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From a colored glass condensate to the gluon plasma: Equilibration in high energy heavy
ion collisions
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The initial distribution of gluons at the very early times after a high-energy heavy ion collision is described
by the bulk scaleQs of gluon saturation in the nuclear wave function. The subsequent evolution of the system
towards kinetic equilibrium is described by a nonlinear Landau equation for the single particle distributions@A.
H. Mueller, Nucl. Phys.B572, 227~2000!; Phys. Lett. B475, 220~2000!#. In this paper, we solve this equation
numerically for the idealized initial conditions proposed by Mueller, and study the evolution of the system to
equilibrium. We discuss the sensitivity of our results on the dynamical screening of collinear divergences. In
a particular model of dynamical screening, the convergence to the hydrodynamic limit is seen to be rapid
relative to hydrodynamic time scales. The equilibration time, the initial temperature, and the chemical potential
are shown to have a strong functional dependence on the initial gluon saturation scaleQs .
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I. INTRODUCTION

An outstanding problem in high-energy nuclear scatter
is whether the hot and dense matter formed equilibrate
briefly form a plasma of deconfined quarks and gluons—
quark gluon plasma. This problem is of great topical intere
with collisions already taking place at the Relativistic Hea
Ion Collider ~RHIC! and scheduled to take place seve
years hence at the Large Hadron Collider~LHC!.

Whether or not a quark gluon plasma is formed depe
strongly on the highly nonequilibrium initial distributions o
partons formed immediately after the collision. Clearly, the
distributions must influence the subsequent evolution of
system towards equilibrium. Furthermore, the problem
complicated by the rapid expansion of the system as a wh
The magnitude of the collision induced relaxation time re
tive to the expansion time is what determines whether e
librium is indeed reached.

The study of equilibration in relativistic heavy ion coll
sions is as old as the subject itself. However, very fewab
initio studies exist that attempt to follow the evolution of t
system, all the way, from the first instants of the collision
equilibrium @1–3#. This was so because it was not know
how to treat, in a self-consistent manner, the small Bjorkex
‘‘wee’’ parton modes that are responsible for particle p
duction at central rapidities. These smallx modes provide the
initial conditions for the space-time evolution of the parton
matter formed in heavy ion collisions.

The occupation number of smallx modes in the nuclea
wave functions is large and it was shown that classical m
ods could be used to compute their distributions@4#. This
classical effective theory is, in exact analogy to a spin gla
a color glass condensate@5,6#, and is characterized by a bul
scaleQs—the momentum scale at which gluon distributio
saturate. Analytical expressions for the parton distributio
were obtained in Refs.@7,8#. Subsequently, quantum corre
tions to the classical ‘‘non-Abelian Weizsa¨cker-Williams’’
0556-2813/2001/63~2!/024609~15!/$15.00 63 0246
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fields were computed@9#, and renormalization group meth
ods@7,10# devised to study how the classical parton distrib
tions in the nuclei changed with energy~or equivalently,
with x). The scaleQs now depends onx. This dependence is
represented by a line in thex-Q2 plane—it separates th
saturated, nonlinear regime of QCD at high parton densi
from that of linear QCD evolution. ThatQs is a function of
x, and grows as one goes to smallerx, or equivalently, to
higher energies, will only be implicit in this work.

In the classical effective field theory approach, the pro
lem of initial conditions can be formulated as the problem
finding solutions of the Yang-Mills equation with initial con
ditions given by the classical fields of each of the nuc
before the collision @11#. Since analytical expressions exi
for the classical fields of the nuclei before the collision, t
initial conditions are fully determined.

Perturbative solutions of the Yang-Mills equations, whi
describe classical gluon production to lowest order, ha
been discussed by several authors@11,12#. These were found
to be infrared divergent. Within the Yang-Mills approach,
fully nonperturbative treatment is therefore necessary. N
perturbative, numerical solutions of the Yang-Mills equ
tions have been found recently@13,14#. In particular, one
now knows the initial number and energy distribution of gl
ons after a collision@15#. An idealized form of the initial
gluon distribution, in terms of the saturation scale of t
color glass condensateQs , was given recently Ref.@16#.
These idealized distributions are sufficient for the purpo
of this paper. We will reserve a more quantitative analy
using the initial distributions of Ref.@15# for a future work
@17#.

The initial partonic system is completely out of equilib
rium. The subsequent scattering and evolution of the sys
towards equilibrium was studied by Mueller@16,18#. In Ref.
@18#, he showed that, under the assumption that the syste
undergoing boost invariant expansion, the evolution of sin
particle distributions could be described by a nonlinear L
©2001 The American Physical Society09-1
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dau equation. At very early times, this equation can
linearized,1 and studied analytically. However, the analytic
approximations soon break down, and the evolution of
system cannot be followed analytically all the way to eq
librium.

In this paper, we numerically solve the Landau equat
proposed by Mueller.~Along the way, we compare our re
sults to Mueller’s analytical results and show quantitativ
where the analytical approach breaks down.! We are thus
able to follow the evolution of the system all the way
equilibrium. We study the dependence of the equilibrat
time, the initial temperature, and the chemical potential
the saturation scaleQs of the nuclear wave function, and o
aS . ~Note: one may estimateQs;1 GeV at RHIC andQs

;2 – 3 GeV at LHC @16,20#.! We discuss the dynamica
screening of the collinear divergence arising from sm
angle scattering. Our results for equilibration are obtain
primarily, in a particular model of dynamical screening@21#.

To conclude whether local kinetic equilibrium is attain
in a system undergoing boost invariant~111!-dimensional
expansion, one should compare the equilibration timetequil to
the hydrodynamic expansion timethydro. Typically, thydro
'R/c0, whereR is the radius of the nucleus, andc0 is the
speed of sound in the system. For an ideal ultrarelativi
gas, c051/A3. Our qualitative results suggest that for t
energies of interest at RHIC and LHC,tequil!thydro, thereby
indicating that favorable conditions may exist for the form
tion of a hot gluon plasma at RHIC and at LHC.

In studying the likelihood of equilibration, we have on
considered number conserving 2→2 processes. Naively, 2
→3 processes will be suppressed by a power ofaS , and
may be considered subleading. However, 2→3 processes
may, in principle, be much more efficient than 2→2 pro-
cesses in driving the system towards thermal equilibri
@1,22,23#. Whether this is indeed the case is a dynami
question we will not address in this work. Regardless
→2 processes should set an upper bound on the equilibra
time. Furthermore, it is likely that the numerical techniqu
developed here can be adapted to quantitatively study
effects of number changing processes.

