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Odd-even staggering of binding energies as a consequence of pairing and mean-field effects
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Odd-even staggering of binding energies is studied in finite fermion systems with pairing correlations. We
discuss contributions of the pairing and mean field to the staggering, and we construct the binding-energy
indicators which measure the magnitude of pairing correlations and the effective single-particle spacings in a
given system. The analysis is based on studying several exactly solvable many-body Hamiltonians as well as
on the analytical formulas that can be applied in the weak and strong pairing limits.
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I. INTRODUCTION

The odd-even staggering~OES! of binding energies,
which reflects stronger binding of even-particle-number s
tems than their odd-particle-number neighbors, has l
been known in atomic nuclei@1# and recently has been ob
served also in metal clusters@2# and in ultrasmall supercon
ducting grains@3#. However, as discussed recently@4#, the
apparent similarity between the OES in all these finite ma
fermion systems is deceptive. Although two basic physi
mechanisms are involved,~i! an effect of spontaneous brea
ing of the spherical symmetry~Jahn-Teller effect@5#! and~ii !
blocking of pair correlations by an unpaired fermion, t
origin of the OES is system specific.

In small metal clusters, OES is believed to be mainly d
to the nonspherical shape of the underlying mean field@6–8#
and, thus far, neither the empirical evidence nor the theo
ical calculations@9# support the presence of superconduct
correlations in metal clusters. In superconducting grains
the other hand, OES is believed to be predominantly due
blocking effect caused by the presence of an odd elec
~see Refs.@10–17#!. In the smallest grains, where the ave
age spacingd of the electronic energy levels becomes co
parable to the size of the pairing gap@18#, d;D, the OES
must invoke both mean-field and pairing effects. In the c
of metallic grains, it is, however, difficult~if possible at all!
to pin down the detailed structure of the single-electron le
spectrum. Most of the theoretical models applied to the pr
lem of superconductivity in grains use an equidistant le
spectrum because of its analytical simplicity~see Refs.
@10,11,14,15# and references quoted therein!. However, more
realistic treatments require a nonuniform distribution
single-particle levels as is done, for example, in Ref.@19#
~see also Ref.@20#!.

A slightly different situation holds in atomic nuclei due
the presence of two types of fermions. The strong and att
tive effective proton-neutron interaction gives rise to the
preciable symmetry energy contribution@;(N2Z)2# to
OES. Because the symmetry energy smoothly varies w
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particle number and is almost insensitive to shell effects@4#,
the standard way of extracting the OES has been by mean
the higher-order binding-energy indicators, such as the fo
point expression of Refs.@21,22# ~see also Ref.@23# and
references therein!. This classical reasoning, which stem
from liquid-drop or Fermi-gas models, has recently be
questioned@4#. Namely, it has been demonstrated, usi
fully self-consistent Hartree-Fock theory, that the contrib
tion to OES due to symmetry energy is, in fact, nearly ca
celled out by the contribution coming from the smooth
single-particle energy.

In Ref. @4# we have proposed a method to differentia
between the pairing and mean-field influences on the OE
binding energies. These results are here presented in a
detailed and explicit way, and supported by numerous
amples based on exactly solvable models. The aim of
work is to demonstrate the consistency of our new interp
tation in situations where the exact solutions provide a fi
testing ground. Section II discusses the binding-energy in
cators used in this study. It also presents the systematic
experimental pairing gaps obtained using these indicat
The many-body models employed in this work~seniority
model, equidistant-level model, and pairing-plus-quadrup
model! are described in Sec. III, together with the results
the calculations. A short summary and conclusions are gi
in Sec. IV.

II. ODD-EVEN-STAGGERING INDICATORS

The simplest way to quantify the OES of binding energ
is to use the following three-point indicator:

D (3)~N![
pN

2
@B~N21!1B~N11!22B~N!#, ~1!

where pN5(21)N is the number parity andB(N) is the
~negative! binding energy of a system withN particles. In
expression~1!, the number of protonsZ is fixed, andN de-
notes the number of neutrons; i.e., this indicator gives
neutron OES. An analogous proton OES indicator is o
tained by fixing the neutron numberN and replacingN by Z
in Eq. ~1!.
©2001 The American Physical Society08-1
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By applying indicator~1! to experimental nuclear bindin
energiesBexp, one obtains the experimental neutron and p
ton OESDexp

(3) . Similarly, by applying this indicator to calcu
lated binding energies, one obtains information about th
retical results for the OES. In the following, the sam
subscripts are used to denote the binding energies and v
of indicators~1! obtained for a given model. For exampl
for the single-particle model described below, the result
values areBsp andDsp

(3) . Note that by using indicator~1! we
only aim at facilitating the comparison of calculations wi
data; however, in essence we always compare and ana
experimental and calculated binding energies.

As a simple exercise, let us first calculate the OES fo
system of particles moving independently in a fixed d
formed potential well. In such an extreme single-parti
model, the binding energy is

Bsp~N!52(
k51

V

Nkek , ~2!

whereNk ~50, 0.5, or 1! andek stand, respectively, for the
occupation number and single-particle energy of thekth,
twofold degenerate level, and the particle numberN is given
by

N52(
k51

V

Nk . ~3!

In the above expressions, the single-particle energiesek (k
51,2, . . . ,V) appear in ascending order (e1<e2 , . . . ,
<eV), and V denotes the number of twofold degenera
single-particle levels.

For the ground state of an even-N system theN/2 lowest
levels are filled. In the neighboring odd-N system, the odd
particle occupies the lowest available level. This implies

Dsp
(3)~N52n11!50, ~4a!

