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Self-consistent random phase approximation in a schematic field theoretical model
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The exactly solvable model with fermion boson coupling proposed by t&clmnd Da Providencia is
considered with spontaneously broken symmetry within the so-called self-consistent random phase approxi-
mation. Encouraging results for ground and excited states are obtained. A possible extension of the present
approach is discussed.
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I. INTRODUCTION H=n+ab*b+G(7"b"+77b) (2.1

Application of standard methods of the nonrelativistic with
many body problem to relativistic field theoretical problems

is becoming increasingly populdf—4]. For instance, the _ N

well known random phase approximatiéRPA) approach :§+To'

has recently been elaborated in quite some d¢taf] for 2.2
field theories of interacting bosons in the linearmodel. N '
This generalizes the well known Gaussian approximation n:E_TO’

[4], equivalent to a Bogoliubov transformation among the
constituents, to the time dependent case. It is, however, well . ) R — )
known that standard RPA implies the so called quasibosoMhereG is the coupling constanfy=n+n is the particle
approximation5] violating basic principles of quantum sta- Number operator, and

tistics. In general this leads to a quite important overestima-

tion of correlations in the vacuum stdft@]. In the past we = atamn, T =(rH",

elaborated an extension of RPA which largely overcomes k

this deficiency and for which the name self-consistent RPA (2.3
(SCRPA was coined. This approach was independently N - . N

worked out by a second group calling it Cluster-Hartree- 2,0 :g«l (ay@ak®agkdok).

Fock (CHF) that seems also very appropridté-9]. Im-

proved RPA approaches would also be of great importanCnere s+, 2 are quasispin operators obeying the usual
for effective chiral Lagrangians and the problem of chiral .ommutation relation 7+, 7 ]=27°, [7° 7 ]==7 and
symmetry restoration. In nuclear physics this approach wag+ = o+ are fermion creation operators in the upper and
introduced a long time ago via the equation of MotioN|qyer evels, respectively. The*, b represent a scalar bo-
method(EMM) by Hara[ 10] and further elabqrat_ed by R_owe son. The properties of the model have been well presented in
[6,11,13. SCRPA has recently produced quite interesting réRef. [16] and we will be very short here.

sults in various domains of physi¢d3-19 and it is our The Hamiltonian(2.1) describes in a schematic way the

intentio_n here to apply_ itto a s_chematk_: exactly solvable ﬁ.eldfield theoretical coupling of fermions to a scalar boson field.
theoretical model of interacting fermions and bosons f|rst-|-he coupling7"b*+7~b is such that the transition to a

|_ntroduced by Da Providencia and Sd:ﬂm[lG].. The applica- symmetry broken phase of the Nambu-Goldstone type is

thn qf SCRPA 10 a boson-ferm|on.mode'l IS no_veI and Wepossible. This is in distinction to other similar models of

will discuss the new features and difficulties which occur. ¢, 00 boson coupling such as, e.g., the Jaynes-Cummings

model[17] where such a phase transition does not show up.
The main feature of the Hamiltonig®.1) is that it com-

The Hamiltonian of the model contains fermions con-mutes with the symmetry operator

strained to two levels interacting via a fermion-boson cou- _
pling P=b"b—n, (2.9

Il. THE MODEL AND SCRPA
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FIG. 1. Ground-state bands for different val-

w-tor I ues ofx [see Eq.(2.5] as a function ofL, the
Tt~ - s eigenvalue of the symmetry operatBr of Eq.
20+ T (2.4).
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which accounts for the difference in the number of bosons ajy u —ov\fas
and the number of fermions in the upper level and that the =( L, uPHe=1 (2.8
model possesses, on the mean field level, a continuous spon- %ok v u Aok

taneously broken symmetry for
The boson operatoB™, B are linked to the original ones by

N a shift transformation
x=G = >1. (2.9

A consequence of the existence of the symmetry operator
P with eigenvaluel is that the spectrum dfl is grouped into  Whereo is ac-number characterizing the appearance of the
bands(Fig. 1), connecting the lowest statéground states Bose condensate. The expectation va[li&) in Eq. (2.7) is
for eachL value, the first excited states for eaclvalue and  to be evaluated in the RPA vacuum defined through
so forth. This is depicted in Fig. 1. We see that%er 1 the
absolute ground state is alwayslat 0. However, forx>1 Q,|RPA)=0. (2.10
the absolute ground state first occurs fer 0, i.e., the sys-

tem is dominated by a condensate of particle-hole ja8  The amplitudes in Eq(2.6) shall obey the following ortho-

Eq. (2.4] whereas further increase afshifts the absolute normality relations guaranteeing that the RPA excited state
minimum to positive values of, indicating a condensation

of bosons. We henceforth will call the region<1 the
“spherical” region and the regiorx>1 the “deformed”
region.

