17), (18), and and(19) in Ref.
static magnetic mass is parametrically larger than the Debyﬁs] z ' ’

mass. However, the conventional wisdom is that, for trans-

port cross sections, magnetic screening is also cut off in the d

infrared by the Debye ma$&9,30. The same, for instance, d—§n=0, (29
is not true of color transport—the color conductivity is regu-

lated by a magnetic mass of ordgdT [31]. The dynamical q N

screening of infrared divergences ir-h (n=2) transport —(p2)+2(pD)y =2\ pé— nilgan(g), (30)
cross sections merits further study. d¢ Uj

and
V. RESULTS FROM NUMERICAL SOLUTION OF THE
FOKKER-PLANCK EQUATION d S N7 1&
/n2\ _ -17+1 —15%
We will first consider, as a “warmup exercise,” the solu- d§<pi> 4N ”g( 1 e + n (&), @D

tion of Eq.(22) for the case where_ is held constant. The

Landau equation then reduces to the Fokker-Planck equatiowherer:,L:tpL is defined by Eq(21). These equations are

exact. We can therefore perform the following consistency
check on our solution. With the initial conditions in E®)
"We thank A. Dumitru for discussions on this point. and the boundary condition thd(p,,py,p,,t)=0 if any
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a=03,¢c=25N.=3 Averages, Nc=3,¢=25,0=0.2

0.35 06 ;

L 2> _

[ <p;> -
0.3 | 05 <p§> eq. (30) o

N <p?> eq. (27) +
0.25 |

: 0.4 R
02|

03 J
0.15
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0.1
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0 1
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0.05 0.5 1 52 25 335 FIG. 4. Numerical results fofp?) and(p?), plotted as a func-

tion of time, compared with the analytical approximations in Egs.

FIG. 2. Numerical solution to the Boltzmann equation with con- (33 and(37) . Also plotted isz as a function of time.
stant#_, where each term in Eq34) is plotted as a function of ~
£=In(t/). nore it. We can ignore the term proportionalRp(t) in Eq.

(30) for early times. Then Eq.30) becomes

Px, Py Or p,—~, we numerically determiné for all time, q
directly compute{p_f) and (pi), and check to see if Egs. d7<p§>+2<p§>:2)\ né.
(29)—(31) are satisfied. Mueller supposes that at early times 3
the first term on the left-hand side and the last term on the
right-hand side of Eq(30) are small, thereby yielding the
solution

Its solution is

N
) (P2) =i+ 5" [exp(—26)— 1] (33)
(p7) =\ 7né. (32
It is demonstrated in Fig. 2 that this approximation, in This_ solution(see Fig. 4 agrees much _better with the
practice, is not a very good one. At very early timesgif umerical results than E§32) does. We defin€,(¢) as

~0 we see that the first term on the LHS of E80) is of the N £ d
same order as the remaining terms. We cannot therefore ig- 2\ p¢— 7-1 |~°L(§)*dﬁ§p§>*2<p§>=c|(§), (34)

n
x=03¢=25N=3 . . - .
0.5 whereC,(£) should be small if Eq(30) is satisfied. Figure 2
<pi> verifies indeed that this is so.

0.4 F Next, look at Eq.(31). If we assume that bothy_; and
r 74, are constant with respect to time and determined by the

0.3 [ initial condition, Eq.(3),

o2 b N2—1 Q? NZ2—1
F n=c———Q5, 7n-1=C s
3 4% aN 2m%aN

0.1 [ A £tP/7) s s
T NZ-1

(o] = 7]+l:C27QS' (35)

5 —— 2 67 agN,

o b d<p2>/d¢
*\\\_\\_4}\775/3 Using Eq.(35) we rewrite Eq.(31) as

-0.2 | Tl
_ d 4 AN7y_1éo
: ) T2(pE)=—Zh7mé+ PL(). (36)
_03'.‘|,..‘|‘H.r....|”.,\.‘.‘r..‘.\., df 3 n
' 0.5 1 1.5 % 2.5 3 3.5

