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Odd-even staggering of binding energies as a consequence of pairing and mean-field effects
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Odd-even staggering of binding energies is studied in finite fermion systems with pairing correlations. We
discuss contributions of the pairing and mean field to the staggering, and we construct the binding-energy
indicators which measure the magnitude of pairing correlations and the effective single-particle spacings in a
given system. The analysis is based on studying several exactly solvable many-body Hamiltonians as well as
on the analytical formulas that can be applied in the weak and strong pairing limits.
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I. INTRODUCTION particle number and is almost insensitive to shell effgdls
the standard way of extracting the OES has been by means of
The odd-even staggeringOES of binding energies, the higher-order binding-energy indicators, such as the four-
which reflects stronger binding of even-particle-number syspoint expression of Refd21,22 (see also Ref[23] and
tems than their odd-particle-number neighbors, has longeferences therejn This classical reasoning, which stems
been known in atomic nuclgil] and recently has been ob- from liquid-drop or Fermi-gas models, has recently been
served also in metal clustefg] and in ultrasmall supercon- questioned[4]. Namely, it has been demonstrated, using
ducting graing3]. However, as discussed recenf4], the fully self-consistent Hartree-Fock theory, that the contribu-
apparent similarity between the OES in all these finite manytion to OES due to symmetry energy is, in fact, nearly can-
fermion systems is deceptive. Although two basic physicarelled out by the contribution coming from the smoothed
mechanisms are involved) an effect of spontaneous break- single-particle energy.

ing of the spherical symmetiyjahn-Teller effect5]) and(ii) In Ref. [4] we have proposed a method to differentiate
blocking of pair correlations by an unpaired fermion, thebetween the pairing and mean-field influences on the OES of
origin of the OES is system specific. binding energies. These results are here presented in a more

In small metal clusters, OES is believed to be mainly duedetailed and explicit way, and supported by numerous ex-
to the nonspherical shape of the underlying mean figdeB]  amples based on exactly solvable models. The aim of this
and, thus far, neither the empirical evidence nor the theorework is to demonstrate the consistency of our new interpre-
ical calculationg9] support the presence of superconductivetation in situations where the exact solutions provide a firm
correlations in metal clusters. In superconducting grains, o#esting ground. Section Il discusses the binding-energy indi-
the other hand, OES is believed to be predominantly due to @ators used in this study. It also presents the systematics of
blocking effect caused by the presence of an odd electrogxperimental pairing gaps obtained using these indicators.
(see Refs[10-17). In the smallest grains, where the aver- The many-body models employed in this wofeniority
age spacingl of the electronic energy levels becomes com-model, equidistant-level model, and pairing-plus-quadrupole
parable to the size of the pairing g&p8], d~A, the OES mode) are described in Sec. Ill, together with the results of
must invoke both mean-field and pairing effects. In the caséhe calculations. A short summary and conclusions are given
of metallic grains, it is, however, difficulif possible at a)l  in Sec. IV.
to pin down the detailed structure of the single-electron level

spectrum. Most of the theoretical models applied to the prob- Il. ODD-EVEN-STAGGERING INDICATORS
lem of superconductivity in grains use an equidistant level . _ o _
spectrum because of its analytical simplicifgee Refs. The simplest way to quantify the OES of binding energies

[10,11,14,15and references quoted thereilowever, more IS to use the following three-point indicator:
realistic treatments require a nonuniform distribution of
single-particle levels as is done, for example, in R&B8]
(see also Ref20)).
A slightly different situation holds in atomic nuclei due to
the presence of two types of fermions. The strong and attraavhere my=(—1)N is the number parity and(N) is the
tive effective proton-neutron interaction gives rise to the ap{negative binding energy of a system witN particles. In
preciable symmetry energy contributign~(N—2)?] to  expression(1), the number of protonZ is fixed, andN de-
OES. Because the symmetry energy smoothly varies witlmotes the number of neutrons; i.e., this indicator gives the
neutron OES. An analogous proton OES indicator is ob-
tained by fixing the neutron numb&rand replacingN by Z
*Deceased. in Eq. (2).

TN
A<3>(N)E7[B(N—1)+B(N+1)—2B(N)], 1)
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By applying indicator(1) to experimental nuclear binding 5e(N)=2AC(N)—AG(N-1)-AGN+1). (6b)
energiesBeXSP, one obtains the experimental neutron and pro-
ton OESA,. Similarly, by applying this indicator to calcu Indicatorsde™ correspond to subtracting values of indicator

lated binding energies, one obtains information about theo- : . ;
retical results for the OES. In the following, the same(l) at particle numbers higher or lower by one, whiie

. -~ : employs the symmetric average of both. The differences be-
subscripts are used to denote the binding energies and valugs o .
o : ; ween these three indicators reflect, therefore, small varia-
of indicators(1) obtained for a given model. For example

. : . ' tions of the OES effects with particle numbers. Up to these
for the single-particle model described below, the resultin o . -
3) LT mall variations, we associate the values of these indicators
values areBg, andAgy’. Note that by using indicatdl) we

: A ) . .., with the spacings of the single-particle levels,
only aim at facilitating the comparison of calculations with
data; however, in essence we always compare and analyze
experimental and calculated binding energies. se”(N)=35e(N)=en;+1—enp- (7)
As a simple exercise, let us first calculate the OES for a
system of particles moving independently in a fixed de- 5 ¢jear that indicatorse® use masses of four nuclides

formed pote_ntia_\l well. In s_uch an extreme single-particleq5r the given particle numbgt; i.e., they constitute asym-
model, the binding energy is metric expressions in which either heavier or lighter nuclides
Q dominate. On the other hanéle uses masses of five nuclides
Bsp(N):ZZ Nyey, (2)  symmetrically on both sides dfi. The advantages of using
k=1 either of these indicators depend therefore predominantly on
. the availability of experimental data in the isotopic or iso-
whereN, (=0, 0.5, or 3 andey stand, respectively, for the (gnjc chains. For instance, in Ré#] dealing with light- and
occupation number and single-particle energy of Kk,  medium-mass nuclei, the indicatée™ was discussed.

