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Electromagnetic properties of theKÄ1 band in the rotational limit
of the neutron-proton interacting boson model
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Department of Physics, Dong-Eui University, Pusan 614-714, Korea
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Within the framework of the SU~3! limit of the neutron-proton interacting boson model the matrix elements
of the angular momentum and the quadrupole operator between states belonging to theK51 band are given in
closed forms. To obtain the matrix elements analytically, we first derive the extended U(6).SU(3) isoscalar
factors associated with low-lying bands by using the intrinsic SU~3! states. The extended U(6).SU(3)
isoscalar factor is defined as the product of the ordinary U(6).SU(3) isoscalar factor and the U~6!-reduced
matrix element of the one-body boson operator. Using these results,M1 andE2 intraband transition prob-
abilities and the electromagnetic moments in theK51 band are derived in closed forms.
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I. INTRODUCTION

Since the interacting boson model~IBM ! was proposed by
Arima and Iachello@1,2# in the 1970s, a wide variety o
collective properties of low-lying energy levels in even-ev
nuclei have been explained successfully by the model.
basic assumptions of the original version of the interact
boson model~IBM-1! are that the low-lying quadrupole ex
citations of the even-even nucleus can be studied by con
ering a system ofN interacting bosons with the angular m
mentum L50 (s boson! and L52 (d boson! and no
distinction is made between the proton and the neut
bosons. The important extension of the IBM-1 is t
neutron-proton interacting boson model~IBM-2!, in which
the proton and neutron degrees of freedom are explic
taken into account@3#. In the IBM-2 the proton-neutron ex
change symmetry of the wave function could be specified
quantum numberF spin and the Majorana operator whic
separates states with different values ofF spin @4–6#. Fully
symmetric IBM-2 states with a maximalF spin F5Fmax,
which are essentially symmetric respect to the prot
neutron interchange, are lowest in energy and identical w
the states of IBM-1. A new class of collective states w
FÞFmax ~mixed-symmetric states!, for which the quadrupole
degrees of the proton are excited in a different way th
those of the neutron, is also predicted in the IBM-2. Su
states are proved experimentally from the observation
low-lying collective 11 states of several deformed nuclei
the rare-earth region by Bohleet al. @7#. This 11 state cor-
responds to the bandhead of theK51 mixed-symmetric ro-
tational band in the SU~3! limit and M1 transition strengths
to the 11 level have been extensively analyzed in the IBM
@8–10#.

For the analysis of dynamic symmetries within the fram
work of the IBM-2, it is of some interest to obtain close
forms of observables. The dynamic symmetries in the SU~3!
limit of the IBM-2 bring out algebraic closed forms in th
energy level and some of the electromagnetic transition
well-deformed nuclei@10–13#. To calculate the physical ob
servables in the SU~3! basis of the IBM-2, knowledge of the
matrix elements of the SU~3! generators, i.e., the angula
0556-2813/2001/63~2!/024317~7!/$15.00 63 0243
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momentum and the quadrupole operators, is needed.
In this paper, a method is introduced for the calculation

the matrix elements of the SU~3! generators based on grou
theory in the SU~3! limit of the IBM-2. In the process of
reducing the matrix element within the group chain of t
SU~3! limit, one obtains the U(6).SU(3) isoscalar factor
and the U~6!-reduced matrix element of the one-body bos
operator. These quantities necessary for the calculation
the matrix elements between states with full symmetry a
between fully symmetric states and mixed-symmetricK51
states are already given@14,15#. The electromagnetic prop
erties of 11, 21, and 31 states in theK51 band were stud-
ied previously by Van Isackeret al. @11#, but the general
expressions for the U(6).SU(3) isoscalar factors and th
U~6!-reduced matrix elements which are necessary to ca
late theE2 andM1 matrix elements between states to whi
belong the K51 band have not been given. Since t
U(6).SU(3) isoscalar factors and the U~6!-reduced matrix
elements in theK51 band cannot be determined separate
in the present work the product of these two quantities
derived by using the intrinsic states of the SU~3! limit of the
IBM-2 @14#. From these results, closed expressions for
electromagnetic moments and intraband transitions in thK
51 band are calculated and a short discussion is also
tained.

