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The exactly solvable model with fermion boson coupling proposed by Schu¨tte and Da Providencia is
considered with spontaneously broken symmetry within the so-called self-consistent random phase approxi-
mation. Encouraging results for ground and excited states are obtained. A possible extension of the present
approach is discussed.
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I. INTRODUCTION

Application of standard methods of the nonrelativis
many body problem to relativistic field theoretical problem
is becoming increasingly popular@1–4#. For instance, the
well known random phase approximation~RPA! approach
has recently been elaborated in quite some detail@1,2# for
field theories of interacting bosons in the linears model.
This generalizes the well known Gaussian approximat
@4#, equivalent to a Bogoliubov transformation among t
constituents, to the time dependent case. It is, however,
known that standard RPA implies the so called quasibo
approximation@5# violating basic principles of quantum sta
tistics. In general this leads to a quite important overestim
tion of correlations in the vacuum state@6#. In the past we
elaborated an extension of RPA which largely overcom
this deficiency and for which the name self-consistent R
~SCRPA! was coined. This approach was independen
worked out by a second group calling it Cluster-Hartre
Fock ~CHF! that seems also very appropriate@7–9#. Im-
proved RPA approaches would also be of great importa
for effective chiral Lagrangians and the problem of chi
symmetry restoration. In nuclear physics this approach
introduced a long time ago via the equation of moti
method~EMM! by Hara@10# and further elaborated by Row
@6,11,12#. SCRPA has recently produced quite interesting
sults in various domains of physics@13–15# and it is our
intention here to apply it to a schematic exactly solvable fi
theoretical model of interacting fermions and bosons fi
introduced by Da Providencia and Schu¨tte @16#. The applica-
tion of SCRPA to a boson-fermion model is novel and
will discuss the new features and difficulties which occur

II. THE MODEL AND SCRPA

The Hamiltonian of the model contains fermions co
strained to two levels interacting via a fermion-boson co
pling
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H5n̄1ab1b1G~t1b11t2b! ~2.1!

with

n̄5
N̂

2
1t0,

~2.2!

n5
N̂

2
2t0,

where G is the coupling constant,N̂5n1n̄ is the particle
number operator, and

t15(
k

a1k
1 a0k , t25~t1!1,

~2.3!
N̂

2t0J 5 (
k51

V

~a1k
1 a1k6a0k

1 a0k!,

wheret1, t2, t0 are quasispin operators obeying the us
commutation relation@t1,t2#52t0, @t0,t6#56t6 and
a1k

1 , a0k
1 are fermion creation operators in the upper a

lower levels, respectively. Theb1, b represent a scalar bo
son. The properties of the model have been well presente
Ref. @16# and we will be very short here.

The Hamiltonian~2.1! describes in a schematic way th
field theoretical coupling of fermions to a scalar boson fie
The couplingt1b11t2b is such that the transition to
symmetry broken phase of the Nambu-Goldstone type
possible. This is in distinction to other similar models
fermion-boson coupling such as, e.g., the Jaynes-Cumm
model@17# where such a phase transition does not show

The main feature of the Hamiltonian~2.1! is that it com-
mutes with the symmetry operator

P5b1b2n̄, ~2.4!
©2001 The American Physical Society01-1
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FIG. 1. Ground-state bands for different va
ues of x @see Eq.~2.5!# as a function ofL, the
eigenvalue of the symmetry operatorP of Eq.
~2.4!.
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which accounts for the difference in the number of boso
and the number of fermions in the upper level and that
model possesses, on the mean field level, a continuous s
taneously broken symmetry for

x5GAN

a
.1. ~2.5!

A consequence of the existence of the symmetry oper
P with eigenvalueL is that the spectrum ofH is grouped into
bands~Fig. 1!, connecting the lowest states~ground states!
for eachL value, the first excited states for eachL value and
so forth. This is depicted in Fig. 1. We see that forx,1 the
absolute ground state is always atL50. However, forx.1
the absolute ground state first occurs forL,0, i.e., the sys-
tem is dominated by a condensate of particle-hole pairs@see
Eq. ~2.4!# whereas further increase ofx shifts the absolute
minimum to positive values ofL, indicating a condensation
of bosons. We henceforth will call the regionx,1 the
‘‘spherical’’ region and the regionx.1 the ‘‘deformed’’
region.