Again the term containin®, is small. We therefore solve

FIG. 3. Each term in Eq(38) plotted as a function o  the equation above, with the appropriate boundary condi-
=In(t/ty). tions, to find
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f(t,p..p,) for different times (Gev™)

oON & o o o™
IIIIlIIIlIIIlIIIlIIIl

O=NWPrORO

FIG. 5. The number of gluons per unit of
phase spacé(t,f)) plotted as a function ofp,
and p, for different times.N.=1, «s=0.3, c
=13 and Q,=1 GeV. Units of time are in

GeVv 1.
5
4
3
2
1
]
) Q2 2 In this section, we will discuss results from numerical
(pT)= -~ §)\ né2. (370 solutions of the Landau equation in E@2) employing the

initial single particle distribution given by Ed3) and the

dynamical screening mass given by E26). The equation is

a second order partial integrodifferential equation. It can be

q 4 \ ¢ solved by combining the alternating direction implie&DI)
7-16~ -Ni i i h

d—§<pf>+§7\77§_ PL(&)=Cy(&). (39) method and the Crank-Nicholson differencing scheme

As previously, defineC, (&) such that

7 [32,33. A detailed discussion of the numerical procedure
can be found in the Appendix.
Figure 3 verifies that E(38) is satisfied for early times. We will first begin by briefly describing the evolution of

Finally, we check to see how well EQ29) is satisfied the single particle distribution and its moments. Next, we
numerically. Figure 4 plots the numerical result fprvst  will discuss various measures of kinetic equilibration and
and demonstrates thaj is constant with respect tb As  hydrodynamic flow for a system undergoing boost-invariant
discussed earlier, Fig. 4 also compares the numerical resudne-dimensional expansion. Finally, we will discuss our nu-
for (p2) and(p?) with the analytical solutions of Eq$36) merical results for these quantities for different value§of

9
and (30) given by Eqgs.(33) and(37). andas.

A. Single particle distributions

VI. RESULTS FROM NUMERICAL SOLUTION OF THE The initial distribution for th ical soluti fE
LANDAU TRANSPORT EQUATION e Initial distribution for the numerical solution o g.

(22) is given by Eq.(3), at the initial time, determined from
In the previous section, we numerically solved the Boltz-Ref.[14], given by Eq.(4). The time evolution of the single
mann equation using Mueller’'s approximation for the mini- particle distributionf (t,p,,p,) is shown in Fig. 5 for a par-
mum scattering angle, and with_, fixed for all time[Eqg. ticular set of initial parameters. It begins its time evolution as
(28)].2 Since the previous analysis is only expected to bea delta function inp, (represented practically by a narrow
valid for early times, one must solve the general expressioGaussian distributiorand as a step function im, — see Eq.
(22) with 7_, determined self-consistently.

®Wwe will ignore running coupling effects in this analysis. It is
8Recall thatz_ is an integral representing the“1” moment of  argued in Ref[18] that running coupling effects in the evolution
f. are O(/ag) and therefore suppressed.
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Single particle distributions tially that the two distributions are widely different. As time
proceeds, they converge relatively rapidly at soft momentum
1y t=2.38fm 4 . L
) but much more slowly in the tails. If thermal equilibrium is
N defined strictly as the distributions being completely isotro-
N\ F(P) ene: yas ' :

\ pic, this condition is reached only asymptotically, if at all.
107" f(P;)\ Figure 7 shows, for particular initial parameters the aver-
i 4 ages(p?), (py) and(p?) as functions of time(p?) starts at

i 3 zero and quickly rises before converging slowly(fif) and
TIRENTR U e “-\‘ S (py> which, in turn, decrease monotonically with time. The
0.5 1 1.5 1.5 _
b, or p, (GeV) b or b, (GeV) norrtr|V|aI behewor of(p?) is because the system is under
going longitudinal expansion. In a box at rest, one expects
_ that (p2) will show more of a monotonic behavior before
t=7.39 fm 'z ) .
leveling off. It again appears from Fig. 7 that the conver-
f gence to isotropic distributions is very slow. This is particu-
(p) : T
larly so since the second moment of the distribution weights
the high momentum tail unduly. The latter, as we observed
in Fig. 6, takes longer to equilibrate.
Interestingly, as we will discuss in the following, the con-
! vergence of bulk thermodynamic observables to the expected
o5 T s s 1 s equilibrium values is much more rapid. A likely explanation
p, or p, (GeV) Px OF p; (GeV) is that these observables are much less sensitive to the high
momentum tail of the distribution.

