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Prompt neutron spectrum and average neutron multiplicity in spontaneous fission of°Cf
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A simple analytical expression is introduced for the average neutron multiplicity depending on the fission
fragment mass using directly the prompt neutron energy spectrum in the framework of statistical theory of
neutron evaporation from fission fragments. The theoretical results are compared with the experimental data for
the spontaneous fission &FCf. The possibility of oscillative character of neutron average multiplicity versus
fragment masses is discussed in terms of the neutron average binding energy for a given fragment mass.
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[. INTRODUCTION trum will be discussed, together with our contributions to the
related formulas, in the following section. Sections Il and

Prompt fission neutrons have become the subject of & present our calculation method for the prompt fission neu-
number of detailed studies on both the fission mechanisriron spectrum in the fragment center of mass frame and av-
and neutron evaporation rather than the practice for react@rage neutron multiplicities, respectively. We discuss the re-
calculations, in which theé’®Cf nucleus has been widely sults in Sec. V. Concluding remarks are given in Sec. VI.
used due to its highly specific neutron yield.

One such study is the work of Broga] on prompt neu-
tron average multiplicity in the spontaneous fissiorrStf
and °%m involving the multimodal fission hypothesis of a  Prompt fission neutrons have been studied experimentally
fissioning nucleus and its scission at random position on thand theoretically in a great number of investigations on spon-
neck. In his work, Brosa developed a model for the calculataneous and induced fission of different nuclei. In these
tion of neutron multiplicities versus fission fragment massesworks, in general, energy and angular distributions of prompt
Using experimental fission mode probability data and correfission neutrons in the fragment center of mass and labora-
sponding Gaussian-like mass vyields of fragments, togethdory frames, neutron average energy, multiplicity, and other
with the neutron multiplicity estimation for a given mode, characteristics of prompt neutrons have been studied. Since
Brosa predicted a triple sawtooth behavior of average neusur calculation method of prompt neutron spectrum is nearly
tron multiplicities in the spontaneous fissionfCf, which  close to those introduced by Refd,6], here we shall briefly
was confirmed later experimenta(lg]. In describing the av- review the works described in Refgl,6].
erage neutron multiplicities against mass number, different In the framework of the statistical model and in the Weis-
methods such as fission fragment mass yield momigijts skopf representatiof7], Terrell [6] calculated the fission
and fragment average excitation energy estimatttjnvere  neutron spectrum taking into account the cascade evapora-
used. In a recent papgb| the average neutron multiplicity tion of neutrons and introducing the notion of residual exci-
has been calculated as a function of excitation energy involvtation energy distribution. In his calculations, the compound
ing total neutron spectrum, the fragment mass dependencgicleus formation cross section was assumed to be constant.
has not been considered. The residual distribution takes into account both the initial

The purpose of this paper is to calculate the average newexcitation energy distribution in the Gaussian form and the
tron multiplicity versus fragment mass directly from the fis- cascade evaporation neutrons. Further, using the degenerate
sion neutron energy spectrum. The present work shows th&termi-gas model of nucleus, the residual excitation distribu-
an analytical simple expression is available for average neution is transformed to the temperature distribution of residual
tron multiplicities from which the contributions coming from fragments. Carrying out numerical integrations for different
free parameters in the theory used to the mass dependiigmperatures, Terrell found Maxwellian forms of laboratory
average neutron multiplicity can be clearly seen. We findneutron energy spectra for the cases®¥fCf spontaneous
that the average fragment excitation energy estimation, tcfission and neutron induced fission TfU, which were ob-
gether with the neutron average binding energy, and the kiserved in the experiments.
netic energy estimation mainly determine the average neu- Madland and Ni{4] introduced an analytical expression
tron multiplicity as has been used in a number of studies. Innvolving an exponential integral and incomplete gamma
addition, we show that the contribution of excitation energyfunctions for the energy spectra in the fragment center of
variance to the average neutron multiplicity and that themass and laboratory systems using Terrell's representation
triple sawtooth behavior of average neutron multiplicity in for temperature distribution of residual fragments and con-
the fission of?°’Cf can be naturally described through the stant compound nucleus cross section of neutron absorption.
present calculations. Comparing their calculations with experimental data on neu-

Since our derivation of average neutron multiplicity is tron induced fission of**U, they found nearly Maxwellian
based on neutron energy spectrum calculations, the essenicgm in the energy region of emitted neutrons less than 5
of the available calculation methods on neutron energy spedvieV. However, it should be noted that the residual tempera-