twofold degenerate level, and the particle numiNes given It is instructive to relate the asymmetric energy-spacing
by indicatorsée™ of Eq. (6b) to the particle separation energies
0 S(N)=B(N—1)—B(N), i.e.,
N=2> Ni. 3
k=l se (N)=S(N)—S(N+2), (8a)

In the above expressions, the single-particle energiegk
=1,2,...Q) appear in ascending ordere;Ee,, ..., se (N)=S(N—1)—S(N+1). (8b)
<eq), and Q) denotes the number of twofold degenerate
single-particle levels. o )

For the ground state of an evéhsystem theN/2 lowest One sees that the indicatée™ depends on separation ener-
levels are filled. In the neighboring oddi-system, the odd 9ies of particles from even systems, while the indicater

particle occupies the lowest available level. This implies ~depends on those from odd systems. This does not involve
any asymmetry in treating even and odd systems, because,

Agﬁ)(N=2n+1)=O, (4a) obviously, every particle-separation energy depends on one
mass of an even system and on one mass of an odd system.
AD(N=2n)=3 (e, 1—€n). (4b) By using the three-mass indicat($), we hope to avoid

mixing the contributions to the OES which originate from
Hence, in the absence of the two-body interaction, indicatogingle-particle structure with those having other roots, e.g.,
(1) vanishes at odd particle numbers, and it gives half of theyairing correlations. Moreover, because it involves three
single-particle level spacings at even particle numbersmasses only, this indicator allows for obtaining experimental
Therefore, following Ref[4], we assume that any other ef- information on the longest isotopic or isotonic chains. Fig-
fect leading to the OESeyondthe pure single-particle yres 1 and 2 display experimental values of the neutrfy
(mean-field cor_ltribution is characterized by values of EQ. gq protonA 7, OES(5). (It is to be noted that these results
(1) at odd particle numbers. We also assume that such agitrer slightly from those presented in Ré#]. First, experi-
effect varies smoothly with the particle number, and thereéynanta| masses were taken from an updated mass evaluation
fore by subtracting indicatof1) at odd and even particle [24] Second, only the masses having an experimental uncer-
numbers, one may obtain information about the Sing|e’[ainty less than 100 keV have been considéred.

particle level spacing at the Fermi level. This hypothesis will |t'is seen that, especially for the light- and medium-mass

be verified in Sec. Il using several theoretical models. nuclei, there exists a substantial spread of results around the
Consequently, at odd particle numbes=2n+1, we  5yerage trend. This suggests that neutron and proton OES

shall use the following indicator: effects are not only functions of neutron and proton numbers,

A(N)=AG(N) 5) respectively, but that_ a significant cross _taIk betvyeen bot_h
' types of nucleons exists. Numerous studies of this isotopic
while at even particle numbefé=2n we define dependence of the OES ex{&3,25,26, usually based on
higher-order indicators such as the four-point mass formula
5e*(N)=2A®)(N)—2ACB)(N=1), (68  [21-23:
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Neut b FIG. 2. Same as in Fig. 1 except for the proton OES indicator
eutron numper A;’Xp (5) plotted as a function of (Z odd.

FIG. 1. Neutron OES indicatakg,, (5) plotted as a function of ) o
neutron numberN (N odd. Results for different isotones are €xist mostly atA(N)<A(Z). A weak contribution from the
marked by dots. The average valuesidf,, are indicated by gray Coulomb energy is also expected to contribute to this shift.
bars. Experimental data were taken from Re#].

IIl. THEORETICAL MODELS

A(4)(N)Eﬂ[3B(N—1)—3B(N)—B(N—2)+B(N+1)] In this section, we investigate several exactly solvable
4 models to see the interplay between the particle-hole and
1 particle-particle channels of interaction. In all cases, the
= E[A(S)(N)+A(3)(N—1)], (99  Hamiltonian has the form
H:l:'0+ Hpain (10)

Unfortunately, as demonstrated in Rgf], the higher-order
indicators mix the pairing and single-particle contributions to L LR R R R R RN
the OES; hence they are not very useful for the purpose of i
extracting the pairing component. Since the detailed analysis
of the isotopic dependence of the three-mass indicator results
is not yet available, below we discuss the average trends; i.e.,
for eachN the values ofAg,(N) are averaged over all iso-
tones for which the data exist, and, similarly, for eatcthe
values ofAl,(Z) are averaged over all isotopes.

Figure 3(and vertical bars in Figs. 1 and gresents such
average valued,,, for the neutron and proton OES. Neutron

and proton values of the OES follow a similar pattern. [ 125
H s o b oo 0y by 40y g e e Iy by ey
Namely, they systematically decrease withand they are . 0 20 20 s 30 100 120 140
reduced around shell and subshell closures, as expected. It is N.Z
b4

also seen that neutron pairing gaps are systematically larger

than the proton ones. The shift is mainly due to a mass de- F|G. 3. Average values of neutron and proton OES indicators
pendence of the pairing strength and results from the fagt) plotted as functions of the neutron and proton numigiecsh N
that at a given valud\, data are more available for lighter and z odd), respectively. Experimental masses were taken from
nuclei than at an identical value @f Indeed, folN~Z, data  Ref.[24].
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whereH=FH, is either the intrinsidi.e., deformegi single- ~ energye, ., should be added tB7 ;. Moreover, since the
particle Hamiltonian or the laboratory-system quadrupolesairing Hamiltonian does not couple orbitals occupied by
quadrupole Hamiltonian, anlapair is always the monopole- ©N€ nucleor(the blocking effedt the orbital containing the