t = 4.39 fm 3
f(p,)

FIG. 6. The single particle distributions, for fixgq or p, plot-
ted as a function op, andp,, respectively, for different times in
the evolution of the distribution. The results are #@¢=0.3, Qg
=1, c=1.3, andN.=3. From Figs. 6 and 7, it appears that the distribution, as a

whole, become isotropic only asymptotically. This statement
(3). As time proceeds, we see the modes get scattered off is particularly true of the tails, ip, andp;, of the distribu-
the transverse plane in the longitudinal direction. The largetions. The distributions agree more closely at softer mo-
p, modes decrease rapidly as thedistribution widens out. menta. Nevertheless, as we shall discuss below, when we
At aboutt=11.95 GeV !, thep, distribution is at its broad- look at thermodynamic signatures of equilibrium, they con-

B. Kinetic equilibrium and hydrodynamics

est extent. verge relatively rapidly to the expected behavior in a fluid
The behavior of the single particle distributions are seerundergoing boost-invariant one-dimensional expansion.
more clearly in Fig. 6, where we have plotteds a function Let us first discuss what this expected behavior is. Since

of p, or p,, for fixed p, and p,, respectively. We see ini- we only consider 2-2 processes in this work, the total num-

0.4
0.35

a=0.3
c=1.3
Q. =1.0

<p>
~

o 'r;.lr.Hlnrrriru|.I|r..I:...I;...I..rr}.;..l.r..

10 20 30 40 P 70 80 920 100
time (GeV )

e
¢ o ¢
N
RA ISEE UL N et L e

FIG. 7. The average¢pZ), (p3), and (p2)
versus time in GeV* units for dlfferent values of
ag, ¢, andQg. In all casesN.=3

N o
(2]
N LR N N

F TR YW S A AR SN RIS RYET R A I BT U U SSE S ST RN

20 25 _;”10 35 40 45 50
time (GevV™")

O
n
o
-
w
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ber of gluons is fixed. The equilibrium solution of the clas- The approach to equilibrium, in the sense of “saturating”

sical Boltzmann equation, EqR2), thus has the form the above thermodynamiand hydrodynamicidentities, has
been studied, in the relaxation time approximation, by sev-
f(t,p) =exp{B(1)[ u(t)—p]}. (39 eral author§26,34,35. This approximation is also employed

in studies with minijet initial condition$36,28. The colli-

Here u(t) is the chemical potential, ang(t)=1/T(1), sion kernel in Eq(10) can be written formally ag27,37

whereT is is the temperature. Substituting this equilibrium
distribution in Eq.(17), one obtains (F—Foqui)

C[f(p21ptvt)]:_ (48)

NZ—1 6
n(t)=2¥T3(t)exp($), n_4(t)
™ where 6, the collision or relaxation time, is in general a
(N2—1) function of time and momentum. The relaxation time ap-
= C—Tz(t)exp( ﬁ)' (400 proximation is one where the momentum dependenagisf

w? T neglected. Baym studied equilibration in this approximation

o . taking 6 to be a constant. He showed that the thermodynamic
The average energy density is defined to be relations in Eqs(45) and(47) were satisfied only asymptoti-

4 cally in time? Nevertheless, the convergence of the system

G(t)ZQGJ P |5|f(t,p). (41) to the asymptotic value is rapid. The system, while not quite

(2m)3 in local thermodynamic equilibrium, is sufficiently close to it

_ ~ that equilibrium is a good working assumption. Subse-
From Eq.(41) and Eq.(40), the energy per particle at equi- quently, Gavin studied equilibration in the relaxation time
librium is approximation assuming to have the time dependeni®];
_ B 0= at, wherea is a constant. Depending on the valueagf
E(t)=e(t)/n(t)=3T(1). (42) the system approaches the hydrodynamic limit quickly
Jdsmallera’s) or free streaminglarger «’s). Heiselberg and

Now, the entropy density of a classical Boltzmann gas i .
Py y g Wang[35], studied the general casé=tP. They conclude

defined as oo . .
that for p<1 thermalization is attained, while the system
d%p free streams fop>1. The cas@=1 studied by Gavin is the
s(t)= —gGJ 3f Inf. (43 marginal one, interpolating between the two regimes for dif-
(27) ferenta’s. In a subsequent papk88], Heiselberg and Wang

study the dependence @f in finite temperature QCD, and

In equilibrium, the entropy per particle is simply tentatively conclude thas~1/3< 1