The paper is organized as follows. We begin in Sec. II
discussing the initial conditions for gluon production
nuclear collisions. After the collision, particle production
described by the space-time evolution of classical ga
fields. At late times, when the system is dilute, one can
fine partons, and study their interactions in a kinetic a
proach. The kinetic transport equation derived by Muelle
described in Sec. III. In the following section, we discuss
problem of dynamical screening of collinear divergenc
and describe the particular model of screening that is
ployed in this work. In Sec. V, we first briefly outline th
numerical method, and compare results for a lineari
~Fokker-Planck! version of the Landau equation with Mue
ler’s analytical results. We next discuss numerical res
from the solution of the full Landau equation. Various me

1To a Fokker-Planck equation@19#.
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sures of equilibration are described and computed as a f
tion of the saturation scaleQs and the couplingaS . We
summarize our results in the final section and comment
their experimental ramifications. We will also discuss t
various uncertainties that need to be further quantified,
their likely impact on equilibration in high energy heavy io
collisions. An appendix contains a detailed description of
numerical method employed to solve the Landau equatio

II. THE INITIAL CONDITIONS FOR PARTON
EVOLUTION

The problem of initial conditions in heavy ion collision
is as follows. Before the collision, the nucleus, as viewed
a particular gauge, is a coherent superposition of vari
Fock modes containing differing numbers of partons.2 Par-
tons in Fock modes containing a large number of part
uqqq•••qgggg•••qq̄&, have small values ofx—in the lan-
guage of the parton model, the momentum of the nucleu
shared among a large number of constituents. Each pa
has a1 momentumk1, and x5k1/P1, where P1 is the
momentum of the nucleus. The large multiplicities at cent
rapidities—which correspond to smallx—are obtained when
these smallx Fock modes ‘‘go on-shell.’’ One should not
that even though the smallx modes carry small longitudina
momenta, their transverse momentapt can be large.

These smallx partons are highly delocalized in the long
tudinal x2 direction3—they have large wavelengths relativ
to the Lorentz contracted width of the nucleus. In additio
these virtual fluctuations are very shortlived. Any attempt
treat them in a naively classical transport approach is th
fore problematic. An approach based on PQCD collinear f
torization is also inadequate unless the partons also h
very large transverse momenta. This is because such a
ture is predicated on convolving the probabilities of part
distributions in the two nuclei with the elementary parto
parton scattering cross section. It cannot describe coher
effects which are important at smallx. ~For largept , these
effects are suppressed.!

It was realized some time ago that the smallx Fock states
in nuclei responsible for multiparticle production at cent
rapidities are states of high occupation number. As a con
quence, their distributions in the nuclei are described b
classical effective field theory~EFT! @4#. The classical dis-
tributions in a single nucleus can be solved and an analyt
form for the distributions obtained@7,8#. The classical gluon
distribution falls off as 1/kt

2 at large transverse momentumkt

but saturates at smallerkt—growing only slowly as
ln(aSm/kt)/aS. The infrared structure of the EFT is analogo
to that of a spin glass in condensed matter systems@6#—it is
thus a colored glass condensate@5#.

The EFT approach was used in Ref.@11# to treat the prob-
lem of initial conditions in nuclear collisions. It consists o

2For an illuminating exposition of this point of view, see Re
@24#.

3If P1 is the momentum of the nucleus
9-2
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FROM A COLORED GLASS CONDENSATE TO THE . . . PHYSICAL REVIEW C 63 024609
solving the Yang-Mills equations in the forward light con
after the collision, with initial conditions given by th
~known! gauge fields of the nuclei before the collision.

Gluons at central rapidities are produced classica
~boost invariance is assumed!. Perturbative computations o
the transverse momentum distributions of classically p
duced gluons~lowest order inaS and lowest nontrivial order
in aSQs /pt) were first computed in Ref.@11#, and later by
several authors@12#. In these computations, the number d
tribution is found to be infrared divergent. They agree w
the lowest order mini-jet predictions at largept .4

Whenpt<Qs , all orders inQs /pt contribute equally. The
perturbative computations, to lowest order inQs /pt are
therefore not sufficient. Thus, even at lowest order inaS ,
one needs to resum all orders inQs /pt . An analytic solution
to this nonperturbative problem has not been found. Ho
ever, the problem was recently formulated as a~211!-
dimensional classical effective field theory and solved
merically @for an SU~2! gauge theory# on a two-dimensiona
transverse lattice@13#. The evolution of gauge fields is com
puted in real time, and at late times, the energy@14# and the
number@15# of produced gluons at central rapidities can
computed. The initial distribution of gluons, from our n
merical simulations@15#, is as follows. At low values ofpt ,
pt<Qs it is remarkably similar to the Bose-Einstein distr
bution for a gas of massive particles in two dimensions. T
gluons acquire a screening mass due to strong nonli
interactions—this also renders the distributions infrared
nite. At largept , pt@Qs , the distribution is a power law
Qs

4/pt
4 . The Born-PQCD prediction for the gluon distribu

tion is therefore obtained, as expected, in the largept limit.
The gluons produced at central rapidities are comple

out of equilibrium. The study of the evolution of this syste
towards equilibrium was initiated in Refs.@16,18#. For sim-
plicity, Mueller chose idealized initial conditions—a con
stant instead of a Bose-Einstein distribution forpt<Qs , and
zero for pt@Qs—namely, the theta functionu(Qs

22pt
2). In

this work, we will consider only these idealized distribution
In a later work@17#, we will consider more realistic distribu
tions computed very recently from the lattice simulations
Ref. @15#. In general, the initial spatial distribution per un
rapidity is

1

L2

dN

dh
5c

Nc
221

4p2aSNc
Qs

2 , ~1!

whereL2 is the transverse area,h is the space-time rapidity
and c, determined nonperturbatively, is a weak function
QsR. For an SU~2! gauge theory, it was computed recently
Ref. @15# to bec51.2960.09 in the regime of interest.

The initial distributions are highly anisotropic, with th
produced partons having zero longitudinal momentumpz .
Assuming boost invariance, and using the relation

4For detailed comparisons, see the papers by Gyulassy
McLerran, and by Guo, in Ref.@12#.
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f ~x,p!5
~2p!3

2~Nc
221!

dN

d3pd3x
, ~2!

for the single particle distributionf (x,p), one finds at late
times that5

f ~x,p!5
c

aSNc

1

t
d~pz!u~Qs

22pt
2!. ~3!