Dsp
(3)~N52n!5 1

2 ~en112en!. ~4b!

Hence, in the absence of the two-body interaction, indica
~1! vanishes at odd particle numbers, and it gives half of
single-particle level spacings at even particle numbe
Therefore, following Ref.@4#, we assume that any other e
fect leading to the OESbeyond the pure single-particle
~mean-field! contribution is characterized by values of E
~1! at odd particle numbers. We also assume that such
effect varies smoothly with the particle number, and the
fore by subtracting indicator~1! at odd and even particle
numbers, one may obtain information about the sing
particle level spacing at the Fermi level. This hypothesis w
be verified in Sec. III using several theoretical models.

Consequently, at odd particle numbersN52n11, we
shall use the following indicator:

D~N![D (3)~N!, ~5!

while at even particle numbersN52n we define

de6~N![2D (3)~N!22D (3)~N61!, ~6a!
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de~N![2D (3)~N!2D (3)~N21!2D (3)~N11!. ~6b!

Indicatorsde6 correspond to subtracting values of indicat
~1! at particle numbers higher or lower by one, whilede
employs the symmetric average of both. The differences
tween these three indicators reflect, therefore, small va
tions of the OES effects with particle numbers. Up to the
small variations, we associate the values of these indica
with the spacings of the single-particle levels,

de6~N!.de~N!.eN/2112eN/2 . ~7!

It is clear that indicatorsde6 use masses of four nuclide
near the given particle numberN; i.e., they constitute asym
metric expressions in which either heavier or lighter nuclid
dominate. On the other hand,de uses masses of five nuclide
symmetrically on both sides ofN. The advantages of usin
either of these indicators depend therefore predominantly
the availability of experimental data in the isotopic or is
tonic chains. For instance, in Ref.@4# dealing with light- and
medium-mass nuclei, the indicatorde1 was discussed.

It is instructive to relate the asymmetric energy-spac
indicatorsde6 of Eq. ~6b! to the particle separation energie
S(N)5B(N21)2B(N), i.e.,

de1~N!5S~N!2S~N12!, ~8a!

de2~N!5S~N21!2S~N11!. ~8b!

One sees that the indicatorde1 depends on separation ene
gies of particles from even systems, while the indicatorde2

depends on those from odd systems. This does not inv
any asymmetry in treating even and odd systems, beca
obviously, every particle-separation energy depends on
mass of an even system and on one mass of an odd sys

By using the three-mass indicator~5!, we hope to avoid
mixing the contributions to the OES which originate fro
single-particle structure with those having other roots, e
pairing correlations. Moreover, because it involves th
masses only, this indicator allows for obtaining experimen
information on the longest isotopic or isotonic chains. F
ures 1 and 2 display experimental values of the neutronDexp

n

and protonDexp
p OES~5!. ~It is to be noted that these resul

differ slightly from those presented in Ref.@4#. First, experi-
mental masses were taken from an updated mass evalu
@24#. Second, only the masses having an experimental un
tainty less than 100 keV have been considered.!

It is seen that, especially for the light- and medium-ma
nuclei, there exists a substantial spread of results around
average trend. This suggests that neutron and proton O
effects are not only functions of neutron and proton numbe
respectively, but that a significant cross talk between b
types of nucleons exists. Numerous studies of this isoto
dependence of the OES exist@23,25,26#, usually based on
higher-order indicators such as the four-point mass form
@21–23#:
8-2
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D (4)~N![
pN

4
@3B~N21!23B~N!2B~N22!1B~N11!#

5
1

2
@D (3)~N!1D (3)~N21!#. ~9!

Unfortunately, as demonstrated in Ref.@4#, the higher-order
indicators mix the pairing and single-particle contributions
the OES; hence they are not very useful for the purpose
extracting the pairing component. Since the detailed anal
of the isotopic dependence of the three-mass indicator re
is not yet available, below we discuss the average trends;
for eachN the values ofDexp

n (N) are averaged over all iso
tones for which the data exist, and, similarly, for eachZ the
values ofDexp

p (Z) are averaged over all isotopes.
Figure 3~and vertical bars in Figs. 1 and 2! presents such

average valuesDexp for the neutron and proton OES. Neutro
and proton values of the OES follow a similar patte
Namely, they systematically decrease withA, and they are
reduced around shell and subshell closures, as expected
also seen that neutron pairing gaps are systematically la
than the proton ones. The shift is mainly due to a mass
pendence of the pairing strength and results from the
that at a given valueN, data are more available for lighte
nuclei than at an identical value ofZ. Indeed, forN;Z, data

FIG. 1. Neutron OES indicatorDexp
n ~5! plotted as a function of

neutron numberN (N odd!. Results for different isotones ar
marked by dots. The average values ofDexp

n are indicated by gray
bars. Experimental data were taken from Ref.@24#.
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exist mostly atA(N),A(Z). A weak contribution from the
Coulomb energy is also expected to contribute to this sh

III. THEORETICAL MODELS

In this section, we investigate several exactly solva
models to see the interplay between the particle-hole
particle-particle channels of interaction. In all cases,
Hamiltonian has the form

Ĥ5Ĥ01Ĥpair, ~10!

FIG. 2. Same as in Fig. 1 except for the proton OES indica
Dexp

p ~5! plotted as a function ofZ (Z odd!.