The Goldstone mode corresponding to the deformed
gion has been well discussed within the standard RPA
Ref. @16#. For the SCRPA we keep the same RPA operato
proposed in Ref.@16#, that is,

Qn
15Xnt12Ynt21lnB12mnB, n51,2, ~2.6!

where we introduced the following notation:

t65
T6

A22^T0&
. ~2.7!

The operatorsT6, T0 are obtained fromt6, t0 in writing the
latter ones in the ‘‘deformed’’ basis
02430
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S a1k
1

a0k
D 5S u 2v

v u D S a1k
1

a0k
1 D , u21v251. ~2.8!

The boson operatorsB1, B are linked to the original ones b
a shift transformation

B5b2s, ~2.9!

wheres is a c-number characterizing the appearance of
Bose condensate. The expectation value^T0& in Eq. ~2.7! is
to be evaluated in the RPA vacuum defined through

QnuRPA&50. ~2.10!

The amplitudes in Eq.~2.6! shall obey the following ortho-
normality relations guaranteeing that the RPA excited sta

un&5Qn
1uRPA& ~2.11!

is normalized, i.e.,̂nun&51:

(
n51,2

Xn
22Yn

251, (
n51,2

ln
22mn

251,

(
n51,2

lnXn2Ynmn50, (
n51,2

Ynln2Xnmn50,

~2.12!

Xn
21ln

22Yn
22mn

251, Y2X11m2l12X2Y12l2m150,

X2X11l2l12Y1Y22m2m150,

with Eq. ~2.12!, expression~2.6! can be inverted to yield
1-2
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S t2

B

t1

B1

D 5S X1 X2 Y1 Y2

l1 l2 m1 m2

Y1 Y2 X1 X2

m1 m2 l1 l2

D S Q1

Q2

Q1
1

Q2
1

D . ~2.13!

The symmetry operator in this ‘‘deformed’’ basis is

P5P01PF1PB , ~2.14!

where

P052
N

2
1s2,

PF52uvA22^T0&~ t21t1!1T0~v22u2!,

PB5B1B1s~B11B!.

The SCRPA equations are obtained in minimizing the f
lowing sum rule~average excitation energy!:

S15

(
n

~En2E0!u^nuQ1u0&u22(
n8

~E02En8!u^n8uQu0&u2

(
n

u^nuQ1u0&u22(
n8

u^n8uQu0&u2

~2.16!

with respect to the RPA amplitudesX, Y, l, m @18,19#. In
Eq. ~2.16! un&, u0&, E0 , and En are the eigenvectors an
eigenvalues corresponding to excited and ground states
spectively. The minimization leads to the following eige
value problem:

S A11 A12 B11 B12

A21 A22 B21 B22

2B11 2B12 2A11 2A12

2B21 2B22 2A21 2A22

D S Xn

ln

Yn

mn

D 5Vn8S Xn

ln

Yn

mn

D ,

~2.17!

where

A115^@ t2,@H8,t1##&5u22v224Gsuv

1A22

^T0&
G@u2~l1Y11l2Y2!2v2~m1Y11m2Y2!#,

A125^@ t2,@H8,B1##&52A22^T0&Gv2,

A215^@B,@H8,t1##&5A12,

A225^@B,@H8,B1##&5a,
02430
-

re-

B1152^@ t2,@H8,t2##&

5A22

^T0&
G@u2~X1l11X2l2!2v2~X1m11X2m2!#,

B1252^@ t2,@H8,B##&5GA22^T0&u2,

B215B12,

B2252^@B,@H8,B##&50. ~2.18!

In Eq. ~2.18! we introduced the cranked HamiltonianH8
5H2mP in order to fix the valueL5^P& in the symmetry
broken phase. In the spherical case this extra term is ab

To obtain expression~2.18! we have made use of Eqs
~2.13!, ~2.10!. For a completely self-consistent solution w
still have to establish equations which determine the m
field parametersu, v, ands and give an expression for^T0&.

The mean field amplitudes are as usual obtained from
minimization of the ground-state energy@5,20#

]^H8&
]u

1
]^H8&

]v
]v
]u

5^@H8,t1#&50,

~2.19!
]^H8&

]s
5^@H8,B1#&50

with

^H8&5~11m!S N

2
1~u22v2!^T0& D1~a2m!~^B1B&1s2!

1GA22^T0&H 24uv
^T0&

A22^T0&
s1u2~^t1B1&

1^t2B&!2v2~^t2B1&1^t1B&!J . ~2.20!

Explicitly these equations yield foru, v, ands

24Gs^T0&v1Iu1~24Gs^T0&u1Kv !S u

v D50,

~2.21!

u25
1

2 S 11
e

Ae21D2D , v25
1

2 S 12
e

Ae21D2D ,

~2.22!