At late times, the occupation number of partons in the tra
verse plane becomes small, and their evolution can no lon
be followed on the lattice. However, when the occupat
number is not too large, transport theory can be applied
study the further evolution of the system. The initial cond
tion for this evolution is given by the single particle distr
bution in Eq.~3!.

Using the results of Ref.@14#, which determined the time
at which gluons come on-shell after a collision, we can e
mate the time at which small angle scattering between
gluons can be described by the Boltzmann equation.
formation times, usingQs51 GeV for RHIC and Qs
52 –3 GeV for LHC, are

t i;1.40 GeV21 for RHIC, t i;0.62 GeV21 for LHC.
~4!

Next, we suppose that a transport theory based treatme
gluon scattering is applicable when the gluon occupat
number is less than unity. Lettingdh be dh5dz/t i51 or
dz5t i , and using,dN/d3xd3k from Ref. @18# at z50, we
find

t05
c

aSNc
t i . ~5!

Heret0.t i is the time where the gluon occupation number
dilute enough that their subsequent interactions can be
scribed as the small angle scattering of on-shell gluons.

III. THE LANDAU TRANSPORT EQUATION

At times t.t0, where t0 was defined in Eq.~5!, a
Boltzmann-like transport equation is appropriate for desc
ing the late-time evolution of the highly anisotropic initia
gluon distribution discussed in the previous section. We w
show below that, for central high-energy heavy ion co
sions, assuming boost invariance, the transport equation
duces to a Landau-type transport equation@19#.

In the problem of interest, the typical scale of spat
variations is large compared to the typical scale of gluo
gluon scattering. The evolution of the system can theref
be described by a local Boltzmann-like kinetic equation
the single particle gluon distributionf (x,p,t), which gives

nd

5Thed-function distribution is of order 1/Dpz . We shall see later,
from the early time analytical solution of the Fokker-Planck equ
tion, that the longitudinal momentum changes little in the time
takes for the occupation number to decrease below unity.
9-3
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JEFFERSON BJORAKER AND RAJU VENUGOPALAN PHYSICAL REVIEW C63 024609
the density of excitations of momentumpW at a point (xW ,t).
The Boltzmann equation is

] f

]t
1vW •¹W f 5C~ f !, ~6!

where C( f ) is the collision integral which represents th
change, due to collisions, per unit time, in the number
particles per unit phase space volume.

Let us first consider the left-hand side of the above eq
tion. We will assume that the transverse dimensions of
collision volume in central heavy ion collisions are suf
ciently large that the initial expansion of the system is o
dimensional. The distributionf then only depends onz, the
coordinate corresponding to the collision axis. Since it
independent of the transverse coordinatext , Eq. ~6! has the
form

] f ~pW ,z,t !

]t
1vpz

] f ~pW ,z,t !

dz
5C@ f ~pW ,z,t !#, ~7!

wherevpz
5pz /upW u. A further simplification follows from the

assumption that the central rapidity region is approximat
Lorentz invariant under boosts@25#. As was pointed out by
Baym many years ago@26#, this assumption greatly simpli
fies the problem of solving Eq.~7! since it relates the distri
bution function at differentz’s in the central region. It there
fore suffices to computef in the zero-rapidity slice alone
Becausef is a scalar under Lorentz transformations, it sa
fies the relation

f ~pt ,pz ,z,t !5 f ~pt ,pz8 ,t !. ~8!

Here pz85g(pz2up), the transformation velocityu5z/t,
andg5(12u)21/25t/t, where the proper timet5At22z2.

Computing] f /]z using Eq.~7!, the Lorentz transforma
tion relation, ]t/]zuz5050, and ]pz8/]zuz5052p/t, one
finds @26# at z50,

vpz

] f

]z
52

pz

t

] f

]pz
. ~9!

The Boltzmann equation now reduces to

] f ~pt ,pz ,t !

]t U
pzt

[S ]

]t
2

pz

t

]

]pz
D f ~pt ,pz ,t !

5C@ f ~pt ,pz ,t !#. ~10!

Note that, as a consequence of our manipulations, assu
uniform distributions in the transverse direction and bo
invariance in the longitudinal direction, the single partic
distribution f (x,p,t) is now expressed as a function ofpW and
t alone. The kinetic equation above, in the absence of c
sions, has the free streaming solution forf @26#, namely,

f ~ t,p!5exp~2b0Ap'
2 1pz

2t2/g0
2!, ~11!

whereb0 andg0 are constants.
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We shall now consider the collision termC@ f # on the
right-hand side of the above equation. If we assume that
changes in momentumq in a collision are small, namely
q/Qs!1, we can treat the collision integral as simple diff
sion in momentum space. Following the discussion in L
shitz and Pitaevskii@19#, one can write

C@ f #52
]sa

]pa
, ~12!

where the flux

sa5S aNc

p D 2

LE d3pW S f
] f 8

]pW b8
2 f 8

] f

]pW b
D

3@dab~12vW •vW 8!1vavb81vbva8 #. ~13!

Note thatvW 5pW /upW u.
We have used in Eq.~13! the cross section for gluon

gluon elastic scattering, which in the limit of small mome
tum transfer squaredq252 t̂ , is

ds

d t̂
52S aSNc

p D 2 ~2p!3

2~Nc
221!

1

t̂2
. ~14!

The collision integral contains a logarithmic collinear dive
gence arising from small angle scattering. It is represen
here byL, defined as

L5E
qmin

qmax dq

q
. ~15!

The minimal momentum transfer isqmin5Qsumin , where
umin is the minimum scattering angle. Also,qmax is the maxi-
mum momentum transfer. How one may determineqmin and
qmax is discussed in the next section.

Having started from Eq.~6!, combining Eqs.~10! and
~13!, we arrive at the considerably simpler expression,
Landau equation@19,27#

] f

]t
2

pz

t

] f

]pz
5lnL¹pW

2
f 12ln21L¹pW•~vW f !, ~16!

with the definitions

n~ t !5gGE d3p

~2p!3
f ~ t,pW !,

n21~ t !5gGE d3p

~2p!3

f ~ t,pW !

upW u
,

l52paS
2

Nc
2

Nc
221

. ~17!

Here, gG52(Nc
221) and ¹pW refers to differentiation with

respect topW .
9-4
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FROM A COLORED GLASS CONDENSATE TO THE . . . PHYSICAL REVIEW C 63 024609
Multiplying both sides of Eq.~16! by d3p and integrating,
one finds

d

dt
~ tn!50, ~18!

namely, the number density of gluons has the behavion
}1/t. Taking the second moment of Eq.~16!, one finds the
following exact relation in the central region@26#:

]e

]t
1

~e1PL!

t
50, ~19!

where the local energy density is given by

e~ t !5gGE d3p

~2p!3
p f~p,t !, ~20!

and the longitudinal pressure is

PL~ t !5gGE d3p

~2p!3

pz
2

p
f ~p,t !. ~21!