The Goldstone mode corresponding to the deformed reis normalized, i.e.(v|v)=1:
gion has been well discussed within the standard RPA in
Ref.[16]. For the SCRPA we keep the same RPA operator as

proposed in Ref[16], that is, :21 , X2-Yi=1, :21 , No—ui=1,

B=b—o, 2.9

[v)=Q, |RPA) (2.11

Q =X t"=Y,t"+\x,B"—pu,B, »=12, (2.6
;lz)\vxv_Ywu‘V:Oi 2 Y,,)\V—XWLLVIO,

where we introduced the following notation: v=12
(2.12
. T 2.7 XEANZ=Yo—ul=1, Y Xi+puohi—XpY1— Aoy =0,
T ——. .
/_2<T0>
XoX1+ AN 1= Y1Yo— pops =0,

The operatord =, T° are obtained fromr™, 7° in writing the
latter ones in the “deformed” basis with Eq. (2.12), expression(2.6) can be inverted to yield
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t7 Xl X2 Yl Y2 Q]_

Bl | M N w1 ope Q2 (2.13
th ]l Ys Yo Xp X 1| .
B* M1 m2 A N/ \Qj

The symmetry operator in this “deformed” basis is
P=Py+ P+ Pg, (2.19

where

N 2
POZ_E+U y

Pe=—uv/—2(TO(t" +t")+ TO(v2—u?),

Ps=B*B+o(B"+B).

The SCRPA equations are obtained in minimizing the fol-

lowing sum rule(average excitation energy

2, (E,~Eo)l(v[Q7[0)|*~ 2 (Eo=E,)[(»'|QIO)I?

5=
2 [(#Q710)[*= 2 [(»'[Qlo)?

(2.16

with respect to the RPA amplitude§ Y, A, w [18,19. In

Eg. (2.1 |v), |0), Eg, and E, are the eigenvectors and
eigenvalues corresponding to excited and ground states, re-
spectively. The minimization leads to the following eigen-

value problem:

Aur A1z B B> X, X,
Az A By By || A, _q N,
—Bu —Brx —Au —Ap(lY, YL
—Bar =Bz —Ax —Ax \u, My
(2.17
where

A=t ,[H" t"])=u?-v?-4Gouv

-2
1\ HG[UZ(MYT"AzYz)_Uz(ﬂlYl"'MzYz)]-

A12:<[t_,[H/,B+]]>: N _2<T0>szi
Ay=([B,[H t"]])=Aq,,

Ax=([B,[H B"]])=a,

PHYSICAL REVIEW 63 024301

Bllz _<[t_![H,1t_]]>

-2
=1\ EG[UZ(XlM‘F Xokg) =0 (Xypq+Xouo)],

Bio= —([t,[H",B]])=GV-2(T%)u?,
B21=Bi1»,

B2o=—([B.[H",B]])=0. (2.18
In Eg. (2.18 we introduced the cranked Hamiltonidth’
=H - uP in order to fix the valud =(P) in the symmetry
broken phase. In the spherical case this extra term is absent.
To obtain expressioli2.18 we have made use of Egs.
(2.13, (2.10. For a completely self-consistent solution we
still have to establish equations which determine the mean
field parameters, v, ando and give an expression fol ).
The mean field amplitudes are as usual obtained from a
minimization of the ground-state enerffy,20|

8<H’> (3<H’> (7U_ e
du + v E_<[H it ]>—0,
2.19
WY
?_<[H ,B ]>_0
with
(H)=(L+ )| 5+ (0= 02)(T9) | + (- w)((B7B) + 02
+Gm[—4Uv—<TO> o+ U?((t"B")
V=2(T9)

+(t‘B))—vz(<t‘B+>+<t+B>)]. (2.20
Explicitly these equations yield far, v, ando

—4Go(T v +Iu+(—4Go<T°)u+ICv)(;) =0,

(2.21)
=21+ S 2=2[ 4 <
== T H v =5 _—’
2 Je2+A2? 2 Vel +A?
(2.22
A=4G(TY% 0,
(2.23
KT
€e=—,
with
Z=2[(T%+G(Y1h g +Xqpq+ Yoo+ Xoma) V= 2(TO)
+mw(T9],
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K==2[(TO+G(X N+ Yimg+Xoh o+ Youn) V= 2(T% XZ4N2-Y2—p2=1, v=1,2 (2.29
+u(T%]. (224  as a set of nonlinear equations for the amplitudes.