S(t
S(t)= % =3~ % (44) C. Convergence to the hydrodynamic limit
) _ ) In this work, as discussed in Sec. lll, we go beyond the
We noted previously, since the number of gluons is conyejaxation time approximation in treating the collision ker-
served, thatn(t) =const. Also note that, since the entropy ne|. |t is not necessary therefore, once a screening mecha-
per particle is constant in equilibrium, we find from the nism is postulated, to specify the time dependence of the
above equation thai/T=const. From these constraints, the collision time. In the following, we will discuss our results
system in equilibrium must satisfy for the thermodynamic relations stated in the previous sec-
tion.
In Fig. 8 we show the entropy per partickplotted as a
etunction of time. As shown for typical values afg, ¢, and
Qs, it initially increases rapidly and flattens out, monotoni-
cally approaching its asymptotic val@aereby implying that

T3t=const, et*3=const. (45)

Finally, recall we had defined the longitudinal pressure in th
central slice in Eq(21) as

d3p pg ulT goes to a constant as wellThe expression in Eq43),
PL(t):ng 27 Ff(p,t). used in the computation of Fig. 8, is the correct one, except
at very early times when the well-known full expression for
One can similarly define the transverse presfyédo be the entropy density of a Bose gas should be used. Thus,
where the result in Fig. 8 is going to zero is where the clas-
d®p IOtZ sical Boltzmann expression for the entropy density is break-
PT(t):gGJ 2n)7 %f(p,t)- (46)  ing down. We have checked that the full expression ensures

that the entropy per particle is always positive definite. The
From Eq.(19), and the above relations, the condition for triangles in Fig. 8 correspond to the entropy per particle as-
ideal hydrodynamics is

P-=P :}E (47) 0This is indeed what we would conclude from our study of the
T L | single particle distributions in the previous subsection.
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3
25 [
2 |
1.5 f_ o= 0.3
) LA c=1.3
05 F Q=1.0
E ) AR R N T R N T T S TN A YO S T A T N T NI N SN |
° 0 10 20 30 4\ 40 50 60 FIG. 8. The entropy per particlgplotted as a
time (GeV' function of time for as=0.3, c=1.3, and Qq
=1 (GeV). In both casesN.=3. The triangles
3 F denote the entropy per particle of a two-
25 E dimensional Boltzmann gas.
2 |
15 ; a=0.3
1 f_ c=1.3
05 [ Q, =20
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suming the partons are initially localized on the two- distributions alone. Our results suggest that the collision time
dimensional transverse plane. effectively has a time dependentewith p<1.

The convergence of other thermodynamic quantities to Since the convergence to the hydrodynamic limit is only
the hydrodynamic limit is shown in Fig. 9. Again, we note asymptotic, deciding when the system can be described in
that the convergence to their asymptotic values is much moreerms of thermodynamic quantities is somewhat subjective.
rapid than one would expect by looking at the single particleHere, we define the equilibrium tintg, as the time it takes

ax=03,¢c=1.3,Q,= 1.0, No=3

0.5
0.45 -
0.4
L 1/3
0.35 - Tt
0.3 H
T ST NS T SR S T S ST SR S NN S I SRR N S S SR T St L
10 . 3p RED 50 60
time (Gev™")
0.03 FIG. 9. The top panel plot$t¥3=(e/3n)t'3
I where e is the energy density and the number
20.02 3_ density; the middle panel the the longitudinal
) E pressureP; and the transverse pressi?g; the
Soo1 | bottom panele®* and the entropy density; all
C plotted versus time in GeV units, for typical
o 0 values ofag, ¢, Qg, andN,.
0.2
0.15 |
01 E
0.05 £
E g o e ———
%5 10 50 60

20 30 40
time (Gev™)
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TABLE |. Equilibration times, temperatures and chemical po-it is greater for smallelxs as one would expect from this

tentials as a function ofg and Qg for c=1.3, andN.=3.