Although this work is only restricted to an exact SU~3!
symmetry and follows the group theoretical approach of
IBM-2, the results in the present work provide first insig
into the electromagnetic properties for mixed-symmet
states in deformed nuclei and may be applied to calcu
analytically the realistic observables in the IBM-2 SU~3!
limit, such as the proton-neutron interactionQp•Qn .

II. MATRIX ELEMENTS OF THE SU „3… GENERATORS

Within the framework of the IBM, the rotational prope
ties of even-even deformed nuclei are described by the SU~3!
limit. We consider the SU~3! limit of the IBM-2, in which
the proton and neutron degrees of freedom are joined at
level of U~6!. The group chain in this limit is given a
@12,16#
©2001 The American Physical Society17-1
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Up~6! ^ Un~6!.Up1n~6!.SUn1p~3!.Op1n~3!, ~1!

and the wave function is characterized by

u@Np# ^ @Nn#;@N2 f , f #~l,m!kL&, ~2!

whereNp (Nn) is the number of proton~neutron! bosons and
N is the total boson number (N5Np1Nn). The additional
quantum numberk is necessary to completely speci
SU(3).O(3) reduction. The irreducible representation~ir-
rep! @N2 f , f # of Up1n(6) is related to theF spin through
F5N/22 f @11,17#. Fully symmetric and the lowest mixed
symmetric states are characterized by the irreps@N# and @N
21,1# of Up1n(6), respectively.

In the IBM-2, the generators of SUp1n(3) consist of the
angular momentum and the quadrupole operators:
ai
re

-
c

iza

02431
Lq5Lp,q1Ln,q ~q50,61!,

Qq5Qp,q1Qn,q ~q50,61,62!, ~3!

with

Lr,q5A10~dr
†d̃r!q

(1) ,

Qr,q5~dr
†sr1sr

†d̃r!q
(2)2

A7

2
~dr

†d̃r!q
(2) , ~4!

wherer denotesp ~proton! or n ~neutron! bosons. The ma-
trix elements of the generatorTp and Tn of the group
Up(6)^ Un(6) are simplified by the following relations
@11,18#:
:

ging to

ties

ally, the
Np^@Np# ^ @Nn#;@N#auTnu@Np# ^ @Nn#;@N#a8&5Nn^@Np# ^ @Nn#;@N#auTpu@Np# ^ @Nn#;@N#a8&, ~5a!

^@Np# ^ @Nn#;@N2 f , f #auTnu@Np# ^ @Nn#;@N2 f 8, f 8#a8&52^@Np# ^ @Nn#;@N2 f , f #auTpu@Np# ^ @Nn#;@N2 f 8, f 8#a8&,
~5b!

if f Þ f 8 and wherea (a8) is all additional quantum numbers to completely specify the state in Eq.~2!. Then the matrix
element ofTr (r5p or n) is related to that of the Up1n(6) generatorsT5Tp1Tn in the fully symmetric states as follows

^@Np# ^ @Nn#;@N#auTru@Np# ^ @Nn#;@N#a8&5
Nr

N
^@Np# ^ @Nn#;@N#auTu@Np# ^ @Nn#;@N#a8&. ~6!

Therefore, the matrix elements of ther-boson angular momentum and quadrupole operators between interbands belon
the irrep@N# of Up1n(6) vanish.

For the analytic calculation of the matrix elements of the SU~3! generators, it is necessary to know the tensor proper
under the group chain given in Eq.~1!. The generators of SU~3! are expressed as the tensor forms@13#

Lq52T1q
[2,14](1,1) ~q50,61!,

Qq5A3

2
T2q

[2,14](1,1) ~q50,61,62!. ~7!