pairing (seniority Hamiltonian: odd particle must be excluded from the sum in Ef), and
the number of pairs in Eqg15) and (16) must becomen
Hpaii=— GPTP. apy == . .
Adding together the zero-, first-, and second-order contri-
In Eq. (11) G is the pairing strength parameter, butions to the binding energy, one obtains the corresponding
o expressions foA (®):;
P'=3 alal (12 11 [ 1
k=1 (3) +1)=-G+-G2 -
Ay (2n+1)=5G+ 3G ;1 o e
denotes the monopole-pair creation operator,Emﬂanotes Q
the time-reversed state. + , (179
Properties of the Hamiltonial0) depend on the ratio j=nt+2 " €nty
G eni—e, 11 [0 1
= (13) (3) _ n+1 n, - T R2
7= ALy (2n)= ———+5G+ G 2%5375
wherex represents the strength ieif,. For bothp<1 (weak - 1
pairing and »>1 (strong pairing, one can treat the Hamil- S e—e| (17b

tonian (10) perturbatively. However, the situation encoun-
terec_i most often in the.nucle_ar phy§lps context Is the inter-  Finally, for the single-particle splitting indicato(§a) and
mediate case #~0.4) in which pairing correlations are (6h), one obtains

strongly influenced by the nuclear mean field.

O Q

set G? > 1 1
A. Limiting cases Cpe1=Cne1” o Srh1e—e, [STh2e—enq)
To facilitate the discussion of results of exactly solvable (183
models, it is instructive to consider weak- and strong-pairing - ho1
limits of Eq. (10). To this end, we introduce the explicit Se- —e ..o +G_ D 1 D 1
single-particle Hamiltonian LT ENEL E T o S e —e Sie—g
a (180)
N t
Ho=Hs= l(Zl ed(ajat a8y, (14) e[ & Q 1
o€, <1=€nr1— et — 2 —a _—]
: . : , . 41 kC16ec—€y k=1 € €nia
wheree, are the single-particle energies defined in Sec. II. k#n k#nt1

(180

1. Weak-pairing limit, <1 . ) o
It is clear that in the limit of smalG (small compared to the

In this limit, the obvious eXpanSion parameterrjs and typ|ca| Sing|e_partic|e energy Spacmghe energy_spacing

the unperturbed ground-state energy(oc))f an even-even systafticators correctly extract the single-particle spectrum from
with particle numberN=2n reads B,<1=22i_1€. The  the total binding energies.

pairing Hamiltonian scatters the nucleonic pairs from hole

states {,1) to particle statesj(j), and the corresponding 2. Strong-pairing limit, 72>1
Scattering matriX element iS constant and equ&l—'@. The In th|s case, the expansion parametep’i_sl_ In the Zero
first order of perturbation theory gives the energy correctionyrger, the wave function of an even system with-2n is
B = _Gn (15) the ground state d?FIpair; i.e., it corresponds to the state with
7=l ’ the maximal quasispinl 5= /2 and the third component
while the second-order correction is of quasi_sp@ri_(): (2n—=Q)/2. The binding energy is given by
the seniority-model expressidisee Refs[27,28 and Sec.
" !El nq I B),
B2 =—-_-G2 . (16)
2T S Eieme B (N=2n)= — G[L e Lmaoct 1)~ Lo(Lo— 1)].

(19
In the case of an odd system wih=2n+1, the analogous

expressions can be obtained by the following simple modifidn the quasispin formalism, the single-particle Hamiltonian is
cations. First, in the zero order, tha{1)th level is occu- a combination of a scalar and a vector operaiath respect
pied (blocked by one particle, and hence the single-particleto the quasispin groypand this implies theAL=0,+1 se-
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lection rule for its matrix elements. The expectation value of 1 @ .
Hgpin the lowestl =L, State is ‘Tézzm pa (e—e')?
. o k#n+1
BG21(N=2n)=(Lmak ol HsdLmako)=2ne, (20 L1, o _ )
Where :Ue+Q_2 Ue_Q_l(e_en+1) . (27)
_ 12 The resulting corrections to the binding energies can be writ-
=0 P ey (21 ten as
. . . 1) (N— o
is the averagesingle-particle energy. The second-order cor- By21(N=2n+1)=2ne'+e,;, (28)

rection to the energy is given by
and

> (L markol Hsl LL o) |2 .
L<lmaxa EfL ' B2 (N=2n+1)=———4n(Q—n—1)c.?
0 n>1 2 e -
22) G(Q-1)

B, (N=2n)=—

(29
In Eq. (21) « denotes all the remaining quantum numbers

other thanL andL,, andE?, is the unperturbed excitation The zero-order expressions faf®) and se* in the strong
0 pairing limit are given in Sec. Ill B. By adding the zero- and

energy of|LLoa). SinceHg, can only connect the seniority- first-order contributions to the binding energy, one obtains
zero ground state with the seniority-twos= L .~ 1 states at e strong-pairing-limit expressions far®):

energyE* =G(}, Eq.(22) can be reduced to a simple form,

1 A on+1)=260+ N e G
. £1(2n =5 ————(€n+1—©),
B%Ql(NIZI’]): - _<LmaxLO|H§p|LmaxL0> 7t 2 0-1 i
GQ (303
1
— - 2 1 1 Q-2n(e,,t+e
+ &5q (LmatolHsdLmak o)™ A(,73§1(2n)=EGQ+ G+ ( n+12 n_g)
(23
; ; ; : ; €n+17 €
By introducing the variance of single-particle levels, - m (30b
Q
o= mE (ex—e)?, (24) It can easily be shown that the first-order correctionseo
—1=

vanishes. Consequently, the seniority-model expressions dis-

, ) , cussed below give a good approximation to the single-
one can derive a simple expression for the second-order COFarticle splitting indicatorg6a) and (6b).