D54G^T0&s,
~2.23!

e5
K2I

2
,

with

I52@^T0&1G~Y1l11X1m11Y2l21X2m2!A22^T0&

1m^T0&#,
1-3
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K522@^T0&1G~X1l11Y1m11X2l21Y2m2!A22^T0&

1m^T0&#. ~2.24!

The only unknown at this point which prevents a ful
self-consistent solution of the SCRPA equations~2.17! is the
expectation valuê T0&. As in previous studies for othe
models @20,21# this quantity poses some problems and
evaluation in terms of the RPA amplitudes is only possi
for a ground state explicitly determined using the vacu
condition ~2.10!. Since we have not achieved to constru
uRPA& ~this always turns out to be extremely difficult but fo
very trivial cases!, we apply the usual well tested approx
mation techniques for the evaluation of^T0&. One of the
most popular methods consists in inserting the number
erators intô T0& @12#. This method was further developed b
Catara@22# and amounts to approximately replacingT0 by

T0[2
N

2
1T1T2. ~2.25!

A more general expression whereT0 is expanded into a
power series in (T1)n(T2)n is given in Refs.@23–25#. Tak-
ing the expectation value and using Eq.~2.13! one arrives at
the following expression:

^T0&5
2N/2

11~2/N!~Y1
21Y2

2!
. ~2.26!

With Eq. ~2.26! the SCRPA equations are now complete
closed and we can proceed to the numerical solution.

The direct iterative solution as an eigenvalue probl
causes some problems, since in the symmetry broken p
one of the two eigenvalues will appear at very low energy
the pure RPA limit@Y andm amplitudes equal zero in RPA
matrix ~2.17!# this eigenvalue corresponds to the spurious
Goldstone mode at zero energy. However, in the SCRPA
well as in the exact solution this mode comes at a finite, b
at a very small energy. This small eigenvalue in the SCR
is produced from a square root of a difference of rather la
numbers. Any imbalance in the iteration cycle leads
imaginary eigenvalues and to a breakdown of the iterat
We solve this problem in inserting into Eq.~2.17! the ex-
plicit form of the eigenvalues

Vn85A2b6Ab224g

2
, n51,2, ~2.27!

where

b52~B12
2 2A12

2 !2~A11
2 1A22

2 2B11
2 !,

g5~A12
2 2A11A22!

22~B11A222A12B12!
21~B12

2 2A11A22!
2

2A12
2 B12

2 2A11
2 A22

2 12A12A22B11B12 . ~2.28!

This gives eight homogeneous nonlinear equations for
eight unknownsXn , Yn , ln , mn . These equations ar
solved together with the two constraints of normalization
02430
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Xn
21ln

22Yn
22mn

251, n51,2 ~2.29!

as a set of nonlinear equations for the amplitudes.
Naturally this is done with a simultaneous solution of t

mean-field equations~2.19!, ~2.21! and in the symmetry bro-
ken phase under the further constraint that the value om
gives exactly

^P&5L ~2.30!

which corresponds to the quantum number of the symm
operator we have chosen to consider. We also can calcu
the RPA eigenvalueV8 which, as the ground-state energ
should be corrected for the contribution of the constraint@13#

Vn5Vn81m^@Qn ,@P,Qn
1##&. ~2.31!

The explicit expression in terms of the RPA amplitudes re

Vn5Vn81m@~v22u2!~Xn
21Yn

2!1ln
21mn

2#. ~2.32!

III. RESULTS

We now come to the presentation and the discussion
the results. In the first place we want to mention that
model turned out to be somewhat unfortunate, since for s
eral quantities the differences between standard RPA
SCRPA are very small as well as their respective differen
with the exact solution. This feature is relatively independ
of the parameters of the model. Nonetheless SCRPA sh
always a clear superiority over standard RPA and we a
can isolate some quantities where SCRPA presents st
improvement. Let us start with the ground-state energy.
Table I we show the absolute ground-state minima fora
53, N530 as a function ofx @Eq. ~2.5!# for the exact case
and for RPA and SCRPA. As we have seen in Sec. II
lowest eigenvalue ofH for different values ofx in the ‘‘de-
formed’’ region belongs to different values ofL. We there-
fore give in Table I also the correspondingL values as well
as the values of the Lagrange multiplierm.

