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Shape transition in some rare-earth nuclei in relativistic mean field theory
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A systematic study of the temperature dependence of the shapes and pairing gaps of some isotopes in the
rare-earth region is made in the relativistic Hartree-BCS theory. Thermal response to these nuclei is always
found to lead to a phase transition from the superfluid to the normal phase at a tempEgatrd—0.8 MeV
and a shape transition from prolate to spherical shap&s-al.0—2.5 MeV. These shape transition tempera-
tures are appreciably higher than the corresponding ones calculated in the nonrelativistic framework with the
pairing plus quadrupole interaction. Study of nuclei with continued addition of neutron pairs for a given
isotope shows that with increased ground state deformation, the transition to the spherical shape is delayed in
temperature. A strong linear correlation betweEn and the ground state pairing gayf is observed; a
well-marked linear correlation betwedn and the ground state quadrupole defroma]zilgris also seen. The
thermal evolution of the hexadecapole deformation is further presented in the paper.
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[. INTRODUCTION footing. The calculations reported in Rg1L3] are performed
for only two rare-earth nuclei, namely®%Er and *"%r. It is

Heating can have a profound effect on nuclear shapegpund that the phase transition for the nuclear shape from the
causing a variety of shape transitions. Experimentally, suclprolate to the spherical occurs at a temperature significantly
responses to the thermal excitations have been studied frohigher than that obtained in thé ¢ Q) model and that the
the shapes of the giant dipole resonant@®R) built on  transition is relatively smooth. A very recent calculation by
excited state$1—3]. Theoretically, they have been studied Egido et al. [17] in a nonrelativistic approach but with the
earlier in a finite temperature nonrelativistic microscopicrealistic Gogny force reveals that the characteristics of the
Hartree-Fock [4,5] and Hartree-Fock-BogoliuboWHFB) nuclear shape transition are very similar to those obtained in
framework [6—9] with a pairing plus quadrupoleP(+Q)  the RMF theory. We have therefore undertaken a more sys-
interaction. For the nuclei studied, it has been found thatematic study of the shape transition for the rare-earth nuclei
while the superfluid nuclear phase has transition to the norin the relativistic mean field theory in the present paper. For
mal phase typically af~0.5 MeV, the deformed shapes this purpose, we have considered various even-even isotopes
have transition to the spherical ones at a higher temperaturéf Sm, Gd, and Dy. A more quantitative study, particularly
mostly betweenT~1.0 to 1.8 MeV for rare-earth nuclei. Of the shape transitions, calls for the inclusion of thermal
These calculations, however, have some limitations; thefluctuations13,18,19. However, this is too computer inten-
employ a simplistic model Hamiltonian in a limited model Sive and is not included in the present paper.
space, an inert core is assumed, moreover, the Coulomb in- The organization of the paper is as follows. We discuss
teraction has not been taken into account realistically. Théhe theoretical framework briefly in Sec. II. The results and
understanding of the universal pattern of the mean fieldliscussions are presented in Sec. Il and the concluding re-
shape evolution with temperature has also been tried in Bnarks are given in Sec. IV.
macroscopic approadti0,11] commonly referred to as the
Landau theory of phase transition. A quantitative estimate of Il. FORMALISM
the persistence of the ground state deformafib®| with
temperature is, however, seen to be missing in some cases. We employ the nonlineas — w—p version of the RMF

Recently, we have undertaken a stydg] of the thermal  theory[15]. The Lagrangian density for the nucleon-meson
evolution of nuclear properties, particularly the phase transimany body system is taken as
tion in the nuclear shape and the superfluidity in the relativ-
istic mean field RMF) theory. The pairing effects have been — . 1 —
included in the BCS approximation. The RMF thediy—  £=Vi(iy*d,—=M)¥i+ 5 0%0d,0—-U(0) ~g,VioV;
16] has proved to be an extremely powerful tool in explain-
ing the gross properties of nuclei over the entire periodic 1. 1 — 1. .
table. In contrast to the nonrelativistic models, this theory ZQM Qut Emiwﬂw#_gwq’iwwuwi_ ZRM Ry
employs a single set of parameters to explain all these prop- L L
erties. Moreover, in such calculations, the model space used 274" = - > Y
is sufficiently large and all the nucleons are treated on equal + Empp#pﬂ_gpwiyﬂpﬂ%_ ZFM Fuv