FIG. 3. Average values of neutron and proton OES indicat
~5! plotted as functions of the neutron and proton numbers~both N
and Z odd!, respectively. Experimental masses were taken fr
Ref. @24#.
8-3
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J. DOBACZEWSKIet al. PHYSICAL REVIEW C 63 024308
whereH5Ĥ0 is either the intrinsic~i.e., deformed! single-
particle Hamiltonian or the laboratory-system quadrupo
quadrupole Hamiltonian, andĤpair is always the monopole
pairing ~seniority! Hamiltonian:

Ĥpair52GP̂†P̂. ~11!

In Eq. ~11! G is the pairing strength parameter,

P̂†5 (
k51

V

ak
†ak̄

†
~12!

denotes the monopole-pair creation operator, andk̄ denotes
the time-reversed state.

Properties of the Hamiltonian~10! depend on the ratio

h5
G

k
, ~13!

wherek represents the strength ofĤ0. For bothh!1 ~weak
pairing! andh@1 ~strong pairing!, one can treat the Hamil
tonian ~10! perturbatively. However, the situation encou
tered most often in the nuclear physics context is the in
mediate case (h;0.4) in which pairing correlations ar
strongly influenced by the nuclear mean field.

A. Limiting cases

To facilitate the discussion of results of exactly solvab
models, it is instructive to consider weak- and strong-pair
limits of Eq. ~10!. To this end, we introduce the explic
single-particle Hamiltonian

Ĥ05Ĥsp5 (
k51

V

ek~ak
†ak1ak̄

†
ak̄!, ~14!

whereek are the single-particle energies defined in Sec.

1. Weak-pairing limit,h™1

In this limit, the obvious expansion parameter ish, and
the unperturbed ground-state energy of an even-even sy
with particle numberN52n reads Bh!1

(0) 52( i 51
n ei . The

pairing Hamiltonian scatters the nucleonic pairs from h
states (i , ı̄ ) to particle states (j ,̄), and the corresponding
scattering matrix element is constant and equal to2G. The
first order of perturbation theory gives the energy correct

Bh!1
(1) 52Gn, ~15!

while the second-order correction is

Bh!1
(2) 52

1

2
G2 (

j 5n11

V

(
i 51

n
1

ej2ei
. ~16!

In the case of an odd system withN52n11, the analogous
expressions can be obtained by the following simple mod
cations. First, in the zero order, the (n11)th level is occu-
pied ~blocked! by one particle, and hence the single-partic
02430
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energyen11 should be added toBh!1
0 . Moreover, since the

pairing Hamiltonian does not couple orbitals occupied
one nucleon~the blocking effect!, the orbital containing the
odd particle must be excluded from the sum in Eq.~16!, and
the number of pairs in Eqs.~15! and ~16! must becomen
5(N21)/2.

Adding together the zero-, first-, and second-order con
butions to the binding energy, one obtains the correspond
expressions forD (3):

Dh!1
(3) ~2n11!5

1

2
G1

1

4
G2F(

i 51

n
1

en112ei

1 (
j 5n12

V
1

ej2en11
G , ~17a!

Dh!1
(3) ~2n!5

en112en

2
1

1

2
G1

1

4
G2F(

i 51

n
1

en112ei

1 (
j 5n11

V
1

ej2en
G . ~17b!

Finally, for the single-particle splitting indicators~6a! and
~6b!, one obtains

deh!1
1 5en112en1

G2

2 F (
j 5n11

V
1

ej2en
2 (

j 5n12

V
1

ej2en11
G ,

~18a!

deh!1
2 5en112en1

G2

2 F(
i 51

n
1

en112ei
2 (

i 51

n21
1

en2ei
G ,

~18b!

deh!15en112en1
G2

4 F (k51
kÞn

V
1

ek2en
2 (

k51
kÞn11

V
1

ek2en11G .

~18c!

It is clear that in the limit of smallG ~small compared to the
typical single-particle energy spacing!, the energy-spacing
indicators correctly extract the single-particle spectrum fr
the total binding energies.

2. Strong-pairing limit, hš1

In this case, the expansion parameter ish21. In the zero
order, the wave function of an even system withN52n is
the ground state ofĤpair; i.e., it corresponds to the state wit
the maximal quasispinLmax5V/2 and the third componen
of quasispinL05(2n2V)/2. The binding energy is given by
the seniority-model expression~see Refs.@27,28# and Sec.
III B !,

Bh@1
(0) ~N52n!52G@Lmax~Lmax11!2L0~L021!#.

~19!

In the quasispin formalism, the single-particle Hamiltonian
a combination of a scalar and a vector operator~with respect
to the quasispin group!, and this implies theDL50,61 se-
8-4
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lection rule for its matrix elements. The expectation value
Ĥsp in the lowestL5Lmax state is

Bh@1
(1) ~N52n!5^LmaxL0uĤspuLmaxL0&52nē, ~20!

where

ē[
1

V (
k51

V

ek ~21!

is theaveragesingle-particle energy. The second-order c
rection to the energy is given by

Bh@1
(2) ~N52n!52 (

L,Lmax,a

u^LmaxL0uĤspuLL0a&u2

ELL0
*

.

~22!

In Eq. ~21! a denotes all the remaining quantum numbe
other thanL andL0, andELL0

* is the unperturbed excitatio

energy ofuLL0a&. SinceĤsp can only connect the seniority
zero ground state with the seniority-two,L5Lmax–1 states at
energyE* 5GV, Eq. ~22! can be reduced to a simple form

Bh@1
(2) ~N52n!52

1

GV
^LmaxL0uĤsp

2 uLmaxL0&

1
1

GV
^LmaxL0uĤspuLmaxL0&

2.

~23!