From Table I we see the following. In the nondeform
region the SCRPA performs extremely well for the grou
state up to the phase transition pointx51. The differences
with the exact ground state are only in the fourth significa
digit. A very satisfying feature also is that, contrary to sta
dard RPA, the SCRPA energies consistently areabovethe
exact energies. Indeed it is so far an unproven conjecture
SCRPA yields an upper bound to the exact ground st
Shortly after the phase transitionx.1 the situation deterio-
rates somewhat but qualitatively it stays the same: stand
RPA overbinds and SCRPA underbinds. However, asx in-
creases bothERPA and ESCRPA move up with respect to the
exact valueE0 . Between x51.4 and x51.5 also ERPA
crosses from over binding to under binding. There is a s
ation where artificiallyERPA becomes equal to the exa
value, whereasESCRPAlies above the exact value at the sam
x value. All this reflects the well-known fact that standa
RPA over estimates the correlations due to the violation
the Pauli principle. Due to this feature, for values ofx
.1.5, ERPA stays artificially closer to the exact value tha
1-4
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ESCRPA. However we should not give this any significanc
In order to increase the sensitivity of the results to the ac
racy of the theory it is instructive to calculate differences
energies of the ground-state band withL values just one unit
away from the absolute ground state. One such quantit
the ‘‘chemical potential’’ which should be identified with th
Lagrange multiplier

m51/2~EL11
0 2EL21

0 !. ~3.1!

In Fig. 2 we showm where we calculate separatelyEL61
0 ~in

RPA and SCRPA! and then take the difference. The calc
lated values correspond to the crosses and the contin
lines shall guide the eye. We also give in Fig. 2 theL values
which correspond for a givenx value to the absolute groun
state. The same applies to Figs. 3 and 4.

In Fig. 2 we see strong improvement of SCRPA ov
RPA and the high quality of the results in comparison w
the exact values in the region around the phase trans
point x.1. We also can take them values found from ad-
justing the correctL5^P& values in the RPA and SCRPA

TABLE I. Exact (E0), RPA, and SCRPA energies,L values,
and the ‘‘chemical potential,’’m, calculated with SCRPA, for the
spherical and deformed regions.

x L m E0 ERPA ESCRPA

0.1 0 20.007513 20.007514 20.007513
0.2 0 20.030213 20.030228 20.030212
0.3 0 20.068597 20.068679 20.068596
0.4 0 20.123554 20.1238 20.123554
0.5 0 20.196474 20.197224 20.196472
0.6 0 20.289436 20.2912 20.289429
0.7 0 20.405551 20.4094 20.405531
0.8 0 20.5496 20.55777 20.54954
0.9 0 20.729369 20.747 20.72914
1.0 0 20.958 21 20.9576
1.1 21 20.049 21.326 21.378 21.296
1.2 22 20.009 22.112 22.15 22.041
1.3 23 20.044 23.256 23.277 23.154
1.4 23 0.032 24.715 24.720 24.591
1.5 23 0.063 26.425 26.417 26.284
1.6 23 0.055 28.380 28.364 28.227
1.7 23 0.018 210.555 210.535 210.395
1.8 23 20.037 212.921 212.899 212.755
1.9 22 0.04 215.475 215.449 215.308
2.0 22 20.044 218.218 218.192 218.05
2.1 21 20.003 221.137 221.112 220.97
2.2 0 0.022 224.219 224.194 224.055
2.3 1 0.034 227.468 227.445 227.31
2.4 2 0.036 230.885 230.863 230.728
2.5 3 0.031 234.468 234.448 234.314
2.6 4 0.021 238.214 238.195 238.062
2.7 5 0.006 242.119 242.101 241.969
2.8 6 20.012 246.18 246.163 246.0316
2.9 7 20.032 250.392 250.376 250.245
3.0 9 0.012 254.763 254.749 254.623
02430
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calculations. Within the thickness of the lines these valu
cannot be distinguished from the previous values, dem
strating the internal consistency of the approach. Two ot
quantities closely related to the chemical potential are
energy differences of the absolute ground state with
‘‘left’’ and ‘‘right’’ neighbors just one unit inL away

DE615EL
02EL61

0 . ~3.2!