Il. THEORETICAL BACKGROUND

0556-2813/2001/62)/02460310)/$15.00 63 024603-1 ©2001 The American Physical Society



H. AHMADOV, B. GONUL, AND M. YILMAZ PHYSICAL REVIEW C 63 024603

ture (T) distribution, used in the calculations of R€fi4,6]in  fragment initial excitation energy distribution parameters

the form (most probable excitation and its variahcthe neutron av-
erage binding energy, and the nuclear temperature parameter
2T for a given fission fragment. We will compare our calcula-
—dT, T<T, . ; . T
P(MdT={ Tm , (1)  tion results with the experimental data for neutron multiplic-

ity dependence on fission fragment mass, and show that our
work leads to a better agreement with the data than the work

whereT,, is the maximum temperature that corresponds td*f Brosa[1].
the initial total average excitation energy of fission frag-

ments beingl=aT? (a is the Fermi-gas level density pa-
rametey, corresponds to a constafur regulay residual ex-

0, T>T,

A. Neutron evaporation spectrum formula
and nuclear state density

citation energy distribution such tha&(U)dU=P(T)dT In accordance with the principle of detailed balaht],
whereU is the excitation energy and the energy distribution of neutrons emitted from compound
nucleus with the excitation enerdy can be written as
2T
P(U)dU:P(U)ZaTdeT—sz, 2 p(U-B—¢)
m ¢(e,U—B)=consXeo (U-B—¢,6) ———,
B p(U)
which yieldsP(U)=1/aT%=1/U. As shown in Ref[6], the ®)

residual distribution of excitation energy decreases with in'wheres andB are the neutron kinetic and binding energies
creasing excitation energy. So the linear distribution form '
given by Eq.(1) is somewhat incorrect, although almost the
same initial average excitation energy given |n.F{6].co_r— . andp(U—B—¢) are the nuclear state densities of the initial
responds to both an average temperature for linear dlStI’IbLgnd final states, respectively
tion (T=Tp,) and to a numerical integration value for more  Considering the nucleus as a system of nucleons in the
exact temperature distribution. _ _ thermodynamical equilibrium state and requiring the maxi-
Further, Madland and Ni4] carried out their calcula- mality of its entropy, the energy state density of a nucleus

tions on compound nucleus formation cross section usingiith the excitationU may be determined by the use of the
different potentials within the frame of the nuclear optical parwin-Fowler integral methofg] reducing to

model. Having an approximate calculated cross seaiign

respectively, andr; is a formation cross section of com-
pound nucleus with excitation enerdy. In Eq. (5), p(U)

that depends on neutron energy ex S(U)]
p(U)=—"7—" (6)
AU)
oc=b+ E 3 whereS(U) is the entropy and (U) is the function from the

second derivatives of the entropy. For the degenerate Fermi-

whereb andc are constant, they performed numerical inte-9as model, Bethg10] determinedh as

grations of neutron spectra fép°Cf fission and neutron in- N(U)~Un 7
duced fission of uranium and plutonium. The comparison of (U) ' @)
their calculation results with experimental data led to a bettefyheren is a fractional number. Bringing together EdS)
agreement than those obtained using constant cross-sectigpg (6), one can write

calculations.
In the same worl4], the average neutron multiplicity exdS(U—-B—¢)]
was calculated using ¢(e,U-B)=conseo(U-B-e,e) AMU—-B—¢)

- ®
U=7(B,+5)+E, (4)

. . Supposings<U — B, Weisskopf[8] used
with v, By, €, andE,, being, respectively, the average mul-
tiplicity, average neutron binding energy, average neutron _
center of mass energy, and the total average prompt gamma exi S(U—B~#)]~consk exp( T(U —B))’ ©)
energy.

It is noted that the theories used in Ref4,6] do not where

include fission fragment initial excitation energy variance.
The approximations of shifted excitation energy distribution T-Y(U-B)= (5_8
for the emission of cascade neutrons and residual distribution 2]V
of excitation energy were not cleared out in their work,
which will be explained explicitly in the present work is the thermodynamic temperature of the final nucleus with
through Sec. IV. In our calculations, we will derive an ana-the excitation energyly{ —B).
lytically simple expression for neutron energy spectrum and In his calculations Terrell6] used an approximation, un-
neutron multiplicity which depends on four terms; the fissionlike the one employed by Weisskopf, such that-e]<U

