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Electromagnetic properties of theK=1 band in the rotational limit
of the neutron-proton interacting boson model
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Within the framework of the S(3) limit of the neutron-proton interacting boson model the matrix elements
of the angular momentum and the quadrupole operator between states belongini§ tolthmand are given in
closed forms. To obtain the matrix elements analytically, we first derive the extended®S(&)3) isoscalar
factors associated with low-lying bands by using the intrinsicq3$tates. The extended U(®)SU(3)
isoscalar factor is defined as the product of the ordinary (®Y(3) isoscalar factor and the(&)-reduced
matrix element of the one-body boson operator. Using these reblttsandE2 intraband transition prob-
abilities and the electromagnetic moments in khe 1 band are derived in closed forms.
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I. INTRODUCTION momentum and the quadrupole operators, is needed.
In this paper, a method is introduced for the calculation of
Since the interacting boson mod#M ) was proposed by the matrix elements of the $8) generators based on group
Arima and lachello[1,2] in the 1970s, a wide variety of theory in the SWB) limit of the IBM-2. In the process of
collective properties of low-lying energy levels in even-evenreducing the matrix element within the group chain of the
nuclei have been explained successfully by the model. Th&U(3) limit, one obtains the U(6) SU(3) isoscalar factor
basic assumptions of the original version of the interacting@d the W6)-reduced matrix element of the one-body boson
boson modelIBM-1) are that the low-lying quadrupole ex- operator._ These quantities necessary for the calculations of
citations of the even-even nucleus can be studied by considl® matrix elements between states with full symmetry and
ering a system oN interacting bosons with the angular mo- Petween fully symmetric states and mixed-symmeitie 1
mentum L=0 (s boson and L=2 (d boson and no states are+ alrtiady glve[ll4,15]..The electromagnetic prop-
distinction is made between the proton and the neutror.‘?rtles Of.l , 27, and 3" states in the(=1 band were stud-
bosons. The important extension of the IBM-1 is the'ecj pre\{lously by Van Isackeet ‘f’“‘ [11], but the general
neutron-proton interacting boson mod#BM-2), in which expressions for th_e U(6)SU(3) |_soscalar factors and the
the proton and neutron degrees of freedom are explicit U(6)-reduced matrix elements which are necessary to calcu-
. Yate theE2 andM 1 matrix elements between states to which
taken into account3]. In the IBM-2 the proton-neutron ex- belong theK=1 band have not been given. Since the
change symmetry of the wave functiqn could be specifieq th%(G)DSU(B) isoscalar factors and the@)-reduced matrix
quantum numbef spin and the Majorana operator which gements in the = 1 band cannot be determined separately,
separates states with different valuesFospin [4—6]. Fully 5 the present work the product of these two quantities are
symmetric IBM-2 states with a maxim& spin F=F .,  derived by using the intrinsic states of the limit of the
which are essentially symmetric respect to the protonigm-2 [14]. From these results, closed expressions for the
neutron interchange, are lowest in energy and identical withyectromagnetic moments and intraband transitions irkthe
the states of IBM-1. A new class of collective states with_ 1 pand are calculated and a short discussion is also con-
F # F max (Mixed-symmetric statesfor which the quadrupole  tzined.
degrees of the proton. are exciteq in a different way than Although this work is only restricted to an exact G
those of the neutron, is glso predicted in the IBM-2. _Suchsymmetry and follows the group theoretical approach of the
states are proved experimentally from the observation ofgm-2, the results in the present work provide first insight
low-lying coIIecnvg 1" states of several dgformed nuclei in jnto the electromagnetic properties for mixed-symmetric
the rare-earth region by Bohkt al. [7]. This 1" state cor-  gtates in deformed nuclei and may be applied to calculate
responds to the bandhead of te=1 mixed-symmetric ro-  apaytically the realistic observables in the IBM-2 GV
tational band in the S(3) limit and M1 transition strengths  |imit. such as the proton-neutron interactiqn.- Q, .
to the 1" level have been extensively analyzed in the IBM-2
[8-10].
For the analysis of dynamic symmetries within the frame- IIl. MATRIX ELEMENTS OF THE SU (3) GENERATORS
work of the IBM-2, it is of some interest to obtain closed
forms of observables. The dynamic symmetries in thé3pU Within the framework of the IBM, the rotational proper-
limit of the IBM-2 bring out algebraic closed forms in the ties of even-even deformed nuclei are described by th@SU
energy level and some of the electromagnetic transitions itimit. We consider the S(B) limit of the IBM-2, in which
well-deformed nuclef10—-13. To calculate the physical ob- the proton and neutron degrees of freedom are joined at the
servables in the S@3) basis of the IBM-2, knowledge of the level of U(6). The group chain in this limit is given as
matrix elements of the S3) generators, i.e., the angular [12,16]
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U7T(6)®UV(6):)U7T+V(G):)SUV+7T(3):)O7T+V(3)5 (l) Lq:Lw,q+Lv,q (q=0,i 1)!
and the wave function is characterized by Qu=QnrqtQuq (9=0,£1,%2), 3)
whereN . (N,) is the number of protofneutron bosons and = (1
N is the total boson numbeNE=N_.+N,). The additional Loa= ‘/E(dpdp)( ),
guantum numberx is necessary to completely specify
SU(3)D0(3) reduction. The irreducible representati@n _(d's +s'q (2)_\/_7 4@ 4
rep [N—f,f] of U,, ,(6) is related to thé= spin through Qp.a=(dpS, 5,d,)g 2 (dpdp)g™ S