These quantities are interesting because, as we will exp
below, they are closely related to the lowest RPA eigenva
V1 in the symmetry broken phase. We showDE61 in Figs.
3 and 4. Not surprisingly the same very good agreement w
the exact results as in the case ofm is found in these case
also. In order to appreciate the quality of the results d
played in the Figs. 2, 3, and 4, we must realize that th

FIG. 2. The difference, Eq.~3.1!, between the energies of neigh
boring states in the ground state band,EL11

0 2EL21
0 , is given for the

exact case~full line which connects the calculated values, mark
by crosses! for the standard RPA~dotted line!, and for SCRPA
~dashed dotted line!. The numbers on the curve indicate theL value
which has the absolute ground state at thatx value. Crosses carrying
no number are supposed to have the sameL value as the last and
first L value enclosing the unmarked internal. The calculations
performed fora53, N530.

FIG. 3. Comparison between the exact results and the SCR
results for the excitation energyuDE11u5uEL

02EL11
0 u in the de-

formed region. In this grapha53, N530.
1-5
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represent very small numbers obtained as a difference of
big numbers~ground-state energies!. For example forx
51.2 the difference betweenEL21

0 52.0367 and EL11
0

522.0203 is very small compared to their individual value
We also should notice that the smallness ofDE61 means that
two neighboring ground states withL andL61, respectively,
are almost degenerate which indicates that the system
the spontaneously broken symmetry phase. One indeed
check that in the largeN limit DE61 tends to zero. The zero
eigenvalue~the Goldstone mode! which is one of the solu-
tions of the standard RPA in the ‘‘deformed’’ region@7#
corresponds to this vanishing of neighboring ground-s
energies in the largeN limit.

Let us therefore now discuss the eigenvalues of RPA
SCRPA matrices. In Fig. 5 we show the RPA and SCR
solutions for the highlying eigenvalueV2 .

The 434 matrix has eigenvaluesV618 , V628 . As we
have seen in Sec. II, in standard RPA the lowest eigenva
correspond in the deformed region to the spurious mode,

FIG. 4. Comparison between the exact results and the SCR
results for the excitation energyuDE21u5uEL

02EL21
0 u in the de-

formed region. In this grapha53, N530.

FIG. 5. The RPA and the SCRPA results of the energy of
excitation modeV2 ~corrected in both cases! compared with the
exact energy of the excitationDE11 , x,1, and with the exact
energy of the excitationDEL5EL

12EL
0 , x.1. Herea53 andN

530.
02430
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V618 50 whereas the second eigenvalue gives the excita
of the intrinsic system. Before coming to the result w
should mention again that the RPA eigenvalues in the
formed region are calculated with the ‘‘intrinsic’’ Hamil
tonian H85H2m P̂. To have the eigenvaluesVm corre-
sponding toH we must correct for the cranking term a
already discussed in Sec. II. The results forV2 are presented
in Fig. 5. RPA and SCRPA values are compared with ex
‘‘intraband’’ excitation DE115EL11

0 2EL
0 ~low lying state!

and the exact interband excitationDEL5EL
12EL

0 ~high lying
state!.

We first remark the very abrupt phase transition atx51 in
the exact case seen forDE11 . After the phase transition
DE11 stays finite but very small decreasing for increasingx
and therefore, as usual, for intraband transitions,DE11 cor-
responds to the Goldstone mode. This we will discuss bel
The interband excitationDEL becomes the true ‘‘intrinsic
excitation’’ in the deformed region. We therefore see a cro
over of V2 from DE115EL11

0 2EL50
0 before toDEL after

the phase transition. This crossover is the usual scen
when passing from the Wigner-Weyl to the Namb
Goldstone regime. UnfortunatelyV2 is again a quantity
where there is little distinction between RPA and SCRP
Nonetheless SCRPA improves significantly over RPA.

In Fig. 6 we display the difference between the eigenva
V2 calculated with the standard RPA and the one calcula
with the SCRPA. This difference, which represents the c
rection of the SCRPA compared to the RPA standard res
clearly shows the gain in precision SCRPA supplies.

Let us now come to the discussion of the eigenvalueV1 .
As we have seen before in standard RPA, this eigenva
corresponds beyond the phase transition to the Golds
mode according to the spontaneously broken symmetry,
V1850. It is standard practice of RPA theory to reestabl
the ‘‘rotational’’ excitations in calculating the correspondin
inertia via the Thouless-Valatin method@26#. This has been
demonstrated in Ref.@16# and we do not want to repeat
here. It is, however, interesting to plotV1 @see Eq.~2.31!#
instead ofV18 as we argued we should do in Sec. II to obta
the excitation energies ofH and not ofH8. This we show in
Fig. 7 for standard RPA together with the exact result. F