&

) (10)
U=U-B
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—B—=¢ to determine the final state temperature from less ex- 1 d o(e,U—B)
citation energy which differs from the corresponding Weis- T dU-B—¢) |n80 (U-B—-¢,¢)
skopf's expression by. However, for our calculations we ¢ ’
shall use no(U—B
“dU-B—g) MPUTB7e)
¢(e,U-—B)=consXeo (U—B—e¢,¢) q
exd—e/T(U-B =——Inp(U-B—e¢). (13
A —e/T(U=B)] a I
NMU—-B—¢)

In practice, T’ is determined in measuring the neutron

which can be obtained by the substitution of E®).into Eq.  evaporation spectra from the reactiongr(’) and (p,n) at
(8). different incident energies, which correspond to different

A more contemporary modgb], the so-called “phenom- nuclear excitations, and making assumptions regarding the
enological version of the generalized superfluid model otbehavior of o,(U—-B—¢,e) on U and . In this case
nuclear level density,” gives no new information regarding ¢(s,U—B) represents the neutron spectrum either for
the description of the prompt fission neutron spectrum. (n,n") or for (p,n) reactions. To describe the nuclear level
density, a variety of models have been used, including the
degenerate Fermi-gas model, the Fermi-gas model with the
. ] . residual interaction in the form of pairing energy, the super-

Obviously, the abundance of data to which one is accusfiyid model of nuclear matter, and the so-called generalized
tomed from work with stable nuclei certainly cannot be ex-superfluid modef12,13. In the superfluid model, the energy
pected for fission fragments which are neutron enriched nuof the transition of the nuclear matter to the superfluid state
clei with high excitation energies. Hence the existingjs close to the neutron binding energy. However, in investi-
ally extrapolated to gather some information for the com-are considered at high excitations until 35—40 MeV, starting
pound nucleus formation cross sections. Another way is tgom the neutron binding energy. In such region of nuclear
calculate compound nucleus formation cross section for difaxcitation energy, the superfluid model is reduced to the de-
ferent neutron energies for a mass considered theoreticallygenerme Fermi-gas model with the renormalization of the

Experimental data foir, shows 14z behavior for the excitation energy to the lower value shifting by a condensa-
incident neutron energy range starting from thermal energyion energy. One of the main parameters of this model, the
to ~1 MeV. For the higher energies the cross section isyuclear level density parametarthat relates to the thermo-
almost constant. Calculatiorfg], including the compound dynamical temperature with excitation energy, and which de-
nucleus formation cross section expressed in(Bj.where  pends on nuclear shell structure, can be determined most
the constants andb are based on the optical model involv- re|iab|y from the neutron resonance data of Compound

B. Compound nucleus formation cross section

ing different potentials, justify this behavior. nucleus at the excitations near the neutron binding energy.
But neutron resonance data are insufficient in describing the
C. Neutron evaporation spectrum from fission fragments nuclear level density dependent on excitation energy. Alter-

As discussed in Sec. Il A, WeisskoBf] used an expo- native methods are the use af,q’) and (p,n) reactions
where neutrons are assumed as evaporating from the com-

nential expression, Eq9), in describing level density of :
compound nucleus for the case<(U—B). Stavinsky[11] pound nucleus. Having used neutron spectrum measurements
X ' ipiom the neutron inelastic scattering and frdmn) reac-

to describe the average properties of a nuclear system withir, . :
the Hibbs canonical assembly, proposed a fixed excitatioonS: one can verify fulfillment of Eq(12) or one can de-

for nuclei due to the isolation but assumed the thermody:[ermlne the nuclear temperature through Etg) in a wide

namical fluctuation of the temperature around an averagfeeg'on of_nucle_zar excitations. Some results of such studies
- . . L are described in Ref$§14-14. In these works, almost con-
temperature valueT. Using the Gaussian distribution of

. ; stant nuclear temperatures were obtained for different nuclei
temperature and supposing the relation in a wide region of the given nuclear excitations when emis-
sion of a few neutrons is energetically possible, and in some
cases the constant temperature approximation gave a better
o description of nuclear state density than that of the Fermi-gas
between nuclear excitation and average temperature, hgodel at excitation energies higher than neutron binding en-
proved that the relation given by Weisskopf, &), is not  ergy. In addition, such description has a more general char-
only valid for the conditione<U—B but for the whole  acter which is not limited to the magic or near magic nuclei.
range ofe, namely Gse<U —B, replacingT in Egs.(9) and Thus, the approximate constancy of a nuclear temperature
(11) with T. in describing the nuclear level density of a nucleus in a wide