F=N/2—f [11,17. Fully symmetric and the lowest mixed-
symmetric states are characterized by the irfépsand[ N wherep denotesr (proton or v (neutron bosons. The ma-

—1,1] of U, ,(6), respectively. trix elements of the generatof, and T, of the group
In the IBM-2, the generators of SU ,(3) consist of the U_(6)®U,(6) are simplified by the following relations
angular momentum and the quadrupole operators: [11,18:
|
NA([N-]®[N,J;[N]Ja|T,[[N-]®[N,];[N]Ja’) =N ([N, ]®[N,];[N]a|T[[N,]J®[N,];[N]a’), (5a)
<[Nﬁ]®[Ny];[N—f,f]aITVI[NW]®[NV];[N—f’,f’]a’>=—<[Nw]®[Ny];[N—f,f]aITwI[Nw]®[Ny];[N—f’,f’]a’>(,5b)

if f#f’ and wherea (a') is all additional quantum numbers to completely specify the state in(EgThen the matrix
element ofT, (p= or v) is related to that of the |J, ,(6) generator§ =T+ T, in the fully symmetric states as follows:

N
<[Nw]®[Np]:[N]a|TP|[NW]®[Ny]:[N]a'>=ﬁ([Nw]Q?[NV]:[N]a|T|[Nw]®[Nv]:[N]a’>- (6)

Therefore, the matrix elements of tpeboson angular momentum and quadrupole operators between interbands belonging to
the irrep[N] of U, ,(6) vanish.

For the analytic calculation of the matrix elements of the(@enerators, it is necessary to know the tensor properties
under the group chain given in E(L). The generators of S8) are expressed as the tensor folh3]

L=2TEIED (q=0,21),

3 4
Q- \TEHEY (o122 ™

The matrix element of a tensor operator can be calculated by applying the generalized Wigner-Eckart theorem. Formally, the
. 4 .
matrix element of a tensof;4 1Y, wherep= or v, can be written as

(INAI®IN,TIN=f, 10, ) kL M| TETIEDI N @ [N, IIN= 7, TV 1))’ L'M )
=(INLISIN,LIN= £, 1 T[N [N, LIN= £/, £ 1) (LM, 1q|LM)
XOIN=F, £ TN ), 02, 247(L, D[N = £, E TG )N /) " Ly (LD (N, ) L. ®)

In the process of reducing the matrix elements, one obtaingon lemma[19]. The SU(3)DO(3) isoscalar factors neces-
the generalized coupling coefficient associated with the resary to our calculations have been given extensively by Ve-
duction U(6)DSU(3)D0(3)D0(2) and the W6)-reduced gados[20]. The U(6)DSU(3) isoscalar factor and (8)-
matrix element denoted with four vertical baié/u et al. reduced matrix element can be calculated in the intrinsic
[14] called this the overlap amplitugleThe generalized cou- SU(3) states of IBM-2[14] and some available results have
pling coefficient is written as a product of two isoscalar fac-been giver{15]. However, it is still insufficient applying to
tors [associated with the reductions U@®PHU(3) and all cases. We revise and complement those which are neces-
SU(3)D0O(3), respectively and the ordinary O(3»0O(2)  sary for the calculation of the matrix elements of the($U
Clebsch-Gordan coefficient according to Racah'’s factorizagenerators in the IBM-2.
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The U(6)-reduced matrix elements of the one-body boson 3 .
operator between states with full symmetry and between the Qo=-— ZTE,ZOé 1@
fully symmetric and the mixed-symmetric states could be