rection:

B. Degenerate shell: Seniority model

1
B2, (N=2n)=— GO? an(Q—n)o}. (25) Let us consider the senioritpr pairing quasispinmodel
[27,28, i.e., the model foN nucleons moving in aQ fold

That is, the first- and second-order corrections to the bindingoen%;r: ((alr:i\)te Fsgﬁlrl]i g ?nsgggf?h : ixt 2 ; :;T;t? g;y(_:gilrglgwt'ﬁr::_

energy are given by the first and second moments of thﬁ1 terms of quasispin quantum numbdsee Eq.(19)]. Al-

single-particle energy distribution. Note that for the degeneriernatively, the ground-state energy can be expressed in

atej shell, the second-order correction is zero, as expectedt =
) erms of the seniorit antum numke(see, e.g., Ref28
For odd particle numberdN=2n+1, one should take p. 222 ‘offty quantum nu fs g 28]

Lma=(Q2—1)/2 andLy=(2n+1-Q)/2 in Eq. (19. As-

suming that the odd particle occupies lemet 1, this level is B(N)=—31G(N-s)(2Q0—s—N+2),
removed from the sum of Eq&1) and(24), i.e., one needs
to consider the remainin® — 1 levels only: where
1 o 1 0 for N=2
- — — s= or =2n
el=—— > ee=e+——(e—ey;1) (26) '
Q_lkfl -1 " s=1 for N=2n+1. (3D
n+1

and The corresponding value a@(®) is given by
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3GO+3G for N=2n,
AL(N)= (32
1GQ for N=2n+1,
which implies
A(N)=3GQ, (333
des"(N)=8eN)=G. (33b

It is seen that, in the seniority model, indicat¢t and

PHYSICAL REVIEW C 63 024308

1
5eS+BCS(N)=G[1—5}. (3709
It is seen that in the limit of larg€) ((>1), the BCS ap-
proximation(37a reproduces the leading ord@® Q1) of the
exact OES resul33a. The O(Q°) deviation from the exact
result smoothly depends oN and reaches the minimum
(~G/4) at the middle of the shellN=Q).

For the energy-spacing indicators the deviations behave

asO(Q~1). While the symmetric indicatofe,, gcs does not
depend onN, both e, gcs and e, g vVary weakly with

(6a) give the OES value$33g and single-particle energy the particle number. Namely, at the beginning of the shell
spacingg33b) which are independent of the particle number(N~0), de.,gcs~G and del,gc~G—2G/Q, at the

N. Values of the OES333 correctly reproduce the exact middle of the she||598i+BCS: Seq,pes, and at the top of the
pairing gapA’=3G(, which is defined as a half of the ghe|| (N=~2Q) e, 5cs~G and Se_, gee~G—2G/Q. This
lowest excitation energy in an even system, and which W anhavior follows from a simple identityse, geg(N)

denote by a prime to distinguish it from the OES. The mean-_ Se
ing of des is less obvious. It is because the mean-field

[Hartree-Fock(HF)] treatment of Hamiltonian(1l) yields

only one 2) fold degenerate single-particle level at energy, o
— G, while our interpretation ofe; assumes that only the lar
Kramers degeneracy is present. Nevertheless, one may co
pare exact values afeg with those obtained in an approxi-

mated way and see whether the approximate ground-sta*g
energies reproduce features of the mass spectrum represenig

by A and de;.

In the seniority model, the Hartree-Fock-Bogoliubov
(HFB) equations(which in this case are identical with the
BCS equationscan be solved analytically. Indeed, the BCS

occupation coefficient is given by

2. _N°S 34
e (34

(see, e.g., Ref.28], p. 233, and the ground-state energy is

N—s
BS+BCS(N)=—%G(N—S)(ZQ—S—N—F Q_—S) (35

The resulting three-mass indicatdn can be written as

AN

. 2NO—-N?-20
5GQ ———F— | for N=2n,
20%(Q—1)
. 2NQO-N*~-1| G
5GQ|1+————|—% for N=2n+1,
20%(Q0-1) | 2
(36)
and hence indicatorb) and (6a) give
AcpedN)=1G0O| 1 (@-D*+(Q-N)” (373
s+BC 2 292(9_1) 1
Set  (N)=G| 12 1=(@-N) 37b
eS+BCS( )_ - Q(Q_l) [l ( )

<acs(2Q —N) reflecting the particle-hole symmetry of
the model.

The analysis presented in this section illustrates the ad-
ntages of comparing exact and approximate ressiitsi-

ly as experimental and theoretical resuldy looking at

IQp’)propriate indicators. Analytical results available in this

model allow the explicit study of pairing and mean-field ef-
ts. The high degeneracy of the seniority model does not
w for extracting the energy spacings between the de-
formed levels; to this end, results for the nondegenerate
models are shown in the following sections.

C. Equidistant-level model (infinitely many levels)

Let us consider a phase space of infinitely many, doubly
degenerate, equidistant single-particle levels spacedl. by
Suppose that all the levels up to a certain Fermi energy are
occupied by the fermions, and that they interact through a

two-body interactionV. The Hamiltonian of the model reads

A=2 > kdN+V, (38)

k=—o

whereN, is the number operator of theth level. Further-

more we assume that is invariant with respect to the shift
in single-particle indices:

Vigky ik = Vi ko tkik] +ok 4 (39

wherek is an integer number. For a moment we do not need
to specify this interaction; let us only remark that the stan-
dard seniority-pairing interactiofil1l) obviously obeys the
shift-symmetry condition.