A

e

FIG. 6. The difference@V2(SCRPA)2V2(RPA)# as a function
of x.
1-6
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the quantityDE21 we see that in spite of giving unphysic
results, i.e., ‘‘negative excitation energies,’’ the qualitati
behavior is quite similar to the exact result. In fact, as m
tioned already, the turning negative ofV1 is a consequence
of the well-known deficiency of standard RPA that it is ove
emphasizes correlations for finite systems. Therefore
phase transition pointV150 in Fig. 7 comes too early an
the continuation ofV1 for x.1 necessarily turns negative.
the behaviorV15V1(x) not only shall stay qualitatively bu
also quantitatively the same as in the exact solution, on
the hopes of this work was that SCRPA will cure this dra
back of RPA. Indeed in another study where pairing cor
lations in the seniority model were treated via SCRPA t
was very nicely the case@27#. Unfortunately in this point our
present approach fails for the deformed region. In Fig. 8
show the SCRPA solution forV1 ~together with the exac
one and also again RPA! before and after the phase transitio
point. We see that forx,1 SCRPA nicely corrects the RPA
values as expected, but forx.1 the SCRPA results are un
physical.

At first we were quite puzzled by these results because
only difference of the present case with respect to form
models is that here fermions and bosons are mixed whe
before we only treated systems of bosons or fermions s
rately. In fact there is the possibility that our RPA ansatz
the present model with respect to the symmetry operato
the deformed basis@see Eq.~2.14!# is too restricted. We see
that P is quadratic in the fermion operators and linear p
quadratic in the Bose operators. Our RPA excitation ope
tors ~2.6! contain quadratic terms for fermions but only lin
ear terms for bosons. With respect to the symmetry oper
this is clearly an inequivalent treatment. We suspect tha
one augments our RPA ansatz byB1B1 andBB terms such
as

Qn
15Xnt12Ynt21lnB12mnB1UnB1B12VnBB

~3.3!

the description of the low-lying mode would be much im

FIG. 7. Comparison, as a function of coupling strengthx
5GAN/a, between exact results for the energy of the first exci
state uDE21u5uEL

02EL21
0 u and the RPA results for the correcte

energy of the spurious stateV1c and the noncorrected energ
V1 NC. In this figurea53, N530.
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proved. Inclusion of these extra terms, however, consid
ably complicates the theory. Since we were able in this
ploratory work to very accurately describe the low lyin
mode DE61 via the detour of calculating neighborin
ground-state energies belonging to the ground-state b
separately~see Fig. 1!, we feel entitled to present our resul
without going into these additional complications. Th
however, shall be studied in future work.

IV. CONCLUSION

In this work we applied the so-called self-consistent RP
~SCRPA! to a system of interacting fermions and boson
The case studied is a schematic field theoretical model w
usual fermion-boson coupling. The work must be conside
as exploratory since before SCRPA has only been app
either to pure fermionic or pure bosonic systems. In t
work it is the first time that we treat a fermion-boson mi
ture. In general we found that SCRPA performs better th
standard RPA and in some cases we got rather drastic
provement. However, the model turned out to be sligh
unfortunate, since a certain number of quantities are alre
very well described by standard RPA as, e.g., ground-s
energies. The great improvement of SCRPA versus R
showed up in differences of almost degenerate neighbo
states of the ground-state band in the symmetry broken p
belonging to different quantum numbers of the syste
These differences tend to zero in the macroscopic limit a
are to be considered as the Goldstone modes. We obta
excellent results in calculating neighboring ground-state
ergies separately and taking the difference. For one quan
we have to signal failure of our present approach. This c
cerns the low-lying eigenvalue of the SCRPA matrix. Th
eigenvalue should also represent the same type of Golds
mode we just discussed. The corresponding SCRPA eig
value, is, however, quite far from the exact values. This
ficiency is certainly due to our inexperience with coupl
fermion-boson systems because for, e.g., a purely fermio
system we could show that the Goldstone mode is rep
duced accurately@27#. We suspect that this failure is due to
too restricted ansatz of our RPA operator and we wan

FIG. 8. The RPA and the SCRPA results for the energy of
spurious statesV1 ~corrected in both cases! compared with the
exact energy of the excitationDE21 . In this grapha53, N530.
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investigate a more general ansatz in the future. The exp
ence gained in this work also can be exploited in future
plications of SCRPA to more demanding models such asf4

Lagrangians as the linears model.
In conclusion we found that in this first application
uc

ys

.
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SCRPA to interacting bosons and fermions the results w
generally substantially improved over standard RPA valu
However, the Goldstone mode in the symmetry broken ph
needs further investigation.
ys.
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