Lo=2T21ID

easily determined by using thiespin[15]. However, for the

calculation of the matrix elements between the mixed- Q., _£[T214](1 ) 4 l2 141(1,1)

symmetric states this method could not apply, because the -t =312 32

values of the W6)-reduced matrix element between the (12

bands with mixed symmetry are not determined uniquely.
Therefore, for consistency we calculate the UDERU(3)
isoscalar factors and the(€)-reduced matrix elements si- 3
multaneously rather than derive them separately. We define Q.,=7F \/7T{)2114](1 )

here the extended U(&)SU(3) isoscalar factor as the prod- 2

uct of the U(6DSU(3) isoscalar factor and the (&)- L . .

reduced matrix element of the one-body boson operator. We N-boson intrinsic wave functions for the low-lying bands

denote the extended U(B)SU(3) isoscalar factor for the have been derived explicitly by Wet al.[14] and the matrix
boson in the IBM-2 for simplicity as element of the one-body boson operator can be calculated

from these states. On the other band, the matrix element of a
tensor operator can be calculated by applying the generalized
Wigner-Eckart theorem in the intrinsic $8) basis of the
IBM-2. By comparing these two results one could obtain the
extended U(6D SU(3) isoscalar factors. Since this proce-
dure was summarized alreaf4,15, we do not repeat here.
However, one has to keep in mind the multiplicity problem
(9) in the irreducible representation («), because fop # 0 the
product (\,x)®(1,1) contains the irreducible representation
(\,u) twice. Therefore foru+#0 the additional quantum
To determine the extended U(BBU(3) isoscalar factor, numberi is necessary in the extended U®$U(3) isosca-
we use the intrinsic states for the @) limit of the IBM-2  lar factor such as ([N—f,f](\,ux),p[2,2*](1,1)/|[N
[14]. The intrinsic states span the irreducible space of the-f’ f'](\,u));, wherei=1 or 2. Hecht{21] had chosen
subgroup SU(2pU(1) of SU3) instead of @3) in the the quantum numbdrsuch that the reduced matrix elements
group chain in Eq(1). The three operators of the infinitesimal operators of SB) are nonzero only for
the caseé=1. The choice of in this work is exactly the one
1 > adopted by Hecht. The extended U®$U(3) isoscalar fac-
A0=§LO, A=+ \[§Q+z
generate the S@) group, andQ, is the sole generator of

(10) tor <[N_fvf]()\7ﬂ)177[2714](111)||[N_f’vf’]()\’wu‘,)>
U(1). The intrinsic states are characterized by the eigenval-

for the proton boson are listed in Table I. For the
neutron boson the corresponding expressiofiN

ues ofQy, Ay, andA? and these eigenvalues are specified

by the quantum numbers K, andA:

[2,1%(1,1 2,14(1,1
L.1=12] [T+3(%§2)+)1/2+ T[+3(1/2)+)1/

(IN= 17,7700 1), p[ 2,247 (LDIIIN= £, 1O\ )

= ([N 1[N, JIN= £ [ TE][[[[N]e[N,];

XIN=F/,F (N=F,F I ),
X[2,17(LD][[N=F,F](\, ).

—f,f1(\, @), v[2,247(1,D)||[N—f",f"](\", ")) is obtained
by exchanging the subscript and v for f=f’ and adding
minus sign for thef #f' to the values given in Table I.