The matrix element of a tensor operator can be calculated by applying the generalized Wigner-Eckart theorem. Form

matrix element of a tensorTr,lq
[2,14](1,1) , wherer5p or n, can be written as

^@Np# ^ @Nn#;@N2 f , f #~l,m!kLM uTr,lq
[2,14](1,1)u@Np# ^ @Nn#;@N2 f 8, f 8#~l8,m8!k8L8M 8&

5^@Np# ^ @Nn#;@N2 f , f #uuuuTr
[2,14] uuuu@Np# ^ @Nn#;@N2 f 8, f 8#&^LM 8,lquLM &

3^@N2 f 8, f 8#~l8,m8!,@2,14#~1,1!uu@N2 f , f #~l,m!&^~l8,m8!k8L,~1,1!l uu~l,m!kL&. ~8!
-
Ve-

sic
e

ces-
In the process of reducing the matrix elements, one obt
the generalized coupling coefficient associated with the
duction U(6).SU(3).O(3).O(2) and the U~6!-reduced
matrix element denoted with four vertical bars~Wu et al.
@14# called this the overlap amplitude!. The generalized cou
pling coefficient is written as a product of two isoscalar fa
tors @associated with the reductions U(6).SU(3) and
SU(3).O(3), respectively# and the ordinary O(3).O(2)
Clebsch-Gordan coefficient according to Racah’s factor
ns
-

-

-

tion lemma@19#. The SU(3).O(3) isoscalar factors neces
sary to our calculations have been given extensively by
gados @20#. The U(6).SU(3) isoscalar factor and U~6!-
reduced matrix element can be calculated in the intrin
SU~3! states of IBM-2@14# and some available results hav
been given@15#. However, it is still insufficient applying to
all cases. We revise and complement those which are ne
sary for the calculation of the matrix elements of the SU~3!
generators in the IBM-2.
7-2
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ELECTROMAGNETIC PROPERTIES OF THEK51 BAND . . . PHYSICAL REVIEW C 63 024317
The U~6!-reduced matrix elements of the one-body bos
operator between states with full symmetry and between
fully symmetric and the mixed-symmetric states could
easily determined by using theF spin @15#. However, for the
calculation of the matrix elements between the mixe
symmetric states this method could not apply, because
values of the U~6!-reduced matrix element between th
bands with mixed symmetry are not determined unique
Therefore, for consistency we calculate the U(6).SU(3)
isoscalar factors and the U~6!-reduced matrix elements s
multaneously rather than derive them separately. We de
here the extended U(6).SU(3) isoscalar factor as the prod
uct of the U(6).SU(3) isoscalar factor and the U~6!-
reduced matrix element of the one-body boson operator.
denote the extended U(6).SU(3) isoscalar factor for ther
boson in the IBM-2 for simplicity as

^@N2 f 8, f 8#~l8,m8!,r@2,14#~1,1!uu@N2 f , f #~l,m!&

5^@Np# ^ @Nn#;@N2 f , f #uuuuTr
[2,14] uuuu@Np# ^ @Nn#;

3@N2 f 8, f 8#&^@N2 f 8, f 8#~l8,m8!,

3@2,14#~1,1!uu@N2 f , f #~l,m!&. ~9!

To determine the extended U(6).SU(3) isoscalar factor
we use the intrinsic states for the SU~3! limit of the IBM-2
@14#. The intrinsic states span the irreducible space of
subgroup SU(2)̂ U(1) of SU~3! instead of O~3! in the
group chain in Eq.~1!. The three operators

L05
1

2
L0 , L6157A2

3
Q62 ~10!

generate the SU~2! group, andQ0 is the sole generator o
U~1!. The intrinsic states are characterized by the eigen
ues ofQ0 , L0, andL2 and these eigenvalues are specifi
by the quantum numberse, K, andL:

A8Q0ueLK&5eueLK&,

L0ueLK&5
K

2
ueLK&, ~11!

L2ueLK&5L~L11!ueLK&.