By introducing the variance of single-particle levels,

se
2[

1

V21 (
k51

V

~ek2ē!2, ~24!

one can derive a simple expression for the second-order
rection:

Bh@1
(2) ~N52n!52

1

GV2
4n~V2n!se

2 . ~25!

That is, the first- and second-order corrections to the bind
energy are given by the first and second moments of
single-particle energy distribution. Note that for the degen
ate j shell, the second-order correction is zero, as expec

For odd particle numbers,N52n11, one should take
Lmax5(V21)/2 andL05(2n112V)/2 in Eq. ~19!. As-
suming that the odd particle occupies leveln11, this level is
removed from the sum of Eqs.~21! and~24!, i.e., one needs
to consider the remainingV21 levels only:

ē8[
1

V21 (
k51

kÞn11

V

ek5ē1
1

V21
~ ē2en11! ~26!

and
02430
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2[

1

V22 (
k51

kÞn11

V

~ek2ē8!2

5se
21

1

V22 Fse
22

V

V21
~ ē2en11!2G . ~27!

The resulting corrections to the binding energies can be w
ten as

Bh@1
(1) ~N52n11!52nē81en11 ~28!

and

Bh@1
(2) ~N52n11!52

1

G~V21!2
4n~V2n21!se8

2 .

~29!

The zero-order expressions forD (3) and de6 in the strong
pairing limit are given in Sec. III B. By adding the zero- an
first-order contributions to the binding energy, one obta
the strong-pairing-limit expressions forD (3):

Dh@1
(3) ~2n11!5

1

2
GV1

V22n21

V21
~en112ē!,

~30a!

Dh@1
(3) ~2n!5

1

2
GV1

1

2
G1

V22n

V21 S en111en

2
2ēD

2
en112en

2~V21!
. ~30b!

It can easily be shown that the first-order correction tode
vanishes. Consequently, the seniority-model expressions
cussed below give a good approximation to the sing
particle splitting indicators~6a! and ~6b!.

B. Degenerate shell: Seniority model

Let us consider the seniority~or pairing quasispin! model
@27,28#, i.e., the model forN nucleons moving in a 2V fold
degenerate shell described by the seniority-pairing Ham
tonian~11!. For this model the exact solution can be writte
in terms of quasispin quantum numbers@see Eq.~19!#. Al-
ternatively, the ground-state energy can be expresse
terms of the seniority quantum numbers ~see, e.g., Ref.@28#
p. 222!:

Bs~N!52 1
4 G~N2s!~2V2s2N12!,

where

H s50 for N52n,

s51 for N52n11.
~31!

The corresponding value ofD (3) is given by
8-5
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Ds
(3)~N!5H 1

2 GV1 1
2 G for N52n,

1
2 GV for N52n11,

~32!

which implies

Ds~N!5 1
2 GV, ~33a!

des
6~N!5des~N!5G. ~33b!

It is seen that, in the seniority model, indicators~5! and
~6a! give the OES values~33a! and single-particle energ
spacings~33b! which are independent of the particle numb
N. Values of the OES~33a! correctly reproduce the exac
pairing gapD85 1

2 GV, which is defined as a half of th
lowest excitation energy in an even system, and which
denote by a prime to distinguish it from the OES. The me
ing of des is less obvious. It is because the mean-fie
@Hartree-Fock~HF!# treatment of Hamiltonian~11! yields
only one 2V fold degenerate single-particle level at ener
2G, while our interpretation ofdes assumes that only th
Kramers degeneracy is present. Nevertheless, one may
pare exact values ofdes with those obtained in an approx
mated way and see whether the approximate ground-s
energies reproduce features of the mass spectrum repres
by Ds anddes.

In the seniority model, the Hartree-Fock-Bogoliubo
~HFB! equations~which in this case are identical with th
BCS equations! can be solved analytically. Indeed, the BC
occupation coefficient is given by

v25
N2s

2~V2s!
~34!

~see, e.g., Ref.@28#, p. 233!, and the ground-state energy i

Bs1BCS~N!52 1
4 G~N2s!S 2V2s2N1

N2s

V2sD . ~35!

The resulting three-mass indicator~1! can be written as

Ds1BCS
(3) ~N!

55
1
2 GVF11

2NV2N222V

2V2~V21!
G for N52n,

1
2 GVF11

2NV2N221

2V2~V21!
G2

G

2
for N52n11,

~36!

and hence indicators~5! and ~6a! give

Ds1BCS~N!5 1
2 GVF12

~V21!21~V2N!2

2V2~V21!
G , ~37a!

des1BCS
6 ~N!5GF12

V216~V2N!

V~V21! G , ~37b!
02430
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des1BCS~N!5GF12
1

VG . ~37c!

It is seen that in the limit of largeV (V@1), the BCS ap-
proximation~37a! reproduces the leading orderO(V1) of the
exact OES result~33a!. TheO(V0) deviation from the exact
result smoothly depends onN and reaches the minimum
(;G/4) at the middle of the shell (N5V).

For the energy-spacing indicators the deviations beh
asO(V21). While the symmetric indicatordes1BCS does not
depend onN, both des1BCS

1 and des1BCS
2 vary weakly with

the particle number. Namely, at the beginning of the sh
(N'0), des1BCS

2 'G and des1BCS
1 'G22G/V, at the

middle of the shelldes1BCS
6 5des1BCS, and at the top of the

shell (N'2V) des1BCS
1 'G and des1BCS

2 'G22G/V. This
behavior follows from a simple identitydes1BCS

1 (N)
5des1BCS

2 (2V2N) reflecting the particle-hole symmetry o
the model.