Of course, we do not intend to consider here infinite num-
bers of particles and infinite energies, cf. E§8). In prac-
tice, we should assume that the number of fermions interact-
ing throughV is finite but large. The remaining onés.g.,
occupying the most bound shell®orm an inert core. This
guarantees the effect of the finite spectrum not to be impor-
tant. Consequently, in future discussions we assumeNhat
>1 and that the first level belonging to the “interaction-
active” space hag=1.
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|rrespective of how Compncated interacti&h is, its as- As discussed above, in the case of the equidistant'level

sumed shift-symmetry allows for an exact analysis in termgnodel, the energy indicatafe reproduces the value of the
of indicators based on ground-state energy differences. Inevel spacingd regardless of the detailed structure\bfand
deed, for any particle numbeX, the ground-state energy details of the many-body approximation used. The reason for
reads this is the shift symmetry of the Hamiltonian. Of course, if
this symmetry is broken either by assuming the finite Hilbert
space(see the following sectignor by introducing the ex-
plicit symmetry-violating terms, one cannatpriori expect
the above conclusion to hokekactly
where N (N) and V(N) are the average values of particle It is also worth noting that the OE®I33 is defined in
number operator§l, and interactionV in the ground-state terms of the palrl_nglnteracUor) energy in the even and odd
wave functions forN particles. Since the particles interact, SYStem. and not in terms of the HFB or BCS pairing gélp
values ofN,(N) can be arbitrary numbers between 0 and 1;(def|ned as half of th? lowest excitation energ@nly for

. . . ) ~ strong pairing correlations are the pairing gaps and the val-
however, if we switch the interaction ofi/(=0), we revert

) . . : v ues of the OES the san{see Ref[11]). In nuclei, pairing
to the smgle-par_tlcle modéP) in wf_uc_h Nk_(.)’ 0.5, or 1. correlations never reach such a limit, and the OES and BCS
From the shift-symmetry(39), it is obvious that the

. . . iri i dd syst be significantly diff t.
change in the ground-state energy, occurring when the mtelp-alrlng gap In an odd system can be signincantly dirreren

action is switched on, is the same for all even systems
(Ceven and the same for all odd systentS() and hence

©

Bieq(N)=2k_E_ kdN(N) +V(N), (40

D. Deformed shell(finite nondegenerate spectrum

In this section, we investigate the deformed-shell-plus-

BsgN)+Ceren for N=2n, pairing Hamiltonian that contains the single-particle term
Bieq(N) = (41 (14) (for Q twofold degenerate single-particle states avail-
BsgfN)+Coqq for N=2n+1, able for the pair scatteringand seniority-pairing interaction
o (12). In this case, the analytic solution does not exist, but the
whereBg(N) is given by Eq.(2). exact eigenstates can be found numerically using, for ex-
Indicators(1), (5), and(6a) now give ample, the Richardson methf2l] or by performing a direct
diagonalization. The latter approach cannot be applied when
AS’&(N):Agﬁ)(NHCodd— Ceven (42) the number of single-particle levels is large, because the di-
hence mension of the Hilbert space grows :&,29, and this puts the
practical limit at{)~20.
AiegN) = Cogq— Ceven (4339 In this work, we are mainly interested in the ability of the
energy-spacing indicato(6) to extract the single-particle
Sieg” (N) = Seieg(N) =d. (43p  spectrum from the total binding energies. To this end we

could have diagonalized the deformed-shell-plus-pairing
The above argumentation does not at all depend on details dtamiltonian for arbitrarily chosen single-particle energies.
the two-body interaction, and—irrespective of the However, for clarity of the presentation we show below only
interaction—indicator$5) and (6) correctly separate the in- results for a nearly equidistant spectrum, in whiep
teraction effects(43a from the single-particle spacings =kd (k=1,... (0=16), except for the seventh level
(43b). shifted up in energy by/4 (i.e., e;=7.25d). We then ana-
This generic result does not depend on whether any agyze how such a perturbation in the otherwise regular se-
proximations are used to obtain the ground-state energies gfuence is reflected in the total energies, and how it can be
interacting systems. In particular, the BCS mean-field resultextracted by using the energy-spacing indicators. The value
(obtained for interactiorV) will also obey the pattern pre- of the single-particle spacind constitgtes a convenient en-
sented in Eqs(43) exactly; only the value of the interaction- €'9Y scale, .and below, the result; will be expressed as ratios
energy difference 44— Cevenmay be different from the ex- of aI.I energies and parameters with respeatl.to _
act result. Figures 4 and 5 show the results of the exact calculations
Similarly, the BCS results obtained for the seniority- for the nearly equidistant spectrum 6f=16 levels. The
pairing interaction(11) also follow the same pattern; how- behavior of the thre%—mass indicatd is illustrated in Fig.
ever, in this case we have to additionally ensure that thd. where values oA} are compared to
phase space in which the pairing correlations are allowed to —
develop is the same for all particle numbers. Indeed, one A°=G(PTP)~[N/2], (44)
usually solves the BCS equations in a given finite phase
space, adjusting the interaction strengitto that size of this Which is the “equivalent” pairing gap(in the BCS limit,A°
phase-space. For the resu(#3) to be valid, we have to becomes the gap parameter.
always use the same number of levels below and above the For G/d=0.1 (weak pairing, values of A{Z(2n+1)
Fermi level, independently of the number of particles. Actu-nicely follow the low values of\°, while those ofAEfg(Zn)
ally, such a prescription is often used in realistic BCS orare clearly influenced by the single-particle spectrum and do
HFB nuclear structure calculations. not at all reflect the smallness of the pairing correlations. In
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0.6 3 0.8 BCS
E 0.6 6/d=0.30
04F

