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We present a charge-dependent one-boson-exchange nucleon-nuéMprpdtential that fits the world
proton-proton data below 350 MeV available in the year 2000 wiitt @er datum of 1.01 for 2932 data and
the corresponding neutron-proton data witidatum=1.02 for 3058 data. This reproduction of tNé\ data
is more accurate than by any phase-shift analysis and any bthepotential. This is achieved by the
introduction of two effectivec mesons the parameters of which are partial-wave dependent. The charge
dependence of the present potentighich we call “CD-Bonn”) is based upon the predictions by the Bonn
full model for charge symmetry and charge-independence breaking in all partial waveswthThe poten-
tial is represented in terms of the covariant Feynman amplitudes for one-boson exchange which are nonlocal.
Therefore, the off-shell behavior of the CD-Bonn potential differs in a characteristic way from commonly used
local potentials and leads to larger binding energies in nuclear few- and many-body systems, where underbind-
ing is a persistent problem.
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[. INTRODUCTION 2r-exchange contribution to tHeN interaction and therp
diagrams such that the CSB difference in the singlet scatter-
In the 1970’s and 1980’s, a comprehensive field theoretiéng lengths can be fully explained from nucleon mass split-
meson-exchange model for the nucleon-nuclediN) inter-  ting. Also, noticeable CSB effects occur fhand D waves.
action was developed at the University of Bonn. The finalEmpirical evidence for CSB is seen in the Nolen-Schiffer
version, published in 1987, has become known as the BonfNS) anomaly[4] regarding the energies of neighboring mir-
full model [1]. For a pedagogical review see REZ]. ror nuclei. A recent study5] has shown that the CSB in
In the language of field theoretic perturbation theory, theP@rtial waves withL>0 as derived from the Bonn model is
lowest order contributions to thN interaction generated crucial for a quantitative explanatlon_ of the NS anom_aly.
by mesons are the one-boson exchange diagrams. Furth?r- Tht(_a chr?rge-:ndetf)endgnce tbre?giﬁ%s) of the NNI'IIP'-
more, there are many irreducible multimeson exchanges. Th raction has also been nvestiga ion mass Spiitting

diagrams of % exchanae are most prominent since thev' the major cause, and it is well known that the one-pion
g ; ng pre yexchange{OPE) explains about 50% of the CIB difference in
provide the intermediate-range attraction of the nuclea

S I the singlet scattering lengths. However, the-8xchange
force. However, once explicit diagrams ofr2exchange el and the diagrams of three and four irreducible pion

(with intermediateA isobarg are used in a model, then it is eychanges contribute additional CIB which can amount up to
vital to also include the corresponding diagramsmgf ex- 5004 of the OPE CIB contribution, i, P, and D waves.
change. There are characteris(jzartia) cancellations be- Thjs effect is not negligible.
tween the two groups of diagrams, which are crucial for a Other important issues related to the nuclear force are
quantitative reproduction of th&IN data. Moreover, the relativistic effects, medium effects, and many-body forces to
Bonn model contains additional classes of irreducibte 3 be expected in the nuclear many-body problem. The medium
and 4w exchanges which are important conceptually ratheeffects on the nuclear force when inserted into nuclear matter
than quantitatively, since they appear to indicate converhave been calculated thoroughly. A large repulsive contribu-
gence of the diagrammatic expansion chosen by the Bonfion to these medium effects comes from intermediateo-
group[1]. bar states which also give rise to energy dependence. On the
The development of the Bonn full model was necessary t®ther hand, isobars create many-body forces that are attrac-
test reliably the meson-exchange concept for nuclear forcddve. Thus, large cancellations between these two classes of
and to assess systematically the range of its validity. Thugnany-body forces/effects occur and it has been shown that
the model represents a benchmark for any alternative attemft€ Net contribution is very small7]. Relativistic effects,
(based, e.g., on quark models, chiral perturbation theory, gfoWever, may play an important role in the nuclear many-

other ideasto explain the nuclear force. boi% [I:iirrcr)]blerrEZ];( hanae diagrams are very involved. Mor
Due to its comprehensive character, the Bonn model pro- ' U!UMESON €xchange diagrams are very involved. viore-
gver, contributions of this kind are, in general, energy depen-

vides a sound basis for addressing many important ‘SS“ea-em This would make th N potential—defined as the sum
One of them is the charge dependence of nuclear forces. Trb :

- . . 3t irreducible diagrams—energy dependentNA potential
charge-symmetry brgz_aklr@SB) of the NN_mteragtlon due that depends on energy creates conceptual and practical
to nucleon mass splitting has been investigated in 3gflt

. . roblems when applied in nuclear many-body systems. For a

turns out that considerable CSB is generated by thegyge class of nuclear structure problems, these complications
are without merit.

For these reasons, already early in the history of the me-

*Electronic address: machleid@uidaho.edu son theory of nuclear forces, the so-called one-boson-
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exchange (OBE) model was designed which—by TABLE I. Basic constants and parameters adopted for the CD-
definition—includes only single-meson exchangeeghich  Bonn potential.

can be represented in an energy-independeny.wisually,
the model includes all mesons with masses below thé&article MasgMeVv)®  g%4m  flg A (GeV)
nucleon mass, i.es, 7, p(770), andw(782) [8]. In addi- - 139.56995 13.6 172
tion, the OBE model typically introduces a scalar, |soscalarﬂo

boson—commonly denoted hy (or €). Based upon what . ;23'3764 1;':4 6.1 i;i
we discussed above concerning multimeson exchange contfi- ¥ 781.94 20'0 0'0 1'5
butions, it is clear now that this must approximate more @ ' ' ' '
than just the Zr exchange. In particular, it has to simulate Proton () 938.27231

X Neutron () 939.56563

27+ mp exchanges which are clearly not of purely scalar,
isoscalar nature. Consequently, theapproximation is poor  aadron masses are from RES].
(as demonstrated in Fig. 11 of RE1]). One way to make up

for this deficiency is to readjust the parameters of the empirical evidence from various sources. AnalyziNgN
boson in each partial wave. Moreover, ther2mp ex-  scattering data in terms of forward dispersion relations,
changes create—in terms of ranges—a very broad contribuzrein and Kroll[11] determined the;NN coupling constant
tion that cannot be reproduced well by a single boson massg pe consistent with zero. Tiator and co-workgtg] ex-
two masses will do better. The fact that we are dealing hergacted thes coupling from 7 photoproduction data and
with a very broad mass distribution is supported by an entr)foundgzl4qr=0.4. Such a small coupling constant generates
in the Particle Data Tabld®] which lists ac (or fo) with @ 5 negiigible contribution in th&/N system([if no nucleon
mass between 400 and 1200 MeV. resonances, such as thN{1535)S,;, are included in the
Based upon the philosophy just outlined, we have cony,qqe |n the development of the Bonn full model for the
structed aNN potential that is energy independent and de-y interaction[ 1], it was noticed that a good fit of tHeN
fined in the framework of the usualnonrelativisti¢  y5ia favors a vanishing contribution.
Lippmann-Schwinger equation. Thus, it can be applied inthe |, Tapje |, we list the hadrons involved in our model
same way as any other conventiofdN potential. The cru- - ygether with their masses and coupling parameters. For the
cial point, however, is that it reproduces important predic-__ N coupling constant, we choose the “small” value

tions by the Bonn full model, while avoiding the problems o2, _ 13 g “consistent with recent determinations by the

that the Bonn full model creates in applications. The chargg": _ ; ;
dependencéCD) predicted by the Bonn full model is repro- limegen([13,14 and VP! group[15-17. Itis appropriate

duced accuratelv by the new potential. which is why we callto mention that the precise value of thé&l N coupling con-
u u y by wp 1al, WRIch IS why W stant is an unsettled issue at this time, and we refer the in-

I the CD-Bonn potentlgl..The off-shell behav!or of CD-Bonn terested reader to Refgl8,19 for a critical discussion and
is based upon the relativistic Feynman amplitudes for MESOML. .o\ of the topic. For the vector mesopsand w, for
exchange. Therefore, the CD-Bonn potential differs Off'Shelk/vhich precise empirical determinations of the coupling con-

ggﬁ;:oﬁgﬁgs?r?l':lﬁlggﬁe;tr'jgas ;acﬁizg%tozzs attractive stants are difficulfif not impossiblg, we use the values from
d pp : the Bonn full model1].

ho@g\/:ﬁ”{'ﬁé xg':sg)%tgi; tgﬁ’ tﬁe[)-cig?ge po?é%r:r;?jl;\(l:vgfc\}ag We start from the following Lagrangians that describe the
published in Ref[10] where the off-shell aspects are dis- oupling of the mesons of interest to nucleons:
cussed in great detalil.

—_ 0

In Sec. Il, we present the potential model. Charge depen- L onn= — G0 Yo 13pe(™), 2.9
dence is discussed in Sec. lll. The results o scattering - .
and the deuteron are presented in Secs. IV and V, respec- Lo snN=— \/ngxwi Yore ™), (2.2
tively. Conclusions are given in Sec. VI. The paper has three
appendices which spell out in detail the mathematical for- Loan= _ggmw(a), 2.3
malism of our potential and of two-nucleon momentum-
space calculations. Many parts of the formalism are not new, B — (@)
but we include them to make the paper self-contained. Lonn= =008 7v 4e,” (2.4

Il. THE MODEL Lon==9,07" 7 @0

As discussed in the Introduction, the CD-Bonn potential _ f_p— wv (p) _ (p)

is based upon meson exchange. We include all mesons with 4M pot i (0,07 = 0ve”), (29

masses below the nucleon mass, i#,, », p(770), and

w(782). In addition to this, we introduce two scalar-isoscalarwhereys denotes nucleon fieldg, meson fields, and; . are

o bosons. standard definitions of Pauli matrices and combinations
For the 7 (with a mass of 547.3 Mel we assume a thereof for isosping [20]. M, is the proton mass which is

vanishing coupling to the nucleon, which implies thate- used as scaling mass in teNN Lagrangian to make

facto—we drop then. This assumption is supported by semi- dimensionless. To avoid the creation of unmotivated charge
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between the two in- and out-going nucleons, respectively.
The square root factors in ER.7) create additional nonlo-
cality.
—_— — While for heavy vector-meson exchan@morresponding
T pwoy02 to short distancgsnonlocality appears quite plausible, we
have to stress here that even the one-pion-exchéD§&)
Feynman amplitude is nonlocal. This fact is often over-
looked. It is important because the pion creates the dominant
art of the tensor force which plays a crucial role in nuclear
structure.
Applying the 7NN Lagrangian, Eq(2.1), to the ampli-
tude, Eq(2.6), yields the one-pion-exchang®PE) potential
suppressing charge-dependence and isospin factors for the

FIG. 1. One-boson exchange Feynman diagrams that define t
CD-BonnNN potential.

dependence, the scaling madg is used in theopNN vertex
no matter what nucleons are involved. (
In the c.m. system of the two interacting nucleons, the

OBE Feynman amplitude generated by mesgois momen}
_ — 2 ’ ’
(@)U (@PLU(— )T us(— ) V(g 2 EFMELM) | ovd’  ovd
—iVala',a)= (@' —q)2—m? ' — 4M? (q'—q)?+m?: \E'+M E+M
(2.6 /
oxq o0xq 2.9
where T'{*) (i=1,2) are vertices derived from the above E'+M E+M]/’ '

Lagrangians,u; Dirac spinors representing the interacting

nucleons, andj and q’ their relative four-momenta in the If we would now apply the approximationg’~E~M
initial and final states, respectively,, divided by the de- (static approximatiop then this simplifies to

nominator is the appropriate meson propagator.

The one-boson-exchange potential is definedibynies (1o6) 9% (oK) (ork)

the sum over the OBE Feynman amplitudes of the mesons Vi (k)= — M2 K2 (2.10
included in the modefFig. 1); i.e., T

MM with k=q'—q. Fourier transform of this latter expression

V(g',)= \/:\fg > Va(d',0) yields
E a=770,77i,p,w,0'1,172 5 ) o
g m e e A
2041 - (loc)(py = =7 | _ T — 50
XF(A,qAq). (2.7) V() 1277(2,\,') ; mié (r))trl o2

As customary, we include a square-root factdrE'E oy
(with E=\M?+q% E’'=yM?+q’?, and M the nucleon +| 1+ 3 + 3@ Wsl . (211
mass$ and form factorsF,(q',q;A ), applied to the meson- m.r (mr)?) 2

nucleon vertices. The square root factors make it possible to
cast the unitarizing, relativistic, three-dimensional This is the local OPE potential that is used by most practi-
Blankenbecler-SugaiBbS) equation[21] for the scattering tioners. However, the important point to notice here is that
amplitude[a reduced version of the four-dimensional Bethe-this local OPE is not the full, original OPE Feynman ampli-
Salpeter(BS) equation[22]] into the following form (see  tude; it is an approximation.
Appendix A for a proper derivation The obvious question to raise at this point is: How much
does the local approximation change the original result or, in
s, 3 , M other words, how drastic is the local approximation? For this
T(a",a)=V(q ’q)+f d°kV(q ’k)mT(k’Q)' purpose, we show in Fig. 2 the half off-shéis,—*D, po-
(2.9 tential that can be produced only by tensor forces. The on-
shell momentung’ is held fixed at 265 Me\(equivalent to
Notice that this is the familiafnonrelativisti¢ Lippmann- 150 MeV laboratory energywhile the off-shell momentum
Schwinger equation. Thus, E@.7) defines a relativistic po- ¢ runs from zero to 2000 MeV. The on-shell poimt=€ 265
tential which can be consistently applied in conventionalMeV) is marked by a solid dot. The solid curve is the rela-
nonrelativistic nuclear structure, in the usual way. The formtivistic OBE amplitude ofm+p exchange. Now, when the
factors in Eq.(2.7) [see Appendix B, Eq(B9), for detail§ relativistic OPE amplitude, Eq(2.9), is replaced by the
regularize the amplitudes for large mome(ghort distances static-local approximation, Eq2.10, the dashed curve is
and account for the extended structure of nucleons in a phebtained. When this approximation is also used for the one-
nomenological way. p exchange, the dotted curve results. It is clearly seen that
The Feynman amplitudes, E@.6), are in general nonlo- the static-local approximation does change the potential dras-
cal expressions; i.e., Fourier transform into configuratiorntically off shell: it makes the tensor force substantially stron-
space will yield functions of andr’, the relative distances ger off shell.
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L between proton-protorp) and neutron-neutrom() inter-
3S _3D actions, only. For recent reviews on these matters, see Refs.
0 1™ [24,25
« L CIB is seen most clearly in thES, NN scattering lengths.
% The latest empirical values for the singlet scattering lergth
O 1 ¢ and effective range are
= /. all = —17.3¢0.4fm [25], Y =2.85+0.04fm [25],
> oL /. ] 3.0
A\ a
Ll ] al =—18.9+0.4fm [26,27), rN =2.75-0.11fm[25],
3 M R IR B (3.2
0 0.5 1 1.5 2
q(GeV) anp=—23.740+0.020 fm [28-30,
FIG. 2. Half off-shell®S,—3D, potential. The on-shell momen- Inp=2.77£0.05fm [ 28-30. (3.3

tum q’ is held fixed at 265 MeMequivalent to 150 MeV lab en-
ergy), while the off-shell momentung runs from zero to 2000 The values given fopp and nn scattering refer to the
MeV. The on-shell point =265 MeV) is marked by a solid dot. nuclear part of the interaction as indicated by the superscript
The solid curve is the relativistic OBE amplitude af+p ex-  N; i.e., electromagnetic effects have been removed from the
change. When the relativistic OPE amplitude, Ef9), is replaced  experimental values.
by the static/local approximation, E.10, the dashed curve is The above values imply that charge-symmetry is broken
obtained, and when this approximation is also used for thepone-by the following amounts:
exchange, the dotted curve results.