In the hydrodynamic regime wherePL5e/3, the ideal gas
equation of state givese;t24/3. We will return to a discus-
sion of these quantities later on in the paper.

It is convenient to define the quantitiesh5tn and h21
5tn21. The Landau equation can thus be rewritten as

t
] f ~ t,pW !

]t
2pz

] f ~ t,pW !

]pz
5lhL¹pW

2
f ~ t,pW !

12lh21~ t !L¹pW•@vW f ~ t,pW !#.

~22!

If h21 is taken to be independent of time, this equation is
Fokker-Planck equation: the coefficient of the first te
would be the diffusion coefficient, while that of the seco
would be the coefficient of friction.

IV. SCREENING OF COLLINEAR DIVERGENCES IN THE
LANDAU TRANSPORT EQUATION

In the one gluon exchange approximation, as in Coulo
scattering, the transport integral in Eq.~13! has a logarithmic
collinear divergence—represented byL. In Ref. @16#, the
condition applied at early times was that in the maxim
distance 1/qmin corresponding to the minimal momentu
transfer qmin , one has at most one scattering.6 From this
condition, by using the initial gluon distribution, Muelle
finds at the earliest times that

6This condition satisfies the requirement that the soft field~due to
all the other hard gluons! that a particular hard gluon scatters off b
at most of size 1/g. This is so because the freed gluons come fr
the saturated component of the nuclear wave function of
1/g—see the discussion in Sec. II.
02460
e
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Mm
2 5S caSNc

p
D 2/3 Qs

2

~Qst !
2/3. ~23!

A more general expression, for any arbitrary number dens
is easily derived to be

Mm
2 5F S aSNc

p D 2 ~2p!3

2~Nc
221!

n~ t !G 2/3

. ~24!

Alternately, one can use the more conventional presc
tion of regulating the logarithmic collinear divergence inL
through the exchange of dressed gluons characterized
Debye screening mass. A kinetic theory expression for
Debye screening mass can be derived from the screening
timelike gluon propagator in a medium of gluon excitatio
@21#. One obtains

mD
2 52

aSNc

p2
lim

uqW u→0

E d3p
upW u

qW •pW
qW •¹W pW f ~ t,pW !. ~25!

One can check that for an equilibrium Bose distribution, o
recovers the standard result:mD

2 54paSNcT
2/3. For our ini-

tial conditions, it is the screening of the longitudinal gluo
in the transverse direction that is relevant. Performing
integration by parts, this transverse Debye mass is given
the expression@28#

mT
25

aSNc

p2 E d3p

upW u
f ~p!. ~26!

At the very early stage of the 2→2 scattering, the expres
sion in Eq.~26! is, in principle, less reliable since the syste
is completely out of equilibrium. However, at later times,
the system approaches equilibrium,mD should be more reli-
able. One could attempt to parametrize the infrared cutof
small angle scattering such that it interpolates between
two limits. However, at present there is no theoretical jus
fication of any particular form. Since collisions become mo
frequent as one approaches equilibrium, it is likely that
Debye mass is a more reliable cutoff to use. At any rate,
important that one at least have the right limit as the sys
approaches equilibrium.

In Refs. @16,18#, the value ofqmax is held fixed at early
times. This is because if one rewritesL in Eq. ~15! as

L5 lnS ^pt&
mT

D , ~27!

it is argued, on the basis of analytical approximations to
~31! below, that^pt&/Qs changes appreciably only over
long time scale (t;e1/AaS). Since the Debye mass has
stronger time dependence,L grows with time. On account o
the approximations made in arriving at this conclusion, it
useful to check whether this behavior ofL is obtained by
computing^pt& andmT self-consistently at each step in ou
e

9-5
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FIG. 1. The dynamical screening masses,Mm

from Eq.~24! obtained from Ref.@16# and themT

from Eq. ~26! obtained from linear respons
theory@21# plotted as functions of time in GeV21

units. Also plotted versus time are the logarithm
Lm andLt obtained by combining Eqs.~24! and
~26!, respectively, with Eq.~27!.
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numerical simulations.7 We indeed do find, as shown in Fig
1, that L grows rapidly initially as a function of time bu
levels out to a constant as the system approaches equ
rium.

In Fig. 1, we plot the infrared masses in Eqs.~24! and
~26!, as well as the corresponding contributionL to the col-
lision integral, as a function of time~in units of 1/Qs). One
sees that while the relative difference at early times is lar
it is much less so at later times. We have also solved
transport equation using both cutoffs. While there is so
quantitative difference between the two, they do not aff
our qualitative conclusions. For the rest of this work, we w
therefore use the Debye mass in Eq.~26!.

Debye screening occurs due to the exchange of longit
nal gluons. One may worry whether the screening of tra
verse gluons will introduce an additional scale since
static magnetic mass is parametrically larger than the De
mass. However, the conventional wisdom is that, for tra
port cross sections, magnetic screening is also cut off in
infrared by the Debye mass@29,30#. The same, for instance
is not true of color transport—the color conductivity is reg
lated by a magnetic mass of orderg2T @31#. The dynamical
screening of infrared divergences in 2→n (n>2) transport
cross sections merits further study.

V. RESULTS FROM NUMERICAL SOLUTION OF THE
FOKKER-PLANCK EQUATION

We will first consider, as a ‘‘warmup exercise,’’ the sol
tion of Eq.~22! for the case whereh21 is held constant. The
Landau equation then reduces to the Fokker-Planck equa

7We thank A. Dumitru for discussions on this point.
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To check the consistency of our numerical simulation,
will compare, in detail, the numerical solution of the Fokke
Planck equation to the early time analytical solution found
Refs. @16,18#. We will discuss solutions to the nonlinea
Landau equations in the next section.

We first definef̃ 5t f , L5 1
3 ln(t/t0)[

1
3j, wheret0 is a con-

stant defined in Eq.~5!. ~As discussed in the previous se
tion, this assumption is justified at early times.! Scalingl/3
→l, we can rewrite Eq.~22! as

S ]

]j
2

]

]pz
pzD f̃ 5lhj¹pW

2
f̃ 12lh21j¹pW•~vW f̃ !. ~28!