— (1—m3)
_e\I,i‘)/'U' > A'u\l'” (1)
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The arrows indicate isovector quantities. The mesons in- T(1_ 3)
cluded in the description are the w, andp mesons. For an pe=> NV, 5 Vi (13)
appropriate description of the nuclear surfaf28], a non- '
linear scalar self-interaction tertd(o) of the o meson is
included in the Lagrangian

Here the sums are taken over the particle states only, i.e., the
negative-energy states are neglected. The partial occupancy
(n;) at finite temperature in the BCS approximation is

U(0)=3mjo%+39,0°+ 1gs0”. (2)
The meson masses are given iy, m,, andm,, the ni:E 1— ei:)‘[l_zf(’;i D1, (12)
nucleon mass i#1 andg,, 9., 9,, ande?/47=1/137 are 2 €

the coupling constants for the mesons and the photon. The -

field tensors for the vector mesomnsandp are given byQ~” with f(e , T)=1/(1+e'T); &= (e;— N)?+ AZ is the qua-
andR*?, for the electromagnetic field, it B*”. Recourse to ~ Siparticle energy where, is the single-particle energy for the
variational principle followed by the mean field approxima- statei. The chemical potentiak for protons(neutrons is
tion treating the fields as-number results in the Dirac equa- obtained from the requirement

tion for the nucleon and the Klein-Gordon-type equations for

the mesons ar)d thg photon. For the static case,.along with the 2 ni=2(N). (13)
time-reversal invariance and charge conservation, the equa- i

tions get simplified. The resulting equations, known as RMF

equations, have the following form. The Dirac equation forThe sum is taken over protgmeutror) states. The gap pa-

the nucleon is rameterA is obtained by minimizing the free energy
{—ia-V+V(r)+B[M+S(N]}\¥,= ¢V, (3) F=E-TS (14)
whereV(r) represents thgector potential where
(1= 73) E(T)=> eni+E,+Eyn+E,+E
V(r):gwwo(r)+gp73p0(r)+e 2 AO(r)r (4) i i o oNL @ P
and S(r) is thescalar potential +Ect Epairt Ecm =AM (19
and
S(r)=g,0(r), (5
which contributes to the effective mass as S= —Z [filnf,+(1—f,)In(1-f;)], (16)
|
M*(r)=M+S(r). 6 .
(r) (r) ®  Lith
The Klein-Gordon equations for the mesons and the elec- 1
tromagnetic fields with the nucleon densities as sources are E,=— Eg"J d3rpy(r) (1), (17)
{=A+mZ}o(r)==0,ps(r)—g20°(r) ~gso™(r), (7) . . .
E,n=—=| d%{50,0%(r)+ =gz0*(r){, (18
(= A+2}og(1)=0up, (1), ® =3 e Gero). s
_ 2 _ 1
{ A+mp}p0(r)_gpp3(r)! (9) Ew:_zgwf dBrPU(r)wO(r)’ (19)
—AA(r)=epg(r). (10 L
_ 3 0
The corresponding densities are E,=— §9pJ d°rps(r)p=(r), (20)
=> nw e?
Ps= : nwwy, Ecz_gf d3rpc(r)A°(r), (21)
t A?
Po= EI mY i, Epair= — G’ (22)
f 3 3 1A-13
p3=2 Nl W, Eem=— g hop=—Z41A"% 23)
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HereG andA are the pairing strength and the mass number,
respectively. The single-particle energies and the fields ap- .,
pearing in Egs.(15—(21) are obtained from the self-
consistent solution of Eq$3)—(10). The temperature depen-
dent occupancies of the fermions induce temperature
dependence in the bosonic fields through the source terms a:
seen from Eqs(7)—(10). We generate these self-consistent
solutions using the basis expansion metd8,21]; this
yields the quadrupole deformatig®y, the hexadecapole de- 0
formationg, and the proton and neutron pairing gadgsand
A, as a function of temperature.