The analysis presented in this section illustrates the
vantages of comparing exact and approximate results~simi-
larly as experimental and theoretical results! by looking at
appropriate indicators. Analytical results available in th
model allow the explicit study of pairing and mean-field e
fects. The high degeneracy of the seniority model does
allow for extracting the energy spacings between the
formed levels; to this end, results for the nondegener
models are shown in the following sections.

C. Equidistant-level model „infinitely many levels…

Let us consider a phase space of infinitely many, dou
degenerate, equidistant single-particle levels spaced bd.
Suppose that all the levels up to a certain Fermi energy
occupied by the fermions, and that they interact throug
two-body interactionV̂. The Hamiltonian of the model read

Ĥ52 (
k52`

`

kdN̂k1V̂, ~38!

where N̂k is the number operator of thekth level. Further-
more we assume thatV̂ is invariant with respect to the shif
in single-particle indices:

Vk1k2 ;k
18k

28
5Vk11k,k21k;k

181k,k
281k , ~39!

wherek is an integer number. For a moment we do not ne
to specify this interaction; let us only remark that the sta
dard seniority-pairing interaction~11! obviously obeys the
shift-symmetry condition.

Of course, we do not intend to consider here infinite nu
bers of particles and infinite energies, cf. Eq.~38!. In prac-
tice, we should assume that the number of fermions inter
ing throughV̂ is finite but large. The remaining ones~e.g.,
occupying the most bound shells! form an inert core. This
guarantees the effect of the finite spectrum not to be imp
tant. Consequently, in future discussions we assume thaN
@1 and that the first level belonging to the ‘‘interactio
active’’ space hask51.
8-6
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Irrespective of how complicated interactionV̂ is, its as-
sumed shift-symmetry allows for an exact analysis in ter
of indicators based on ground-state energy differences.
deed, for any particle numberN, the ground-state energ
reads

Bieq~N!52 (
k52`

`

kdNk~N!1V~N!, ~40!

where Nk(N) and V(N) are the average values of partic
number operatorsN̂k and interactionV̂ in the ground-state
wave functions forN particles. Since the particles interac
values ofNk(N) can be arbitrary numbers between 0 and
however, if we switch the interaction off (V̂[0), we revert
to the single-particle model~2! in which Nk50, 0.5, or 1.

From the shift-symmetry~39!, it is obvious that the
change in the ground-state energy, occurring when the in
action is switched on, is the same for all even syste
(Ceven) and the same for all odd systems (Codd) and hence

Bieq~N!5H Bsp~N!1Ceven for N52n,

Bsp~N!1Codd for N52n11,
~41!

whereBsp(N) is given by Eq.~2!.
Indicators~1!, ~5!, and~6a! now give

D ieq
(3)~N!5Dsp

(3)~N!1Codd2Ceven, ~42!

hence

D ieq~N!5Codd2Ceven, ~43a!

deieq
6~N!5deieq~N!5d. ~43b!

The above argumentation does not at all depend on detai
the two-body interaction, and—irrespective of th
interaction—indicators~5! and ~6! correctly separate the in
teraction effects~43a! from the single-particle spacing
~43b!.

This generic result does not depend on whether any
proximations are used to obtain the ground-state energie
interacting systems. In particular, the BCS mean-field res
~obtained for interactionV̂) will also obey the pattern pre
sented in Eqs.~43! exactly; only the value of the interaction
energy differenceCodd2Cevenmay be different from the ex
act result.

Similarly, the BCS results obtained for the seniorit
pairing interaction~11! also follow the same pattern; how
ever, in this case we have to additionally ensure that
phase space in which the pairing correlations are allowe
develop is the same for all particle numbers. Indeed,
usually solves the BCS equations in a given finite ph
space, adjusting the interaction strengthG to that size of this
phase-space. For the results~43! to be valid, we have to
always use the same number of levels below and above
Fermi level, independently of the number of particles. Ac
ally, such a prescription is often used in realistic BCS
HFB nuclear structure calculations.
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As discussed above, in the case of the equidistant-le
model, the energy indicatorde reproduces the value of th
level spacingd regardless of the detailed structure ofV̂ and
details of the many-body approximation used. The reason
this is the shift symmetry of the Hamiltonian. Of course,
this symmetry is broken either by assuming the finite Hilb
space~see the following section! or by introducing the ex-
plicit symmetry-violating terms, one cannota priori expect
the above conclusion to holdexactly.

It is also worth noting that the OES~43a! is defined in
terms of the pairing~interaction! energy in the even and od
system, and not in terms of the HFB or BCS pairing gapD8
~defined as half of the lowest excitation energy!. Only for
strong pairing correlations are the pairing gaps and the
ues of the OES the same~see Ref.@11#!. In nuclei, pairing
correlations never reach such a limit, and the OES and B
pairing gap in an odd system can be significantly differen

D. Deformed shell„finite nondegenerate spectrum…

In this section, we investigate the deformed-shell-plu
pairing Hamiltonian that contains the single-particle te
~14! ~for V twofold degenerate single-particle states ava
able for the pair scattering! and seniority-pairing interaction
~11!. In this case, the analytic solution does not exist, but
exact eigenstates can be found numerically using, for
ample, the Richardson method@29# or by performing a direct
diagonalization. The latter approach cannot be applied w
the number of single-particle levels is large, because the
mension of the Hilbert space grows as (V/2

V ), and this puts the
practical limit atV;20.