. . . Naturally this is done with a simultaneous solution of the
The only unknown at this point which prevents a fully mean-field equation€.19), (2.21) and in the symmetry bro-
self-consistent solution of the SCRPA equatig2d7 isthe  ken phase under the further constraint that the valug of
expectation valugTo). As in previous studies for other gives exactly

models[20,21] this quantity poses some problems and its

evaluation in terms of the RPA amplitudes is only possible (Py=L (2.30

for a ground state explicitly determined using the vacuum

condition (2.10. Since we have not achieved to constructwhich corresponds to the quantum number of the symmetry
|RPA) (this always turns out to be extremely difficult but for operator we have chosen to consider. We also can calculate
very trivial casel we apply the usual well tested approxi- the RPA eigenvalué)’ which, as the ground-state energy,
mation techniques for the evaluation ¢F). One of the should be corrected for the contribution of the constrgi6]

most popular methods consists in inserting the number op- , N

erators inta(To) [12]. This method was further developed by Q,=Q,+u([Q,.[P.Q, 1]). (2.3

Catarg[22] and amounts to approximately replaciig by The explicit expression in terms of the RPA amplitudes reads

N '
To=— S4TT" (2.29 Q, =0+ u[ (V2= U)CHY) AT+ ul]. (232
A more general expression whef@ is expanded into a l. RESULTS

power series inT")"(T")" is given in Refs[23-25. Tak- We now come to the presentation and the discussion of
ing the expectation value and using ER.13 one arrives at  he results. In the first place we want to mention that the
the following expression: model turned out to be somewhat unfortunate, since for sev-
eral quantities the differences between standard RPA and
<T°> _ —N/2 (2.26 S;:RPA are very small as _vveII as thgir respectiv_e differences
1+(2IN)(Y2+Y2%)' ' with the exact solution. This feature is relatively independent
of the parameters of the model. Nonetheless SCRPA shows
With Eq. (2.26) the SCRPA equations are now completely @lways a clear superiority over standard RPA and we also
closed and we can proceed to the numerical solution. can isolate some quantities where SCRPA presents strong
The direct iterative solution as an eigenvalue problemimprovement. Let us start with the ground-state energy. In
causes some problems, since in the symmetry broken phad@ble | we show the absolute ground-state minima dor
one of the two eigenvalues will appear at very low energy. In=3, N=30 as a function ok [Eq. (2.5)] for the exact case
the pure RPA limif Y and x amplitudes equal zero in RPA and for RPA and SCRPA. As we have seen in Sec. Il the
matrix (2.17)] this eigenvalue corresponds to the spurious ofowest eigenvalue ofi for different values o in the “de-
Goldstone mode at zero energy. However, in the SCRPA af9rmed” region belongs to different values bf We there-
well as in the exact solution this mode comes at a finite, be ifore give in Table | also the correspondihgvalues as well
at a very small energy. This small eigenvalue in the SCRPAS the values of the Lagrange multiplier
is produced from a square root of a difference of rather large From Table | we see the following. In the nondeformed
numbers. Any imbalance in the iteration cycle leads toregion the SCRPA performs extremely well for the ground
imaginary eigenvalues and to a breakdown of the iterationstate up to the phase transition point 1. The differences
We solve this problem in inserting into E(R.17 the ex-  Wwith the exact ground state are only in the fourth significant
plicit form of the eigenvalues digit. A very satisfying feature also is that, contrary to stan-
dard RPA, the SCRPA energies consistently abbevethe
—B=\B%—4y exact energies. Indeed it is so far an unproven conjecture that
Q,= — . v=12 (2.27  SCRPA yields an upper bound to the exact ground state.
Shortly after the phase transitiorr=1 the situation deterio-
where rates somewhat but qualitatively it stays the same: standard
RPA overbinds and SCRPA underbinds. Howeverx as-
8= Z(Biz_ Aiz) —( Aiﬁ Agz_ Bfl)’ creases botlEgp, and Egcrpa move up with respect to the
exact valueE,. Betweenx=1.4 and x=1.5 also Egpp
(A2 _ 2_ _ 2 2 _ 2 crosses from over binding to under binding. There is a situ-
7= (A2~ Aufzd "~ (Bufoo™ ArzBr) "+ (Bip~ Az ation where artificiallyEgps becomes equal to the exact
—AZ,B2,— A2 A%+ 2A1,AB11B1s. (2.28  value, whereaEscgpalies above the exact value at the same
x value. All this reflects the well-known fact that standard
This gives eight homogeneous nonlinear equations for th&PA over estimates the correlations due to the violation of
eight unknownsX,, Y,, \,, w,. These equations are the Pauli principle. Due to this feature, for values f
solved together with the two constraints of normalization >1.5, Egpa Stays artificially closer to the exact value than
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TABLE I. Exact (Eg), RPA, and SCRPA energiek, values, 0.3 T . . r : T r r .
and the “chemical potentialj’;u, calculated with SCRPA, for the 0.5 | 12(E%1 - E%Ly) —— |
spherical and deformed regions. o TP —
HRpA -