as Q4 (GeV) teg(fm) Te{MeV) wn(MeV)
0.1 1.0 12.241.92 171.0%4.9 137.78&19.3
0.2 1.0 5.80.83 166.285.19 144.7%15.22
0.2 2.0 4.480.75 304.3219.39 212.9531.23
0.3 1.0 3.24044 1742%521 157.86:16.18
0.3 1.4 2.770.60 234.76¢11.60 195.7%31.75
0.3 2.0 2.36:0.44 320.7222.38 249.6%25.06
0.3 24 1.8:0.56 386.38:28.48 337.56:26.18
0.3 3.0 142045 471.6%36.49 457.7236.17

expression. Similarly, from requiring thaém(t) =const, one
finds for the initial temperature that

Qs

2 .
CYSeX
Cach

We see that this dependence Qg and ag is confirmed in
Fig. 10.
At RHIC, we expectroughly) that «g~0.3, c~1.3, and

To

Qs~ 1.0 GeV. For the idealized initial conditions dis-
cussed here, the corresponding time and temperature at ki-
for Tt"3 (42) and the entropy per particl (44), to reach  netic equilibrium arete;~3.2 fm andTe~174 MeV. At
90% of their maximum asymptotic valdsee Figs. 8 and)9 LHC, we expect Qs~ 2-3 GeV, thereforet,~2.4
One can then also extract the “initial” temperature and—1.4 fm andT.;~321-472 MeV. Are these numbers re-
chemical potential that correspondttg by using Eqs(40)—  alistic? No(especially at RHIG, since it is unlikely that, at
(44). these temperatures, the system is a weakly coupled gluonic
The equilibration time.is very sensitive to the values of gas. At the time scales and temperatures corresponding to a
as, ¢, andQs. Table | shows the equilibration tintg,, the  rapid convergence of the system to the hydrodynamic limit,
initial temperatureTeq, and the chemical potentigl for  other (likely nonperturbative effects might become impor-
typical values ofag, ¢, andQ. The parametric behavior of tant. One cannot conclude definitively that this is the case
these quantitietfor a fixed value of the nonperturbative con- because we have not considered realistic initial distributions
stantc) as a function ofQ, for two different values of the nor have we discussed the importance of particle number
coupling constantrg, is also shown in Fig. 10. Larger val- changing processes. We will comment on this point in the
ues ofas and Qg yield smallerte,. final section below.
These results can be qualitatively understood as follows.
One can showsee Eq.(37)] that the equilibration time is

parametrically
1 | 2w
teq asex casN, )’

VIl. SUMMARY AND OUTLOOK

We have solved numerically a nonlinear transport equa-
tion, Eq.(22), which describes the evolution, after a heavy
ion collision, of single particle gluon distributions in the cen-
tral rapidity slice. The initial conditions for the solution of

In Fig. 10, we note thatt,, decreases roughly asQ4. Also,  this equation are the highly anisotropic, idealized, initial con-
8
—~ . f Oa=0.3
e ®@a =02
:’% ‘B o te e e ¢ ¢ & 4
B ook N
o P P I P SRV SR | P I L 2
1 125 156 175 25 25 275 3
. (GeVs
500 = i
Py E
> 0 F ¢ o : : FIG. 10. The estimated values of the titg,
=300 & ¢ °© . Oa=0.3 temperaturdl,, and the chemical potential, at
'__53200 f—e (] . @ o = 0'2 the onset of equilibrium, plotted as functions of
10051. Ll IR BT B bl T Q; for ag=0.2 and 0.3.
1 125 1.5  1.75 (z 3.25 25 275 3
Qs GeV
600 C
< [O0a= 0.3 ' ¢ +
LY @ =0.2
Z 0 ' o o o 0
\gzoo :—. e © ¢ o o
£y Cl [ AP AR O L, Lot
1 125 15 175 25 25 275 3
Qs (ZGevs
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ditions first discussed in the context of parton transport bymomenta[22]. Unfortunately, past treatments have been
Mueller [16,18. The distributions are controlled by a single handicapped by uncertainties in how one treats infrared di-
scale—the saturation scaf@, of parton distributions in the vergences. Work in progress suggests that this problem may
nuclear wave functionbefore the collision Only elastic be cured, and that equilibration is much more rg@d]. If
gluon-gluon scatterings are treated. Equilibration, in this apIhis is indeed the case, then initial temperatures are relatively
proach, is dominated by small angle scattering. The collinea¢lose to the initial saturation scale, and the weak coupling
divergences that occur are regulated dynamically by a cutofiféatment of equilibration will have been self-consistent.