In this work, we are mainly interested in the ability of th
energy-spacing indicator~6! to extract the single-particle
spectrum from the total binding energies. To this end
could have diagonalized the deformed-shell-plus-pair
Hamiltonian for arbitrarily chosen single-particle energie
However, for clarity of the presentation we show below on
results for a nearly equidistant spectrum, in whichek
5kd (k51, . . . ,V516), except for the seventh leve
shifted up in energy byd/4 ~i.e., e757.25d). We then ana-
lyze how such a perturbation in the otherwise regular
quence is reflected in the total energies, and how it can
extracted by using the energy-spacing indicators. The va
of the single-particle spacingd constitutes a convenient en
ergy scale, and below, the results will be expressed as ra
of all energies and parameters with respect tod.

Figures 4 and 5 show the results of the exact calculati
for the nearly equidistant spectrum ofV516 levels. The
behavior of the three-mass indicator~1! is illustrated in Fig.
4, where values ofDdef

(3) are compared to

D0[GA^P̂†P̂&2@N/2#, ~44!

which is the ‘‘equivalent’’ pairing gap.~In the BCS limit,D0

becomes the gap parameter.!
For G/d50.1 ~weak pairing!, values of Ddef

(3)(2n11)
nicely follow the low values ofD0, while those ofDdef

(3)(2n)
are clearly influenced by the single-particle spectrum and
not at all reflect the smallness of the pairing correlations.
8-7
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particular, the fluctuation aroundN514 (n57) clearly
shows up inDdef

(3)(2n) and is absent inDdef
(3)(2n11).

In the case of intermediate pairing (G/d50.3), Ddef
(3)(2n

11) behaves rather smoothly, whileDdef
(3)(2n) zigzags in the

region of irregularity in the spectrum. No direct correspo
dence between the values ofDdef

(3) andD0 can be found here
However, with increasing values ofG, i.e., when the static
pairing sets in,Ddef

(3) closely approachesD0. This is nicely
illustrated forG/d50.5. Only in the case of relatively stron
pairing correlations~but still far from the strong pairing limit
discussed in Sec. III A 2! is the fluctuation inDdef

(3) barely
visible.

FIG. 4. Three-mass indicatorsDdef
(3) ~1! ~thick solid and dotted

lines! calculated for the exact binding energies in the deform
shell-plus-pairing model withV516 for the case of weak
(G/d50.1!, intermediate (G/d50.3!, and strong pairing
(G/d50.5!. The single-particle spectrum is uniform (ek5dk), ex-
cept for the seventh level which is shifted up in energy byd/4 ~i.e.,
e757.25d). The equivalent gap parameters~44! are shown by thin
lines.

FIG. 5. Similar to Fig. 4 except for the energy-spacing indic
tors ~6a! dedef calculated forG/d50.1, 0.2, 0.3, and 0.4. The near
equidistant single-particle spacings are marked by dots.
02430
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In the case of weak pairing correlations, the correspo
ing energy-spacing indicators~6!, shown in Fig. 5, very well
reflect the structure ofĤsp. With an increasing pairing
strength, the pairing Hamiltonian gives rise to a diffus
Fermi surface~i.e., it smears out the single-particle occup
tions!. Consequently, the information about the details of
single-particle distribution is then expected to be washed
This is clearly seen in Fig. 5, where the nearly equidist
single-particle spacings are marked by dots.

However, it is seen that even in the case of relativ
strong pairing correlations, (G/d50.4), the symmetric
energy-spacing indicatorde gives a qualitative description o
the spectrum. Even atG/d50.5, the zigzag inde appears in
the right place. As far as the asymmetric indicatorsde6 are
concerned, their behavior is more strongly influenced byG,
and the resulting particle number dependence may m
them less useful measures of the spectral properties.

In order to assess the quality of the quasiparticle~BCS!
approximation for the binding-energy indicators, in the sa
model we have also carried out the BCS calculations.
seen in Fig. 6, it is only at large values ofG that theD (3)

indicators ~1! which are applied to the BCS energies a
proach the exact results. Especially at intermediate value
pairing strength, where the static pairing vanishes in oddN
nuclei, BCS becomes a rather poor approximation. Howe
it is clear that values ofDdef1BCS

(3) (2n) are affected by the
single-particle spectrum, while those ofDdef1BCS

(3) (2n11) are
rather insensitive to it.

The agreement is significantly better for the energ
spacing indicatorde ~Fig. 7!. Again, as discussed above,
large values of pairing strength,de is only a qualitative mea-
sure of the single-particle splitting.

Following Sec. III A, one can derive analytic expressio
for the binding energy indicators which should be valid
the limiting cases of weak and strong pairing. Particula
simple are the weak-pairing expressions. Namely, Eqs.~17a!
yield

Ddef
(3)~2n11!5

1

2
G1

G2

4d
@S~n!1S~V2n21!#,

~45a!

-

-

FIG. 6. Three-mass indicatorsDdef
(3) ~1! calculated for the exac

~thick lines! and BCS~thin lines! binding energies in the deformed
shell-plus-pairing model withV516 and a nearly equidistant spe
trum. Solid and dotted lines show results for even and odd value
N, respectively.
8-8



or

l,

ns

re
de

s

ge

av-

s-
rate

ng
in

, in
do

en-
., at
le

e
the

s
ion
ef.

the
d as

late

he
arly
er-

a

-
ith

e

ODD-EVEN STAGGERING OF BINDING ENERGIES AS . . . PHYSICAL REVIEW C 63 024308
Ddef
(3)~2n!5

d1G

2
1

G2

4d
@S~n!1S~V2n!#, ~45b!

where

S~n![(
i 51

n
1

i
. ~46!