Equation ~28! is a Fokker-Planck equation ifh21 is held
fixed. If one integrates Eq.~28! with respect tod3p, d3pp'

2

and d3ppz
2 we obtain Eqs.~17!, ~18!, and and~19! in Ref.

@18#,

d

dj
h50, ~29!

d

dj
^pz

2&12^pz
2&52lhj2

lh21j

h
P̃L~j!, ~30!

and

d

dj
^p'

2 &54lhjS 12
h21h11

h2 D 1
lh21j

h
P̃L~j!, ~31!

where P̃L5tPL is defined by Eq.~21!. These equations ar
exact. We can therefore perform the following consisten
check on our solution. With the initial conditions in Eq.~3!
and the boundary condition thatf (px ,py ,pz ,t)50 if any
9-6
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FROM A COLORED GLASS CONDENSATE TO THE . . . PHYSICAL REVIEW C 63 024609
px , py or pz→`, we numerically determinef for all time,
directly compute^p'

2 & and ^py
2&, and check to see if Eqs

~29!–~31! are satisfied. Mueller supposes that at early tim
the first term on the left-hand side and the last term on
right-hand side of Eq.~30! are small, thereby yielding the
solution

^pz
2&5lhj. ~32!

It is demonstrated in Fig. 2 that this approximation,
practice, is not a very good one. At very early times, ifj
;0 we see that the first term on the LHS of Eq.~30! is of the
same order as the remaining terms. We cannot therefore

FIG. 2. Numerical solution to the Boltzmann equation with co
stanth21 where each term in Eq.~34! is plotted as a function of
j5 ln(t/t0).

FIG. 3. Each term in Eq.~38! plotted as a function ofj
5 ln(t/t0).
02460
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nore it. We can ignore the term proportional toP̃L(t) in Eq.
~30! for early times. Then Eq.~30! becomes

d

dj
^pz

2&12^pz
2&52lhj.

Its solution is

^pz
2&5lhj1

lh

2
@exp~22j!21#. ~33!

This solution ~see Fig. 4! agrees much better with th
numerical results than Eq.~32! does. We defineCI(j) as

2lhj2
lh21j

h
P̃L~j!2

d

dj
^pz

2&22^pz
2&5CI~j!, ~34!

whereCI(j) should be small if Eq.~30! is satisfied. Figure 2
verifies indeed that this is so.

Next, look at Eq.~31!. If we assume that bothh21 and
h11 are constant with respect to time and determined by
initial condition, Eq.~3!,

h5c
Nc

221

4p2aSNc

Qs
2 , h215c

Nc
221

2p2aSNc

Qs ,

h115c
Nc

221

6p2aSNc

Qs
3 . ~35!

Using Eq.~35! we rewrite Eq.~31! as

d

dj
^p'

2 &52
4

3
lhj1

lh21j

h
P̃L~j!. ~36!

Again the term containingP̃L is small. We therefore solve
the equation above, with the appropriate boundary con
tions, to find

-

FIG. 4. Numerical results for̂pz
2& and^p'

2 &, plotted as a func-
tion of time, compared with the analytical approximations in E
~33! and ~37! . Also plotted ish as a function of time.
9-7
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FIG. 5. The number of gluons per unit o

phase spacef (t,pW ) plotted as a function ofp'

and pz for different times.Nc51, aS50.3, c
51.3 and Qs51 GeV. Units of time are in
GeV21.
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^p'
2 &5

Qs
2

2
2

2

3
lhj2. ~37!

As previously, defineCII (j) such that

d

dj
^p'

2 &1
4

3
lhj2

lh21j

h
P̃L~j!5CII ~j!. ~38!

Figure 3 verifies that Eq.~38! is satisfied for early times.
Finally, we check to see how well Eq.~29! is satisfied

numerically. Figure 4 plots the numerical result forh vs t
and demonstrates thath is constant with respect tot. As
discussed earlier, Fig. 4 also compares the numerical re
for ^pz

2& and ^p'
2 & with the analytical solutions of Eqs.~36!

and ~30! given by Eqs.~33! and ~37!.

VI. RESULTS FROM NUMERICAL SOLUTION OF THE
LANDAU TRANSPORT EQUATION

In the previous section, we numerically solved the Bol
mann equation using Mueller’s approximation for the mi
mum scattering angle, and withh21 fixed for all time @Eq.
~28!#.8 Since the previous analysis is only expected to
valid for early times, one must solve the general express
~22! with h21 determined self-consistently.

8Recall thath21 is an integral representing the ‘‘21’’ moment of
f.
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In this section, we will discuss results from numeric
solutions of the Landau equation in Eq.~22! employing the
initial single particle distribution given by Eq.~3! and the
dynamical screening mass given by Eq.~26!. The equation is
a second order partial integrodifferential equation. It can
solved by combining the alternating direction implicit~ADI !
method and the Crank-Nicholson differencing sche
@32,33#. A detailed discussion of the numerical procedu
can be found in the Appendix.

We will first begin by briefly describing the evolution o
the single particle distribution and its moments. Next,
will discuss various measures of kinetic equilibration a
hydrodynamic flow for a system undergoing boost-invaria
one-dimensional expansion. Finally, we will discuss our n
merical results for these quantities for different values ofQs
andaS .9

A. Single particle distributions

The initial distribution for the numerical solution of Eq
~22! is given by Eq.~3!, at the initial time, determined from
Ref. @14#, given by Eq.~4!. The time evolution of the single
particle distributionf (t,pz ,p') is shown in Fig. 5 for a par-
ticular set of initial parameters. It begins its time evolution
a delta function inpz ~represented practically by a narro
Gaussian distribution! and as a step function inp' — see Eq.

9We will ignore running coupling effects in this analysis. It
argued in Ref.@18# that running coupling effects in the evolutio
are O(AaS) and therefore suppressed.
9-8
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FROM A COLORED GLASS CONDENSATE TO THE . . . PHYSICAL REVIEW C 63 024609
~3!. As time proceeds, we see thep' modes get scattered o
the transverse plane in the longitudinal direction. The lar
p' modes decrease rapidly as thepz distribution widens out.
At aboutt511.95 GeV21, thepz distribution is at its broad-
est extent.