G/d=0.30 {7F T : )
* Ga=030 " RN EEERRN Y
0 4 8 12162024 28 32 [ oo B 7 GI8=0.40 ’ G/d=0.50
particle number 0078 6 24 3% 8 16 2¢ 32 0 & 16 24 32
Particle number
Q=16 FIG. 6. Three-mass indicators{) (1) calculated for the exact
(thick lines and BCS(thin lineg binding energies in the deformed-
Aéi’f even-N shell-plus-pairing model witlf) =16 and a nearly equidistant spec-
0 LILECL R Ag’e)f odd-N trum. Solid and dotted lines show results for even and odd values of
G/d=0.50 — AYgeven-N N, respectively.
beoteubabebbitotendd AY.¢ 0dd-N

0 4 8 12162024 28 32 In the case of weak pairing correlations, the correspond-
particle number ing energy-spacing indicato(6), shown in Fig. 5, very well
o ) _ . reflect the structure oﬂsp. With an increasing pairing
_ FIG. 4. Three-mass indicatorSge; (1) (thick solid and dotted  gyenqaih the pairing Hamiltonian gives rise to a diffused
lineg) calculated for the exact binding energies in the deformed-Fermi surface(i.e., it smears out the single-particle occupa-
?g?!’ggj;pa'm%m?;%?aetle Wg/g:ol g) forantgle Siz;s: of e:i\:r(iar?k tions). Consequently, the information about the details of the
e o g pairng single-particle distribution is then expected to be washed out.

(G/d=0.5). The single-particle spectrum is uniforme,& dk), ex- 2 - . L
cept for the seventh level which is shifted up in energydby (i.e., T.h's IS clef’irly Seen in Fig. 5, where the nearly equidistant
single-particle spacings are marked by dots.

e,=7.25). The equivalent gap parametdds!) are shown by thin e ) .
! ) a gapp e y However, it is seen that even in the case of relatively

lines.

strong pairing correlations, G/d=0.4), the symmetric
particular, the fluctuation aroundN=14 (n=7) clearly energy-spacing indicatafe gives a qualitative description of
shows up inA(2n) and is absent il &)(2n+1). the spectrum. Even &/d=0.5, the zigzag ine appears in

In the case of intermediate pairings(d=0.3), A)(2n  the right place. As far as the asymmetric indicatdes are

+1) behaves rather smoothly, whitdd:X(2n) zigzags in the concerned, the_ir behav_ior is more strongly influencedsyy
region of irregularity in the spectrum. No direct correspon-and the resulting particle number dependence may make
dence between the values d§2) andA° can be found here. them less useful measures of the spectral properties.
However, with increasing values @, i.e., when the static In order to assess the quality of the quasiparti@€s)
pairing sets inAQ) closely approached®. This is nicely approximation for the binding-energy indicators, in the same

illustrated forG/d=0.5. Only in the case of relatively strong model we have also carried out the BCS calculations. As

o : : 7 20~ Y seen in Fig. 6, it is only at large values 6f that theA(®)
pairing correlationgbut still far from the strong pairing limit >~ : . .
discussed in Sec. Ill ARis the fluctuation inAg?f barely indicators (1) which are applied to the BCS energies ap-

visible pr(_)a_u:h the exact results. Especially at intermt_ediate _values of
' pairing strength, where the static pairing vanishes in Ndd-
e nuclei, BCS becomes a rather poor approximation. However,
G/d=0.30 it is clear that values oA§), zcy(2n) are affected by the
single-particle spectrum, while thosemﬁLBcs(ZnJr 1) are
rather insensitive to it.

The agreement is significantly better for the energy-
spacing indicatowe (Fig. 7). Again, as discussed above, at
large values of pairing strengtie is only a qualitative mea-
sure of the single-particle splitting.

Following Sec. Il A, one can derive analytic expressions

G/d=0.20 {12}

""""" 1.0}

0.8¢

1.2¢

LOfeoe on MOl ee e

0‘8: 08:"4_.,35 Ny for the binding energy indicators which should be valid in
. : . the limiting cases of weak and strong pairing. Particularly
0 4 81216202428 0 4 8 1216202428 simple are the weak-pairing expressions. Namely, E&
particle number yield
FIG. 5. Similar to Fig. 4 except for the energy-spacing indica- 3 _ 1 G?
tors(6a) 5edefcalculated%‘OtG/d=0?1, 0.2, 0.3, an?iyo.f. Thegnearly Aée)f(2n+ D= 7G+E[S(n) +S(Q=n-1)],
equidistant single-particle spacings are marked by dots. (453
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11

O=1¢| ©/d=0.30 G/d=0.40 G/d=0.50
| | u \ . -

Py
[=]

BC ~
50 L
1.0t -oom/(_—om'\o--o 000000000040 : N
T B 200
B TR TSI VORI SO S [5] [ F
('?2_ ¢* G/d=0.30 || * G/d=0.40 || * G/d=0.50 | ;
i i T ] 0_ 0: 1 1 1
1.01 e . e[ epoee LAAAALNE 0 0.2 0.4 0.6 08 0 02 04 06 08
- - 1T - G/d d/G
0.8 I T
.I i i i L ] i i |.

e s st FIG. 8. Relative errofin percen} of the second-order expres-
0 8 16 24 0 8 16 24 0 8 16 24 . . . L .
Particle number sions for the binding energies of the equidistant level model with
=16 in the weak(left, G/d<1; Sec. lll A1 and strong(right,
FIG. 7. Similar to Fig. 6 except for the energy-spacing indica-d/G<1; Sec. Il A 2 pairing limits. In the weak pairing limit, cal-
tors (6) Seger. The single-particle spacings are marked by dots.  culations were performed fdi=4, 5, 14, and 15. To realize the
strong-pairing situation, only large particle numbéis; 14 and 15,
d+G G2 were considered in thd/G<1 case.
ARH2n) = —5—+75[S(N+S(Q-n)], (45D