Here we note that the thermodynamical temperature of aegion of the excitation energies makes it possible to use this
nucleus given by Eq(10), which also appears in Eq11), resultin the application for the prompt fission neutron energy
differs from the nuclear temperaturd’(), which is deter- spectrum calculations. In this case the thermodynamical tem-
mined through perature in Eq(11) may be admitted as a nuclear tempera-

U=aT? (12)
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ture. Assumingo.(U—B—¢,g) as constant due to qualita- whereU, is the most probable total excitation energy. If we

tive weighting of our calculations, for the energy spectrum ofsuppose that independent excitation energy distributions of

neutrons emitted from fragment with excitatibh we write  fragments are in Gaussian form then the total distribution of
U=U;+U, is given as

(5.U—B) eexp —elT) (14)
£, — S, e —— 9]
¢ T2F[(U—B)/T] P(U):J P(U,)P(Uy)dU,
where the appearance of the functiep(U —B)/T], which .
is in the form :J P(U)P(U-U;)dU;
F[(U-B)/T]=1-[1+(U-B)/T]exd —(U—B)/T], o
(15 _ 1 wé_gilﬁl_ (20)
N 20

is due to the normalization condition

Here P(U;) andP(U,) are normalized Gauss distributions
for complementary fragments andy=U o+ U,q, %= 02
+cr§, whereU 4, o4 andU,q, o, are corresponding exci-
tation energies and variances of fragments, respectively.

The neutron evaporation energy spectrum in the fragment However, the physically acceptable values of excitation
center of mass system in the form of EG4) is to be con- energies of fragments lie betweers@;<U, 0<U,<U,
sidered as isotropic and emitted from fully accelerated fragS© that Eq(20) becomes

ments in accordance with the observations of Réf. We 0

¥VI|| assume d_lffe_rent nuclear temperature parameters for dif- P(U)=f P(U,)P(U,)dUs;. (21)
erent initial fission fragments. The competition betwegen 0

and neutron emissions is neglected due to low angular mo-

mentum fission fragment consideratidis]. It seems impossible to obtain a simple form in E21) for

the free values of distribution parameters. Supposdihg
=U,y=Uy/2 and o1=0,=0/v2, Eq. (21) reduces to the

U-B
J o(e,U—B)de=1. (16)
0

D. Initial excitation energy distribution of fission fragments

Experimental investigations do not provide any informa—forrn
tion on the initial excitation energy distribution of single 1 U (U—Uj,)?
fission fragments, but do yield information regarding the to- P(U)= erf( _) ex;{ — _20_) . (22
tal kinetic energy distribution of two complimentary frag- 270 V2o 20

ments. Knowledge on single fragment excitation distribution
can be derived either from data involving total kinetic energywhere
distribution making a supposition on energy transmission be-

tween complementary fragments or from data on neutron

number distribution[6]. Experimental total kinetic energy erf
distribution of fission fragments is approximated to the nor-
malized Gauss distribution,

Uv2o

= \/i_f exp( —t?)dt. (23

0

U

V2o

Differences between the numerical results obtained by
} Egs.(20) and (22) get larger ifU/v20<1, whereas the re-

(17) sults of both equations approach each other wbéu2 o
>1. Thus, in the present calculations the distribution func-
tion in Eg. (22) is not used due to its nonobservable behav-

whereE andE, are the total kinetic energy and most prob- ior.

able total kinetic energy, respectively, ands the variance More general forms of excitation energy distributions of

of total kinetic energy. Using the expression f@rwhich is  two complementary fragments may be given by a two-

the energy release in fission, in termsand total excita- dimensional normal distribution with the correlation, which

1 (E—Ep)?
P(E)= \/ﬂaex _—Za_r

tion energyU for the given mass numbe#s; andA, as is characterized by the coefficient of correlatipp,, be-
tween excitation energies of fragments. In this case, each
Q(A;,A))=E(A;,A)+U(A, A, (18) fragment excitation distribution is expressed through the

conditional distribution when the total excitation energy is
one can find for the total excitation energy distribution in thediven. Due to the experimental indicati¢hg] that the coef-
form ficient p1, approaches-0.1 for the fragments in the sponta-
neous fission of°’Cf, which means the use of EO) is
1 (U=Uy)? a_ppr_opri_ate for the _single fragment i_nitial_ excitatio_n energy
P(U)= exr{— —20 , (19)  distribution calculations presented in this letter involving
N T 20 Gauss distribution function normalized as