The behavior of the single particle distributions are se
more clearly in Fig. 6, where we have plottedf, as a function
of pz or px , for fixed px and pz , respectively. We see ini

FIG. 6. The single particle distributions, for fixedpx or pz plot-
ted as a function ofpz and px , respectively, for different times in
the evolution of the distribution. The results are foraS50.3, Qs

51, c51.3, andNc53.
02460
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tially that the two distributions are widely different. As tim
proceeds, they converge relatively rapidly at soft moment
but much more slowly in the tails. If thermal equilibrium
defined strictly as the distributions being completely isot
pic, this condition is reached only asymptotically, if at all

Figure 7 shows, for particular initial parameters, the av
ageŝ px

2&, ^py
2&, and^pz

2& as functions of time.̂pz
2& starts at

zero and quickly rises before converging slowly to^px
2& and

^py
2&, which, in turn, decrease monotonically with time. Th

nontrivial behavior of̂ pz
2& is because the system is unde

going longitudinal expansion. In a box at rest, one expe
that ^pz

2& will show more of a monotonic behavior befor
leveling off. It again appears from Fig. 7 that the conve
gence to isotropic distributions is very slow. This is partic
larly so since the second moment of the distribution weig
the high momentum tail unduly. The latter, as we observ
in Fig. 6, takes longer to equilibrate.

Interestingly, as we will discuss in the following, the co
vergence of bulk thermodynamic observables to the expe
equilibrium values is much more rapid. A likely explanatio
is that these observables are much less sensitive to the
momentum tail of the distribution.

B. Kinetic equilibrium and hydrodynamics

From Figs. 6 and 7, it appears that the distribution, a
whole, become isotropic only asymptotically. This statem
is particularly true of the tails, inpz andpt , of the distribu-
tions. The distributions agree more closely at softer m
menta. Nevertheless, as we shall discuss below, when
look at thermodynamic signatures of equilibrium, they co
verge relatively rapidly to the expected behavior in a flu
undergoing boost-invariant one-dimensional expansion.

Let us first discuss what this expected behavior is. Si
we only consider 2→2 processes in this work, the total num
FIG. 7. The averageŝpx
2&, ^py

2&, and ^pz
2&

versus time in GeV21 units for different values of
aS , c, andQs . In all cases,Nc53.
9-9
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JEFFERSON BJORAKER AND RAJU VENUGOPALAN PHYSICAL REVIEW C63 024609
ber of gluons is fixed. The equilibrium solution of the cla
sical Boltzmann equation, Eq.~22!, thus has the form

f ~ t,p!5exp$b~ t !@m~ t !2p#%. ~39!

Here m(t) is the chemical potential, andb(t)51/T(t),
whereT is is the temperature. Substituting this equilibriu
distribution in Eq.~17!, one obtains

n~ t !52
~Nc

221!

p2
T3~ t !expS m

T D , n21~ t !

5
~Nc

221!

p2
T2~ t !expS m

T D . ~40!

The average energy density is defined to be

e~ t !5gGE d3p

~2p!3
upW u f ~ t,p!. ~41!

From Eq.~41! and Eq.~40!, the energy per particle at equ
librium is

E~ t !5e~ t !/n~ t !53T~ t !. ~42!

Now, the entropy density of a classical Boltzmann gas
defined as

s~ t !52gGE d3p

~2p!3
f ln f . ~43!

In equilibrium, the entropy per particle is simply

S~ t !5
s~ t !

n~ t !
532

m

T
. ~44!

We noted previously, since the number of gluons is c
served, thattn(t)5const. Also note that, since the entrop
per particle is constant in equilibrium, we find from th
above equation thatm/T5const. From these constraints, th
system in equilibrium must satisfy

T3t5const , et4/35const . ~45!

Finally, recall we had defined the longitudinal pressure in
central slice in Eq.~21! as

PL~ t !5gGE d3p

~2p!3

pz
2

p
f ~p,t !.

One can similarly define the transverse pressurePT to be

PT~ t !5gGE d3p

~2p!3

pt
2

2p
f ~p,t !. ~46!

From Eq. ~19!, and the above relations, the condition f
ideal hydrodynamics is

PT5PL5
1

3
e. ~47!
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The approach to equilibrium, in the sense of ‘‘saturatin
the above thermodynamic~and hydrodynamic! identities, has
been studied, in the relaxation time approximation, by s
eral authors@26,34,35#. This approximation is also employe
in studies with minijet initial conditions@36,28#. The colli-
sion kernel in Eq.~10! can be written formally as@27,37#

C@ f ~pz ,pt ,t !#52
~ f 2 f equil!

u
, ~48!

where u, the collision or relaxation time, is in general
function of time and momentum. The relaxation time a
proximation is one where the momentum dependence ofu is
neglected. Baym studied equilibration in this approximati
takingu to be a constant. He showed that the thermodyna
relations in Eqs.~45! and~47! were satisfied only asymptoti
cally in time.10 Nevertheless, the convergence of the syst
to the asymptotic value is rapid. The system, while not qu
in local thermodynamic equilibrium, is sufficiently close to
that equilibrium is a good working assumption. Subs
quently, Gavin studied equilibration in the relaxation tim
approximation assumingu to have the time dependence@34#;
u5at, wherea is a constant. Depending on the value ofa,
the system approaches the hydrodynamic limit quic
~smallera ’s! or free streaming~largera ’s!. Heiselberg and
Wang @35#, studied the general case,u5tp. They conclude
that for p,1 thermalization is attained, while the syste
free streams forp.1. The casep51 studied by Gavin is the
marginal one, interpolating between the two regimes for d
ferenta ’s. In a subsequent paper@38#, Heiselberg and Wang
study the dependence ofu in finite temperature QCD, and
tentatively conclude thatp;1/3,1.

C. Convergence to the hydrodynamic limit

In this work, as discussed in Sec. III, we go beyond t
relaxation time approximation in treating the collision ke
nel. It is not necessary therefore, once a screening me
nism is postulated, to specify the time dependence of
collision time. In the following, we will discuss our result
for the thermodynamic relations stated in the previous s
tion.

In Fig. 8 we show the entropy per particleS plotted as a
function of time. As shown for typical values ofaS , c, and
Qs , it initially increases rapidly and flattens out, monoton
cally approaching its asymptotic value~thereby implying that
m/T goes to a constant as well!. The expression in Eq.~43!,
used in the computation of Fig. 8, is the correct one, exc
at very early times when the well-known full expression f
the entropy density of a Bose gas should be used. T
where the result in Fig. 8 is going to zero is where the cl
sical Boltzmann expression for the entropy density is bre
ing down. We have checked that the full expression ensu
that the entropy per particle is always positive definite. T
triangles in Fig. 8 correspond to the entropy per particle

10This is indeed what we would conclude from our study of t
single particle distributions in the previous subsection.
9-10
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FIG. 8. The entropy per particleSplotted as a
function of time for aS50.3, c51.3, and Qs

51 ~GeV!. In both cases,Nc53. The triangles
denote the entropy per particle of a two
dimensional Boltzmann gas.
o-

t
te
o
cl

me
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ive.
suming the partons are initially localized on the tw
dimensional transverse plane.