Aacsg=ay,—an,=1.6-0.6fm, (3.9

We note that the effect demonstrated in Fig. 2 has an

impact on theT=0 np system. Forpp, whereT=1, the A cgg=Tpp~nn=0.10£0.12 fm (3.9
transition potential of lowest angular momentut is
3P,—3F,. Since the importance of off-shell effects goesand, focusing opp andnp, the following CIB is observed:
down with increasing], the pp system is not affected as

_ N _

much by the off-shell tensor force as the system. Aacp=ap,—anp="6.44+0.40fm, 3.6
In summary, one characteristic point of the CD-Bonn po- N

tential is that it uses the Feynman amplitudes of meson ex- Arcg=rpp=np=0.08+0.06 fm. 3.7

change in its original form; local approximations are not ap- . )

plied. This has impact on the off-shell behavior of the!n summary, theNN singlet scattering lengths show a small

potential, particularly, the off-shell tensor potential. It is well @mount of CSB and a clear signature of CIB.

known that the off-shell behavior of aiN potential is an The current understanding is that—on a fundamental

important factor in microscopic nuclear structure calcula-level—the charge dependence of nuclear forces is due to a

tions. Therefore, the predictions by the CD-Bonn potentiadifference between the up and down quark masses and elec-

for nuclear structure problems differ in a characteristic waytromagnetic interactions among the quarks. As a conse-

from the ones obtained with locAIN potentials. For more —duence of this—on the hadronic level—major causes of CIB

discussion of this issue, see Sec. VI and REE8,23. are mass differences between hadrons of the same isospin
multiplet, meson mixing, and irreducible meson-photon ex-
changes.

Ill. CHARGE DEPENDENCE

By definition, charge independencis invariance under A. Charge symmetry breaking
any rotation in isospin space. A violation of this symmetry is  The difference between the masses of neutron and proton
referred to as charge dependence or charge independenepresents the most basic cause for CSB of the nuclear force.
breaking(CIB). Charge symmetrys invariance under a ro- Therefore, it is important to have a very thorough accounting
tation by 180° about thg axis in isospin space if the positive of this effect.
z direction is associated with the positive charge. The viola- The most trivial consequence of nucleon mass splitting is
tion of this symmetry is known as charge symmetry breakinga difference in the kinetic energies: for the heavier neutrons,
(CSB). Obviously, CSB is a special case of charge depenthe kinetic energy is smaller than for protons. This raises the
dence. magnitude of then scattering length by 0.26 fm as compare

CIB of the strongN N interaction means that, in the isos- to pp. The nucleon mass difference also affects the OBE
pin T=1 state, the proton-protoiT {= + 1), neutron-proton diagrams, Fig. 1, but only by a negligible amount. In sum-
(T,=0), or neutron-neutron T,=—1) interactions are mary, the two most obvious and trivial CSB effects explain
(slightly) different, after electromagnetic effects have beenonly about 15% of the empirical a-sg (see Table ). Usual
removed. CSB of théNN interaction refers to a difference models for the nuclear force include only the two CSB ef-
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TABLE II. Differences between th@p and nn 'S, effective TABLE lll. Difference &,,— &, (in degreesdue to the impact
range parameteras defined in Egs(3.4) and (3.5] due to the  of nucleon mass splitting on kinematig32], one-boson exchange
impact of nucleon mass splitting on the kinetic enetiin. en), (OBE) diagramd31], and two-boson exchangé€EBE). Total is the

one-boson exchang€OBE) diagrams[31], and two-boson ex- sum of all.
changes(TBE). Total denotes the sum of the three contributions

and empirical information is given in the last column. Tiap (MeV) Kinematics OBE TBE Total
1
. — Sy

Kin.en. ~OBE TBE Towl Empirical 0.38254 0404  —0.045 1795 2.154
Aacsg (fm)  0.263  —0.030 1.275 1508 1:560.6 1 0.324 —0.036  1.440 1.728
Arcsg (fm)  0.004 0.000 0.022 0.026 0.1®.12 5 0.165 —-0.018  0.785 0.932
10 0.114 —0.013 0.591 0.692
25 0.062 —0.006 0.408 0.464
fects just discussed and, therefore, do not reproduce the em- 50 0.031 —-0.001  0.310 0.340
pirical CSB. 100 0.003 0.005 0.239 0.247

However, in Ref.[3] it was found that the irreducible 150 —0.013 0.010  0.206 0.203
diagrams of two-boson exchangEBE) create a much larger ~ 200 —0.023 0.014  0.185 0.176
CSB effect than the OBE diagrams and, in fact, fully explain 300 _0'0393 0.021 0.160 0.142
the empirical CSB splitting of the singlet scattering length. 5 0.006 Po 0.001 0.001 0.008
The major part of the CSB effect comes from diagrams of ‘ ‘ ‘ '

. . . 10 0.013 0.003 0.002 0.018
2 exchange where those wilA intermediate states make
o : . . 25 0.022 0.010 0.008 0.040
the largest contribution. The CSB effect from irreducible dia-

h h d Iso included i 50 0.021 0.021 0.014 0.056
grams that exchange7aandp meson were also included in 00 0.004 0036  0.020 0.060
the s;udy. Therp d|agram_s give rise to non—negllglblg CS.B 150 0011 0.045 0.024 0.058
contributions that are typically smaller and of opposite sign 0o —0.022 0052  0.024 0.054
as cor_npgred to ther2 effects. The net effect explaidsacsg 300 ~0.040 0.063 0.025 0.048
guantitatively. 3p,

The above mentioned investigati¢8] was based upon 5 —0.003 0.000 0.002 —0.001
the Bonn full mode[1]. This model uses theNN coupling 10 —0.006 0.000 0.004 —0.002
constantg?/4m=14.4 which is not current. For that reason 25 —0.011 0.001  0.012 0.002
we have revised the Bonn full model usigg/4==13.6 and 50 —0.017 0.002  0.027 0.012
then repeated the CSB calculations of R&f]. The total 100 —0.026 0.006  0.049 0.029
Aacsg predicted by the revised model is 1.508 fabout 5% 190 —0.033 0.009  0.065 0.041
less than what was obtained in R8] with the original 200 —0.039 0.011 0.076 0.048
mode), implying a TBE effect of 1.275 fm. 300 _0.0501D 0.016 0.090 0.056

. N . 5

The only.rehgble emplrlca_l |nf0rmat|on about CSB of the 10 0.001 0.000 0.000 0.001

NN interaction is the scattering length difference in tH

- 25 0.002 0.000 0.002 0.004
state, Eq.(3.4). As discussed, the TBE model of Rtk 3] 0.005 0.000 0.006 0011
can explain this entirely from nucleon mass splitting. For this 0011 0002 0019 0032
reason, we have conﬂdt_ance in the CS.B. predictions by this ¢ 0.016 0.005 0.033 0.054
model. Therefore, we will use its pr(_ed|ct|on§ aI;o for ener- 5o 0.019 0.010 0.046 0.075
gies and states where no empirical information is available; 3gq 0.022 0.022  0.068 0.112
namely, higher energies in thkS, state and partial waves 3p,
other than'S,. 5 0.001 0.000  0.001 0.002

Thus, using the revised Bonn full model, we have calcu- 10 0.003 0.000 0.004 0.007
lated the differencenn phase shift minugpp phase shift 25 0.010 0.001 0.013 0.024
without electromagnetic interactiod,— &, that is caused 50 0.021 0.002 0.031 0.054
by CSB of the strong nuclear force due to nucleon mass 100 0.032 0.006 0.062 0.100
splitting. The total effect obtained is listed in the last column 150 0.036 0.010 0.081 0.127
(“total” ) of Table Ill for energies up to 300 MeV and partial 200 0.035 0.015  0.093 0.143
wave states in which these effects are non-negligible. In that 300 0.032 0023  0.105 0.160

table, we also list the very small effects from the OBE dia-
grams(Fig. 1) [31] and the kinematical effectgolumn “Ki-
nematics’) [32]. CSB phase shift differences are plotted in potentials. In most recent models, only the kinematical ef-
Fig. 3. It is clearly seen that in most states the TBE effect idects and the effect of nucleon mass splitting on the OBE
the largest and, therefore, certainly not negligible as comdiagrams are included. However, as discussed, this does not
pared to the other CSB effects shown. explain the CSB scattering length difference. Thus, some

Because of the outstanding importance of the CSB effecnodels leave CSB simply unexplaind®4], while other
from TBE, we include it in our moddi33]. By doing so, we models add a purely phenomenological term to the potential
go beyond what is usually done in charge-dependént that fitsAacsg [35].
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? e T ] change. The issue is unresolved. Good summaries of the con-
% 2} So - % troversial points of view can be found in Ref®4,41,42.
& 8 We do not includep — w mixing in our model.
5'5:’ 1 J g Finally, for reasons of completeness, we mention that ir-
£ ] £ reducible diagrams of- andy exchange between two nucle-
& 1BE &
¢ | Tot @ ons create a charge-dependent nuclear force. Recently, these
% ofr——nTr= OB 8 N . A
2 o, ., . /K 2 e contributions have been calculated to leading order in chiral
0 100 200 300 "o 100 200 300 perturbation theor{43]. It turns out that to this order they
Lab. Energy (MeV) Lab. Energy (MeV) force is charge symmetritbut does break charge indepen-
3 . — 3 —— dence.
S os 3p, - TeE] s, D,
g o - 1 g Tot | i i
g Tot | g | B. Charge independence breaking
£ 1 £ oesp Y The major cause of CIB in th&IN interaction is pion
— OBE =) | P TBE_ .
£ N £ - mass splitting. Based upon the Bonn full model for this
; g 0041 7 ki interaction, the CIB due to pion mass splitting has been cal-
g e £ LAt T % culated carefully and systematically in RES).
0 100 200 300 0 100 200 300 The largest CIB effect comes from the OPE diagram
Lab. Energy (MeV) Lab. Energy (MeV) which accounts for about 50% of the empiricehcs, EQ.
g 02 : . 3 ——— (3.6) (see '(I;gltz)le IV. In pp scattering, the one-pion-exchange
2 3p B 0.016 - 3F 7 potential V~"=is given by
=~ | 2 ] ~ L 2 Tot
2 0.16 Tot 8 oot ] o
2 orzp 1 8 TBE" VO pp)=V o, (3.8
E . — = TBE £ o.008 -
0.08 - - - . 7 .+ OBE| S .
£ g £ o00s while in T=1 np scattering, we have,
oot f/ Kin ] 2 PPttt op
E o .- OB g o T k] VOPENp, T=1)=—V 0+2V, =. (3.9
0 100 200 300 0 100 200 300
Lab. Energy (MeV) Lab. Energy (MeV) If the pion masses were all the same, these would be identi-

cal potentials. However, due to the mass splitting, Thel
np potential is weaker as compared to th@ one. This
causes a difference betwe&r1 pp andnp that is known
as CIB. For completeness, we also give e0 np OPE
potential which is

FIG. 3. Differencess,,— J,, due to the impact of nucleon mass
splitting on kinematicgdotted line labeled “kin.’), one-boson ex-
change diagram@ashed double-dotted, OBEand two-boson ex-
changegdashed, TBE The solid line(“tot” ) represents the total.
Notice that each frame has a different scale.

VOPE NP, T=0)=—-V_0—2V =. (3.10
Before finishing this subsection, a word is in order con-

cerning other mechanisms that cause CSB of the nuclear Due to the small mass of the pion, OPE is also a sizable
force. Traditionally, it was believed that’-w mixing ex-  contribution in all partial waves witth.>0; and due to the
plains essentially all CSB in the nuclear fof@5]. However, pion’s relatively large mass splitting3.4%, OPE creates
recently some doubt has been cast on this paradigm. Somelatively large charge-dependent effects in all partial waves
researcher§36—39 found thatp®-w exchange may have a (see Tables V and VI and Fig.)4Therefore, all modern
substantiabj? dependence such as to cause this contributiophase shift analysed5,46 and all modernNN potentials
to nearly vanish inNN. Our finding that the empirically [34,35,1Q include the CIB effect created by OPE.
known CSB in the nuclear force can be explained solely However, pion mass splitting creates further CIB effects
from nucleon mass splittinfeaving essentially no room for through the diagrams of2 exchange and other two-boson
additional CSB contributions fromp®-w mixing or other exchange diagrams that involve pions. The evaluation of this
sourcegfits well into this scenario. On the other hand, Miller CIB contribution is very involved, but it has been accom-
[24] and Coon and co-workefgl0] have advanced counter- plished in Ref.[6]. The CIB effect from all the relevant
arguments that would restore the traditional rolepeh ex-  two-boson exchange6TBE) contributes about 1.3 fm to

TABLE IV. Differences between thpp andnp 1S, effective range parametefras defined in Eq¥3.6)
and(3.7)] produced by various CIB mechanisms and phenomendioiggnom). [44]. Total is the sum of all
contributions listed left of column “total.”AM denotes all effects caused by nucleon mass splitting. Em-
pirical information is given in the last column.