Using Eq.~18a!, the single-particle splitting indicators are

de15d1
G2

2d~V2n!
, ~47a!

de25d1
G2

2dn
, ~47b!

de5d1
G2

2dn~V2n!
. ~47c!

Note that in this case, the single-particle splitting indicat
~47! are always greater than the original spacingd. In par-
ticular, de1 increases withn, de2 decreases withn, andde
has a minimum in the middle of the shell.

In the strong-pairing limit of the equidistant-level mode
the zero-order expressions forDdef

(3) andde are given by Eqs.
~32! and ~33!. The corresponding higher-order correctio
can be easily derived using Eqs.~20!–~29! after noting that

ē5
V11

2
d and se

25
V~V11!

12
d2. ~48!

Figure 8 shows the accuracy of the second-order exp
sions for the binding energies in the equidistant-level mo
with V516 in the weak-pairing~left! and strong-pairing
~right! limits. It is seen that, for large numbers of particle
the low-h expansion is fairly accurate even forh;0.4. Also
the h21 expansion seems to work very well even for lar
values ofd/G.

FIG. 7. Similar to Fig. 6 except for the energy-spacing indic
tors ~6! dedef . The single-particle spacings are marked by dots.
02430
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E. Pairing-plus-quadrupole model

In the previous sections, we have considered models h
ing either degenerate~Sec. III B! or arbitrarily fixed ~Secs.
III C and III D! single-particle spectra. However, in real sy
tems, the single-particle energies do not appear in a sepa
part of the Hamiltonian, but rather result from averagi
two-body interactions within the HF method. Therefore,
such situations the energy-spacing indicators~6! can be com-
pared only with the HF single-particle energies. Moreover
contrast to simple models, the HF single-particle energies
depend on the total numbers of particleN, and the energy-
spacing indicators extract from masses the single-particle
ergies which include this particle-number dependence, i.e
every N, the distance to the next available single-partic
level is obtained.

In order to account for such effects, in this section w
analyze the results of the exact diagonalization of
pairing-plus-quadrupole~PPQ! Hamiltonian

Ĥ52GP̂†P̂2kQ̂•Q̂, ~49!

in a single-j shell. The PPQ model is well known and ha
been used many times to test collective properties of ferm
systems; here we use the version defined in detail in R
@30#. Calculations were performed in thej 519/2 shell (V
510). The strength of the quadrupole-quadrupole~QQ! in-
teractionk provides here a suitable energy scale, and in
following all the energies and parameters are expresse
ratios with respect tok.

Exact ground-state energies for all particle numbersN
50,1, . . . ,20 andG50 are plotted in Fig. 9. All the even
systems have the ground-state spins ofI g.s.50, while in the
odd systems, the ground-state spins areI g.s.5uN2Vu/2
1V/2; this corresponds to rotational bands based on ob
sequences of deformed single-particle levels~see the discus-
sion in Ref.@30#!.

Even in a large energy scale of Fig. 9, the effect of t
twofold Kramers degeneracy and the OES effect are cle
seen. Note that in this model the pure QQ interaction gen

-

FIG. 8. Relative error~in percent! of the second-order expres
sions for the binding energies of the equidistant level model w
V516 in the weak~left, G/d!1; Sec. III A 1! and strong~right,
d/G!1; Sec. III A 2! pairing limits. In the weak pairing limit, cal-
culations were performed forN54, 5, 14, and 15. To realize th
strong-pairing situation, only large particle numbers,N514 and 15,
were considered in thed/G!1 case.
8-9
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ates a~weak! OES effect. Indeed, in a relatively small pha
space, the QQ interaction has a tangible pairing compon

In order to quantify the OES and mean-field effects, F
10 shows values of the three-mass indicator~1! obtained for
different pairing strengthsG. Ground-state energies of eve
and odd systems are used to calculateDPPQ

(3) for each value of
G. For even systems, the ground-state spins equal 0 fo
values ofN and G, while for odd systems, the values o
I g.s.519/2 ~for all N) replace at largeG the values ofI g.s.
5uN2Vu/21V/2, which characterize theG50 solutions.

In Fig. 10, one can clearly see that the OES increa
almost linearly withG, while the pattern of alternating large
and smaller values ofDPPQ

(3) is almost independent ofG. Both
these features ofDPPQ

(3) are explicated by using indicators~5!
and ~6b!, which give values ofDPPQ and dePPQ plotted in
Fig. 11. One can very well see the almost linear depende
of the OES on the pairing strengthG, Fig. 11~a!, and a very
weak G dependence~apart from N510) of the single-
particle energy spacings, Fig. 11~b!.

The PPQ model exhibits several features pertaining to
kinds of phase transitions. First, the static pairing corre
tions set in at critical values of the pairing strengthG. De-
pending on the number of particles, this phase transition
curs at aboutG/k50.03–0.05 for even particle numbe

FIG. 9. Exact binding energiesBPPQ ~solid line! of particles in
the j 519/2 single-j shell interacting with the pure QQ interactio
(G50). Energies obtained within the HFB approximation a
shown with the dashed line.

FIG. 10. Exact values of the three-mass indicatorDPPQ
(3) within

the j 519/2 PPQ calculated for the pairing strengthsG/k indicated
at the right-hand side.
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Second, the transition from nonequidistant to equidist
single-particle spectra~which within the PPQ model can in
terpreted as the deformed-spherical shape transition! occurs
at slightly higher values ofG, i.e., at aboutG/k50.08, 0.10,
0.12, and 0.12 forN54, 6, 8, and 10, respectively.~Note
that apart from a linear dependence of energies onN, the
PPQ Hamiltonian is exactly symmetric with respect to t
particle-hole transformationN↔2V2N @31#.!