024603-4



PROMPT NEUTRON SPECTRUM AND AVERAGE NEUTRON.. .. PHYSICAL REVIEW &3 024603

o whereB; is the binding energy of the first emitted neutron.
J'B P(U)dU=1, (24 The termsP(U) and ¢(s,U—B;) in Eq. (28) have been
discussed in Secs. IIC and Il D. It is clear that

whereB is the neutron binding energy. Hence, the distribu-

tion function used in the present calculations takes the form mel(s)d&;: 1. (29)
2 exgd—(U—Uy)?20?]
P(U)= R2re 1+®[(Uy—B)/a] ’ (29 Thus,. th(_avth (v=2) emitted neutron energy spectrum
expression is
where
I B;
(UO B)o ) J’ P(U dUJ |71 dSl(P(Sl,U_Bl)"'

®[(Uy—B)/a]= exp(—t%/2)dt (26)

|

with Uy ando being the most probable excitation energy and
excitation variance of the single fission fragment, respec-
tively.

U-3" , Bi-3" 2si—¢
Xfo i=1"1 i=1 I dsy—l

v—1 v—2
SV,]_,U_E Bi_i=21 Si)

E. Isobaric charge distribution of fission fragments
and neutron binding energy

v v—1
-> Bi—>, si). (30)
Bowmanet al.[19] extracted average neutron binding en- =1 =1
ergies from their experiment on prompt fission neutrons of N - . ,
252Cf spontaneous fission, which correspond to the mosti€reei andB; are kinetic and binding energies of tit

probable charg&, that gives the maximum energy release heutron, respectively. . .

for a given pair of fission fragments. In a number of experi- The energy spectrum of all neutrons is determined as

mental workg20—23 the charge distribution of fission frag-

ments in the spontaneous fission?fCf was studied for the N(e)=3 Ni(e)

final product, in which the charge distribution is represented i nes

by the Gauss function having most probably chaZgeand

charge variancer;. Then the final product mass is trans- Clearly Eg.(31) is normalized to the average number of

formed to the primary(preneutron emissigrmass[21,22. neutrons such that

As has been shown in RdR22], the charge polarization pa-

rameterAZ=2Z,—Zycp, WhereZycp is a charge value in f@

the unchanged charge density distribution hypothesig.{,

=(Zss! Asis) A, WhereZ;s and Ay are charge and mass num-

bers of fissioning nucleus, respectivelyjs a primary frag-

ment mask does not exceed a value ef0.5 for different

primary fission fragment masses in the spontaneous fission o o
V(S)—f de;y f de,—1

(31)

N(e)de=7. (32
0

For simplicity, Eq.(30) can be transformed to the form

of 2°2Cf. The relation

Z,(h)=Z,(UCD)-0.37, Z,(1)=Z,(UCD)+0.37 )
@) ><JV 1 P(U)e(s1,U=By--
3. Bi+Zj_{ &te

obtained by Erten and Aras in R¢21] for all the heavy and
light mass regions in the spontaneous fissior?BCf are
used in our present calculations. In our estimation of neutron
average binding energies we make use of mass tables of

Garveyet al. [23]. As the functionF determined by Eq(15) F[(U—-X2/_;B;
-3 1 g)/T]=1, for eachv<v 1, and mtroducmg a new
variableU—X?_, Bi—3"_! &;=Z one can reduce Ed33)

v v—1
X @ 8,U—2 Bi—E €
=1 =1

(33

Ill. PROMPT NEUTRON ENERGY SPECTRUM
CALCULATION IN THE FRAGMENT CENTER

OF MASS FRAME to the form
The first emitted neutron energy spectrum expression _ o o
used in our calculations is given as N,(e)=f(¢e) . de,f(eq) - X ] de, f(e, 1)

” o v . v=1.
N1(8)=JB P(U)g(e,U—B;)dU, (28 Xf P(Z+2|;z§/|_:‘)2|=1 &)
1te 0

dz, (34)
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where f(g;)=¢;/T? exp(—¢;/T). To work out Eq.(34) we

need to introduce an average binding eneRypf a given
cascade a¥_; Bj=vB. Then we have

= dz (=
NV(S)If(S)L mfo Xqd Xy

-5 v—1
Z vB
T'f'?'f'igl X,)T

xf X,_10X,_,P
0

xexp(—iy;l xi),

whereX;=¢;/T. Further, integrating Eq35) as in Ref[24]