The convergence of other thermodynamic quantities
the hydrodynamic limit is shown in Fig. 9. Again, we no
that the convergence to their asymptotic values is much m
rapid than one would expect by looking at the single parti
02460
o

re
e

distributions alone. Our results suggest that the collision ti
effectively has a time dependencetp with p,1.

Since the convergence to the hydrodynamic limit is on
asymptotic, deciding when the system can be describe
terms of thermodynamic quantities is somewhat subject
Here, we define the equilibrium timeteq as the time it takes
FIG. 9. The top panel plotsTt1/35(e/3n)t1/3

wheree is the energy density andn the number
density; the middle panel thee, the longitudinal
pressurePL and the transverse pressurePT ; the
bottom panele3/4 and the entropy densitys; all
plotted versus time in GeV21 units, for typical
values ofaS , c, Qs , andNc .
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for Tt1/3 ~42! and the entropy per particleS ~44!, to reach
90% of their maximum asymptotic value~see Figs. 8 and 9!.
One can then also extract the ‘‘initial’’ temperature a
chemical potential that correspond toteq by using Eqs.~40!–
~44!.

The equilibration timeteq is very sensitive to the values o
aS , c, andQs . Table I shows the equilibration timeteq, the
initial temperatureTeq, and the chemical potentialm for
typical values ofaS , c, andQs . The parametric behavior o
these quantities~for a fixed value of the nonperturbative co
stantc) as a function ofQs , for two different values of the
coupling constantaS , is also shown in Fig. 10. Larger va
ues ofaS andQs yield smallerteq.

These results can be qualitatively understood as follo
One can show@see Eq.~37!# that the equilibration time is
parametrically

teq;
1

Qs
expSA 2p

caSNc
D .

In Fig. 10, we note thatteq decreases roughly as 1/Qs . Also,

TABLE I. Equilibration times, temperatures and chemical p
tentials as a function ofaS andQs for c51.3, andNc53.

aS Qs(GeV) teq(fm) Teq(MeV) m(MeV)

0.1 1.0 12.2461.92 171.0564.9 137.78619.3
0.2 1.0 5.860.83 166.2865.19 144.71615.22
0.2 2.0 4.4860.75 304.32619.39 212.95631.23
0.3 1.0 3.2460.44 174.2765.21 157.86616.18
0.3 1.4 2.7760.60 234.70611.60 195.71631.75
0.3 2.0 2.3660.44 320.72622.38 249.61625.06
0.3 2.4 1.8060.56 386.38628.48 337.56626.18
0.3 3.0 1.4260.45 471.69636.49 457.72636.17
02460
s.

it is greater for smalleraS as one would expect from thi
expression. Similarly, from requiring thattn(t)5const, one
finds for the initial temperature that

T}
Qs

aS expSA 2p

caSNc
D .

We see that this dependence onQs and aS is confirmed in
Fig. 10.

At RHIC, we expect~roughly! that aS;0.3, c;1.3, and
Qs; 1.0 GeV. For the idealized initial conditions dis
cussed here, the corresponding time and temperature a
netic equilibrium areteq;3.2 fm andTeq;174 MeV. At
LHC, we expect Qs; 2 –3 GeV, therefore teq;2.4
21.4 fm andTeq;3212472 MeV. Are these numbers re
alistic? No~especially at RHIC!, since it is unlikely that, at
these temperatures, the system is a weakly coupled glu
gas. At the time scales and temperatures corresponding
rapid convergence of the system to the hydrodynamic lim
other ~likely nonperturbative! effects might become impor
tant. One cannot conclude definitively that this is the ca
because we have not considered realistic initial distributi
nor have we discussed the importance of particle num
changing processes. We will comment on this point in
final section below.

VII. SUMMARY AND OUTLOOK

We have solved numerically a nonlinear transport eq
tion, Eq. ~22!, which describes the evolution, after a hea
ion collision, of single particle gluon distributions in the ce
tral rapidity slice. The initial conditions for the solution o
this equation are the highly anisotropic, idealized, initial co

-

f

FIG. 10. The estimated values of the timeteq,
temperatureTeq, and the chemical potentialm, at
the onset of equilibrium, plotted as functions o
Qs for aS50.2 and 0.3.
9-12
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FROM A COLORED GLASS CONDENSATE TO THE . . . PHYSICAL REVIEW C 63 024609
ditions first discussed in the context of parton transport
Mueller @16,18#. The distributions are controlled by a sing
scale—the saturation scaleQs of parton distributions in the
nuclear wave functionbefore the collision. Only elastic
gluon-gluon scatterings are treated. Equilibration, in this
proach, is dominated by small angle scattering. The collin
divergences that occur are regulated dynamically by a cu
of the Debye form. We have checked that, at early times,
linearized Fokker-Planck equation reproduces the analy
results of Mueller. These analytical approximations howe
cannot be carried through to times relevant for equilibrati

We find that the tails of the initially highly anisotropi
initial conditions converge very slowly to the expected is
tropic equilibrium distribution. This behavior is confirme
by the behavior of̂ pz

2& and ^px
2&. Despite the slow conver

gence of the single particle distributions to the isotropic th
mal shape, thermodynamic observables such as the en
per particle, the energy per particle, and the transverse
longitudinal pressures converge more rapidly to the hyd
dynamic behavior expected of one-dimensional, boost inv
ant expansion. The more rapid convergence for these obs
ables occurs because they are more sensitive to s
momentum modes and less so to the high momentum ta

Using a particular criterion for equilibration~that thermo-
dynamic observables have reached 90% of their asymp
value!, we extracted the equilibration times and the init
temperatures and chemical potentials. We have studied
they behave for varying values ofQs andaS . Even though
small angle scattering is very inefficient~the equilibration
time is an order of magnitude greater than the format
time!, it is nevertheless smaller than the hydrodynamic ti
scalethydro;R/c0. HereR is the radius of the nucleus andc0
is the speed of sound in the fluid. The relatively long equ
bration times correspond to relatively low temperaturesT
!Qs . At these temperatures, it is unlikely that the syst
can be described as a weakly coupled gluon gas. It is th
fore reasonable to ask whether other effects, be they pe
bative or nonperturbative in nature, may significantly al
our results.11 We will enumerate below, in order of increa
ing complexity, those effects that are amenable to a w
coupling treatment.