AM OPE TBE Ty Phenom. Total Empirical
Aagg (fm) 0.754 3.035 1339 —-0.405 1.555 6.278 6.440.40
Argg (fm) 0.013 0.092 0.016 —0.004 0.057 0.174 0.080.06
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TABLE V. Difference 6,,— &, (in degreesin the 13, state as produced by various CIB mechanisms and
phenomenologyphenom). [44]. AM stands for all effects caused by nucleon mass spliféiag Total is the
sum of all contributions listed left of column “total.” “All” denotes the sum of total and Coulomb, where

Coulomb is the differencé,,— 5,

Tian (MeV) AM OPE TBE Ty Phenom. Total Coulomb All
0.38254 1.077 3.541 1.655 -0.412 1.953 7.814 32.085 39.894
1 0.859 2.851 1.260 —-0.305 1.521 6.186 23.114 29.300
5 0.468 1.650 0.654 —0.152 0.982 3.602 5.219 8.821
10 0.350 1.271 0.482 —0.106 0.909 2.906 1.896 4.802
25 0.240 0.875 0.320 -0.058 0.970 2.347 —0.044 2.304
50 0.182 0.656 0.233 -0.028 1.142 2.185 —0.589 1.597

100 0.139 0.513 0.165 —0.002 1.433 2.248 —-0.772 1.476
150 0.119 0.469 0.130 0.012 1.656 2.386 —0.796 1.590
200 0.108 0.457 0.103 0.021 1.839 2.528 —0.796 1.733
300 0.094 0.477 0.058 0.034 2.124 2.787 —0.782 2.005

Aacg. Concerning phase shift differences, it is noticeable We start with thepp potential since thgp data are the
up to D waves and can amount up to 50% of the OPE effecimost accurate ones. Data fitting is done in three steps. In the
in some statescf. Tables V and VI[47]). first step, thepp potential is adjusted to reproduce closely
Another source of CIB is irreduciblery exchange. Re- the pp phase shifts of the Nijmegen multienergy phase
cently, these contributions have been evaluated in the framahift analysig46]. This is to ensure that phase shifts are in
work of chiral perturbation theory by van Kolait al.[43]. the right ballpark. In the second step, tpthat results from
Based upon this work, we have calculated the impact of theppplying the Nijmegerpp error matrix[48] is minimized.
my diagrams on the'S, scattering length and onp phase  The error matrix allows us to calculate th@ in regard to the
shifts. (see column “ry” in Tables IV, V, and VI) In L 5 data in an approximate way requiring little computer
>0 states, the size of this contribution is typically the samg;jpe. Finally, in the third and crucial step, thep potential
as the CIB effect from TBE. parameters are fine-tuned by minimizing the exgttthat

In the leot state,ﬂghea-ry c%ntributipn incrfarasbtlas ItheAdis— results from a direct comparison with all experimenpad
crepancy between theory and experimsee Table 1. As data. During these calculations, it was revealed that the

a matter of fact, about 25% a&facz is not explained. For - ix vield 5
that reason, a quantitative fit of the empiriced g requires Nijmegenpp error ma.tnx. ylelds very accuratg” up to 75 .
’ ciB MeV. Therefore, in this final step, we used the error matrix

a small phenomenological contributigd4]. The same is . . )
true for tphe differenceg between the empirigab and pp up to 75 MeV and direcj? calculations above this energy.

hase shifts in théS. state(see Table V. A wc.)rd' i§ now in place concerning t'he parameters in-
P For conveniences,othe m;jor CiB effgcts on the strbhyg volved in fitting .thENN data. For the "basic” mesons, ,
force are plotted in Fig. 4. In Fig. 5 the total CIB phase shiftandp’ we use, in general, the parameters shown in Table |.
effect caused by the strong force is compared to the coyyote th.at(except for tht.a.cutoff mass}emesg parameters are
lomb effect onpp phase shifts § denotes the phase shift in determined from empirical or semiempirical sources and,
the presence of the Coulomb force, see Appendix A3 fOLIherefore_, they are not fr_ee parameters of our model. _The
precise definitions o6 and &°). intermediate range attraction is described by two scalar isos-

From the figures and tables it is evident that TBE ang calar bosongr; ando,, that are also used for the fine-tuning
create sizable CIB effects in states with-0. Therefore, we of individual partial waves. Ther parameters for thep
will include these two effects in our modgB3]. We note (T=1) potential are given in Table VII. In states of large

that conventional charge-depend&i¥l models ignore these orb_ital angular momenturh, we do not qonsider the contri-
two contributions bution from o, (indicated by a blank in Tables VII-IX

because large meson masgeguivalent to short-ranged con-
tributions are ineffective for large.. For all partial waves
with J=6 (of all potentials, i.e.pp, nn, andnp), we use

_ , g% /Aw=2.3 andm, =452 MeV. The cutoff mass for the
We construct threeNN interactions: a proton-proton o _ ot .

(Pp), a neutron-neutronn(n), and a neutron-protonn() two o .|s Ay =A,,=2.5 GeV, for all partial waves and all
potential. The three potentials are not independent. They afotentials. In two cases, we vary the cutoff parameter of one
all based upon the model described in Sec. Il and the differof the “basic” mesons: in'P, we applyA ,—= (i.e., thew
ences between them are determined by CSB and CIB as di§utoff is omitted, and in *P,/°F, we useA ,=3.0 GeV;
cussed in Sec. Ill. Thus, when one of the three potentials i§therwise, the same cutoff masgesmely, the ones shown
fixed, then theT =1 parts of the other two potentials are alsoin Table I andA, =A, =2.5 GeV) are used in all cases.
fixed due to CSB and CIB. Thenn T=1 potential is constructed by starting from the

IV. NUCLEON-NUCLEON SCATTERING

024001-7



R. MACHLEIDT PHYSICAL REVIEW C 63 024001

TABLE VI. Difference &,,— 6p,, (in degreegfor partial waves withL.>0 as produced by various CIB
mechanisms. Notation as in Table V.

Tian (MeV) AM OPE TBE Ty Total Coulomb All
SPO

1 0.000 —0.030 0.000 0.000 —0.030 0.073 0.043

5 0.000 —-0.230 —0.003 0.000 -0.233 0.262 0.029
10 0.000 —0.448 —0.009 0.000 —0.457 0.353 —0.104
25 0.012 -0.770 —0.027 —0.017 —0.802 0.320 —0.481
50 0.032 —0.846 —0.050 —0.050 -0.914 0.111 —0.803
100 0.050 —0.742 —0.074 —0.087 —0.853 —0.142 —0.996

150 0.050 —0.649 —0.083 —0.104 —0.786 —0.255 —1.041

200 0.047 —0.586 —0.088 —0.113 —0.740 —-0.314 —1.054

300 0.045 —0.513 —0.096 —0.125 —0.689 —0.369 —1.058
3P1

1 0.000 0.016 0.000 0.000 0.016 -—0.043 —0.026

5 0.002 0.110 0.001 —-0.002 0.111 —0.140 —0.028
10 0.004 0.193 0.003 —0.002 0.198 —0.187 0.011
25 0.006 0.298 0.008 0.003 0.315 -0.224 0.091
50 0.008 0.330 0.018 0.016 0.372 -0.240 0.133

100 0.016 0.307 0.038 0.038 0.399 -0.265 0.133

150 0.022 0.274 0.055 0.054 0.405 -—0.287 0.118

200 0.028 0.246 0.069 0.064 0.407 -—0.303 0.103

300 0.033 0.202 0.099 0.077 0.411 -0.325 0.085
p,

5 0.000 —0.009 0.000 0.000 —0.009 0.007 —0.002
10 0.000 —0.024 0.000 0.000 —0.024 0.015 —0.009
25 0.000 —0.049 0.001 0.001  —0.047 0.031 —0.016
50 0.002 —0.043 0.005  —0.002 —0.038 0.049 0.011

100 0.014 0.003 0.013 -0.011 0.019 0.071 0.090

150 0.024 0.041 0.023 -0.018 0.070 0.081 0.151

200 0.034 0.068 0.030 —0.025 0.107 0.083 0.190

300 0.045 0.095 0.042 -0.033 0.149 0.073 0.222
3P2

5 0.000 —0.009 —0.001 0.000 —-0.010 0.049 0.040
10 0.001 —0.028 —0.002 0.000 —0.029 0.094 0.065
25 0.004 —0.090 —0.005 —0.001 —0.092 0.188 0.097
50 0.017 —0.162 —0.011 —0.006 —0.162 0.257 0.095

100 0.043 —-0.211 —0.024 —0.020 —0.212 0.260 0.048
150 0.058 —0.210 —0.032 —0.030 —0.214 0.221 0.007
200 0.065 —0.196 —0.035 —0.037 —0.203 0.184 —0.019
300 0.072 —0.169 —0.034 —0.044 —0.175 0.130 —0.044

3F2

10 0.000 —0.004 0.000 0.000 —0.004 0.001 —0.002
25 0.000 —-0.019 0.000 0.000 —0.019 0.004 —-0.015
50 0.000 —0.043 0.000 0.001 —0.042 0.007 -0.036
100 0.000 —0.068 0.000 0.002 —0.066 0.008 —0.058
150 0.003 —0.081 —0.001 0.002 —-0.077 0.007 —0.070
200 0.007 —0.090 —0.001 0.002 —0.082 0.003 —0.079
300 0.008 —0.099 —0.001 0.002 —0.090 —0.009 —0.098

pp T=1 potential, replacing the proton mass by the neutrorare not free parameters. The procedure forfkel np po-
mass and adjusting the coupling constants of thedwsuch  tential is similar. We start from thep T=1 potential, re-
that the CSB phase shift differences listed in the last colummplace the proton mass by the average mass given in Eq.
(“total” ) of Table Ill are reproduced. Thus, thecoupling  (B47), apply the appropriate OPE potentjak., we replace
constants of than potential(which are given in Table VIl Eq. (B48) by (B50)], and then adjust the coupling con-
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TABLE VI. (Continued.

Tian (MeV) AM OPE TBE Ty Total Coulomb All
€2

5 0.000 0.011 0.000 0.000 0.011 —0.008 0.004
10 0.001 0.034 0.000 —0.001 0.034 —0.016 0.018
25 0.002 0.086 0.000 —0.002 0.086 —0.028 0.058
50 —0.001 0.111 0.003 0.001 0.114 —0.025 0.089
100 —0.004 0.087 0.007 0.010 0.100 —0.003 0.097
150 —0.004 0.051 0.010 0.018 0.075 0.017 0.092
200 —0.001 0.020 0.012 0.024 0.055 0.032 0.087
300 0.008 —0.020 0.014 0.032 0.034 0.047 0.080

stants such that the CIB phase shift differences listed in colduce the CSB and CIB as predicted by the Bonn full model
umn “total” of Table VI are reproduced which, again, does [3,6] and by 7y exchangd43] and, thus, do not introduce
not generate any free parametérable VIII). The exception new parameters.

is the 'S, state where ther parameters are used to mini-  After the np T=1 potential (exceptnp 'S,) has been
mized thex? in regard to thenp data. The charge depen- fixed as explained in the previous paragraph, fipe T=0
dence caused by the Bonn full model am¢t exchange pro- (andnp 'S;) potential is fitted by going through the entire
duces also a small charge-dependent tensor force that can theee-step procedure: fit of Nijmegeh=0 (and np *S)
simulated with the help of the coupling. A noticeable effect phase shifts, minimizing the approximaté obtained from
occurs only in the coupledP,/3F, states where we use the Nijmegen error matrix, and finally minimizing the exact
gﬁ/47r=0.844 fornn and g§/471-=0.862 fornp (in all other ~ x2 that results from a direct comparison with all experimen-

casesgi/47-r= 0.84). Again, these choices are made to repro-
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FIG. 5. The differences,,— ,,, due to the charge-dependence

FIG. 4. Differencesd,,— d,, as produced by various CIB of the strong forcgdashed curve labeled “toy’and (,,— 5gp)
mechanisms. Shown are the contributions from OREshed due to the Coulomb forcé&otted, Ch. The sum of both is repre-
curve), TBE (dashed-dottedand irreduciblery exchangddotted. sented by the solid line labeled “all.”
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TABLE IX. Parameters of the scalar isoscalar bosoas,

ando,, for thepp T=1 potential. An asterisk denotes the default and o, for the T=0 np potential. An asterisk denotes the default

which is the'S, parameters. The boson masses andm(,2 are in

units of MeV. A blank indicates that the, contribution is not
considered.

which is the3S; parameters. The boson massegs and m,, are in
units of MeV. A blank indicates that the, contribution is not
considered.

g5 /4 (m,,) g5, /4w (m,,)

g5 /4 (m,,) g5, /4 (m,)

s, 4.24591 (452) 17.611225)
%P, 7.866(560 * (%)

%P, 2.303(424) * (%)

p, 4.166(470 24.80 (*)

D, 2.225(400 190.7 (*)

F,, °F, 1.5 (*) 56.21, 74.44793
F4, °Hy 3.8 (%) “ (")

1G4 * (*)

3H5 * (*)

s, 0.51673 (350) 14.01164 (793)
Py, °D, 0.81, 0.53 (*) 71.5, 154.51225
D, 0.575 (*)

3D, 3.4 (452

F, 0.73 (*)

3G, 0.29 (*)

3G, 0.62 (*)

3Gs, Blg 0.96 (*)

Hs (")

tal np data. The resultingr parameters are shown in Table
IX.