(35

we obtain
_ fe) = dz Fy2(r-1)-1
N = T 20— 1] f Fzim fo X
Z V§
X P TJF?JFX T |exp(— X)dX. (36)

Herel'[2(v—1)]=[2(v—1)—1]!. The above expression is
applicable forv=2. The first neutron spectrum given by Eq.
(28) takes the form in terms of new variables

P[(Z/T+BI/T)T]
F(ZIT)

N1<s>=f<s>J°c (37

To make clear the validity of Terrell's approximation of
shifted excitation energy distribution for evaporation of neu-

trons other than the first one we need to replace the gamm

distribution T'(X)={1M[2(r—1)]}X? "D Lexp(=X) in
Eq. (36) by the Dirac delta function, then

X2=D=1p(7 4+ B+ XT)exp( — X)dX=1.
(38)

1 o
I'f2(v-1)] fo
Therefore, Eq(36) becomes

© dZ _
N,,(e)=f(£)f mP[Z-ﬁ-vB-&-Z(v—l)T]. (39

Comparing Eq(39) with Eq. (37) we come to the conclu-
sion that the excitation energy distribution for thte emitted
neutron is derived from the initial distribution shifted by a

quantity (#—1)(B+2T) which corresponds to an average
excitation energy carried away by—1 neutrons emitted
from fragment. Thus, the validity of Terrell's approximation
[6] depends upon Eq38). Expanding the left-hand side of
Eqg. (38 using the saddle point method it can be easily
shown that Eq(38) is valid if T/oc<1 or if c>2T(v—1)
for v=2, whereo comes from the definition o given by
Eq. (25).

To proceed, the sum given by E@1) is replaced by an
integral, see Ref[25], for the case®8>4T ando>T. The
resulting expression for the total energy spectrum is then

PHYSICAL REVIEW C 63 024603
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FIG. 1. Comparison of the energy spectriN(e) obtained by
Eq. (40) with those calculated by the discrete sum of E2fl) for
the fragmenZ =43, A= 110 (with four significant term

eexp(—elT)

N(g)=— 5 —
BTX1+®[(Uy—B)/o]}

foc dz fw 2dt t?
X ——exp ——|, (40
€ F(Z/T) (Z=a)lo~\|2 41 2 ( )

wherea=U,—B.

To show the quality of the approximation in E@0) we
illustrate in Fig. 1 the comparison of the energy spectrum
N(e) obtained by Eq(40) with those calculated by the dis-
crete sum of Eq(31) for the fragmenZ =43, A=110 (with
fgur significant termps The results are found in agreement.
The external integral in Eq40) is the corresponding ana-
lytical form of, which is more exact than, the numerical re-
sidual distribution of excitation energy introduced by Terrell
[6]. The functionF in Eq. (40), whose explicit form has been
given by Eq.(15), may be approximated as

2
F’l(X)%lJrP (42)
and the expression for the total neutron energy spectrum in
fragment center of mass system, E40), can be worked out
numerically. Comparison of calculated neutron energy spec-
trum with the experimental data given by REt9] yielded
good agreemer25].

Equation(40) used in our calculations involves initial pa-
rameters of theory, such as the most probable excitation en-
ergy Uy and the excitation variance. However, we cannot
directly determine these parameters either from data or from
the theory for a single fragment. Hence we use the assump-
tions discussed in the following for the physically acceptable
values of these parameters.

As has been discussed in Sec. I D, there is a relationship
between the parameters of complementary fragméntsnd
A, such as

2

a'§+a'§=a

42
Uit Uyx=Up 42
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in whichU 1o, U, are determined from experimental data on The above-mentioned series converges according to
average number of neutrons for a given fragment mass. Ori@’Alambert’s rule, which provides us to replace the sum in
can identify the most probable fragment excitation energyEq. (45) with its integral form. Further, using the method of