0.1

0.2

B,

lll. RESULTS AND DISCUSSIONS 01
We have chosen even-even isotopes of the nuclei Sm, Gd,
and Dy for the study of the pairing and shape transitions. The 0
NL3 parameter set is chosen for the values of the coupling
constants and the masses of the mesons and the nucleon: 0.2
This parameter set reproduces best the ground state as wel
as the compression properties of finite nuclei simultaneously
[22]; however, it has already been reported in R&8] that
the results for shape transition are not that sensitive to the
choice of the parameter set. The pairing gaisand A for
neutrons and protons for a nucleus in the ground state are ‘ ‘ -.__
determined from the experimental odd-even mass differences 0 05 1 15 2
[23]. The single-particle states are calculated using spherical T(MeV)
oscillator basis with twelve shells. The values of the chemi- ) )
cal potential and the pairing gap at a given temperature are F'G- 1. The evolution of the quadrupole deformatifp as a
determined using all the single particle states up tawg function of temperature for the Sm, Gd, and Dy isotopes.
(the model spageabove the Fermi surface without assuming
any core. The temperature evolution of the quadrupole deformation
At finite temperature, because of the partial occupancieg, with neutron numbeN=_86 and 88 for the systems Sm,
of nucleons above the Fermi surface, it is in principle neces&d, and Dy are displayed in Fig. 1. It is well known that
sary to have a larger basis and an extended model space. Itaddition of nucleons beyond the closed shell gives nuclei
further necessary to take effects due to continuum into acprogressive prolate deformation up to around the middle of
count[24]. In order to check the convergence of the calcu-the next shell closure. This is reflected in the figure for all the
lations, we have enlarged the basis space from twelve shelisotopes and isotones. It is also seen that the critical tempera-
to twenty shells and have extended the model space to iritire increases with addition of nucleons for these systems. It
clude single-particle states up tdé 3, above the Fermi sur- is not immediately apparent whether there is a close correla-
face. For this extended model space, the pairing stre@gdsh  tion between the ground state deformat'ﬁﬁland the critical
adjusted to reproduce the ground state pairing gap. Th&emperaturel, for shape transition; we come back to this
changes in the values of the observables are found to bigsue later. In the top panel of this figure, particularly
insignificant due to this extension of the basis and modefor 148Sm, it is seen that the deformation increases a little
space even at the highest temperature of our interést (with temperature before finally falling to zero. This is due
~3.0 MeV). To estimate the importance of the continuumto the delicate balance between the temperature dependence
corrections on the observables we report here, we calculatesf the pairing force and the nuclear interaction as derived
the occupancy(™) of the single particle states with positive from the RMF theory. The dramatic build-up of a deforma-
energy. FolT<1 MeV, practically there is no particle in the tion in a temperature window for this nucleus as seen earlier
positive energy states(")=0) and at the highest tempera- [6,7] in the nonrelativistic framework is absent in our calcu-
ture of interest studied herél €2.7 MeV), n(")/A=0.011 lations.
which is very small. It is therefore expected that continuum The temperature dependence of the pairing gapsand
corrections may not play an important role in the temperaturé\ , for protons and neutrons for the two isotopes each of Sm,
range we study. Calculations of nuclear level density in earGd, and Dy are shown in Figs. 2 and 3. The pairing gaps
lier studies[13,25, have shown that the continuum correc- decrease monotonically with temperature, vanishingT at
tions are not important fof up to~3 MeV. The continuum ~0.6—-0.7 MeV for neutrons and at0.65—-0.85 MeV for
effects may grow stronger for>3 MeV, however, this is protons. The sudden collapse of the pairing gap and the
beyond the shape transition temperatures and so we have naiclear deformation at some specified temperatures signifies
taken this into account. phase transitions; these correspond to transition from the su-
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FIG. 2. Temperature evolution of the proton pairing gap for the  FIG. 3. Same as in Fig. 2, but for the neutron pairing gap.
systems indicated.