The free (“fit” ) parameters of our model are the ones

given in Tables VIl and IX plus two parameters 68, np
and the cutoff masses which adds up to a total of 43 fre
parameters. The resulting phase shifts fiqr, nn, andnp
scattering in partial waves witi<4 are given in Tables
X=XIIl; pp phase shifts are plotted in Fig. 6 ang phase
shifts are shown in Fig. 7. Fqup scattering, we show the
phase shifts of the nuclear plus relativistic Coulomb interac

tion with respect to Coulomb wave functions; that is—in the

notation of Ref.[50]—we useV.=a'/r for the Coulomb
potential and calculate the phase shid>€s+N (=6 in our

notation). We note that, for the calculation of observables

(e.g., to obtain the? in regard to experimental datave use

electromagnetic phase shiftss necessarywhich we obtain

by adding to the Coulomb phase shifts the effects from two
photon exchange, vacuum polarization, and magnetic m
ment interactions as calculated by the Nijmegen gro
[50,51]. This is important for'S, below 30 MeV and negli-
gible otherwise. Fomn and np scattering, we show the

TABLE VIIl. Coupling constants of the scalar isoscalar bosons
o, ando,, for theT=1 np andnn potentials. Note that these are
not free parameter@xcept for'S, np). The boson masses are the
same as for th@p T=1 potential(Table VII). A blank indicates
that theo, contribution is not considered.

neutron-proton neutron-neutron

g§1/477 g§2/477 g§1/477 g(272/477
is, 3.96451 2250007  4.26338 17.54
3P, 7.866 5.8 7.892 16.747
%P, 2.346 19.22 2.326 17.61
°p, 4.194 24.562 4.180 24.737
p, 2.236 189.7 2.241 190.7
5F,, °F; 1.573,1.53 56.21, 74.85 1.522, 1.53 56.28, 74.44
%F,, °H, 3.8115,3.85 17.61 3.81,3.83 17.61
G, 4.27591 4.284
3H, 4.24591 4.24591

phase shifts of the nuclear interaction with respect to Riccati-
Bessel functions. All details of our phase shift calculations
are given in Appendix A 3.

The low-energy scattering parameters are shown in Table
&Iv. For nn andnp, the effective range expansion without
any electromagnetic interaction is used. In the casg pf
scattering, the quantitieesgp and rgp are obtained by using
the effective range expansion appropriate in the presence of
the Coulomb forcésee Appendix A4 for detailsNote that
the empirical values foaalgp and rgp that we quote in Table
XIV were obtained by subtracting from the corresponding
electromagnetic values the effects due to two-photon ex-
change and vacuum polarization. Thus, the comparison be-
tween theory and experiment conducted in Table XIV is ad-
equate.

For the comparison with thBIN data, we consider three
databases: 1992 database, after-1992 data, and 1999 data-

uqf)ase. The 1992 database is identical to the one used by the
|q\lijmegen group for their phase shift analygi3,46. It con-

sists of alINN data below 350 MeV published between Janu-
ary 1955 and December 1992 that were not rejected in the
Nijmegen data analysifor details of the rejection criteria
and a complete listing of the data references, see Refs.
[50,53,46). The 1992 database contains 17%8@ data and
2514np data.

After 1992, there has been a fundamental breakthrough in
the development of experimental methods for conducting
hadron-hadron scattering experiments. In particular, the
method of internal polarized gas targets applied in stored,
cooled beams is now working perfectly in several hadron
facilities, e.g., IUCF and COSY. Using this new technology,
IUCF has produced a large number pp spin correlation
parameters of very high precision. In Table XV, we list the
new IUCF data together with othgrp data published be-
tween January 1993 and December 1999. Table XV lists all
published after-199p p data below 350 MeV except for one
set, namely, 14op differential cross sections at 43fab)
between 299.8 and 406.8 keV by Dombrowskial. [60];
according to the Nijmegen rejection critefiaQ], this set is

to be discarded. The total number @ccepted after-1992
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TABLE X. pp phase shifts in degrees.

Tiap (MeV) 'S *Po Py 'D, *P, °F, € °Fq G, °F,
1 32.79 0.13 —0.08 0.00 0.01 0.00 0.00 0.00 0.00 0.00
5 54.85 1.58 —-0.90 0.04 0.22 0.00 —-0.05 0.00 0.00 0.00
10 55.20 3.72 —-2.05 0.17 0.66 0.01 -0.20 -0.03 0.00 0.00
25 48.63 858 —4.90 0.70 250 0.10 -0.81 —-0.23 0.04 0.02
50 38.86 1154 -8.31 1.71 584 033 -1.73 -0.70 0.15 0.12
100 24.91 9.57 -13.37 3.77 1097 0.78 —2.72 —-153 0.42 0.50
150 14.73 476 —17.62 5,67 1398 1.10 —299 -212 0.69 1.04
200 6.58 -0.49 -—21.49 726 1568 1.27 —2.88 —2.48 097 1.63
250 -0.29 -5.62 —25.05 855 1663 126 —259 —-268 126 2.19
300 —-6.26 —10.48 —28.36 954 1712 108 —-221 275 155 2.69
350 -1156 -15.04 -—-31.45 10.27 17.33 0.73 —-1.80 —2.72 183 3.11

pp data is 1145, which should be compared to the number ofently discussed in Ref75]. Finally, our 1999 database is
pp data in the 1992 base, namely, 1787. Thus,dpedata- the sum of the 1992 base and the after-1992 data and, thus,
base has increased by about 2/3 since 1992. The importancensists of the worldNN data below 350 MeV that were
of the newpp data is further enhanced by the fact that theypublished before the year of 200@nd not rejected
are of much higher quality than the old ones. The y?/datum produced by the CD-Bonn potential in re-
Neutron-proton data published between January 1993 anghrd to the databases defined above are listed in Table XVII.
December 1999 are listed in Table XVI. There are 544 suchror the purpose of comparison, we also give the correspond-
data, which is a small number as compared to the 2414 ing x? values for the Nijmegen phase shift analyi§] and
data of the 1992 base. Note that Table XVI is not a list of allthe recent Argonné/,g potential[35]. What stands out in
np data published after 1992. Not listed are four measureTable XVII are the rather large values for tyé/datum gen-
ments ofnp differential cross sectiong71-74. We have erated by the Nijmegen analysis and the Argonne potential
examined these data and found in each case that they préor the after-1992pp data, which are essentially the new
duced an improbably highy? when compared to current IUCF data. This fact is a clear indication that these new data
phase shift analysd#l6,49. Applying the Nijmegen rejec- provide a very critical test/constraint for amtyN model. It
tion rule [50,46], the data of all four experiments are to be further indicates that fitting the pre-199% data does not
discarded. We follow this rule here, because we use thaecessarily imply a good fit of those IUCF data. On the other
Nijmegen database for the pre-1993 period. When we adtand, fitting the new IUCF data does imply a good fit of the
data to this base, then consistency requires that we apply thre-1993 data. The conclusion from these two facts is that
same selection criteria used for assembling the older part dhe new IUCF data provide information that was not con-
the base. However, we would like to stress that we do untained in the old database. Or, in other words, the pre-1993
derstand that any discarding of published da&, data that data were insufficient and still left too much latitude for pin-
have passed the refereeing progdss highly questionable ning downNN models. One thing in particular that we no-
procedure. The problem of thep differential cross section ticed is that the’P; phase shifts above 100 MeV have to be
data is an unresolved issue that deserves the full attention édwer than the values given in the Nijmegen analysis.
all NN practitioners. Some aspects of the problem were re- The bottom line is that for the 1999 datab&aich con-

TABLE XI. nn phase shifts in degrees.

Tiap (MeV) Y *Py P, 'D, P, °F, € °Fq G, °F,
1 57.63 0.21 -0.12 0.00 0.02 0.00 0.00 0.00 0.00 0.00
5 61.00 1.85 —-1.04 0.05 0.27 0.00 -0.06 —-0.01 0.00 0.00
10 57.79 410 —2.24 0.18 0.76 0.01 -0.22 -0.04 0.00 0.00
25 49.05 894 513 0.74 271 011 -085 —-0.24 0.04 0.02
50 38.61 11.71 —-8.54 1.77 6.15 034 -1.76 -0.71 0.16 0.12
100 24.38 9.49 -13.60 388 11.33 0.79 —2.73 —155 042 0.52
150 14.14 456 —17.87 5.80 14.32 1.11 —-2.97 -2.13 0.70 1.06
200 5.96 -0.75 -—-21.74 742 16.01 128 —285 —-249 098 1.66
250 -0.92 —-5.92 —-2531 8.72 1694 127 —-254 —-2.68 128 2.23
300 -6.90 -10.80 —28.63 9.72 1742 1.09 —-215 -—-2.74 157 273
350 —-12.21 -—-1538 -—-31.72 1046 1760 0.73 —-1.74 —-2.70 1.86 3.15
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TABLE Xll. T=1 np phase shifts in degrees.

Tiab (MeV) 'Sy *Po °Py ‘D, P, %R € °F3 'Gy  °F4

1 62.09 0.18 -0.11 0.00 0.02 0.00 0.00 0.00 0.00 0.00

5 63.67 161 —0.93 0.04 0.26 0.00 —-0.05 0.00 0.00 0.00

10 60.01 3.62 —-2.04 0.16 0.72 0.01 -0.18 -0.03 0.00 0.00

25 50.93 8.10 —4381 0.69 260 0.09 -0.76 -0.20 0.08 0.02

50 40.45 10.74 -8.18 1.73 593 030 —-164 -062 013 011

100 26.38 8.57 —13.23 386 1101 072 —2.63 —142 039 0.48

150 16.32 3.72 —-17.51 582 1398 1.03 —-290 -198 0.67 1.01

200 831 —155 —21.38 745 1566 119 —-279 —-233 096 1.59

250 159 —-6.68 —24.96 876 1659 117 -250 —-251 126 215

300 —-4.25 —1154 —28.27 9.76 1708 098 —-213 —-257 156 2.65

350 -9.44 -16.10 -—31.37 1049 1728 0.62 —-1.72 —-253 185 3.06

tains 5990pp andnp datg, the CD-Bonn potential yields a V. THE DEUTERON

x*/datum of 1.02, while the Nijmegen analysis produces

1.04 and the Argonne potential 1.21. We have also compared The CD-Bonn potential has been fitted to the empirical
other recentNN potentials andNN analyses to the 1999 value for the deuteron binding ener@y=2.224575 MeV
database and found in all casey¥datun=1.05. Thus we [76] using relativistic kinematics. Once this adjustment has
can conclude that the CD-Bonn potential fits the waxidl been made, the other deuteron properties listed in Table
data below 350 MeV available in the year of 2000 better tharXVIIl are predictions. For the asymptoti2/S state ratio, we

any phase shift analysis and any oth&X potential. find »=0.0256—in accurate agreement with the empirical
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FIG. 6. pp phase parameters in partial waves wits4. The solid line represents the predictions by the CD-Bonn potential. The solid
dots and open circles are the results from the Nijmegen multienepgyhase shift analysig46] and the VPI single-energgp analysis
SM99[49], respectively.

024001-12



HIGH-PRECISION, CHARGE-DEPENDENT BONN . .. PHYSICAL REVIEW €3 024001

TABLE Xlll. T=0 np phase shifts in degrees.

Tian (MeV) Py 3s, D, €1 D, 'Fy Dy 3G, €3 3G,
1 —-0.19 147.75 -0.01 0.11 0.01 0.00 0.00 0.00 0.00 0.00
5 —1.49 118.18 —-0.18 0.68 0.22 -0.01 0.00 0.00 0.01 0.00
10 —-3.05 102.62 —0.68 1.17 0.85 —-0.07 0.01 0.00 0.08 0.01
25 —-6.35 80.63 —2.80 1.81 3.72 —-0.42 0.05 -0.05 0.55 0.17
50 —-9.73 62.73 —6.44 2.13 8.97 —-1.11 0.33 —-0.26 1.61 0.72
100 —14.43 43.06 —12.25 2.45 17.22 —-2.15 1.45 -0.94 3.49 2.17
150 —18.33 30.47 —-16.50 2.79 22.09 -—-2.87 270 —-1.76 4.83 3.64
200 —-21.77 20.95 —-19.68 3.18 2451 -—-3.48 3.70 -2.60 5.76 4.99
250 —24.84 13.21 -—-22.12 3.60 25.36 —4.08 431 -—3.39 6.40 6.18
300 —27.57 6.65 —24.03 4.00 25.21 —4.73 454 —4.09 6.83 7.21
350 —30.00 0.92 —25.53 4.38 24.44 —-5.45 444 —-4.71 7.14 8.07

determination by Rodning and Knuts¢#8]. The deuteron for py and Ag is of no fundamental significance. It only
matter radius is predicted to ig=1.966 fm which agrees means that all model§including our own are consistent
well with the value extracted from recent hydrogen-with each other.

deuterium isotope shift measuremengs-1.971(6) fm[79]. More interesting is our prediction for the deuteron quad-
Note that the deuteron effective rangg=p(—By,—By) rupole momenQ4=0.270 fnf which is below the empiri-
and the asymptotiS state Ag are not directly observable cal value of 0.285@) fm? [80,77]. Our calculation does not
guantities. Thus, “empirical” values fgsy andAg quoted in  include relativistic and meson current corrections which ac-
the literature are model dependent. Therefore, the perfecording to Henning81] contribute typically about 0.010 fm
agreement between our predictions and the empirical valugsr the Bonn OBE potentials. This would raise our theoreti-
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FIG. 7. np phase parameters in partial waves witi4. The solid line represents the predictions by the CD-Bonn potential. The solid
dots and open circles are the results from the Nijmegen multiengpgyhase shift analysig46] and the VPI single-energgp analysis
SM99[49], respectively.
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FIG. 7. (Continued.

o

cal value t0Q4~0.280 fnt, still 0.006 fn? below experi-

ment. All recentNN potentials that use the “small’’rNN

coupling constargimw: 13.6 underpredid®q by about the
same amount. In Ref§18,87 it was shown thaQ4 depends
sensitively ong,, and that a valugf,/4w> 14.0 would solve
the problem. However, a largey,. is inconsistent with the
low-energypp A, data(see Ref[18] for a detailed discus-

PHYSICAL REVIEW C 63 024001

TABLE XIV. Scattering lengthga) and effective range§) in
units of fm.

CD-Bonn Experiment Referen@
'Sy
ag, ~7.8154 ~7.8149-0.0029 (52]
Mo 2.773 2.769-0.014 [52]
N
ay, —17.4602
N
Moo 2.845
ah -18.9680  —18.9+0.4 [26,27
rN 2.819 2.75:0.11 [25]
anp —-23.7380  —23.740:0.020 [28]
Mnp 2.671 (2.77+0.05 [28]
381
a 5.4196 5.419:0.007 [28]
r 1.751 1.7530.008 [28]

sion of this issug Thus, the accurate explanation of the deu-
teron quadrupole moment is an unresolved problem at this
time.