of the Debye form. We have checked that, at early times, the Ultimately, the goal is relate the rich variety of hadronic
linearized Fokker-Planck equation reproduces the analyticind €lectromagnetic spectra that will soon be available at
results of Mueller. These analytical approximations howevef:H!C (@nd some years later, at LbiG properties of the

cannot be carried through to times relevant for equilibration.Inltlal nuclear wavefunction, that may independently be

We find that the tails of the initially highly anisotropic _prob]?d n deeply !nelastleA orhln pdA coI.I|3|ons. This paper
initial conditions converge very slowly to the expected iso-"> & Irst quantitative step in that direction.
tropic equilibrium distribution. This behavior is confirmed
by the behavior of pZ) and(p?2). Despite the slow conver- ACKNOWLEDGMENTS
gence of the single particle distributions to the isotropic ther- We thank Jean-Paul Blaizot, Edmund lancu, Keijo Kajan-
mal shape, thermodynamic observables such as the entrofi§, Alex Krasnitz, Dirk Rischke, Edward Shuryak, and Xin-
per particle, the energy per particle, and the transverse arfdian Wang for useful comments. In particular, we would
longitudinal pressures converge more rapidly to the hydrolike to thank Adrian Dumitru and Miklos Gyulassy on the
dynamic behavior expected of one-dimensional, boost invarione hand, and Al Mueller and Dam Son on the other, for
ant expansion. The more rapid convergence for these obserifliminating discussions of their respective works in
ables occurs because they are more sensitive to soft@rogress. Larry McLerran has provided wise comments and
momentum modes and less so to the high momentum tailsencouragement throughout the course of this work. This
Using a particular criterion for equilibratiofthat thermo- ~ Work was supported under U.S. DOE Contract Nos. DE-
dynamic observables have reached 90% of their asymptotitC02-98CH10886 at BNL and DE-FG02-87ER40328 at the
valug, we extracted the equilibration times and the initial University of Minnesota.
temperatures and chemical potentials. We have studied how
they behave for varying values @ and as. Even though APPENDIX: NUMERICAL ANALYSIS OF SECOND
small angle scattering is very inefficiefthe equilibration ~ORDER PARTIAL INTEGRODIFFERENTIAL EQUATIONS
time is an order of magnitude greater than the formation

. - I Equation(22) is a second order partial integrodifferential
time), it is nevertheless smaller than the hydrodynamic time . ; . .

. . equation whose numerical solution requires some care to en-
scaletp, g~ R/Co. HereR s the radius of the nucleus ang

is the speed of sound in the fluid. The relatively long equili_sure stability. Fortunately, standard finite differencing

. ) . schemes can be used and numerical stability guaranteed.
bration times correspond to relatively low temperatufes Equation(22) is of the form
<Q,. At these temperatures, it is unlikely that the system

can be described as a weakly coupled gluon gas. It is there- 72 2 2

u d°u du du du  du
fore reasonable to ask whether other effects, be they pertur- — =A(t)| — + — + — | +B(t)| —+ — + — ]|,
bative or nonperturbative in nature, may significantly alter x> ay*  9z? ox dy oz
our resultst! We will enumerate below, in order of increas- (A1)

ing complexity, those effects that are amenable to a weak _

coupling treatment. whereu=u(t,x.y,z). _ . . .
First, recall that our results were obtained for idealized 10 discretize Eq(A1) we first define a multidimensional

initial conditions. More realistic initial distributions have re- 9"

cently become availablgl5], and they are qualitatively dif- _ . . B . B

ferent from the idealized distributions. Secondly, since the t=toFnAT, x=xXotiA, y=Yo+jA, z=Zo*KA,

foccupatfion numbe:]s of the gluops ak:e Iargle initially, the E_’f'wheren=0,1,2,. N, i=01,2,..1,]=012,..J, andk

ects of Bose enhancements in the Boltzmann equation.g; 5k Next we employ the alternating direction im-

should be taken into account. Both of these effects are it (ApI) method using the crank-Nicholson finite differ-