Thus the intrinsic wave functions in the SU~3! limit of
the IBM-2 are characterized by u@Np# ^ @Nn#;@N
2 f , f #(l,m)eLK& and the SU~3! generators transform a

the irreducible tensor operatorTeLK/2
[2,14](1,1) , wheree, L, andK

are the SU(2)̂ U(1) weights of the SU~3! generator@14#. In
the intrinsic space of the IBM-2 the tensor characters of
SU~3! generators are expressed as follows@15,21#:
02431
n
e

e

-
he

.

ne

e

e

l-

e

Q052A3

2
T000

[2,14](1,1) , L052T010
[2,14](1,1) ,

Q6152
A3

2
@T73(1/2)61/2

[2,14](1,1) 6T63(1/2)61/2
[2,14](1,1) #,

~12!

L615A2@T73(1/2)61/2
[2,14](1,1) 7T63(1/2)61/2

[2,14](1,1) #,

Q6257A3

2
T0161

[2,14](1,1) .

N-boson intrinsic wave functions for the low-lying band
have been derived explicitly by Wuet al. @14# and the matrix
element of the one-body boson operator can be calcul
from these states. On the other band, the matrix element
tensor operator can be calculated by applying the general
Wigner-Eckart theorem in the intrinsic SU~3! basis of the
IBM-2. By comparing these two results one could obtain t
extended U(6).SU(3) isoscalar factors. Since this proc
dure was summarized already@14,15#, we do not repeat here
However, one has to keep in mind the multiplicity proble
in the irreducible representation (l,m), because formÞ0 the
product (l,m) ^ (1,1) contains the irreducible representati
(l,m) twice. Therefore formÞ0 the additional quantum
numberi is necessary in the extended U(6).SU(3) isosca-
lar factor such as ^@N2 f , f #(l,m),r@2,14#(1,1)uu@N
2 f 8, f 8#(l,m)& i , where i 51 or 2. Hecht@21# had chosen
the quantum numberi such that the reduced matrix elemen
of the infinitesimal operators of SU~3! are nonzero only for
the casei 51. The choice ofi in this work is exactly the one
adopted by Hecht. The extended U(6).SU(3) isoscalar fac-
tor ^@N2 f , f #(l,m),p@2,14#(1,1)uu@N2 f 8, f 8#(l8,m8)&
for the proton boson are listed in Table I. For th
neutron boson the corresponding expression̂@N
2 f , f #(l,m),n@2,14#(1,1)uu@N2 f 8, f 8#(l8,m8)& is obtained
by exchanging the subscriptp and n for f 5 f 8 and adding
minus sign for thef Þ f 8 to the values given in Table I.

Since the electromagnetic transitions from the mixe
symmetric K51 band to the fully symmetric states hav
been studied in detail elsewhere@11,13#, the matrix elements
of the quadrupole and the angular momentum operators
tween the states ofK51 band are only presented here. T
reduced matrix element of ther-boson quadrupole operato
Qr between the mixed-symmetric statesum;LM &5u@Np#
^ @Nn#;@N21,1#(2N22,1)LM & in the K51 band is ex-
pressed as

^m;LuuQruum;L8&

5A3

2
^m;LuuTr,2

[2,14](1,1)uum;L8&

5A3~2L11!

2 (
i 51,2

^@N21,1#~2N22,1!,r@2,14#

3~1,1!uu@N21,1#~2N22,1!& i^~2N22,1!

3L8,~1,1!2uu~2N22,1!L& i . ~13!
7-3
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TABLE I. Extended U(6).SU(3) isoscalar factors defined in Eq.~9! for the proton boson.

@N2 f , f #(l,m) @N2 f 8, f 8#(l8,m8) ^@N2 f , f #(l,m),p@2,14#uu@N2 f 8, f 8#(l8,m8)&

@N#(2N,0) @N#(2N,0) F2~2N13!