In Table XVIII, we also give the deuteroD-state prob-
ability Py . This quantity is not an observable, but it is of
great theoretical interest. CD-Bonn predid®,=4.85%
while local potentials typically predid®p~5.7%, which is
clearly reflected in the deuterdnwaves, Figs. 8 and 9. The
smallerPp value of CD-Bonn can be traced to the nonlocali-
ties contained in the tensor force as discussed in Sec. Il and
demonstrated in Fig. 2. The CD-Bonn and the Nijmegen-I
[34] potentials have nonlocal central forces which explains
the soft behavior of their deuter@waves at short distances
that is particularly apparent in the plot of Fig. 9. Numerical
values of our deuteron waves and a convenient parametriza-
tion are given in Appendix C which also contains an account
of how to conduct deuteron calculations in momentum space.

VI. CONCLUSIONS

We have constructed charge dependsM potentials,
that fit the world proton-proton data below 350 M&®932
data with a y?/datum of 1.01 and the corresponding
neutron-proton daté3058 data with y?/datum=1.02. This
reproduction of theNN data is more accurate than by any
other knownNN potential or phase-shift analysis. This is
achieved by the introduction of two effective mesons the
parameters of which are partial-wave dependent. A particular
challenge are th@p spin correlation parameters that were
recently measured at the IUCF Cooler Ring with very high
precision(1126 data below 350 MelV Our pp potential re-
produces these data witp?/datum=1.03, while the high-
quality Nijmegen analysi§46] and the Argonné/,g poten-
tial [35] producey?/datum of 1.24 and 1.74, respectively, for
these data.

The charge dependence of the present potefiaich we
call “CD-Bonn”) is based upon the predictions by the Bonn
full model for charge symmetry and charge-independence
breaking in all partial waves witld<4. Thus, our model
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TABLE XV. After-1992 pp data below 350 MeV included in the 199$® database. “Error” refers to the
normalization error. This table contains 1113 observables and 32 normalizations resulting in a total of 1145

data.

Tian (MeV) No. observable Erro(%o) Institution(s) Ref.
25.68 8D 1.3 Erlangen, Ztch, PSI [54]
25.68 6R 1.3 Erlangen, Ztch, PSI [54]
25.68 2A 1.3 Erlangen, Ztch, PSI [54]

197.4 41P 1.3 Wisconsin, IUCF [55]
197.4 41A,, 25 Wisconsin, IUCF [55]
197.4 41Ay 2.5 Wisconsin, IUCF [55]
197.4 41A,, 2.5 Wisconsin, IUCF [55]
197.4 39A,, 2.0 Wisconsin, IUCF [56]
197.8 14P 1.3 Wisconsin, IUCF [57]
197.8 14A,, 2.4 Wisconsin, IUCF [57]
197.8 14A,, 2.4 Wisconsin, IUCF [57]
197.8 14A,, 2.4 Wisconsin, IUCF [57]
197.8 10D None IUCF [58]
197.8 5R None IUCF [58]
197.8 5R’ None IUCF [58]
197.8 5A None IUCF [58]
197.8 5A’ None IUCF [58]
250.0 41P 1.3 IUCF, Wisconsin [59]
250.0 41A, 2.5 IUCF, Wisconsin [59]
250.0 41A,, 2.5 IUCF, Wisconsin [59]
250.0 41A,, 25 IUCF, Wisconsin [59]
280.0 41P 1.3 IUCF, Wisconsin [59]
280.0 41A, 25 IUCF, Wisconsin [59]
280.0 41Ay 2.5 IUCF, Wisconsin [59]
280.0 41A,, 2.5 IUCF, Wisconsin [59]
294.4 40P 1.3 IUCF, Wisconsin [59]
294.4 40A, 2.5 IUCF, Wisconsin [59]
294.4 40A, 2.5 IUCF, Wisconsin [59]
294.4 40A,, 2.5 IUCF, Wisconsin [59]
310.0 40P 1.3 IUCF, Wisconsin [59]
310.0 40A, 2.5 IUCF, Wisconsin [59]
310.0 40A,, 2.5 IUCF, Wisconsin [59]
310.0 40A,, 2.5 IUCF, Wisconsin [59]
350.0 40P 1.3 IUCF, Wisconsin [59]
350.0 40A, 4 2.5 IUCF, Wisconsin [59]
350.0 40Ay 2.5 IUCF, Wisconsin [59]
350.0 40A,, 25 IUCF, Wisconsin [59]

includes considerably more charge dependence than othenough. In Ref{5] it has been shown that CSB in states with
recently developed charge-dependent potenf4s35. For  J>0 is crucial for the explanation of the Nolen-Schiffer
example, the Nijmegen potential84] include essentially anomaly.

only charge dependence due to OPE which produces CIB, The CD-Bonn potential is represented in terms of the co-
but no CSB. Thus, the Nijmegen group does not offer anyariant Feynman amplitudes for one-boson exchange which
genuine neutron-neutron potentials. To have distpwtand  are nonlocal. Therefore, the off-shell behavior of the CD-
nn potentials is important for addressing several interestindBonn potential differs in a characteristic way from the one of
issues in nuclear physics, such as #h&3He binding energy commonly used local potentials.

difference for which the CD-Bonn potential predicts 60 keV ~ The simplest system in which off-shell differences be-
in agreement with empirical estimates. Another issue is theweenNN potentials can be investigated is the deutgisme
Nolen-Schiffer anomaly{4]. Some potentials that include Ref.[83] for a thorough study of this issueOur plots of the
CSB focus on thé'S, state only, since this is where the most deuteron wave functions, Figs. 8 and 9, make this point very
reliable empirical information is. However, this is not good clear. Empirical tests of deuteron wave functions can be con-
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TABLE XVI. After-1992 np data below 350 MeV included in  potentials typically predict 7.62 Me}89,90 and the experi-
the 1999np database. “Error” refers to the normalization error. mental value is 8.48 MeV. Thus, the nonlocality of the CD-
This table contains 524 observables and 20 normalizations resultingonn potential explains almost 50% of the gap that persists
in a total of 544 data. between the predictions by local potentials and experiment.
Similar results are obtained for the particle[90,91]. Con-
cerning the small difference that is left between the CD-

Tiap (MeV) No. observable Errof%) Institutions) Ref.

3.65-11.6 Ny None TUNL [61] Bonn predictions and experiment, two comments are in
4.98-19.7 B, None TUNL [62] place. First, in addltlon_ to the relativistic, nonlopal effects
498-17.1 Aoy None TUNL [62] that can be absorbed_lntq the two-_body potential concept,
14.11 60 07 Tibingen  [63] thert—_z are further relativistic corrections that come fr_om a
relativistic treatment of the three-body system. This in-
15.8 1D, None Bonn [64] . L
16.2 1Ao None Prague  [65] creases the triton _blndlng energy by 0.2-0.3 ME&BI— '
16.2 1A0’T None Prague  [66] 94,10. Second, notice that t'h'e present nonlocal potential in-
' - - g cludes only the nonlocalities that come from meson
175.26 84p Float TRIUMF  [67] exchange and from the partial-wave dependence ofdthe
203.15 100P 4.7 TRIUMF  [67] parameters. However, the composite structigeark sub-
217.24 100P 4.5 TRIUMF  [67] structure of hadrons should provide additional nonlocalities
260.0 8Ry 3.0 PSI [68] [95] which may be even larger. It is a challenging topic for
260.0 8A; 3.0 PSI [68]  future research to derive these additional nonlocalities, and
260.0 3A; 3.0 PSI [68] test their impact on nuclear structure predictions.
260.0 8D 3.0 PSI [68] The trend of the nonlocal Bonn potential to increase bind-
260.0 3D, 3.0 PSI [68] ing energies has also a very favorable impact on predictions
260.0 8P 2.0 PSI [68] for nuclear mattef7,23] and the structure of finite nuclei
260.0 3P 2.0 PSI [68] [96-98. Due to the very accurate fit of even the latest high-
261.00 88P 4.1 TRIUMF  [67] precisionNN data; due to the comprehensive and sophisti-
312.0 24P 4.0 SATURNE [69] cated charge dependence incorporated in the model; and due
312.0 11A,, 4.0 SATURNE [70] to the well-founded off-shell behavior, the CD-Bonn poten-
318.0 8R, 3.0 PSI [68] tial [99] represents a promising starting point for exact few-
318.0 8A, 3.0 PSI [68] body calculations and microscopic nuclear many-body
318.0 5A, 3.0 PSI [6g]  theory.
318.0 8D, 3.0 PSI [68]
318.0 5D, 3.0 PSI [68] ACKNOWLEDGMENTS
318.0 8P 2.0 PSI [68] . .
318.0 5p 20 PSI| [68] The author would like to thank Dick Arndt for a personal

copy of theNN software packageAlb. This work was sup-
&This data set is floated because all current phase shift analyses aported in part by the U.S. National Science Foundation under
np potentials predict a norm that is about 4 standard deviations ofGrant No. PHY-9603097.

the experimental normalization error of 4.9%.

APPENDIX A: TWO-NUCLEON SCATTERING IN

ducted via the structure functions(Q?), B(Q?), and the MOMENTUM SPACE
tensor polarization in elastic electron-deuteron scattering ) )
T,o(Q?) or, alternatively, via the three deuteron form factors 1. Scattering equation

Gc(Q?), Go(Q?), and Gy(Q?), for which the deuteron Two-nucleon scattering is described covariantly by the

wave functions are crucial input. Using the deuteron waveBethe-SalpetefBS) equation[22] which reads in operator

functions derived from the Bonn model, Arented and co- notation

workers[84] find a good agreement between theory and ex-

periment for A(Q?), B(Q?), and T,(Q? up to Q? T=V+VGT (A1)

=30 fm 2. Very recently, the tensor polarizatiohy,y(Q?)

has been measured up @°=45 fm 2 at the Jefferson with 7the invariant amplitude for the two-nucleon scattering

Laboratory[85]. The best reproduction of these new high- process,)) the sum of all connected two-particle irreducible

precision data is provided by two calculations that are basediagrams, andg the relativistic two-nucleon propagator.

upon the Bonn deuteron wave functior&6,87|. Since this four-dimensional integral equation is very difficult
Another way in which the off-shell behavior of our poten- to solve, so-called three-dimensional reductions have been

tial shows up is by yielding larger binding energies in micro-proposed, which are more amenable to numerical solution.

scopic calculations of nuclear few- and many-body system&urthermore, it has been shown by Grg$80] that the full

[88], where underbinding is a persistent problem. To demonBS equation in ladder approximatid@that is, the kernel is

strate this, we have computed the binding energy of the tritomestricted to the exchange of single particles as, e.g., in the

in a 34-channel, charge-dependent Faddeev calculation. THRBE mode] does not have the correct one-body lirtiit.,

prediction by the CD-Bonn potential is 8.00 MeV. Local when one of the particles becomes very magsivkile a
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TABLE XVII. y?/datum for the CD-Bonn potential, the Nijmegen phase shift analy$ and the
ArgonneV g potential[35] in regard to various databases discussed in the text.

CD-Bonn Nijmegen Argonne
potential phase shift analysis Vg potential

proton-proton data

1992 pp databas€1787 data 1.00 1.00 1.10
After-1992pp data(1145 data 1.03 1.24 1.74
1999 pp databas€2932 data 1.01 1.09 1.35

neutron-proton data

1992np databas€2514 data 1.03 0.99 1.08
After-1992np data(544 data 0.99 0.99 1.02
1999np databasg€3058 data 1.02 0.99 1.07

pp andnp data

1992NN databasé€4301 data 1.02 0.99 1.09

1999NN databasé5990 data 1.02 1.04 1.21
large family of three-dimensional quasipotential equations i 1 1
does. These approximations to the BS equation are also coG(k|P)= - T1 D 71 )
variant and satisfy relativistic elastic unitarity. Three- T Zptk—M=+ie (_ P—Kk—M+ie
dimensional reductions are typically derived by replacing 2 2
Eq. (A1) with two coupled equationgL01] (AS5)

1 (1)
i
and ol 71 2
5P+ k) —M?+ie
W=V+V(G—g)W, (A3) 1 )
. ) . ) ) sP—k+M

whereg is a covariant three-dimensional propagator with the v 2 (A6)

same elastic unitarity cut a§ in the physical region. In
general, the second term on the right-hand side of &8) is
dropped to obtain a true simplification of the problem.
More explicitly, the BS equation for an arbitrary frame where g, k, and g’ are the initial, intermediate, and final
reads[20] relative four-momenta, respectively, af=(Py,P) is the
total foug-momentum. For example, inlthe initial state we
. . . _ haveq=3(p1—P2),P=p1+p2,andpy,= 3 =q with p; and
7(q";q|P)=W(q ,Q|P)+f d*kV(a’;k|P)G(K|P) T(k;q| P) p, the individual four-momenta of particles 1 and 2. In the
(A4) center-of-massc.m) frame, we will haveP=(4/s,0) with
Js the total energy. For all four-momenta, our notatiork is
with =(Kko,k); k=y"k,. M denotes the nucleon mass. The su-

1 2
EP—k) —M2+ie

TABLE XVIII. Deuteron properties.