Since the electromagnetic transitions from the mixed-
symmetricK=1 band to the fully symmetric states have
been studied in detail elsewhdiEl, 13, the matrix elements
of the quadrupole and the angular momentum operators be-
tween the states dd =1 band are only presented here. The
reduced matrix element of theboson quadrupole operator

\/§Q0| eAK)=¢€|eAK),

K Q, between the mixed-symmetric statf®;LM)=|[N,]
A0|eAK>=E|eAK>, (1)  ®[N,;[N—1,1](2N—-2,1)LM) in the K=1 band is ex-
pressed as
A2 eAK)=A(A+1)|eAK). (m;L{|Q,l[m;L")
\[<mL||T 0] ;L)
Thus the intrinsic wave functions in the &) limit of

the IBM-2 are characterized by|[N_.]®[N,];[N

—f,f]J(\,n)eAK) and the SUB) generators transform as —

the irreducible tensor operatofL )LD wheree, A, andK

are the SU(2% U(1) weights of the S(,B) generatof14]. In
the intrinsic space of the IBM-2 the tensor characters of the
SU(3) generators are expressed as follds,21]:
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TABLE |. Extended U(6D SU(3) isoscalar factors defined in BE§) for the proton boson.

[IN=f,fI(\, ) [N=FF ] ') (IN=F. 8100 ), w2 FY(|IN =7 TN 1))
[NI(2N.0) (NI(2N.0) .
[N](2N—-4,2) 0
2N+2 |2
[N-1,1](2N-2,1) “INan=g| NN
[N-1,1](2N~4,2) 0
[N](2N—-4,2) [N](2N,0) 0
, [4N*—6N+6]1
[N](2N-4,2), i=1 e
[N](2N-4,2), i=2 0
N-1,1)(2N-2,1 ° “
[ ' ]( J ) [(N_:L)(T_l)} N7TNV
B B o 3(N—-2)(2N-1)]
[N-1,1(2N-42), i=1 _kﬁ§¢r§ﬁiﬁ N,
B B o 22N+1) M2
[N-1,1](2N-42), i=2 LN—lxﬂ@—3N+3) VNN,
[N-11(2N-2,1)  [N](2N,0) {élmdeNy
12
[N](2N—-4,2) —[ N } VN.N,

N(N—1)(2N—3)
_ 3N-2N,(2N+3)

243N

112
(N—2N,)

[N—1,1](2N-1,1), i=1

3(N+1)
ANZ(N-1)
(2N—1)(2N+1)
2N(N—1)(N—2)(2N—3)
[N—1,1](2N—4,2) [N](2N,0) 0
3(N—2)(2N—1)
N’(2N’—-3N+3)
2N+1

[N—1,1(2N-1,1), i=2 {

1/2
[N—1,1](2N—4,2) { }(NZNQ

[N](2N—4,2), i=1 _{ .

K

12

N](2N—-4,2), i=2 N
[N ) LN—1x2¥—3N+3) NaN,
3 1/2
N—1,1](2N—2,1 [ — —
[ I( ) [ZN—lxN—Z) (N=2N,)
By inserting appropriate values of the extended L(L+2)(2N—L—1) N—2N
U(6)DSU(3) isoscalar factors in Table | and the (m;L[[L,[[m;L+1)=— \/ 2L+ DN N—1p’
SU(3)D0(3) isoscalar factorg20], the matrix elements of (14b)
the p-boson quadrupole operat@, between states within
the K=1 band can be obtained and the results are listed in _ B \/(L—l)(L+1)(2N+L) N—-2N,
Table Il. The matrix elements df, are also calculated with (m,L||Lp||m,L—1>— 2LN N—1 "
the help of Eq(8). ForL= odd the results are (149
and forL=even
(miL[|L,[[m;L) (miLf[L,[[m;L)
B [2L+1 [N—ZNer L(L+1)(2N,—1) 3 [ 2L+1 [N—ZNP L(L+D)[N,(N+1)—N]
~ VL(L+1) N-1 2(N-1) ’ “Vi+n N-1 © N(N—1) ’
(149 (159
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TABLE Il. Reduced matrix elements of the-boson quadrupole operat@, between states in thi€

=1 band.