Uio(A)), i=1,2, to the average fragment ex0|tat|U|0A) as saddle point for the parametetis- o~B, Eq. (45) is trans-

follows: formed to

Uio(A)=U(A) =1 A)[B(A) +&(A)]+E,(A), oL | N e—ati2oh)|

(43 B+2T 2 1+®(alo) |
wherev is the average neutron number. In E43), B(A), which can be rearranged as
&(A), andE,(A) are the neutron average binding energy,
neutron average energy, and average gamma energies, re- - 2 exp(— 812)
spectively, for the corresponding fragment. It is worth noting 7= \ﬁ — x| 5+ \ﬁ - T
that, really, the value otJ(A;) must be somewhat greater 2 B+2T T 1+®(4)
than the value ofJ;y(A;) due to the condition given in Eq.
(24). Unlike the case of excitation energies, we cannot write B \/; o Yf(S 47
a simple expression similar to E43) for the single frag- 2 ByoT (9), (
ment excitation variance. Here we use=o(A,), o
=0(A,), and o=0(A1,A,) for complementary fragment
excitation variances and total excitation energy variance, re? whered=a/o and
spectively. From Eq(42) and supposingr(A;) = o (A,) we 2 exp(— 512)
. eX —
arrive at f(8)=| s+ \ﬁ —— |- (48)
7 1+®(5)
Al A . . .
o(A)=0(Ay)= u. (44 In sum, a simple analytical expression has been found for
V2 the neutron average number which depends on parameters

B, T, and a(=U- B) To the best of our knowledge the

Clearly one can use Eq$43) and (44) in estimating the result given by Eq(47) is original, because it has been ob-
parameters and to calculate the total energy spectrum by Eghined directly from the neutron energy spectrum for a given
(40) in the center of mass frame. fission fragment and it involves all the initial parameters of
Transformation of the neutron energy spectrum from thehe theory used explicitly through the clear simple expres-
center of mass frame to the laboratory system is necessagjon. In addition, to compare our theoretical results obtained

for the comparison of theoretical calculations of angular dIS-by Eq. (47) with the related data, Eq47) should be written
tribution and of energy distribution of prompt neutrons with . in the eXplICIt form, consideringg=7"(A), o= (A), B

the corresponding experimental data. Experimental investi-

gation in Ref.[2], together with a number of other experi- B(A) T= T(A) and 5= 5(A),
ments, confirmed the suppositions that prompt fission neu-

trons are emitted only from fully accelerated fragments, and —th as T a(A)

the emission is isotropic in the fragment center of mass sys- VI(A)= E = =
tem. Application of Eq.(40) to the spontaneous fission of B(A)+2T(A)
252Cf in describing the angular distribution of prompt neu-
trons resulted in the reproduction of data in good agreemenkhe denominator of the terrr(A)/[B(A)+2T(A)] in Eq.

[26]. In Sec. IV we will discuss the calculation method used(49) represents an average energy carried out by an emitted
in the present work for the prompt neutron multiplicity in neutron and the numerator denotes an initial excitation en-
light of the discussion given here. ergy variance, which makes the whole expression physically
meaningful due to the direct proportionality ofA) to this
term. The ternf[ 8(A)] in Eq. (49) has a linear behavior for
the values of6<2, because the exponential function in Eq.

Providedo/T>1 one can eas”y find from Eq§32) and (48) vanishes in this region, whereas for the domaindof

(36) the following analytical expression for the neutron mul- =1.5 f[ 5(A)] takes contribution from the average excitation
tiplicity: energy involved ind and from the initial excitation energy

distribution function appearing in the second term of Eq.
(48). This is demonstrated in Fig. 2. It is worth noting that
for the case 065=2, Eq.(49) becomes

V(A= \/E — (50
]' (45) ’ 2 B(A)+2T(A)
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IV. PROMPT NEUTRON MULTIPLICITY CALCULATION
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FIG. 2. Behavior of the functionf(5) (solid line) given
by Eq. (48 and its componentsé (dotted ling and K

=[J(2/7)]exp&42)/[1+ D ()] (dashed lingvs é.

which differs by a factor ofj7/2 than the usually used, e.g.,

Ref.[4], form of the average neutron multiplicity.

In estimating the values of the parameters useg-e,
and &—we use the related data of RE?] and the mass table
on neutron binding energies given by RE23]. For the es-

timation of T(A) and E,/(A) we consider the relations

£(A)=2T(A) andE(A)=B(A)/2.