perfluid nuclear phase to the normal phase and a transition

60
from the deformed shape to the spherical shape, respectively
These transitions show up as bunigssplayed in Fig. 4 for -
148Sm and'°%Sm) in the temperature evolution of the heat
capacity defined as 40 ]
*
C(Mm= T (24 %0 | |

whereE* is the excitation energy of the nucleus in question.
At a temperaturd ,~0.6 MeV, the twin peaks are seen for £ gg ; ; ;
both the nuclei referring to the dissolution of the neutron and®
proton pairing gaps. These are the characteristic signatures ¢
second order phase transition from the superfluid to the nor
mal phase. A somewhat more prominent bump is seen at i
temperatureT,~1.15 MeV for 1*8Sm (upper panel This
corresponds to the nuclear shape transition. Addition of two
neutrons(lower panel for>%Sm) shifts the shape transition 20 |
temperature tor.~1.6 MeV. This is possibly due to the
larger ground state deformation of th&°Sm nucleus.

From the study of the hot*sm and*®°Sm nuclei, it was 0 ‘ ‘ ‘
conjectured earlief7] that addition of two neutrons might 0 05 1 1.5 2
increase the critical temperature for deformation collapse. Tc T(MeV)
test this conjecture in detail, we have calculated the ground
state quadrupole deformation and shape transition tempera- FIG. 4. Variation of heat capacity as a function of temperature
tures for a host of even-even Sm isotopes. The results afer *8Sm and**°Sm.

40 +
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FIG. 5. (a) Variation of the ground state deformati(ﬁg with
neutron numbeN for the isotopes of Sm ang) the shape transi-
tion temperaturd . for different isotopes of Sm.

displayed in Fig. 5. In the vicinity of the closed sheN (
=82), the ground state quadrupole deformatﬂgrincreases

PHYSICAL REVIEW C 63 024002

3.0

® RMF

25 o P+Q

2.0

T(MeV)

1.5

1.0

0.5 L L
0.3
B,

0.4

0

FIG. 6. The shape transition temperatligeplotted as a function
of the ground state quadrupole deformatiﬁ% for different rare-
earth nuclei. The full circles refer to the results from the RMF
theory, the full line is the linear fit to these. The open squares refer
to those from the R+ Q) model and the dashed line is the linear fit
to these points.

comes out to be 1.45 and 1.75 MeV, respectively, contrary to
the simple-minded expectations. Therefore no simple expla-

fast with the addition of two neutrons as seen from the tog?ation for the higher values of. in the RMF theory is
panel of Fig. 5. As the neutron number approaches the mic@PVious.

shell, the deformation levels off, and then, as is well known
switches over to the oblate shap26] (not shown in the
figure). The critical temperatureT(;) for the shape transition

also increases with neutron pair addition as seen in the bot

tom panel of Fig. 5. The functional behavior ﬁg and T,
with neutron numbeN are found to be very similar . Indeed
there is a strong correlation betweﬁ% andT, as displayed
in Fig. 6. The filled circles refer to the results from the
present calculation; they can be fairly well fitted with a
straight line

T=7.7555. (25)

The fit is obtained using results from the twelve different
isotopes of Sm, Gd, Dy, and Er nuclei. The results calculatec