E. Pairing-plus-quadrupole model

where In the previous sections, we have considered models hav-
ing either degeneratéSec. Il B) or arbitrarily fixed (Secs.
1 Il C and Ill D) single-particle spectra. However, in real sys-
s(n)EE —. (46) tems, the single-particle energies do not appear in a separate
=11 part of the Hamiltonian, but rather result from averaging

two-body interactions within the HF method. Therefore, in
Using Eq.(183, the single-particle splitting indicators are  such situations the energy-spacing indicatéjsan be com-
pared only with the HF single-particle energies. Moreover, in
G2 contrast to simple models, the HF single-particle energies do
set=d+ (478 depend on the total numbers of partidle and the energy-
2d(Q—n) L . .
spacing indicators extract from masses the single-particle en-
ergies which include this particle-number dependence, i.e., at

_ G? every N, the distance to the next available single-particle
de =d+ 2dn’ (47D |evel'is obtained.
In order to account for such effects, in this section we
G2 analyze the results of the exact diagonalization of the
I — pairing-plus-quadrupoléPPQ Hamiltonian
se=d 2dnQ—n) (479

H=-GP'P-«Q-Q, (49)
Note that in this case, the single-particle splitting indicators
(47) are always greater than the original spacthdn par-
ticular, 5e* increases witm, e~ decreases with, andse N @ singlej shell. The PPQ model is well known and has
has a minimum in the middle of the shell. been used many times to test collective properties of fermion

In the strong-pairing limit of the equidistant-level model, Systems; here we use the version defined in detail in Ref.
the zero-order expressions faf) and de are given by Eqs. [30]. Calculations were performed in the=19/2 shell ()
(32) and (33). The corresponding higher-order corrections =10)- The strength of the quadrupole-quadrup@®) in-

can be easily derived using EqR0)—(29) after noting that ~ t€ractionx provides here a suitable energy scale, and in the
following all the energies and parameters are expressed as

00+1) ratios with respect to.
/g2 (48 Exact ground-state energies for all particle numbdrs
12 =0,1,...,20 and5=0 are plotted in Fig. 9. All the even
systems have the ground-state sping of=0, while in the
Figure 8 shows the accuracy of the second-order expresdd systems, the ground-state spins a5§_=|N—Q|/2
sions for the binding energies in the equidistant-level modek-Q/2; this corresponds to rotational bands based on oblate
with Q=16 in the weak-pairingleft) and strong-pairing sequences of deformed single-patrticle leske the discus-
(right) limits. It is seen that, for large numbers of particles, sion in Ref.[30]).

— O+1 )
e=Td and og=

the low-n expansion is fairly accurate even fgr-0.4. Also Even in a large energy scale of Fig. 9, the effect of the
the 7~ ! expansion seems to work very well even for largetwofold Kramers degeneracy and the OES effect are clearly
values ofd/G. seen. Note that in this model the pure QQ interaction gener-

024308-9



J. DOBACZEWSKIet al. PHYSICAL REVIEW C 63 024308

T

: PPQ in single-j shell
ok 3
[ j=19/2, G=0
-1F ]
® b ==e--HFB ]
o oL J
z ; ] RS
1] ] o
-3 o 3 &

0 5 10 15 20
Number of particles N

FIG. 9. Exact binding energieBppq (solid line) of particles in
the j=19/2 singlej shell interacting with the pure QQ interaction
(G=0). Energies obtained within the HFB approximation are
shown with the dashed line.

ates aweak) OES effect. Indeed, in a relatively small phase X
space, the QQ interaction has a tangible pairing component.

In order to quantify the OES and mean-field effects, Fig. °
10 shows values of the three-mass indicafigrobtained for o
different pairing strength&. Ground-state energies of even
and odd systems are used to calcukthQfor each value of
G. For even systems, the ground-state spins equal 0 for all
values of N and G, while for odd systems, the values of
l4s=19/2 (for all N) replace at larges the values ofl ¢ 0.00 0.05 0.10 0.15
—|N Q|/2+Q/2, which characterize th&=0 solutions. Pairing strength G/x

In Fig. 10, one can clearly see that the OES increases
almost linearly withG, while the pattern of alternating larger FIG. 11. Exact values of the OE8ppq (5), (@), and of the
and smaller values af53,is almost independent @. Both ~ energy spacingieppq (6b), (b), calculated within thg =19/2 PPQ
these features k), are explicated by using indicatos) ~ Model
and (6b), which give values ofAppg and deppq plotted in
Fig. 11. One can very well see the almost linear dependencgecond, the transition from nonequidistant to equidistant
of the OES on the pairing streng® Fig. 11(a), and a very  single-particle spectrawhich within the PPQ model can in-
weak G dependenceapart from N=10) of the single- terpreted as the deformed-spherical shape trangitioours
particle energy spacings, Fig. (bl at slightly higher values o8, i.e., at abouG/x=0.08, 0.10,

The PPQ model exhibits several features pertaining to tw®.12, and 0.12 foN=4, 6, 8, and 10, respectivelyNote
kinds of phase transitions. First, the static pairing correlathat apart from a linear dependence of energiesNoithe
tions set in at critical values of the pairing stren@hDe-  PPQ Hamiltonian is exactly symmetric with respect to the
pending on the number of particles, this phase transition ogparticle-hole transformatioN«— 2 —N [31].)
curs at aboutG/x=0.03—-0.05 for even particle number.  Since the system is finit@nd fairly small for that mattgr

the phase transitions are hardly visible in the exact results of

[ A A A A ] Fig. 11. However, when indicatorf®) and (6b) are applied

/\/\/\/\/\N\/\/\ G/x ] to the mean-field(HFB) ground-state energied-ig. 12,

1.0 -/\/\/\/\M/\/\/\ 0.16 ] the phase transitions become visible as sudden increases
[ 0.12 | in Appoirs (pairing transition, and degeneracies of

M 0.08 1 d€pporHrs (Shape transition

:\N\/\/\/\/\/\a 0.04 1 As one can see, a comparison of the exact and HFB

I 0.02 ground-state energie$igs. 11 and 1Ris very instructive

:\/\/\/\'*/\/\/\/ 0.00 ] when it is based on comparing the corresponding indicators
\/\/\/\M/\/ ] (5) and (6b). It turns out that in the PPQ model the HFB

0.0 method reproduces quite well the OES and the single-

e particle properties simultaneously. Some deviations occur

0 5 10 15 20 " o
. only near the phase transitions, where it is well known that
Number of particles N y . . .
the mean-field approximation is not accurate.