3N G1/2

Np

@N#(2N24,2) 0

@N21,1#(2N22,1) 2F 2N12

N~2N21!G
1/2

ANpNn

@N21,1#(2N24,2) 0
@N#(2N24,2) @N#(2N,0) 0

@N#(2N24,2), i 51 F4N226N16

3N2 G1/2

Np

@N#(2N24,2), i 52 0

@N21,1#(2N22,1) F 3

~N21!~2N21!G
1/2

ANpNn

@N21,1#(2N24,2), i 51 2F3~N22!~2N21!

N2~2N223N13!G
1/2

ANpNn

@N21,1#(2N24,2), i 52 F 2~2N11!

~N21!~2N223N13!G
1/2

ANpNn

@N21,1#(2N22,1) @N#(2N,0) F2NG1/2

ANpNn

@N#(2N24,2) 2F 2N11

N~N21!~2N23!G
1/2

ANpNn

@N21,1#(2N21,1), i 51 2
3N22Np~2N13!

2A3N

@N21,1#(2N21,1), i 52 F 3~N11!

4N2~N21!G
1/2

~N22Np!

@N21,1#(2N24,2) 2F ~2N21!~2N11!

2N~N21!~N22!~2N23!G
1/2

~N22Np!

@N21,1#(2N24,2) @N#(2N,0) 0

@N#(2N24,2), i 51 2F3~N22!~2N21!

N2~2N223N13!G
1/2

ANpNn

@N#(2N24,2), i 52 F 2N11

~N21!~2N223N13!G
1/2

ANpNn

@N21,1#(2N22,1) F 3

2~N21!~N22!G
1/2

~N22Np!
ed
e

f

d

By inserting appropriate values of the extend
U(6).SU(3) isoscalar factors in Table I and th
SU(3).O(3) isoscalar factors@20#, the matrix elements o
the r-boson quadrupole operatorQr between states within
the K51 band can be obtained and the results are liste
Table II. The matrix elements ofLr are also calculated with
the help of Eq.~8!. For L5 odd the results are

^m;LuuLruum;L&

5A 2L11

L~L11!FN22Nr

N21
1

L~L11!~2Nr21!

2~N21! G ,
~14a!
02431
in

^m;LuuLruum;L11&52AL~L12!~2N2L21!

2~L11!N

N22Nr

N21
,

~14b!

^m;LuuLruum;L21&5A~L21!~L11!~2N1L !

2LN

N22Nr

N21
,

~14c!

and forL5even

^m;LuuLruum;L&

5A 2L11

L~L11!FN22Nr

N21
1

L~L11!@Nr~N11!2N#

N~N21! G ,
~15a!
7-4
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TABLE II. Reduced matrix elements of ther-boson quadrupole operatorQr between states in theK
51 band.

L8 ^m;LuuQruum;L8&, L5odd

L A 2L11

2L~L11!~2L21!~2L13!

3@~4N21!L~L11!26N#12Nr@12N162~4N15!L~L11!#

4~N21!

L11 A3~2N2L21!

N~L11!

N~L14!22Nr~2N1L12!

4~N21!

L12 A3L~L13!~2N1L12!~2N2L21!

~2L13!

~2Nr21!

4~N21!

L21 A3~2N1L !

NL

N~L23!12Nr~2N2L11!

4~N21!

L22 A3~L22!~L11!~2N2L11!~2N1L !

2L21

~2Nr21!

4~N21!

L8 ^m;LuuQruum;L8&, L5even

L A 2L11

2L~L11!~2L21!~2L13!

6N@L~L11!23N#22Nr@L~L11!~4N22N13!26N~2N11!#

4N~N21!

L11 2A3~2N1L11!

N~L11!

N~L22!12Nr~2N2L !

4~N21!

L12 A3L~L13!~2N1L11!~2N2L22!

2L13

Nr~N11!2N

2N~N21!

L21 A3~2N2L !

NL

N~L13!12Nr~2N1L11!

4~N21!

L22 A3~L22!~L11!~2N2L !~2N1L21!

2L21

Nr~N11!2N

2N~N21!
s
he
e

^m;LuuLruum;L11&52AL~L12!~2N1L11!