x L M Eo Erpa Escrra 045 |
0.1 0 —0.007513 —0.007514 —0.007513 N 0.1
0.2 0 —0.030213 —0.030228 —0.030212
0.3 0 —0.068597 —0.068679 —0.068596 0.05 |
0.4 0 —0.123554 —0.1238 —0.123554 o0k
0.5 0 —0.196474 —0.197224 —0.196472 1
06 0 —-0.289436 —0.2912  —0.289429 005 1 -
0.7 0 —0.405551 —0.4094 —0.405531 0.1 L . . L . L L L .
08 0 —-0.5496  —0.55777  —0.54954 1 12 14 16 18 2 22 24 26 28 3
0.9 0 —0.729369 —0.747 —0.72914 X

10 © —0.958 -1 —0.9576 FIG. 2. The difference, Eq3.1), between the energies of neigh-
11 -1 -0.049 -1.326 —1.378 —1.296 boring states in the ground state baBl, ,—E?_,, is given for the

12 -2 -0.009 -—2112 —2.15 —2.041 exact caséfull line which connects the calculated values, marked
1.3 -3 —-0.044 —-3.256 -3.277 —3.154 by crossek for the standard RPAdotted ling, and for SCRPA
1.4 -3 0.032 —4.715 —4.720 —4.591 (dashed dotted lineThe numbers on the curve indicate thealue
15 —3 0.063 —6.425 —6.417 —6.284 which has the absolute ground state at swlue. Crosses carrying
16 -3 0.055 —8.380 —81364 —8.227 no number are supposed to have the sammlue as the last and
17 -3 0.018 —10.555 10535 ~10.395 first L value enclosing the unmarked internal. The calculations are
18 -3 —0037 —12921  -12.899  —12.755 performed fora=3, N=30.
;'g :; _8'8:'4 :12;’12 :i:i’gg :12'328 calculations. Within the thickness of the lines these values

: : ' : : cannot be distinguished from the previous values, demon-
21 =1 -0003 —21.137 —2L112 —20.97 strating the internal consistency of the approach. Two other
22 0 0022 —24.219 —24.194 —24.055 guantities closely related to the chemical potential are the
2.3 1 0.034 —27.468 —27.445 —27.31 energy differences of the absolute ground state with its
24 2 0036 —-3085  —30.863  —30.728 “left” and “right” neighbors just one unit inL away
2.5 3 0.031 —34.468 —34.448 —34.314
26 4 0021 -38.214  -38195  —38.062 AE.,=E’-E?.,. (3.2
2.7 5 0.006 —42.119 —42.101 —41.969
2.8 6 —0.012 -46.18 —46.163 —46.0316 These quantities are interesting because, as we will explain
2.9 7 —0.032 —50.392 —50.376 —50.245 below, they are closely related to the lowest RPA eigenvalue
3.0 9 0.012 —54.763 —54.749 —54.623 Q, in the symmetry broken phase. We sha¥ . ; in Figs.