L’ (m;L[|Q,||m;L"), L=odd

. 2L+1 3[(4N—1)L(L+1)—6N]+2N,[12N+6—(4N+5)L(L+1)]
2L(L+1)(2L—1)(2L+3) 4(N-1)

L1 [3(2N=L—1) N(L+4)—2N,(2N+L+2)
N(L+1) 4(N-1)

Lo \/3L(L+3)(2N+L+2)(2N—L—1) (2N,—1)

(2L+3) 4(N—-1)
L1 (2N+L) N(L—3)+2N,(2N—L+1)

4(N-1)

Lo \/3(L 2)(L+1)(2N-L+1)(2N+L) (2N,—1)

2L—1 4(N—-1)
L’ (m;L[|Q,||m;L"), L=even
. \/ 2L+1 BN[L(L+1)—3N]—2N,[L(L+1)(4N>*~N+3)—6N(2N+1)]

2L(L+1)(2L—1)(2L+3) AN(N—1)

L1 B [3(2N+L+1) N(L=2)+2N,(2N—-L)
N(L+1) 4(N—-1)

Lo \/3L(L+3)(2N+L+1)(2N—L—2) N,(N+1)—N
2L+3 2N(N—1)

L1 [3(2N—L) N(L+3)+2N,(2N+L+1)
NL 4(N—1)

Lo \/3(L—2)(L+1)(2N—L)(2N+L—l) N,(N+1)—N
2L-1 2N(N—1)

L(L+2)(2N+L+1) N-2N, T(E2)=e,Q,+€,Q,, (163
<m;'-||'-p||m;'-+1>:_\/ 2(L+1)N N-1 '
(15D M- el el sy
(L-1)(L+1)(2N—L) N—2N
(MiL[|LyllmiL-1)= LN N— 1p' wheree, andg, (p=,v) are thep-boson effective charge

(1590  andg factor, given in units ok b anduy, respectively. The
electromagnetic moments of the mixed-symmetikic=1
states ande2 andM 1 transition probabilities between states
within theK=1 band can now be easily derived by using the
results in Egs(14), (15), and Table Il. The magnetic dipole

In the SU3) limit of the IBM-2 the one-bodyE2 andM 1 moment of the states of the=1 band in the S(B) limit is
transition operators are given by given as

Ill. ELECTROMAGNETIC PROPERTIES OF THE
MIXED-SYMMETRIC STATES IN THE K=1 BAND

1 gd2N—L(L+1)]+gaN(L+2)(L—1), L=odd,

MLTLF1)(N=1) | gd 2N—2L(L+1)]+ga[ (N+1)L(L+1)—2N], L=even, (17

wheregs=(9,+9,)/2 andga=(9,N,+9,N,)/N. The magnetic dipole moment of the, Istate is simply given ag(1,,)
=1(g,+0,)=gsand independent of the proton and neutron boson number in this model. In the condFispiofsymmetry

for the IBM Hamiltonian, theg factor of the mixed-symmetric states strongly depends on the angular momentum, whereas for
all levels with full symmetry theg factor is independent of the angular momenturand has the constant valggs=ga,

when theg factor is defined agt=gL [9]. However, the dependence of the angular momentum for the magnetic dipole
moment of theK=1 band is not proved from the experiment for lack of experimental data.
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The electric quadrupole moment of the mixed-symmefrie 1 state is given as follows:

B 27 1 j3e5[6N—(4N—1)|_(|_+1)]—eAN[12N+6—(4N+5)|_(|_+1)], L=odd,
Qu=- 5 (L+1)(2L+3)(N—1)| 3ed6N—2L(L+1)]—ea[6N(2N+1)— (4N>~N+3)L(L+1)], L=even,
(18

wherees=(e,+e,)/2 ande,=(e,N,.+€e,N,)/N. The elec- symmetric statef11,13, and strongly depend on the differ-
tromagnetic moments of thelland 2, states have already ence of the proton and neutron boson numbér—N, .
been obtained by Van Isackert al.[11] and their results are Therefore for the nucleus with =N, the M1 transition

identical with those of the present work. between adjacent states belonging to K1 band is for-
The reducedM 1 transition probability between states of bidden.
the K=1 band is obtained as The reducede2 transition probabilities fol.=odd are
obtained as

B(M1;mL+1—mL)
B(E2;mL+1—mL)

B , L(L+2)(2NFL=F1)
= 27979 2(L+1)(2L+3)N(N—1)? ~ BN(2N—L—1)[ex(2N+L+2)—eqL+4)]
X(N,—N,)?, (19 4(L+1)(2L+3)(N-1)? ’
where the value with the negatiypositive sign in the term (209

(2NFL7F1) corresponds to that fdr=odd (even. ForM 1

) » S ‘mL+
intraband transitions between states within ke 1 band, B(EZ;mL+2—mL)

the interesting result is obtained; that is, thl transition 3L(L+3)(2N+L+2)(2N—L—1)[esN—eg]?