2~L11!N

N22Nr

N21
,

~15b!

^m;LuuLruum;L21&5A~L21!~L11!~2N2L !

2LN

N22Nr

N21
.

~15c!

III. ELECTROMAGNETIC PROPERTIES OF THE
MIXED-SYMMETRIC STATES IN THE KÄ1 BAND

In the SU~3! limit of the IBM-2 the one-bodyE2 andM1
transition operators are given by
02431
T~E2!5epQp1enQn , ~16a!

T~M1!5A 3

4p
~gpLp1gnLn!, ~16b!

whereer andgr (r5p,n) are ther-boson effective charge
andg factor, given in units ofe b andmN , respectively. The
electromagnetic moments of the mixed-symmetricK51
states andE2 andM1 transition probabilities between state
within theK51 band can now be easily derived by using t
results in Eqs.~14!, ~15!, and Table II. The magnetic dipol
moment of the states of theK51 band in the SU~3! limit is
given as
eas for

ipole
mL5
1

~L11!~N21!H gS@2N2L~L11!#1gAN~L12!~L21!, L5odd,

gS@2N22L~L11!#1gA@~N11!L~L11!22N#, L5even,
~17!

wheregS5(gp1gn)/2 andgA5(gpNp1gnNn)/N. The magnetic dipole moment of the 1m
1 state is simply given asm(1m

1)
5 1

2 (gp1gn)5gS and independent of the proton and neutron boson number in this model. In the condition ofF-spin symmetry
for the IBM Hamiltonian, theg factor of the mixed-symmetric states strongly depends on the angular momentum, wher
all levels with full symmetry theg factor is independent of the angular momentumL and has the constant valuegFS5gA ,
when theg factor is defined asm5gL @9#. However, the dependence of the angular momentum for the magnetic d
moment of theK51 band is not proved from the experiment for lack of experimental data.
7-5
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The electric quadrupole moment of the mixed-symmetricK51 state is given as follows:

QL52A2p

5

1

~L11!~2L13!~N21!H 3eS@6N2~4N21!L~L11!#2eAN@12N162~4N15!L~L11!#, L5odd,

3eS@6N22L~L11!#2eA@6N~2N11!2~4N22N13!L~L11!#, L5even,
~18!
y

of

n

-
whereeS5(ep1en)/2 andeA5(epNp1enNn)/N. The elec-
tromagnetic moments of the 1m

1 and 2m
1 states have alread

been obtained by Van Isackeret al. @11# and their results are
identical with those of the present work.

The reducedM1 transition probability between states
the K51 band is obtained as

B~M1;mL11→mL!

5
3

4p
~gp2gn!2

L~L12!~2N7L71!

2~L11!~2L13!N~N21!2

3~Np2Nn!2, ~19!

where the value with the negative~positive! sign in the term
(2N7L71) corresponds to that forL5odd ~even!. For M1
intraband transitions between states within theK51 band,
the interesting result is obtained; that is, theM1 transition
between mixed-symmetric states withinK51 band is al-
lowed, whereas theM1 transitions are forbidden betwee
fully symmetric states in the SU~3! limit of the IBM-2. The
B(M1) strengths within theK51 band are proportional to
(gp2gn)2 as like transitions from theK51 band to the fully
-
n

s:

02431
symmetric states@11,13#, and strongly depend on the differ
ence of the proton and neutron boson number,Np2Nn .
Therefore for the nucleus withNp5Nn the M1 transition
between adjacent states belonging to theK51 band is for-
bidden.

The reducedE2 transition probabilities forL5odd are
obtained as

B~E2;mL11→mL!

5
3N~2N2L21!@eA~2N1L12!2eS~L14!#2

4~L11!~2L13!~N21!2
,

~20a!

B~E2;mL12→mL!

5
3L~L13!~2N1L12!~2N2L21!@eAN2eS#2

4~2L13!~2L15!~N21!2
,

~20b!

and forL5even as
B~E2;mL11→mL!5
3N~2N1L11!@eA~2N2L !1eS~L22!#2

4~L11!~2L13!~N21!2
, ~21a!