3 and 4. Not surprisingly the same very good agreement with
the exact results as in the caseofis found in these cases
Escrpa- However we should not give this any significance.also. In order to appreciate the quality of the results dis-
In order to increase the sensitivity of the results to the accuplayed in the Figs. 2, 3, and 4, we must realize that they
racy of the theory it is instructive to calculate differences of

energies of the ground-state band wlitlvalues just one unit 0.3 - - - -

away from the absolute ground state. One such quantity it 025 | AE,q(exact) —— |

the “chemical potential” which should be identified with the AE 4(scrpa) -

Lagrange multiplier 02} .
0.15 |

p=U2EY,  —E]_y). (3.0

w 01

In Fig. 2 we showu where we calculate separateEI)?il (in <

RPA and SCRPAand then take the difference. The calcu- / v

lated values correspond to the crosses and the continuot of R

lines shall guide the eye. We also give in Fig. 2 thealues

which correspond for a givexvalue to the absolute ground

state. The same applies to Figs. 3 and 4. -0.1
In Fig. 2 we see strong improvement of SCRPA over

RPA and the high quality of the results in comparison with

the exact values in the region around the phase transition FIG. 3. Comparison between the exact results and the SCRPA

point x=1. We also can take the values found from ad- results for the excitation energAE.;|=|E’—E?, | in the de-

justing the correcL =(P) values in the RPA and SCRPA formed region. In this grapxr=3, N=30.

0.05 [ /™

-0.05 ]

12 14 16 18 2 22 24 26 28 3
X
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0.3 T T T T =3, N=30
A E_4(exact) ——
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0.05 | 2
S 04}
or 3
<
0.2+t
-0.05 1 &
O
0.1 L L L L L L L L L w 0 L L L L 1 h
12 14 16 18 2 22 24 26 28 3 1 1.5 2 25 3 35 4 45 5

X X

FIG. 4. Comparison between the exact results and the SCRPA FIG. 6. The differencgQ,(SCRPA)-Q,(RPA)] as a function
results for the excitation energAE_,|=|EX—E?_,| in the de-  of x.

formed region. In this graph=3, N=30. ) ) o
' 1=0 whereas the second eigenvalue gives the excitation

Wof the intrinsic system. Before coming to the result we
Should mention again that the RPA eigenvalues in the de-
formed region are calculated with the “intrinsic” Hamil-

tonian H'=H—puP. To have the eigenvalue§ , corre-
sponding toH we must correct for the cranking term as
already discussed in Sec. Il. The results@byr are presented

are almost degenerate which indicates that the system is H Fig. 5. RPA and SCRPA values are compared with exact

” H : _ =0 _ =0 .
the spontaneously broken symmetry phase. One indeed caffif@band” excitation AE. ,=E ., ELl(IOV‘g lying state
check that in the largdl limit AE. ; tends to zero. The zero @nd the exactinterband excitatidrie, =E —E (high lying

represent very small numbers obtained as a difference of t
big numbers(ground-state energipsFor example forx
=1.2 the difference betweerEl ,=2.0367 andE},
= —2.0203 is very small compared to their individual values.
We also should notice that the smallnesa&..; means that
two neighboring ground states withandL + 1, respectively,

eigenvalue(the Goldstone modewhich is one of the solu- state. ) » )
tions of the standard RPA in the “deformed” regidi] We first remark the very abrupt phase transitior-atl in
corresponds to this vanishing of neighboring ground-statdh€ exact case seen farE ;. After the phase transition
energies in the larghl limit. AE_; stays finite but very small decreasing for increasing

Let us therefore now discuss the eigenvalues of RPA an@nd therefore, as usual, for intraband transitiaxi,, , cor-
SCRPA matrices. In Fig. 5 we show the RPA and SCRPAesponds to the Goldstone mode. This we will discuss below.
solutions for the highlying eigenvalu@, . The interband excitatiodE;, becomes the true “intrinsic

The 4x4 matrix has eigenvalue®’,, Q.,. As we excitation” in the deformed region. We therefore see a cross-

- _ =0 0
have seen in Sec. Il in standard RPA the lowest eigenvalued/er of 1 from AE,,=E_ ,—E[_, before toAE, after

correspond in the deformed region to the spurious mode, i.efh€ phase transition. This crossover is the usual scenario
when passing from the Wigner-Weyl to the Nambu-