between mixed-symmetric states withib=1 band is al- = 2 ,
lowed, whereas théM1 transitions are forbidden between 4(2L+3)(2L+5)(N-1)

fully symmetric states in the SB) limit of the IBM-2. The (20b)

B(M1) strengths within th&K=1 band are proportional to
(9,—9,)? as like transitions from th& =1 band to the fully ~and forL=even as

3N(2N+L+1)[es(2N—L)+eqL—2)]?
B(E2;mL+1—mL)= AL DL (N_1)? : (21a

] — _ 2
B(EZ;mL+2_>mL):3L(L+3)(2N+L+l)(2N L—2)[ea(N+1) 2es]. 214
4(2L+3)(2L+5)(N—1)?

For the intrabandE?2 transition, the difference of the effec- wheree,=¢e,=e and the value with the uppélower) sign

tive proton and neutron boson charges does not appear in the the numerator indicates the value forodd (even. In

IBM-2 calculations. When the boson effective charges the limit of largeN, theB(E2) strength between states of the

ande, are taken equal, the reducE® transition probabili- K=1 band is proportional tt?> except the geometrical fac-

ties within theK=1 band are expressed simply as follows: tor and has same order wiB(E2) values for the intraband
transitions in the fully symmetric states.

3N(2NFLF1) , The reducedVi1l andE2 transition probabilities within

B(E2;mL+1—mL)= me , the K=1 band can be expressed in the following form:
B(RA;mL'—mL)=(L'1\0|L1)>M2 (R\;L,L"),
B(E2;mL+2—mL) (23
CBL(L+3)(2NFLF1)(2N£L=*2) whereR\N =E2 or M1. In the geometrical modeM mn{(RA)
= 4(2L+3)(2L+5) e, is interpreted as the electromagnetic multipole intrinsic ma-

trix element that is independent of the angular momentum. In
(22 the classical limit of the IBM, i.e., foN—o, M, is inde-
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pendent ofl and so it is called the intrinsic matrix element. reduced one-body matrix elements and Up@U(3) isos-
In the classical limit of the present model the ratio of two calar factors, which are contained in the matrix elements
reduced electromagnetic transition probabilities betweemetween states belonging to tke=1 band, cannot be deter-
states within th&<=1 band depends only on the ratio of two mined separately, we have derived the extended
Clebsch-Gordan coefficients. This result is identical with thaty(6)> SU(3) isoscalar factor, which is defined as the prod-
from Alaga rule. For largé&l the M 1 intrinsic matrix element  yct of the U(6)DSU(3) isoscalar factor and the (6)-
becomes reduced matrix element of one-body operator, from the
SU(3) intrinsic states of the IBM-2. The matrix elements of
M, (M1)= [3 (97—9,)(N—N,) _ (24  the generators of §(3)(p=, v), i.e., thep-boson angular
mm 4 N momentum and quadrupole operator between states of the
o ) o ) K=1 band, are presented. We have applied these results to
The E2 intrinsic matrix element within th&=1 band is  {he electromagnetic properties of the=1 band; especially
given asMnn(E2)=12(e,N,+e,N,)=2Ne,, which is  the M1 andE2 intraband transition rates in thé=1 band
the same with the value of the2 intrinsic matrix element  gre derived in closed forms and some of the properties are
within the ground state band, when tB2 operator is de- giscussed. It has been checked that kh& transitions be-
fined as Eq(16a. Therefore as described above 2 in-  tween states of th&K=1 band are allowed, even if these

traband transition strengths between states within the groungates have the identicBlspin with F = F . 1 in the pure
state band and within thé=1 band have the same order in gy3) |imit.

the pure SWB) limit of the IBM-2. Although the present results were not compared with the
experimental data directly, it is considered that the method
IV. SUMMARY and results obtained in this work are useful for studying the

. . ._electromagnetic properties of mixed-symmetric states within
In this paper, a method for the calculations of the matrlx,[he framework of the IBM-2 S(8) limit.

elements of the angular momentum and the quadrupole op-
erators has been introduced within the framework of the

IBM-2 SU(_3) limit base_d on the group theory. In the process ACKNOWLEDGMENTS

of calculating the matrix elements with the group theoretical
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