First, recall that our results were obtained for idealiz
initial conditions. More realistic initial distributions have re
cently become available@15#, and they are qualitatively dif-
ferent from the idealized distributions. Secondly, since
occupation numbers of the gluons are large initially, the
fects of Bose enhancements in the Boltzmann equa
should be taken into account. Both of these effects
straightforward to incorporate in our approach, and res
with these improvements will be reported shortly@17#.

Thirdly, as we discussed in the introduction, numb
changing 2→3 processes may be very important in esta
lishing kinetic as well as chemical equilibrium@40#. Even
though these processes are suppressed by an addi
power of aS , they are more efficient in redistributing th

11For an interesting recent take on this topic see Ref.@39#.
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momenta @22#. Unfortunately, past treatments have be
handicapped by uncertainties in how one treats infrared
vergences. Work in progress suggests that this problem
be cured, and that equilibration is much more rapid@23#. If
this is indeed the case, then initial temperatures are relati
close to the initial saturation scale, and the weak coupl
treatment of equilibration will have been self-consistent.

Ultimately, the goal is relate the rich variety of hadron
and electromagnetic spectra that will soon be available
RHIC ~and some years later, at LHC! to properties of the
initial nuclear wavefunction, that may independently
probed in deeply inelasticeA or in pA collisions. This paper
is a first quantitative step in that direction.
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APPENDIX: NUMERICAL ANALYSIS OF SECOND
ORDER PARTIAL INTEGRODIFFERENTIAL EQUATIONS

Equation~22! is a second order partial integrodifferenti
equation whose numerical solution requires some care to
sure stability. Fortunately, standard finite differenci
schemes can be used and numerical stability guarant
Equation~22! is of the form

]u

]t
5A~ t !S ]2u

]x2
1

]2u

]y2
1

]2u

]z2 D 1B~ t !S ]u

]x
1

]u

]y
1

]u

]zD ,

~A1!

whereu5u(t,x,y,z).
To discretize Eq.~A1! we first define a multidimensiona

grid

t5t01nDT, x5x01 iD, y5y01 j D, z5z01kD,

wheren50,1,2, . . .N, i 50,1,2, . . .I , j 50,1,2, . . .J, and k
50,1,2, . . .K. Next we employ the alternating direction im
plicit ~ADI ! method using the crank-Nicholson finite diffe
encing scheme@33#. The ADI method is especially useful in
solving parabolic multidimensional equations on rectangu
grids. For problems with three spatial dimensions, such
Eq. ~A1!, the ADI method is implemented by splitting eac
time step of sizeDT into three steps of sizeDT/3. At the
current fractional time step,n1 1

3 for example, only one of
the spatial derivatives are evaluated and the others are e
ated at the previous time stepn. If we choose not to split the
time step in such a way, the solution to Eq.~A1!, after dis-
cretizing, would require us to invert a large matrix of th
9-13
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same size as our grid. The purpose of splitting the time s
in such a way is to reduce the problem in question into
solution of a tridiagonal matrix~as shown below!. To illus-
trate this, Eq.~A1! is discretized using the ADI method wit
the crank-Nicholson finite differencing scheme. First d
cretize and evaluate thex derivatives at the current time ste
n1 1

3 :

ui jk
n11/32ui jk

n

DT/3
5

An

D2
@ui 11 jk

n11/31ui 21 jk
n11/322ui jk

n11/31ui j 11k
n

1ui j 21k
n 22ui jk

n 1ui jk 11
n 1ui jk 21

n 22ui jk
n #

1 linear terms. ~A2!

Increment the time step by 1/3 and evaluate they deriva-
tives at current time stepn1 2

3 :

ui jk
n12/32ui jk

n11/3

DT/3
5

An

D2
@ui 11 jk

n11/31ui 21 jk
n11/322ui jk

n11/31ui j 11k
n12/3

1ui j 21k
n12/322ui jk

n12/31ui jk 11
n11/31ui jk 21

n11/3

22ui jk
n11/3#1 linear terms. ~A3!

Increment the time step again by 1/3 and evaluate thz
derivatives at the current time stepn11:

ui jk
n112ui jk

n12/3

DT/3
5

An

D2
@ui 11 jk

n12/31ui 21 jk
n12/322ui jk

n12/31ui j 11k
n12/3

1ui j 21k
n12/322ui jk

n12/31ui jk 11
n11 1ui jk 21

n11

22ui jk
n11#1 linear terms. ~A4!

In Eqs.~A2!–~A4!, ‘‘linear terms’’ refers to the terms in
Eq. ~A1! which contain first order derivatives. Since th
crank-Nicholson finite differencing scheme is stable only
the terms with the highest order of derivatives are implic
en

t,

-

t,

02460
p
e

-

f
,

the lower order terms are allowed to be either explicit
implicit. We assume here for brevity in notation that th
linear terms are explicit and evaluated at the previous t
step. Therefore, we do not write the linear terms out.

The solution to Eqs.~A2!–~A4! at every time step is sim
ply the solution of a tridiagonal matrix at everyn. For ex-
ample, Eq.~A2! can be arranged as follows:

anui 21 jk
n11/31bnui jk

n11/31gnui 11 jk
n11/35d i jk

n , ~A5!

where

an5gn52
AnDT

3D2
, bn52

AnDT

3D2
,

and

d i jk
n 5

AnDT

3D2
@ui j 11k

n 1ui j 21k
n 22ui jk

n 1ui jk 11
n

1ui jk 21
n 22ui jk

n #1 linear terms.

Equation~A5! is simply an equation of the form

M•u5d, ~A6!

whereM is a tridiagonal matrix. Since we knowM andd at
every previous time stepn, we can in principal solve foru at
every current time stepn1 1

3 , given the boundary condition
ui jk

0 , u0 jk
n , ui0k

n , andui j 0
n . The inversion of sparse matrice

~such as tridiagonal matrices! is usually numerically trivial.
In solving Eq. ~A1! one needs to specify the bounda

conditions suitable to solving a second order differen
equation. In this work we have specifiedui jk

0 by Eq. ~3! and
required thatu vanish at the boundary of spaceu0 jk

n , ui0k
n ,

ui j 0
n , uI jk

n , uiJk
n , and ui jK

n 50. Furthermore we require tha
the first derivatives vanish atx,y,z→6`. Therefore,uI jk

n

2uI 21 jk
n ;0, u1 jk

n 2u0 jk
n ;0, and so on forj andk.
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