Goldstone regime. Unfortunatel§), is again a quantity
where there is little distinction between RPA and SCRPA.
I Nonetheless SCRPA improves significantly over RPA.
] In Fig. 6 we display the difference between the eigenvalue
1 ), calculated with the standard RPA and the one calculated
! § with the SCRPA. This difference, which represents the cor-
rection of the SCRPA compared to the RPA standard result,
clearly shows the gain in precision SCRPA supplies.
Let us now come to the discussion of the eigenvdlye

As we have seen before in standard RPA, this eigenvalue
] corresponds beyond the phase transition to the Goldstone
] mode according to the spontaneously broken symmetry, i.e.,
Q1=0. It is standard practice of RPA theory to reestablish
3 the “rotational” excitations in calculating the corresponding

X inertia via the Thouless-Valatin meth$@6]. This has been

FIG. 5. The RPA and the SCRPA results of the energy of thed@monstrated in Ref.16] and we do not want to repeat it

excitation modeQ, (corrected in both caspsompared with the here. It is, however, interesting to plél; [see Eq.(2.3D)]
exact energy of the excitationE,,, x<1, and with the exact instead of(); as we argued we should do in Sec. Il to obtain
energy of the excitatiodE, =E{ —E?, x>1. Herea=3 andN the excitation energies ¢ and not ofH’. This we show in
=30. Fig. 7 for standard RPA together with the exact result. For
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08 r

06

0.2

-0.2 . L L L L -1

FIG. 7. Comparison, as a function of coupling strength FIG. 8. The RPA and the SCRPA results for the energy of the
=G+N/a, between exact results for the energy of the first excitedspurious state€); (corrected in both caspsompared with the
state| AE_,|=|E°—E?_,| and the RPA results for the corrected exact energy of the excitatiohE _; . In this grapha=3, N=30.
energy of the spurious stat®,. and the noncorrected energy
Q4 ne. In this figurea=3, N=30. proved. Inclusion of these extra terms, however, consider-

ably complicates the theory. Since we were able in this ex-
the quantityAE _; we see that in spite of giving unphysical ploratory work to very accurately describe the low lying
results, i.e., “negative excitation energies,” the qualitativemode AE.; via the detour of calculating neighboring
behavior is quite similar to the exact result. In fact, as menground-state energies belonging to the ground-state band
tioned already, the turning negative Qf, is a consequence separatelysee Fig. ], we feel entitled to present our results
of the well-known deficiency of standard RPA that it is over- without going into these additional complications. This,
emphasizes correlations for finite systems. Therefore thbowever, shall be studied in future work.
phase transition poirfl;=0 in Fig. 7 comes too early and
the continuation of), for x>1 necessarily turns negative. If IV. CONCLUSION
the behaviol);=Q,(x) not only shall stay qualitatively but . . ,
also quantitatively the same as in the exact solution, one of !N this work we applied the so-called self-consistent RPA
the hopes of this work was that SCRPA will cure this draw-(SCRPA to a system of interacting fermions and bosons.
back of RPA. Indeed in another study where pairing corre-The case gtudled is a schgmatlc field theoretical modgl with
lations in the seniority model were treated via SCRPA thisUSual fermion-boson coupling. The work must be considered
was very nicely the cag@7]. Unfortunately in this point our 2S €xploratory since before SCRPA has only been applied
present approach fails for the deformed region. In Fig. 8 weither to pure fermionic or pure bosonic systems. In this
show the SCRPA solution fof2; (together with the exact work it is the first time that we treat a fermion-boson mix-
one and also again RPAefore and after the phase transition tUré- In general we found that SCRPA performs better than
point. We see that fox<1 SCRPA nicely corrects the RPA standard RPA and in some cases we got rather dras_tlc im-
values as expected, but far-1 the SCRPA results are un- Provement. However, the model turned out to be slightly
physical. unfortunate, since a certain number of quantities are already