B~E2;mL12→mL!5
3L~L13!~2N1L11!~2N2L22!@eA~N11!22eS#2

4~2L13!~2L15!~N21!2
. ~21b!
e
-

a-
. In
For the intrabandE2 transition, the difference of the effec
tive proton and neutron boson charges does not appear i
IBM-2 calculations. When the boson effective chargesen

andep are taken equal, the reducedE2 transition probabili-
ties within theK51 band are expressed simply as follow

B~E2;mL11→mL!5
3N~2N7L71!

~L11!~2L13!
e2,

B~E2;mL12→mL!

5
3L~L13!~2N7L71!~2N6L62!

4~2L13!~2L15!
e2,

~22!
the
whereep5en5e and the value with the upper~lower! sign
in the numerator indicates the value forL5odd ~even!. In
the limit of largeN, theB(E2) strength between states of th
K51 band is proportional toN2 except the geometrical fac
tor and has same order withB(E2) values for the intraband
transitions in the fully symmetric states.

The reducedM1 and E2 transition probabilities within
the K51 band can be expressed in the following form:

B~Rl;mL8→mL!5^L81,l0uL1&2Mmm
2 ~Rl;L,L8!,

~23!

whereRl5E2 or M1. In the geometrical model,Mmm(Rl)
is interpreted as the electromagnetic multipole intrinsic m
trix element that is independent of the angular momentum
the classical limit of the IBM, i.e., forN→`, Mmm is inde-
7-6
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pendent ofL and so it is called the intrinsic matrix elemen
In the classical limit of the present model the ratio of tw
reduced electromagnetic transition probabilities betw
states within theK51 band depends only on the ratio of tw
Clebsch-Gordan coefficients. This result is identical with t
from Alaga rule. For largeN theM1 intrinsic matrix element
becomes

Mmm~M1!5A 3

4p

~gp2gn!~Np2Nn!

N
. ~24!

The E2 intrinsic matrix element within theK51 band is
given asMmm(E2)5A2(epNp1enNn)5A2NeA , which is
the same with the value of theE2 intrinsic matrix element
within the ground state band, when theE2 operator is de-
fined as Eq.~16a!. Therefore as described above theE2 in-
traband transition strengths between states within the gro
state band and within theK51 band have the same order
the pure SU~3! limit of the IBM-2.

IV. SUMMARY

In this paper, a method for the calculations of the mat
elements of the angular momentum and the quadrupole
erators has been introduced within the framework of
IBM-2 SU~3! limit based on the group theory. In the proce
of calculating the matrix elements with the group theoreti
method, one obtains the generalized Clebsch-Gordan co
cient corresponding to the given group chain. Since the U~6!-
tt.
.

hy

au

ic

M

02431
n

t

nd

x
p-
e

l
ffi-

reduced one-body matrix elements and U(6).SU(3) isos-
calar factors, which are contained in the matrix eleme
between states belonging to theK51 band, cannot be deter
mined separately, we have derived the extend
U(6).SU(3) isoscalar factor, which is defined as the pro
uct of the U(6).SU(3) isoscalar factor and the U~6!-
reduced matrix element of one-body operator, from
SU~3! intrinsic states of the IBM-2. The matrix elements
the generators of SUr(3)(r5p, n), i.e., ther-boson angular
momentum and quadrupole operator between states of
K51 band, are presented. We have applied these resul
the electromagnetic properties of theK51 band; especially
the M1 andE2 intraband transition rates in theK51 band
are derived in closed forms and some of the properties
discussed. It has been checked that theM1 transitions be-
tween states of theK51 band are allowed, even if thes
states have the identicalF spin withF5Fmax21 in the pure
SU~3! limit.

Although the present results were not compared with
experimental data directly, it is considered that the meth
and results obtained in this work are useful for studying
electromagnetic properties of mixed-symmetric states wit
the framework of the IBM-2 SU~3! limit.
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