CD-Bonn Empirical Ref).
Binding energyBy (MeV) 2.224575 2.224579) [76]
Deuteron effective ranggy=p(—By,—Bg) (fm) 1.765 1.76%9) [28,30,77
Asymptotic S stateAg (fm~?) 0.8846 0.884@®) [30,77
AsymptoticD/S staten 0.0256 0.025@) [78]
Matter radiusr 4 (fm) 1.966 1.9716) [79]
Quadrupole momer®, (fm?) 0.27G 0.28593) [80,77
D-state probabilityPy (%) 4.85

awithout meson current contributions and relativistic corrections.
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FIG. 8. Deuteron wave functions. The family of large curves is  FIG. 9. The deuteron wave functions of Fig. 8 in an alternative
u(r) and the family of small curves is(r). The solid lines repre- ~répresentation. The family of large curvesuig)/r and the family
sent the wave functions generated from the CD-Bonn potentialof Small curves isw(r)/r.
while the dashed and dotted lines are from the Nijmeged#] and
ArgonneVg [35] potentials, respectively. —
=2 [u(k\))(ulk,\)] (A11)
perscripts in Eq(A6) refer to particleg1) and (2). At this M
stage,7,V, andG are operators in spinor space, i.e., they are

16X 16 matrices which, when sandwiched between Diracrepresents the  positive-energy projection operator  for

spinors, yield the corresponding matrix elements. It is com"Ucleoni (i = 1 or 2 with T”(Ok) a positive-energy Dirac
mon to the derivation of all three-dimensional reductions thafPinor of momentunk; u=u’y". \; denotes the helicity of
the time component of the relative momentum is fixed inthe respective nucleon, an#,=yM“+k® with M the

some covariant way, so that it no longer appears as an indéllicleon mass. The projection operators imply that virtual

pendent variable in the propagator. antinucleon contributions are suppressed.
Following Blankenbecler and SugéBbS) [21], one pos- Using the approximatiomV~) [see Eq(A3)], we obtain
sible choice forg is (stated in manifestly covariant form for the explicit form of Eq.(A2) by simply replacingg by ggps
an arbitrary framg in Eq. (A4). This yields in the c.m. frame
* ds’ + ’ ’ 3 ’ .
Geng(kis)=— | ———— 5" 704":00V$)=W04":00)+ | d*MN04';0k)gass(k,S)
amM?s’ —s—ie
1 2 1 2 X T(0k;00\s). (A12)
|| 5P +k —Mzﬁ“)(—P“4J —Mﬂ
Note that four-momentum is conserved at each vertex, and
1 () @ that in the initial state the nucleons are on their mass-shell,
X 5P +k+M| 5P —k+M (A7) thereforeq=(0,). The total c.m. energy is
with 8(*) indicating that only the positive energy root of the Vs=2E,=2/M?+¢2. (A13)

argument of thes function is to be includedP?=s and P’
=./s’/\/sP. By construction, the propagat@pg,s has the  With this we obtain, simplifying our notation,
same imaginary part a and, therefore, preserves the uni-
tarity relation satisfied byZ. In the c.m. frame, integration

i M2 AD(K) AP (—k)
yields RQ’,Q):V(Q'-Q)+j d3kV(q’,k)E—k+qzk—;+?
- €
Jens(k,S) = 8(ko) g K, S) (A8) X Tk, Q). (A14)
with
Taking matrix elements between positive-energy spinors
- M2 A(f)(k)A(f)(—k) yields an equation for the invariant scattering amplitude
QBbs(k.S)—E—k—l . (A9)
—s—Eg+ie = — = 2 _
s T(@0)=Vi@'0)+ | K@ K Tk,
Ex g®—k?+ie
where (A15)
4 OB —v-k+M\® i i in indi
(i) | Y ETY where helicity and isospin indices are suppressed.
AV ( 2M ) (AL0) Defining
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T(q’ —\/—M7 Ve (A16)
(9',9)= > (9'.9) £,

and
V(q’ )—\/ﬂv / )\/M (A17)
(q vq - Eq’ (q vq Eq,

which has become known as “minimal relativityf’102], we
can rewrite Eq(A15) as

M
T(9',q9)=V(q',q9)+ f d3kV(Q',k)mT(k,Q)
(A18)

which has the form of the familiar Lippmann-Schwinger

equation. The quantity has the usualnonrelativistig rela-
tion to phase shifts anblN observables. Thus, thegN po-

tential V defined in Eq.(Al7) and used in the above

PHYSICAL REVIEW €3 024001

where J denotes the total angular momentum of the two
nucleons. Here we are changing our notation for momenta:
in the above equation and throughout the rest of Appendix A,
momenta denoted by nonbold letters are the magnitude of
three-momenta, e.gg=|q|, k=|k|, etc.;h, andh, are the
helicities in intermediate states for nucleon 1 and 2, respec-
tively. Equation(A21) is a system of coupled integral equa-
tions which needs to be solved to obtain the desired matrix
elements oR’.

Ignoring antiparticles, there arex4=16 helicity ampli-
tudes forR’. However, time-reversal invariance, parity con-
servation, and the fact that we are dealing with two identical
fermions imply that only six amplitudes are independent. For
these six amplitudes, we choose the following set:

Ri(q",a)=(++|R(q", )|+ +),
RY(q',q)=(++|Rq",.q)|— —),

R3(q",a)=(+—|R(q".q)|+ —),

Lippmann-Schwinger equation can be applied in the deu-

teron and in conventional nuclear structure physics in the
same way as any othénonrelativisti¢ potential. This is the

great virtue of therelativistic BbS equation.

2. R matrix and partial wave decomposition

In solving the scattering equation, it is more convenient to
deal with real quantities. We shall therefore introduce th

real R matrix (better known as K matrix”) defined by{103]

R=T+inTS(E—Hg)R. (A19)

€

Ri(a’,q)=(+—IR(q",a)| - +), (A22)
Ri(a".a)=(++|Rq".a)[+ ),
R3(a".a)=(+—IR(q".a)|+ +),
where = stands for+ 3. Notice that
R3(q’,a)=Rg(a,q"). (A23)

We have now six coupled equations. To partially de-

The equation for the re& matrix corresponding to the com- couple this system, it is useful to introduce the following

plex T matrix of Eq.(A18) is

R(q'.q>=V<q'.q)+Pfdskwq'.k) R(K.0),

(A20)

q2_ k2

whereP denotes the principal value.

linear combinations of helicity amplitudes:
ORJE R\]]-_ RJ ,
'R'=R3-R;,

RI=R}+Ry, (A24)

Now, we need to also include the spin of the nucleons.
Relativistic scattering of particles with spin is treated most
conveniently in the helicity formalish104]. Therefore, we

¥RI=R3+Ry,

will use a helicity state basis in our further formal develop- ®RI=2R},
ments. Our presentation will be relatively brief; a more de-
tailed derivation is given in Appendix C of RdfL] which is GGRJEQRg_

based upon Ref$104,105.

The helicity\; of particlei (with i=1 or 2 is the eigen-

value of the helicity operatof o; - p; /|pj| which is = 3. Us-

We also introduce corresponding definitions fét. Using
these definitions, Eq(A21) decouples into the following

ing helicity states, th&-matrix equation reads, after partial three subsystems of integral equations.

wave decomposition
(NASIRY(A,a)[N 1\ o)
=(NINVI(Q, @) NN )

+ 2

S M
Pf dkikE——— (NIA5VI(q' k)| hihy)
hy.h, 0 -

q2 k2

X(h1h,|RY(K,q)[N 1\ ), (A21)

Spin singlet
°RY(a’,a)="V’(q’,q)
M
q2_ k2

+Pf:dkk2 oI(q’,k)°R(K,q).

(A25)

Uncoupled spin triplet
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'R(q",a)="V(q',0)

M
s V(@ R (k).
(A26)

Coupled triplet states

2RI, 9)="(d’,q)

+p|
0

+5(q" KPRk, a)],

— 12vJ(q/ ,k)lzRJ(k,q)

¥RI(q,0)=*)(d',q)

5 34VJ(qr ,k)34RJ(k,Q)

+%(a’ k) >Rk, a)],

*RY(q’,0)="V)(q’,q)

7)
0

+5V(a' KRk a)],

5 12\/J(q/ ,k)55RJ(k,Q)

®RI(q’,a)="V(d’,q)

ZI\_A 5 34\/J(q/ ,k)GGRJ(k,Q)

+%%(q’, k) Rk, q)]. (A27)

More common in nuclear physics is the representation o
two-nucleon states in terms of dbSJM) basis, whereS
denotes the total spii, the total orbital angular momentum,
andJ the total angular momentum with projectidh In this
basis, we will denote theR matrix elements byRi,S'L
=(L'SIMRI|LSJIM). These are obtained from the helicity
state matrix elements by the following unitary transforma-
tion.

Spin singlet
R}%=CRY. (A28)
Uncoupled spin triplet
Ry5=1R. (A29)
Coupled triplet states
Rt 1-1= 537 IR+ I+ 1)¥R?
+\/m(55RJ+66RJ)],

PHYSICAL REVIEW C 63 024001

1
Ryt 10415377 [(I+ DRI+ I¥RY

— I+ 1) PR+ R ],

1
Ry: 1041~ 5377 LW+ DR -¥RY)

— IR+ (J+1)°%RY)],

1
Ryt 10-1= 5377 W+ DR -¥RY)

+(J+1)%RI—JRY)). (A30)
Similar notation and transformations apply\fo

One way to proceed is to solve the system of equations
(A27) and then apply the transformatid@®30). Alterna-
tively, one may apply the transformatidA30) directly in
Eq. (A27) to obtain the system of four coupled integral equa-
tions in theL SJ representation

R.(q",9)=V.(q',9)

(' KR (k,a)

+v11,<q',k>Ril+<k,q>],
R (q",9)=VZ_(q".q)
+pf dkkz SV (@ R (ka)
+VJ_1+(q’,k)RJ+1_(k,Q)],
fRY (9, )=V (a',q)

J e

+V11_<q’.k>Ril_<k,q>],

[V (a' kR (k,q)

R0 9)=VZ.(q",)

+7?f dk
0

(9’ ,kR™, (k,q)

+VE (0" R (ka)], (A31)
where we used the abbreviatiorR)', =R3};, R

=R3% 151, RV =Ryl 1, R =Ry ;.15 and similarly
for V.

The above integral equations can be solved numerically
by the matrix inversion methoffl06]. The method is ex-
plained in detail in Ref{107] where also a computer code is
provided. Each two-nucleon state carries a well-defined total
isospinT (which is either O or Lthat is fixed by
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(- T=—1. (A32) An alternative convention for the phase parameters has
been introduced by Stapgt al. [109] (commonly known as
“bar” phase shifts, but we denote them simply B} and

) . €;). These are related to the Blatt-Biedenharn parameters
Phase shifts are determined from the on-energy-dRell (32 and<,) by

matrix through the following.

3. Phase shifts

Spin singlet ~ |~
P =ing 5+ =3+,
T \MORY -
tar? &'(Tyap) = 2 aM7R(0.9). (A33) sin(8’ — &%) =tan 2¢,/tan 2, , (A42)
Uncoupled spin triplet sir‘(?ﬁ‘]_—?é‘l)zsin D¢, /sin Je,.
tant 8*(Tap) = — nglRJ(q,q). (A34) Inthis paper, all phase shifts shown in tables or figures are in

the Stapp convention.

The above formulas apply to the calculation of phase
shifts when only the short-range nuclear force is taken into
an additional parameter, known as the “mixing parameter”@ccountand no electromagnetic interactjoihis is, in gen-
~ . o . eral, appropriate fonn andnp scattering. We also note that
€5 Using the convention introduced by Blat and BIEden'the above momentum space method is exactly equivalent to

harn[108], the eigenphases for the coupled chan@glsare  cajculations conducted in space where the radial Schro
in terms of the on-shelR matrix dinger equation

For thecoupled statesa unitary transformation is needed to
diagonalize the two-by-two coupldd matrix. This requires

R'_—-Rl,

5 __T I 4R d? L(L+1
tand (Tiap) == Z7GM| R+ R} oo L B

2
dr? r2

=MV |x.(r;q)=0, (A43)

J
tanZe;(Tiap) = JZL (A35) is solved for the radial wave functiop (r;q) which is then

R’ _—-R] +' matched to the appropriate asymptotic form of the wave

_ function to obtain the phase shift. When no long-range po-
Here, allR-matrix elements carry the argumentsq) where  tential is involved, the asymptotic wave functions are
g denotes the c.m. on-energy-shell momentum. For this moRrjccati-Bessel functiongL10].

mentum and the nucleon malsswe use the following. In pp scattering, the long-range Coulomb potential must
Proton-proton scattering be taken into account. The asymptotic form of the wave
1 function then is(for an uncoupled case
2_
=—M_Tp, A36
TNt (A%0) X(r:@)=Fy(7'.ar) +tansCG(7'.qr)  (A44)
M=M,. (A37) with F| andG, the regular and irregular Coulomb functions

[110]. By 6 we denote the phase shift of the nuclear plus
Coulomb interaction with respect to Coulomb wave func-
tions; that is, in the notation of Ref50], s°=4%, . The

Neutron-neutron scattering

1
qZZEMnTIaba (A38)  parameter;’ is the “relativistic” 7 defined by{111,112,50
_ o M
M—Mn. (A39) /:_:_pal, (A45)
, Viab 2
Neutron-proton scattering
M2T o Tiant 2M ) i
+
qP= PR (A0) £21 g2
(Mp+Mn) +2T|abMp a' =a q , (A46)
MpEq
_2M M,
M o+Mp, =938.91852 MeV. (A41) and o= 1/137.0359898]. The total potentiaV that appears

in Eq. (A43) is now the sum of the nuclear potenti4|, and
In the above M, denotes the proton masl, the neutron the Coulomb potentiaV/; i.e.,
mass(see Table | for their accurate numerical valemnd

Tap IS the kinetic energy of the incident nucleon in the labo- V=Vy+Vc, (A47)
ratory system. The relations betwegh and T, are based
upon relativistic kinematics. where we use the “relativistic” Coulomb potentigl12]
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: RORS

RI. ORI

Since we conduct our calculations in momentum space, WE ith

do not solve Eq(A43) and, thus, do not have a numerical

x(r;q) available that can be matched directly to the _ -
asymptotic form, Eq(A44). However, there are ways to per- Rf,Lz - Eq Mpr,L(q,q). (A56)
form this matching within the framework of momentum

space calculations. We follow here the method proposed b¥he matrix elementg®

Vincent and Phatak113] in which the potential is divided finite-ranqe otentiaIL,ELc({(XSq()))a:ﬁ Zbrfér:ne;jn?zrspspliﬁg égﬁ
into a short-range palfs and a long-range pal, ; i.e., “fange p A ' P
culation. Further definitions