At first we were quite puzzled by these results because th4e"y Well described by standard RPA as, e.g., ground-state
only difference of the present case with respect to formefnergies. The great improvement of SCRPA versus RPA
models is that here fermions and bosons are mixed where90Wed up in differences of almost degenerate neighboring
before we only treated systems of bosons or fermions sep tates (_)f the gro_und-state band in the symmetry broken phase
rately. In fact there is the possibility that our RPA ansatz for€longing to different quantum numbers of the system.
the present model with respect to the symmetry operator i hese dn‘feren(_:es tend to zero in the macroscopic limit qnd
the deformed basitsee Eq(2.14] is too restricted. We see are to be conS|d¢red as thg Goldstone.modes. We obtained
that P is quadratic in the fermion operators and linear p|usexc.ellent results in calculgtlng nelghborlng ground-state en-
quadratic in the Bose operators. Our RPA excitation opera€rdies separately and taking the difference. For one quantity
tors (2.6) contain quadratic terms for fermions but only lin- W€ have to signal failure of our present approach. This con-
ear terms for bosons. With respect to the symmetry operatdi€™S the low-lying eigenvalue of the SCRPA matrix. This
this is clearly an inequivalent treatment. We suspect that if'9€nvalue should also represent the same type of Goldstone

one augments our RPA ansatz ByB* andBB terms such mode we just discussgd. The corresponding SCRPA 'eigen-
. value, is, however, quite far from the exact values. This de-

ficiency is certainly due to our inexperience with coupled
Q =X,t*=Y,t"+\,B*—u,B+U,B"B*—-V,BB fermion-boson systems because for, e.g., a purely fermionic
(3.3  system we could show that the Goldstone mode is repro-

duced accuratell27]. We suspect that this failure is due to a

the description of the low-lying mode would be much im- too restricted ansatz of our RPA operator and we want to
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investigate a more general ansatz in the future. The experBCRPA to interacting bosons and fermions the results were
ence gained in this work also can be exploited in future apgenerally substantially improved over standard RPA values.
plications of SCRPA to more demanding models suckbds However, the Goldstone mode in the symmetry broken phase

Lagrangians as the linear model. needs further investigation.
In conclusion we found that in this first application of

[1] Z. Aouissat, P. Schuck, and J. Wambach, Nucl. P#A&L8, [14] P. Kriger and P. Schuck, Europhys. Le2fZ, 395 (1994).
402 (1997). [15] J. Dukelsky, G. Rpke, and P. Schuck, Nucl. Phy&628, 17
[2] Z. Aouissat, G. Chanfray, P. Schuck, and J. Wambach, Nucl. (1998.
Phys.A603, 458 (1996. [16] D. Schidte and J. Da Providencia, Nucl. PhyA282, 518
[3] J.M. Hauser, W. Cassing, A. Peter, and M.H. Thoma, Z. Phys. (1977.
A 353 301(1995. _ [17] B.W. Shore and P.L. Knight, J. Mod. Opt0, 1195(1993.
[4] A. Kerman and C.Y. Lin, Ann. PhygN.Y.) 241, 185(1995. [18] M. Baranger, Nucl. Physi149, 225(1970.
[5] P. Ring and P. SchgckThe Nuclear Many-Body Problem [19] M.K. Weigel and J. Winter, J. Phys. & 1427(1978.
(Springer-Verlag, Berlin, 1980 [20] J. Dukelsky and P. Schuck, Mod. Phys. Lett6A2429(1991).
[6]J.C. f’ak“kh and DHJ',:OW& f’hyﬁ' Re‘75d1293(1§6|8)- . [21] 3. Dukelsky and P. Schuck, Nucl. Phys512, 466 (1990.
[7]G. Repke, M. Schmidt, L. Machow, and H. Schulz, Nucl. [22] F. Catara, N. Dinh Dang, and M. Sambataro, Nucl. Phys.
Phys.A399, 587 (1983. A579, 1 (1994
[8] G. Repke, Ann. Phys(Leipzig) 3, 145 (1994. [23] G. Schalow and M. Yamamura, Nucl. Physl61, 93 (1971).

[9] G. Ripke, Z. Phys. B99, 83(1996.
[10] K. Hara, Prog. Theor. Phy&2, 88 (1964). [24] M. Yamamura, Prog. Theor. Phys2, 538 (1974).

[11] D.J. Rowe, Rev. Mod. Phyg0, 153 (1968. [25] S. Nishiyama, Prog. Theor. Phys5, 1146(1976.
[12] D.J. Rowe, Phys. ReW75, 1283(1968. [26] D.J. Thouless and J.G. Valatin, Nucl. Phg4, 211 (1962.
[13] J. Dukelsky and P. Schuck, Phys. Lett4B4, 164 (1999. [27] J. Dukelsky and P. Schuck, Phys. Lett3B7, 233(1996.

024301-8