Ik

A®
PPQ
(=]
(4]

FIG. 10. Exact values of the three-mass indicai@g, within When analyzing exact solutions for systems interacting
the j=19/2 PPQ calculated for the pairing streng@¥« indicated ~ with two-body interactions, or when similarly analyzing the
at the right-hand side. experimental data, one does not haveriori access to the
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1.0 1.0 } |[7©ON=4 i
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0.8 0.8
¥ ] ¥
= m
L 0.6 w 0.6
+ I 5
g 0.4 Jeo0al
< <
0.2 0.2 |
0.0 0.0 |
0.3 | 0.3 | .
w 2] v 02} .
ra i ra ]
T 0.1 T 01 .
I} [ <] j
g a —O—N=4 .
S 0.0 & 0.0 | |-O-N=6 .
—O—N=8 1
-0.1 -0.1 | [-B-N=10 (b) 1
0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
Pairing strength G/x Pairing strength G/x
FIG. 12. Same as in Fig. 11 except for the HFB results. FIG. 13. Same as in Fig. 11 except for thfpq, s HFB order

parameter(44) and the differences of HFB canonical energies

single-particle energies or to the single-particle energy-9€ppq+rrs (50).
spacings. In fact, the single-particle energies are concepts
that appear naturally only in the mean-fi_eld approximationihe mean-field solutions become spherical, differen&@s
Therefore, in order to assess the meaning of numbers oRg)japse to zero, as expected, while the energy-spacing indi-
tained from the energy-spacing indicatd@), one should  caiors give nonzero values. This result is easy to understand:
compare them with the energy-spacings calculated directly, the spherical limit, the results of the PPQ model should
from the mean-field spectra, i.e., with the differences resemble those of the seniority model. While the single-
article energies are degener Hilbert space consists of
08 (N)=enrz21(N) = enaN), (50 (F;nej shell on?y), the ene?gy-spéggng indicat%r should be pro-

[cf. Eq. (7)] where e (N) is the kth (twofold degenerate portional to the pairing streng_t@ (see Sec. _III_ B. On the
single-particle energy obtained within the mean-field ap_other hanq, b(_efore the transition to sphericity, the. results
proximation. Since a consistent application of the mean-fiel®resented in Figs. 1), 12(b), and 18b) are encouragingly
approximation to an odd system requires the time-reversaimilar.

breaking, the Kramers degeneracy is lifted in odd systems, Finally, in Fig. 13a) we show the values of the HFB
Consequently, in Eq(50) one should only use the single- ~€quivalent” gap parameters44) calculated in the PPQ

. . K A . . O - . pr .
particle energies obtained self-consistently for systems witi” HFB model. It is seen thak™ significantly underestimates
an even number of particles. the magnitude of the OES effect, and moreover, it exhibits

In Fig. 13b) we show the difference$50) calculated SOMe particle-number dependence which is absent in the ex-
from the single-particle spectra of canonical HFB energie€iCt results. _ _
obtained in the PPQ modelln fact, since all of the PPQ In light of thesabove discussion, the very weak average
+HFB equilibrium solutions conserve the axial symmetry,dependence ol 2, on N (except for the OES, of course
the PPQ-HFB method reduces to the simple BCS approxi-shown in Fig. 10, can be given a very simple explanation. In
mation, and the canonical energies are equal to the eigenetie weak pairing limitA 53, is small, and its overall particle-
ergies of the mean-field Hamiltonianlt is clear that the number dependence is much weaker than the even-odd effect
energy-spacing indicator@pplied either to the exact or to (see Fig. 6. On the other hand, in the limit of strong pairing,
the HFB total energiggive results similar to the differences AffFZQ is expected to approach the seniority limit in which
of canonical energies only for deformed shapes. Whenevek(®) depends only on the number parity but notNnNote
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that the results of the nondegenerate model shown in Fig. 6orrelations, there is a nice consistency between the approxi-

are very far from the spherical limit sin€g/d<<1. mate results obtained within the mean-field appro@®8S
or HFB) and the exact results. However, for strongly paired
V. CONCLUSIONS nearly spherical nuclei, there is no clear correlation between

_ _ . _ A®(2n+1) and the pairing deformatioh®. Also, the
This work contains the analysis of an interplay betweenenergy-spacing indicators are superior over the mean-field
pairing and mean-field effects on binding energies of manyszingle-particle energies in assessing the single-particle prop-
fermion systems. While most of our discussion is concernegties of the system.
with nuclear systems, the main conclusions also apply t0 Approximate expressions of binding-energy indicators
other finite-size superconductors such as grains. have been derived in the limits of weak and strong pairing.

The analysis of binding energies of several exactly-These formulas nicely explain the gross particle number de-
solvable Hamiltoniangallowing variations in the magnitude pendence seen in the exact results.

of pairing correlationsdemonstrates that the three-mass in-

_cilcator,A(3)_(2n+ 1), is indeed an excellent measure of pair- ACKNOWLEDGMENTS
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