V=VstVi (A49) F@© o0 F' (0 0
F = 1 = 1
with ° ( 0 F+<0>) ° ( 0 F;<0>)( )
A57
Vs=(Vnt+Ve)0(R-T), (A50)
G_(0) 0 ) G’ (0) 0
Vi =Vco(r—R), (A51) "\ 0 G0 T\ 0o @G0/
. (A58)
whereR is to be chosen such that the short-range nuclear
potential has vanished for>R (R~ 10 fm is an appropriate F_(7') 0 F' (") 0
choice; and g is the usual Heaviside step function. First, one F;= 0 E |, Fi= 0 E (]
calculates the phase shiftenoted b)éf) that is produced by +(7') + 77(;59)
Vg alone. Notice thaWg is of rangeR and consists of the
nuclear potential plus the Coulomb potential cut offrat ) '
=R. There is no problem in performing numerically the Glz(G(ﬂ) 0 ) 15(6(77) 0 )
Bessel transformation of a cutoff Coulomb potential to pro- 0 Gi(n") 0 G.(7")

duce the momentum space version of this potential for the (A60)
various partial waves. Sincés is of finite range, the mo-

mentum space formalism can be used to calcuiite The We calculate
asymptotic wave function associated witlh and 6‘E is Re=[G1—AyG,] {AoF,—F] (A61)
XC(r;Q)=F (7' =0gr)+tans;G (7' =04r) with
(A52)
Ao=(Fo+GoRg)(Fy+GjRs) L. (A62)

which should match smoothly the asymptotic function Eq.
(A44) atr=R. Note thatF (7'=0qr) andG,(»'=0,qr)  The matrix elements oR. are
are equal to Riccati-Bessel functions. Matching the logarith-

mic derivatives yields the desired formula for the phase shift R R°,
o Re=|_.. =¢ (AB3)
RY_ Ry,
ALOF((n")=FL(7n") with
tansC=—— =T (A53)
GL(7')~AL0)GL(7) e a
. RL’L:_EqMPRL’L(q’q)' (A64)
with
. C . . ~C ~C /:
FL(0)+ Gy (0)tans? Inserthg theR", (9,q) mtlo Eq.(A35) yields 6= andejy (in
AL(0)=— ’ < (A54) Blatt-Bidenharn conventiopnswhich are further converted
FL(0)+G[(0)tansy into the Stapp parametersS and €5, by means of Eq.
_ _ (A42).
where we are using the short notatidh (0)=F (7' All pp phase shifts shown in this paper are Coulomb
=04r), F((0)=dF_(0)/dr, Fu(n")=F.(»',ar),  phase shiftsg®, as defined and calculated above. However,
Fl{(7')=dF_(%")/dr, and similarly forG, . we would like to stress that, for the calculation of observ-

The above formalism, applies to uncoupled channels. Foables(e.g., to obtain the? in regard to experimental data
coupled channels, e.g3P,-°F,, the quantities in Egs. we use electromagnetic phase shifts, as is necessary, which
(A44), (A52), (A53), and (A54) have to be replaced by 2 we obtain by adding to the Coulomb phase shifts the effects
X 2 matrices, which we will define now: from two-photon exchange, vacuum polarization, and mag-

024001-22



HIGH-PRECISION, CHARGE-DEPENDENT BONN.. .. PHYSICAL REVIEW €3 024001

netic moment interactions as calculated by the Nijmegen *
group[50,51]. This is important for'S, below 30 MeV and =—In(7)—y+ 72>, [n(n®+75'?]7 L,
negligible otherwise. n=1
ghg (A69)
4. Effective range expansion

For low-energyS-wave scatteringgcotd can be expanded where ¢ denotes the digamma function andy

as a function ofy =0.5772156649... .
11 This formalism takes care of the Coulomb force. How-
q —qcoté~— =+ =rg2+0(q", (AB5) ever, the full el_ectr_omagnetic interaction between two pro-
tans a 2 tons has contributions beyond Coulomb, e.g., from two-

photon exchange and vacuum polarization. To include the
aret i full electromagnetic interaction into the effective range ex-
range(for xvhwh, in some parts of this paper, we also use the)ansion is very involved. Therefore, the empirical values for
notationa™ andr™). This is appropriate fonn andnp. ~ he n effective range parametetrhich naturally involve
_Inthe case opp scattering, where the Coulomb potential e | electromagnetic interactipmave been correcteth
is involved, a more sophisticated effective range expansion fairly model-independent wayor the electromagnetic ef-
must be applied50], fects beyond Coulomp52,50. This procedure yields “em-
11 pirical” values for ag, andr, which is what we quote in
C2(5")qcof( 5§p)+2q7l'h( n)=——+ Ergpqq o(g%), Table XIV under “experiment.” The existence of empirical
asp values of this kind makes the comparison between theory
(A66) and experiment much easier.

where a is called the scattering length amdthe effective

where 6Sp denotes the'S, pp phase shift with respect to

Coulomb functions an€j andh are the standard functions  A\ppENDIX B: ONE-BOSON EXCHANGE POTENTIAL

5 27y’ 1. OBE amplitudes
Co(n)= 55—, (A67) . . :
e —1 The Lagrangians, Eqg2.1)—(2.5), imply the following
OBE amplitudes which we state here in terms tifnes the
h(n")=—In(n")+Rd y(1+in')] (A68) Feynman amplitude:
|
JEE— 2 JEN— JEN—
(@' NIV a[anghg) = — (2;)3U(q’,7\1)iVSU(q,M)U(—q’.Aé)if’U(—q,?\z)/[(Q’—Q)Zerfr], (B1)
— 9> _ —
(AN Vol ah i) = — ﬁU(q’,M)U(q,M)U(—q’,xé)U(—q,xz)/[(q’—q)2+ mz], (B2)
_ 92 _
<q'x1xélvwqu1xz>=ﬁ{u<q'.x1mu(q,m}{u(—q’,xgww—q,x2>}/[<q'—q>2+mi], (B3)

— T T — f ] — ,
<Q’>\1>\élvplq>\1kz>=—(2177;(QPU(q’,M)mU(q,MH2,\2 U(q’,ki)o,wl(q’—q)VU(q,M)][QPU(—q’,Az)v“U(—q,Az)
p

-
— Sy u(— A" MDA = a),u(=a.\2) (/[(a" —q)?+m7]
p
T T — fp_ o ) ’
:(277)3 (9,+f,)u(@’ Ny y,u(Q,Ny)— 2Mpu(q AP +0),+(E'—E)(gu0— 7,70 u(g,\y)

fo

X1(g,* U= 0" A5 Y*U(= N2 = ZpU(=a'A)
p

X[(a' +a)*+(E —E)(g“°— y*y) Ju(—a\2) /[(a'—a)*+m7], (B4)
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where for the pion we have suppressed isospin factors anghere is the angle betweeg andq’ anddfn’m,(a) are the

charge-dependence which will be included later. Working inconventional reduced rotation matrices which can be ex-
the two-nucleon c.m. frame, the momenta of the two incompressed in terms of Legendre polynomin®s{cosé). The

ing (outgoing nucleons areq and —q (9" and —q'). E  following types of integrals occur:
=M?+¢?% E’'=M?+q’%, andM is the nucleon mass.

Using the BbS equatiof21], the four-momentum transfer 1 P,(t) Q,(z,)
between the two nucleons ig'(—q)*=(0,q'—q). The Gor- ISO)EJ ————=——",  (B1D)
don identity[20] has been applied in the evaluation of the -1 (@ -@tm;  d'q
tensor coupling of thep; (q'+q)*=(E'+E,q'+q) and
(9" +q)*=(E'+E,—q'—q). The propagator for vector ) +1 tP;(t) QSl)(za)
bosons is I Ef dt— = —, (B12
-1 (g’ -ttm;,  d'qg
_ + r_ r_ /m2
e (@0 0), M, (85) o 1 [+ JP0+P, o) QP(z,)
—(a'—q)?-m; 1P=5—| dt =
! I+l (@' -g?+m; q'q
where we drop thed’ —q),(q’ —q),-term which vanishes (B13)
on-shell, anyhow, since the nucleon current is conserved. 3)
The off-shell effect of this term was examined in Rf14] |G [ J “dttpa(t)— Pi-a(t)  Q57(za)
and found to be unimportant. I NJ+1 ) 2. m2 / '
_ POt : _ 1 (Q )t my a'q
The Dirac spinors in helicity representation are given by (B14)
vl w [ P Q)
U(gAy) =\ | 2\ A1), B6 I“Ef dt = =, (B1YH
(q 1) 2M E_:ll\(jl| | 1> ( ) J —1 (qr_q)z_’_mi q!q
1 2 (5)
1 |5)— 1 dtJt Py()+tP;_1(t)  Qy7(za)
E+M 3= ’ 2 2 = ’ !
u(=a.r2) =\ 5y~ 2),ldl | [N2), (B7) THiia (@' —a)+m, a4 (816
E+M
2 (6)
which are normalized such that 16— [ J J'”dtt Py(t) —tPy () _ Qy7(Z4)
_ R SN G e T
u(g,M)u(a,\)=1.0, (B8) (B17)

with t=cos6 andz,=(q’?+ g%+ m?)/2q’ q where our nota-
ion for momenta isy’=[q’| andq=|q| which we will use
throughout the remainder of the appendixes.

The Q;(z) are the Legendre functions of the second kind

with u=u'5?.
At each meson-nucleon vertex, a form factor is applie
which has the analytical form

AZ—m2 [110]; e.g., Qo(2)=3 In[(z+1)/(z—1)]. The combinations
FL(q —q)?]= a « (B9) needed above are defined by
AZ+(q' )
QM(2)=2Qy~ 83, (B18)

with m, the mass of the meson involved and, the so-
called cutoff mass. Thus, to obtain the final OBE potential 5 1
the amplitudes, EqgB1)—(B4), are to be multiplied byF2 QP(z)= 377 92Q+Qu-0), (B19

and certain square-root factdisee Eq(A17)].
J
m(ZQJ_Q\Jfl)v (B20)

1
Q(2)=2Q" - 341, (B2D)

2. Partial wave decomposition 83)(2)

The potential is decomposed into partial waves according
to

+

1
()\1)\§|V3(q’,q)|)\1)\2>=277f d(cosa)dj

6
1 1—>\2,>\i—>\§( )

2
5 _ 2
(G NNIVI AN, (B10) QP2=2Q" - Zon, (B22)

024001-24



HIGH-PRECISION, CHARGE-DEPENDENT BONN.. .. PHYSICAL REVIEW €3 024001

B =C FOPLEO), (829

1
QP(2)=2Q"+ 3126y (823
)= (—FI OO @)

The integrals, EqgB11)—(B17), can be evaluated either nu-

merically or analytically by using the Legendre functions of 55ViT:C7rFSTz)|53),
the second kind. The latter method is better if the correct oo o) (3
threshold behavior o¥’(q’,q) for q’,q—0 is important. ) =-C, FAIP,

The above expressions still ignore the cutoff which is in-
cluded by replacing

2
1 Faa —a)?] _9r 1 \/E\/E
(B24) C+~4n2om2 Ve VE (B29)

_
(Q'—q)2+m?2 (g’ —q)%+m?

with

in Egs.(B11)—(B17). If the Legendre functions of the second and
kind are used, then the product of propagator and cutoff must FO=E'E—M2,
be decomposed according to i

FP=-q'q, (B30)
Fil@' —?] 1
(@' —@)?+m (g’ —q)*+m} Fi?=—-M(E'-E).
AZ,—m2 1 One-sigma-exchange
AZp= A% (@ —a)*+ A2, 02 =, (FOI O+ FD Ly,
A=y ! Vo= Co(FOI+ R,
A2 _A2 r_ 2+ A2 ’
w2~ Ag1/ (@' —q) a2 1273 = ¢ (FDI) 4 FO) (1), (B31)
(B25)

34, _ 110 L g(0)(2)
where A ,1,=A,* € with e—-0; i.e., e<A,, €0, e~1 Vo= Col PR,

MeV. To give an example,{”) with cutoff is given by ssy)—c E(2)0)
o Yo' o 'J
+1 Py()Fi(q —q)? 66y /) _ )1 (3)
|SO)=f dt— , [g 2 ] (B26) N, =C,F 5
-1 (q'—q)+mj .
with
_Qumy) (AL m | QA 2 1 \/ﬁ \/M
a'q AZ,=AZ) d'q C‘T:E oxM2 VE' VE (B32)
AZi—m; | Qu(A,
AaZ_Aal q q

FO=—(E'E+M?),
and similarly for the othet{. Notice that the { are func- o
tions ofq’, g, m,, and A, even though our notation does F,'=0d'q, (B33)
not indicate this. 5
FA=M(E'+E).
3. Final potential expressions One-omega-exchange
Here, we will present the final potential expressions in

partial wave decomposition. More details concerning their o) =C,(2E'"E-M?)I{Y,
derivation can be found in Appendix E of RéL]. First, we S 0 )
state the potentials in terms of the combinations of helicity W) =C,(E'EIV+q'q1?),
states defined in EqA24).
One-pion-exchange: A3 =, (29'qlP+M2 W), (B34)
o) =c (FO1 0+ WLy, 34 —C,(q'qI O+ E'EIP),
W2 =Co(—FONP—FOIP), "V, =-C,MEIf?,
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66y} = —C,ME"I®)

Ve

with

(B39

(,()

The one-rho-exchange potential is the sum of three terms

V, =V, + Vi + Vi (B36)

Vector-vector coupling
V), =Cyu(2E'E- M1V,
'V}, =C,,(E'EIf?+q'ql?),
V), =Cu(29' a1+ M), (B37)
*Vy,=Cou(a'qlV+EEI),
%) =—C,,MEI?,

o6y) =—C,,ME"I{®

gp T 7'2\/\\/>
UU 47T WMZ -

Tensor-tensor coupling

with

(B38)

OVtJtZCtt{(qrz“‘qz)(:‘}E'E"‘Mz)lso)
+[q'2+q°—~2(3E'E+M?)]q' 15— 29 %g*1 {7},
Vir=Cud[ 40" %0+ (q'?+ ) (E'E-M?)]1§?
+2(E'E+M?)q'ql{Y—(q'2+g?+4E'E)q'qI P
-2q'2921 P}, (B39)
2] =Cuf[4M2—-3(q'2+9?)]a' qIV+[6q"%0>— (q'?
+0?)(E'E+3M) 1M+ 2(E'E+M?)q'ql§M},
*Wi=Cul ~(a'*+¢*+4E'E)q’ql ¥~ 2q"?¢? §V
+[49'29°+(q'2+¢?)(E'E-MH 1P
+2(E'E+M?)q'qIPh,
Vi =CuM{[E’(a'?+ %) +E(3q'2— ) ]I P
—2(E'+E)q'ql{?},
80V} =CuM{[E(Q'?+0?) +E' (39>~ q'H) I P
—2(E'+E)q'ql®} (B40)

with
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Cu= Tsz\f\f
o 4WM 8rM?2

Vector-tensor coupling

(B41)

V=CuMI(q"?+ )15 -2/ ql5],
V3= CuML = (a"2+ 071+ 29" a1 P,
A= CuMI6q’qlf?=3(q"*+0?)15V],  (B42)
My=CuM[29'q1 - (q"2+ 031 7],

V) =C(E'g?+3Eq' I,
V)= C,(Eq'2+3E'g)I

with

gpp

47T|\/|p 277-|V|2 '

Note that in thep potential,M , is a scaling mass associated
with the tensor-coupling constafy. For this scaling mass,
the same is to be used pp, np, andnn scattering.