V. RESULTS AND DISCUSSION

PHYSICAL REVIEW C 63 024603

—/[3A)]
[ ek L

80 100 120 140 160 180
Fragment Mass A

FIG. 4. The same as for Fig. 3, but neutron average binding
energies are estimated by the use of &7) and of the mass table
in Ref.[23].

binding energy values taken from R¢f.9] for the factors
o(A)/[B(A)+2T(A)] and f[ 8(A)] appearing in Eq(49),
while Fig. 4 illustrates the results obtained through the use of
average binding energy predictions calculated from the most
probable charges by E€R7). The other parameters used in
both calculations are the same and are taken from [Réf.
The main contribution to average neutron multiplicity calcu-
lation comes from the term[ 6(A)]. It is clear from Fig. 4
that the ratioso(A)/[B(A)+2T(A)] and f[ 6§(A)] oscillate
with respect toA values due to neutron average binding en-

From Eq.(49) it is obvious that the average binding en- ergies. The present neutron multiplicity calculation results
ergy values considerably affect the average neutron multiagre compared with the data of R€2] in Figs. 5 and 6. In
plicity calculations. This puts forward the significance of us-Fig. 5, for comparison reasons, the fragment masses are lim-
ing a powerful method to determine reliable average bindingted to the interval in between 87 and 167 due to the com-

energies for a given fragment mass. For clarification, in Figpared average neutron binding energy estimations of
3 we present our calculation results obtained by the use of

T T T T T I
— S

25 coeeeenee

20 -
15} -
0.5 L A 1 A 1 A 1

100 120 140 160
Fragment Mass A

FIG. 3. Behavior off[ §(A)] (solid line andL=c(A)/[B(A)

4 T T T T T T T T
Theoretical
e Experimental Ref [2] ¢*
K e .
23} -
=
=
=
=
= 2t :
=]
=]
=
5}
Zz,
3
2t -
<
0 L M 1 " 1 2 1
100 120 140 160
Fragment Mass A

FIG. 5. The average neutron multiplicity vs the fragment mass.
Solid line is the calculation result obtained by E¢9). Neutron

+2ﬁA)] (dotted ling vs the fragment mass. Neutron average average binding energies are taken from R&®]. The experimen-

binding energies are taken from REL9).

tal data of Ref[2] are represented by the closed circles.
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T T T T T T T T T T T S T T T T T T T T T
5k Theoretical - Results of Eq. (49)
¢ Experimental Ref [2] | +«++==+* Results of Eq. (50)

Average Neutron Multiplicity
Average Neutron Multiplicity

1k - b o7 ! P 1
- & H N L
o % | L -
I L . ] , L . ] . L TR 1 . 1 R ] N 1 R
80 100 120 140 160 180 80 100 120 140 160 180

Fragment Mass A Fragment Mass A

FIG. 6. The same as for Fig. 5, but neutron average binding FIG. 7. Contribution of the exponential part of E@8) to the
energies are estimated by the use of @7) and of the mass table average neutron multiplicity. The solid line is the calculation result
in Ref.[23]. of Eq. (49). The dotted line is the calculation result obtained by Eq.

(50).

Ref.[19]. The average neutron energy data of interest in Ref. VI. CONCLUSION

[2] were given in the same interval. However, the average |n this work, a mathematically simple and novel expres-
neutron energy data of Reff2] are extrapolated to a wide sjon for the calculation of average neutron multiplicity ver-
range of fragment masses in Fig. 6 to provide insight into theus fragment masses has been introduced. This analytical
reliability of our neutron multiplicity calculations. The quan- expression involves the initial parameters of the model used,
titative coincidence between the theory and data takes placgich as the most probable initial excitation energy and its
in the wide region of masses except the regions aroind variance, average neutron binding energy and nuclear tem-
=130 andA=80-90, wheres has values which make it Perature which has been considered constant in our calcula-
unfeasible using the approximation given by E46). The tions for the neutron cascade of the given primary fragment.

triple sawtooth behavior appears explicitly in our calculation”® MOre frequently used expression that is similar to €&q)
results. for average neutron multiplicity calculations appears as a

. N . : dominated term in the general expression developed, Eq.
In Fig. 7, the contribution of the exponential part in Eq. 49 " \which leads to a better description of the data. The
(48) to the average neutron multiplicity calculations is dem-qgciliations seen, in particular in the fragment mass regions

onstrated. The comparison of calculated average neutrofround 80—100 and from 130 to 140 in the present calcula-
multiplicities (solid line) obtained by Eq(49) with another tions, are due to the perturbations in the values of the aver-
calculation resulfdotted ling obtained by Eq(50) makes it  age neutron binding energies.

clear that in the mass regions aroumd=130 and A

=80-90 the contribution of the exponential part is consid- ACKNOWLEDGMENTS

erably large. Apparently, a more exact estimation of @§) One of the authoréH.A.) is grateful to Dr. F.-J. Hambsch
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