Since the system is finite~and fairly small for that matter!,
the phase transitions are hardly visible in the exact result
Fig. 11. However, when indicators~5! and ~6b! are applied
to the mean-field~HFB! ground-state energies~Fig. 12!,
the phase transitions become visible as sudden incre
in DPPQ1HFB ~pairing transition!, and degeneracies o
d ePPQ1HFB ~shape transition!.

As one can see, a comparison of the exact and H
ground-state energies~Figs. 11 and 12! is very instructive
when it is based on comparing the corresponding indica
~5! and ~6b!. It turns out that in the PPQ model the HF
method reproduces quite well the OES and the sing
particle properties simultaneously. Some deviations oc
only near the phase transitions, where it is well known t
the mean-field approximation is not accurate.

When analyzing exact solutions for systems interact
with two-body interactions, or when similarly analyzing th
experimental data, one does not havea priori access to the

FIG. 11. Exact values of the OESDPPQ ~5!, ~a!, and of the
energy spacingdePPQ ~6b!, ~b!, calculated within thej 519/2 PPQ
model.
8-10
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single-particle energies or to the single-particle ener
spacings. In fact, the single-particle energies are conc
that appear naturally only in the mean-field approximati
Therefore, in order to assess the meaning of numbers
tained from the energy-spacing indicator~6b!, one should
compare them with the energy-spacings calculated dire
from the mean-field spectra, i.e., with the differences

d«~N!5«N/211~N!2«N/2~N!, ~50!

@cf. Eq. ~7!# where «k(N) is the kth ~twofold degenerate!
single-particle energy obtained within the mean-field a
proximation. Since a consistent application of the mean-fi
approximation to an odd system requires the time-reve
breaking, the Kramers degeneracy is lifted in odd syste
Consequently, in Eq.~50! one should only use the single
particle energies obtained self-consistently for systems w
an even number of particles.

In Fig. 13~b! we show the differences~50! calculated
from the single-particle spectra of canonical HFB energ
obtained in the PPQ model.~In fact, since all of the PPQ
1HFB equilibrium solutions conserve the axial symmet
the PPQ1HFB method reduces to the simple BCS appro
mation, and the canonical energies are equal to the eige
ergies of the mean-field Hamiltonian.! It is clear that the
energy-spacing indicators~applied either to the exact or t
the HFB total energies! give results similar to the difference
of canonical energies only for deformed shapes. Whene

FIG. 12. Same as in Fig. 11 except for the HFB results.
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the mean-field solutions become spherical, differences~50!
collapse to zero, as expected, while the energy-spacing i
cators give nonzero values. This result is easy to underst
in the spherical limit, the results of the PPQ model sho
resemble those of the seniority model. While the sing
particle energies are degenerate~the Hilbert space consists o
onej shell only!, the energy-spacing indicator should be pr
portional to the pairing strengthG ~see Sec. III B!. On the
other hand, before the transition to sphericity, the res
presented in Figs. 11~b!, 12~b!, and 13~b! are encouragingly
similar.

Finally, in Fig. 13~a! we show the values of the HFB
‘‘equivalent’’ gap parameters~44! calculated in the PPQ
1HFB model. It is seen thatD0 significantly underestimate
the magnitude of the OES effect, and moreover, it exhib
some particle-number dependence which is absent in the
act results.

In light of the above discussion, the very weak avera
dependence ofDPPQ

(3) on N ~except for the OES, of course!,
shown in Fig. 10, can be given a very simple explanation
the weak pairing limit,DPPQ

(3) is small, and its overall particle
number dependence is much weaker than the even-odd e
~see Fig. 6!. On the other hand, in the limit of strong pairing
DPPQ

(3) is expected to approach the seniority limit in whic
D (3) depends only on the number parity but not onN. Note

FIG. 13. Same as in Fig. 11 except for theDPPQ1HFB
0 HFB order

parameter~44! and the differences of HFB canonical energi
d«PPQ1HFB ~50!.
8-11
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that the results of the nondegenerate model shown in Fi
are very far from the spherical limit sinceG/d,1.

IV. CONCLUSIONS

This work contains the analysis of an interplay betwe
pairing and mean-field effects on binding energies of ma
fermion systems. While most of our discussion is concer
with nuclear systems, the main conclusions also apply
other finite-size superconductors such as grains.

The analysis of binding energies of several exac
solvable Hamiltonians~allowing variations in the magnitud
of pairing correlations! demonstrates that the three-mass
dicator,D (3)(2n11), is indeed an excellent measure of pa
ing correlations, and the symmetric indicatorde adequately
extracts the effective single-particle spacings from the m
sured binding energies ofdeformednuclei. According to the
analysis of nuclear masses, the mean-field contribution to
OES is significant in light nuclei, but it is reduced
;100–200 keV in heavy deformed nuclei@32# due to the
relatively close spacing of single-particle levels.

For deformed nuclei with weak and intermediate pairi
ev

a-

.V

;
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correlations, there is a nice consistency between the appr
mate results obtained within the mean-field approach~BCS
or HFB! and the exact results. However, for strongly pair
nearly spherical nuclei, there is no clear correlation betw
D (3)(2n11) and the pairing deformationD0. Also, the
energy-spacing indicators are superior over the mean-fi
single-particle energies in assessing the single-particle p
erties of the system.

Approximate expressions of binding-energy indicato
have been derived in the limits of weak and strong pairi
These formulas nicely explain the gross particle number
pendence seen in the exact results.
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