The potential in terms of the more famili&iSJ states is
obtained by applying the transformations, E@$28)—(A30),
with R replaced by. The final charge-dependent potentials
are

(B43)

vt=

V(NiN,)=VOPENIN,) +

a=p,w,01,0p

Vo[M(N:Np)]
(B44)

with N;N, eitherpp, nn, or np. The nucleon mass referred
to by M(N4N,) in the above equation is fixed as follows:

M(pp)=My, (B45)
M(nn)=M, (B46)
M(np)=M= M M,=938.91875 MeV, (B47)

with the precise values fdvl,, andM,, given in Table I. For
the np potential, we choose the geometrical mean of the
nucleon masses rather than twice the reduced mass, Eq.
(A41), because the potential is essentially a product of four
Dirac spinors making this the more natural choice. Note that
the differences between the various mean nucleon masses
[see Egs(A41), (B47), and(C8)] are negligibly small such
that it does not really matter what choice is made. The
charge-dependent OPE potentials are given by

VOPHPP)=V.[g-(Mp),m0,M], (B49)

VOPE(nn)=VW[gW(Mn),mWo,Mn], (B49)
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VTP T=1)= =Vl g (M).m;o M) (il = | et + k-1 €2

+2V,[g.(M),m_=,M], (BSO)
The wave functions are obtained by solving the bound

state equation which is the homogeneous version of the scat-
tering equationA18):

VOPHnp,T=0)=—V,[g,(M),m,0,M]
—2V,[9,(M),m,=,M], (B51)

with m_o andm_= as given in Table |. Most modern deter- M

minations[13] of the wNN coupling constant yield a value (k)= _Z—_sz d*k’V(k, k") g(k'). (C3
for the so-called pseudovector coupling consfgni29]. As- Y

suming thatf . is fundamentally constant, theg,. has a

small charge dependence, since the two coupling constanfiote that the deuteron is a pole in tlematrix atq=iy.
are related by Since we use relativistic kinematicsirp scatteringd see Eq.

(A40)], consistency requires that we determinbased upon
gi(M) 4m?2 f2 relativistic kinematics which is
47 . Am (852

+

Mg=M,+M,~By=M2— 72+ M2- 2, (C4)
with M the mean of the masses of the two nucleons involved o
in the 7NN vertex. We take this very small effect into ac- whereM  denotes the deuteron rest mass Bgdhe binding

count by using in oul/°PEthe 7NN coupling constant energy. The formal solution of EGC4) is
g2(M) M2 g2 y?=[4M2M2—(M3—M2—-M2)2)/aM3,  (C5)
=— —, (B53)
4 M2 4
P and, usingBy=2.224575 MeV andic=197.327053 MeV
with fm, the accurate numerical value fgrcomes out to be
) _
- =0.2315380fm . C6
27 _13.6. (B54) Y €6
4
o To obtain more insight inta/?, we rewrite Eq.(C5) in fac-
Defining torized form
g2 4M?2 f2 2.2 2\ 1211 M2 2
Sm_T7p 7w (B55) AMGy“=[(My+Mp)*=Mgl[MG—(M—M)“]

47T N m2+ 47T _
’ =By(4M —By)(M§— 6M?), (C7)
recovers Eq(B52).

Since we use units such that=c=1, energies, masses where we introduce the average nucleon mass
and momenta are in units of MeV. The potential is in units of
MeV ~2. The conversion factor #c=197.327053 MeV fm. — My+M,
If the user wants to relate our units and conventions to the M= pT=938.91897 MeV, (C8
ones used by other practitioners, he/she should compare our
Eq. (A25) and our phase shift relation, EGA33), with the ]
corresponding equations used by others:oRTrRAN77com- ~ @nd the nucleon mass differené=M,—M,=1.29332
puter code for the CD-Bonn potential is available from theMeV, and usedV4=2M —By. From this we get

author.
By 5M?
1-——=||1- —
4M

APPENDIX C: DEUTERON CALCULATIONS 72= I\WBd 2
d

(C9

In momentum space, the deuteron wave function is given

by and, in terms of twice the reduced nucleon mislssvhich is
My — M1 IM (3740 defined by
Vg (K)=[o(K) Yoy (K)+ (k) V3 (K) 1o, (C1)
IM ([ i - - _ . 2M M, oM?

whereyLs(k) are the normalized elge_nfunctlons of the two K= Mo _ vl 1- 22| —938.91852 MeV,
nucleon orbital angular momentulm spinS, and total angu- My+M, AM?
lar momentumJ with projectionM,; §¥'T denotes the normal- (C10
ized eigenstates of the total isosgirwith projectionM; of
the two nucleons. The normalization is we finally obtain
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TABLE XIX. Deuteron wave functions.

r (fm) u(r) (fm=1? w(r) (fm=*? r (fm) u(r) (fm=%2 w(r) (fm=%?)
0.100x10°* 0.304061x 10?2 —0.137276<10°° 0.270< 10 0.45755x 10° 0.10721% 10°
0.200<10°* 0.60731% 102 —0.895215¢10°° 0.280x 10 0.44883% 10° 0.10257% 10°
0.300x<10°* 0.909444< 1072 —0.249495 104 0.290x 10 0.440064< 10° 0.98076& 1071
0.400<10°* 0.12104% 107! —0.49231x 1074 0.300x 10t 0.431275 10° 0.93745% 10!
0.500<10°* 0.151065¢10°* —0.804275 1074 0.320< 10 0.41377& 10° 0.85592% 10!
0.600< 101 0.18102% 10! —0.116610< 1073 0.340< 10 0.39655X% 10° 0.78123% 10!
0.700x 107! 0.210984<10°* —0.155526< 1072 0.360x 10t 0.37972% 10° 0.713176<10°*
0.800x 107! 0.240975 10 ¢ —0.194813< 102 0.380x 10t 0.36338% 10° 0.651366<10°*
0.900x10°* 0.271050 10 * —0.23205% 103 0.400x 10 0.34758% 10° 0.595344<10°*
0.100x 10° 0.310255¢ 10! —0.264871x 1073 0.420x 10 0.33234% 10° 0.54462% 101
0.200x 10° 0.62109% 10°* 0.155643% 10°° 0.440< 10 0.31767& 10° 0.49872x 1071
0.300x 10° 0.993876<10°* 0.33507% 1072 0.460x 10 0.30359% 10° 0.45717& 1071
0.400x 10° 0.14386% 10° 0.108936<10°* 0.480x 10t 0.29007& 10° 0.419565¢10°*
0.500x 10° 0.194545 10° 0.235574 107! 0.500x 10* 0.277126<10° 0.38548% 10!
0.600x 10° 0.248454 10° 0.40906& 10 * 0.520x 10 0.26472K 10° 0.35458% 10 *
0.700x 10° 0.31084x 1¢° 0.61280& 10 * 0.540x 10 0.25284% 10° 0.326540<10°*
0.800x 10° 0.351374 10° 0.82403% 10! 0.560x 10 0.24149K 10° 0.301056<10°*
0.900x 10° 0.394806< 10° 0.102176<10° 0.580x 10 0.23062% 10° 0.277874 101
0.100x 10* 0.43107X% 10° 0.119165 10° 0.600x 10* 0.220245 10° 0.256761X 10 *
0.110< 10 0.460046< 10° 0.132683 10° 0.650< 10 0.19625X 10° 0.21171% 10t
0.120< 10 0.48221% 10° 0.14263% 10° 0.700x 10 0.174846¢ 10° 0.175676<10°*
0.130< 10 0.49837x 10° 0.149285¢ 10° 0.750< 10 0.15575% 10° 0.146616<10°*
0.140< 10 0.509415¢ 10° 0.15308% 10° 0.800x 10t 0.13874% 10° 0.12301x 1071
0.150x 10 0.51622X 1¢° 0.154545 1¢° 0.850x 10 0.12358% 10° 0.10369% 10 *
0.160x 10 0.51957% 1¢° 0.154136<10° 0.900x 10 0.111084 10° 0.87799% 10 2
0.170x 10 0.52105& 10° 0.15228% 1¢° 0.950x 10 0.980525¢ 10 * 0.74628 10 2
0.180x 10* 0.518524 10° 0.149356< 10° 0.100x 107 0.873354 10! 0.636565¢10 2
0.190x 10* 0.51513% 1¢° 0.14563% 10° 0.105x< 107 0.77789%x 107! 0.544705¢10 2
0.200x 10 0.510374 10° 0.14136% 10° 0.110< 107 0.69285% 101 0.46743% 10?2
0.210< 10 0.50453% 10° 0.13672% 10° 0.115x 107 0.617120x10°* 0.40217(x 1072
0.220< 10 0.497856< 10° 0.131864< 10° 0.120< 107 0.549660< 101 0.346826< 102
0.230< 10 0.49053% 10° 0.126886< 10° 0.125¢ 107 0.48957% 10! 0.299734 10?2
0.240< 10 0.482736<10° 0.12187% 1¢° 0.130x 107 0.436055¢ 10 * 0.259535¢ 10 2
0.250x 10 0.47457% 10° 0.11691x 1¢° 0.135< 107 0.388386¢ 10 * 0.225120< 102
0.260x 10 0.466150 10° 0.112004< 1¢° 0.140x 107 0.34592% 10 * 0.19558% 10 2

—5&2 w(k)=—lfxdk’k’2[v (K,K") tho(K")
. By M2 § ) 0 y2+k2Jo o0t IO
Y*=MBy| 1- — ~MBy| 1- —=
am/ oM + Vol kK ) iK1,
4am?
(C1D g
= | ATV k)
The approximation involved in EC11) is good to one part +Voo(K,K") (k") ], (C12

in 10°. Therefore, this equation reproduces the exact value
for y to all digits given in Eq(C6). One can now identify the
termM By as the nonrelativistic approximation $¢ and the
factor (1-B4/4M) as the essential relativistic correction.

Partial wave decomposition of EC3) yields for the
coupled®S; and 3D, states

from which ¢y and i, are obtained. Considering a finite set
of discrete arguments for the functions on the left-hand side
and using the same set of momenta to discretize the integrals
on the right-hand side produces a matrix equation that is
solved easily by the matrix-inversion methgtD6].
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The momentum-space wave functions can be Fourier TABLE XX. Coefficients for the parametrized deuteron wave
transformed into the configuration-space wave functions functions f=11).

andw b
y j C; (fm~%3) D; (fm~*?
u (r) \F J " LL2: 1 0.88472985 10° 0.2262376X 10~ !
r V7o dkiCj(kn) g (K), (C13 2 —0.2640875% 10° —0.50471056 10°
3 —0.4411440% 1071 0.5627889% 1(°
with ug(r)=u(r), uy(r)=w(r), andj, the spherical Bessel 4 —0.1439751X 10 —0.16079764 107
functions. The normalization is 5 0.85591256 107 0.1112680% 10°
6 —0.3187676X 10° —0.4466749% 10°
% 7 0.7033670% 10° 0.1098590% 10*
f drfu®(r)+w?(r)]=1. (C14 8 —0.90049586 10° ~0.16114995 10°
0 9 0.6614544% 10° Eq. (C24)
The asymptotic behavior of the wave functions for large val- 1(1) _0'25?55(3?342«3)1 o Eg Egsjg
ues ofr are
u(ry~Age ", n '
vR(Q) = (2/m) Y2y, ——, (C21)
3 3 i =1 g%+ mj
w(r)~Ape "1+ —+ ——|, (C1
e (v) (w)] ? ¢ D
Y3(a)=(2imVY, ———. (C22
j=1 q + m]

whereAg andAp are known as the asymptot andD-state
normalizations, respectively. In addition, one defines therpe boundary conditions,(r)—r andw,(r)—r? asr—0
" D/S-state ratio” n=Ap/As. Other deuteron parameters |ead to one constraint for the; and three constraints for the

of interest are the quadrupole moment D, [115], namely,
1 0 n—-1
Qfﬁfo drr2w(r)[V8u(r)—w(r)],  (C16) Ch=—2>, Cj, (C23
=1
the root-mean-square or matter radius m2_, , zn—3 D,
Dn-2="—>——> 2 2 —m;_ym; > 2
1 @ o o 5 2 (mn_mn—2)(mn—1_mn—2) =1 mj
ra=5 Jo drrefus(r)+w=(r)]; (C17) s s
N +(mi_;+mi) > D;— > D;m?|, (C24)
and theD-state probability =1 =1

o and two other relations obtained by circular permutation of
PD=f drw?(r). (C18 n—2n—1n. The masses are
0

my=y+(j—1)mg (C2H
The predictions by the CD-Bonn potential for the properties 1 . .
of the deuteron are given in Table XVIII; numerical values With Mo=0.9 fm *andy given in Eq.(C6). The parameters

for the wave functions are listed in Table XIX and plots are@'€ given in Table XX. The constraints, Eq&23 and
shown in Figs. 8 and 9. (C24), must be enforced by double precisi@re., to about

In some applications, it is convenient to have the deuterort® decimal digits otherwise the wave function is not repro-
wave functions in analytic form. Therefore, we present heréluced correctly for<0.5 fm. This applies, particularly, to
a simple parametrization of the deuteron functiéthat was  the D wave. The accuracy of the parametrization is charac-
first introduced in Ref[115]). The ansatz for the analytic (€rized by

version of ther-space wave functions is w 12
U dr[u(r)—ua(r)]z} =22x10"%  (C26
0

ua(r)=§1 Cjexp(—mjr), c19
o 1/2
" d —w,(r)]?} =1.1x104 (C2
wa(t)= S D exp—mi) 1+i+ 3 | Ho r{w(r) w(r)]] X (C27
= mr o (myr)?

(C20 Data files for the deuteron wave functionsrigpace as well
as in momentum space can be obtained from the author upon
The corresponding momentum space wave functions are request.
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