[7,8,27 in the (P+ Q) model are also presented in the figure
(open squargsfor a comparison with those obtained from
the RMF theory. The'l'c-ﬂg correlation is then also found to

be approximately linear with a smaller slope. The shape tran-
sition temperatures obtained in the present calculations ar

somewhat higher compared to those obtained in tRe (

+ Q) model; one may be inclined to attribute this difference

to the higher effective mass in th@ ¢ Q) model. However,

calculations with different sets of field parameters in the

RMF theory with considerably different values of the effec-

Z=62

© Neutron
o Proton

0.8

0.5

04 L L L L L L
85 87 89

FIG. 7. (a) The ground state neutron and proton pairing gaps as

t!ve masses yielq conflicting results. We have done calqulaa function of neutron number for the Sm isotopes énicthe neu-
tions for °%Sm with the parameter sets HS and NL2 whichtron and proton pairing transition temperatuflasfor the different

yield very differentM*/M [15] (0.54 and 0.6), but theT,

Sm isotopes.
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FIG. 8. The correlation between the transition temperalye  Fock-Bogoliubow(FTHFB) calculation using the finite range

and the ground state pairing gag for different nuclei in the rare- density-dependent Gogny forg&7].
earth region.

. . IV. CONCLUSIONS
How does the pairing transition temperaturg depend

on the pairing gap af =07 Intuitively one would expect the The relativistic mean field theory has been applied to un-
collapse of nuclear superfluidity at a larger temperature if th@lerstand properties of some rare-earth even-even nuclei at
ground state pairing gap® is larger. To study it quantita- finite temperature. Pairing effects have been included
tively, we have done calculations for the different isotopes othrough the BCS approximation. Focus is made mainly on
Sm. The results are shown in Fig. 7. In its upper panel, wéhe temperature-induced transition from the nuclear super-
display the experimental neutron and proton ground statéuid phase to the normal phase and also on the shape tran-
pairing gaps as a function of neutron number for the spsition from a deformed shape to a spherical one. To find out
isotopes; in the lower panel, the pairing transition temperathe systematics of the dependence of the pairing and shape
turesT, are displayed. An extremely strong correlation be-transition temperatures on the values of the ground state pair-
tweenT, andA° for both neutrons and protons is seen; thising gap and the ground state deformation, we have done

is manifest in the linear relationship calculations for several isotopes of different rare-earth nu-
clei. We find that there is a linear correlation between the
0 0 above-mentioned transition temperatures and the equilibrium

Ty =0561], T, =0.6Q\7, (26) P q

values of the pairing gap and deformation at zero tempera-

ture. The linear relationship is extremely good for the pairing
for both neutrons and protons which is also shown in Fig. 8gap and quite fair for the deformation. In the range of nuclei
The points in the figure include, in addition to Sm, resultsthat are studied here, it is indeed possible to estimate very
from Gd, Dy, and Er isotopes. The relation betwdanand  closely the value of the pairing transition temperaftixefor
A% s in very close agreement to that obtained in the nonrelpoth neutrons and protons, as the ground state pairing gap
ativistic (P+Q) model[7]. can be calculated from the systematics of binding energy.

The hexadecapole deformatigh, if any, also collapses Similarly, it appears that the shape transition temperatures

at the same shape transition temperafligeas the quadru- can be well estimated since the ground state quadrupole de-
pole deformation. In Fig. 9, we plot the hexadecapole moformations can be experimentally extracted. The transition
ment (a measure of3,) as a function of temperature for temperature§, are not too different from those calculated
1485m and'*°sm. Addition of neutrons gives larger ground earlier in a nonrelativistic framework; the shape transition
state 8. The deformation increases smoothly at low tem-temperature§,, however, seem to be higher than the cor-
perature up ta ~0.7 MeV and then collapses to zeroTat. responding values calculated in thB{ Q) model. These
The initial enhancement of this deformation is related to thehigher values of the shape transition temperatures are, how-
weakening of the pairing correlations with temperature. Suclever, found to be very compatible with the ones obtained
an enhancement is also seen in a finite temperature Hartrefom the realistic Gogny force.
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