straightforward to incorporate in our approach, and result ncing schemg33]. The ADI method is especially useful in

with t_hese Improvements will b.e reporFed shov[tjy?]. solving parabolic multidimensional equations on rectangular
Thirdly, as we discussed in the introduction, numbergiqq “For problems with three spatial dimensions, such as

c_ha_nging 2+3 processes may pe very _important in eStalb'Eq. (A1), the ADI method is implemented by splitting each
lishing kinetic as well as chemical equilibriupdQ]. Even time step of sizeAT into three steps of siz&T/3. At the

though these processes are s_u_ppre_ssed _by an additio rrent fractional time stem+ 3 for example, only one of
power of as, they are more efficient in redistributing the e ghatial derivatives are evaluated and the others are evalu-
ated at the previous time stepIf we choose not to split the
time step in such a way, the solution to E4.1), after dis-
For an interesting recent take on this topic see R3d]. cretizing, would require us to invert a large matrix of the
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same size as our grid. The purpose of splitting the time stefhe lower order terms are allowed to be either explicit or
in such a way is to reduce the problem in question into themplicit. We assume here for brevity in notation that the
solution of a tridiagonal matrixas shown beloy To illus-  linear terms are explicit and evaluated at the previous time
trate this, Eq(A1) is discretized using the ADI method with step. Therefore, we do not write the linear terms out.

the crank-Nicholson finite differencing scheme. First dis- The solution to Eqs(A2)—(A4) at every time step is sim-
cretize and evaluate thederivatives at the current time step ply the solution of a tridiagonal matrix at every For ex-

n+3:

n+1/3 n

Ui Ui A

ik ik _™n- n+1/3, , n+1/3_ o n+1/3,  n

AT/3 _Az[ui+1jk+ui—ljk 2Ujj T Uij 1k

n n n n n

+ Ujj — 15— 2Ujjk + Ujjic -1 Ujj— 1~ 2U55]
+linear terms. (A2)

Increment the time step by 1/3 and evaluate thieriva-
tives at current time step+ 2:

unt2B_ynt1s A
ijk ijk =—n[u-”+1-/3+u-“+1~’3—2u~“-+1/3+u-”-+2/3
AT/3 A2 i+1jk i—1jk ijk ij+1k
n+1/3 n+1/3

n+2/3 n+2/3
+ U 27 205 T Ui T Ui g

—2ufji "®]+ linear terms. (A3)

Increment the time step again by 1/3 and evaluatezthe

derivatives at the current time step-1:

n+1 n+2/3

ijk ik _™ncon+2/3,  n+2/83_ 5 n+2/3, ,n+2/3

AT/3 —AZ[Ui+1jk+Ui—1jk PAVD A Vi e
n+2/3 n+2/3 n+1 n+1

+Ujj 29— 205 T Ujjc g T U S g

—2ujji ']+ linear terms. (A4)

ample, Eq.(A2) can be arranged as follows:

MUl e Bl P YU TR= 0. (AD)
where
MZW:_A@T, __A@T,
3A2 3A2
and
ﬂk:%[uir}uﬁuir}1k_2Uinjk+Uir}k+1
+Ujk -1~ 2ujj ] + linear terms.
Equation(A5) is simply an equation of the form
M-u=d, (AB)

whereM is a tridiagonal matrix. Since we knokt andd at
every previous time step, we can in principal solve fou at
every current time step+ 3, given the boundary conditions
Uk » UQjk» Uibe, andufl,. The inversion of sparse matrices
(such as tridiagonal matrices usually numerically trivial.

In solving Eqg.(Al) one needs to specify the boundary
conditions suitable to solving a second order differential
equation. In this work we have specifieﬁk by Eq.(3) and

In Egs. (A2)—(A4), “linear terms” refers to the terms in required thatu vanish at the boundary of spacg, ginOk'
Eq. (A1) which contain first order derivatives. Since the Ujjo, Ujjk» Uik, andujjc=0. Furthermore we require that
crank-Nicholson finite differencing scheme is stable only ifthe first derivatives vanish at,y,z— *+o. Therefore,ujj
the terms with the highest order of derivatives are implicit,—u{‘_ljk~0, u’l’jk—u[}jk~0, and so on foj andk.
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