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High-precision, charge-dependent Bonn nucleon-nucleon potential

R. Machleidt*
Department of Physics, University of Idaho, Moscow, Idaho 83844

~Received 12 June 2000; published 11 January 2001!

We present a charge-dependent one-boson-exchange nucleon-nucleon (NN) potential that fits the world
proton-proton data below 350 MeV available in the year 2000 with ax2 per datum of 1.01 for 2932 data and
the corresponding neutron-proton data withx2/datum51.02 for 3058 data. This reproduction of theNN data
is more accurate than by any phase-shift analysis and any otherNN potential. This is achieved by the
introduction of two effectives mesons the parameters of which are partial-wave dependent. The charge
dependence of the present potential~which we call ‘‘CD-Bonn’’! is based upon the predictions by the Bonn
full model for charge symmetry and charge-independence breaking in all partial waves withJ<4. The poten-
tial is represented in terms of the covariant Feynman amplitudes for one-boson exchange which are nonlocal.
Therefore, the off-shell behavior of the CD-Bonn potential differs in a characteristic way from commonly used
local potentials and leads to larger binding energies in nuclear few- and many-body systems, where underbind-
ing is a persistent problem.
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I. INTRODUCTION

In the 1970’s and 1980’s, a comprehensive field theor
meson-exchange model for the nucleon-nucleon (NN) inter-
action was developed at the University of Bonn. The fin
version, published in 1987, has become known as the B
full model @1#. For a pedagogical review see Ref.@2#.

In the language of field theoretic perturbation theory,
lowest order contributions to theNN interaction generated
by mesons are the one-boson exchange diagrams. Fur
more, there are many irreducible multimeson exchanges.
diagrams of 2p exchange are most prominent since th
provide the intermediate-range attraction of the nucl
force. However, once explicit diagrams of 2p exchange
~with intermediateD isobars! are used in a model, then it i
vital to also include the corresponding diagrams ofpr ex-
change. There are characteristic~partial! cancellations be-
tween the two groups of diagrams, which are crucial fo
quantitative reproduction of theNN data. Moreover, the
Bonn model contains additional classes of irreduciblep
and 4p exchanges which are important conceptually rat
than quantitatively, since they appear to indicate conv
gence of the diagrammatic expansion chosen by the B
group @1#.

The development of the Bonn full model was necessar
test reliably the meson-exchange concept for nuclear fo
and to assess systematically the range of its validity. Th
the model represents a benchmark for any alternative atte
~based, e.g., on quark models, chiral perturbation theory
other ideas! to explain the nuclear force.

Due to its comprehensive character, the Bonn model p
vides a sound basis for addressing many important iss
One of them is the charge dependence of nuclear forces.
charge-symmetry breaking~CSB! of the NN interaction due
to nucleon mass splitting has been investigated in Ref.@3#. It
turns out that considerable CSB is generated by

*Electronic address: machleid@uidaho.edu
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2p-exchange contribution to theNN interaction and thepr
diagrams such that the CSB difference in the singlet sca
ing lengths can be fully explained from nucleon mass sp
ting. Also, noticeable CSB effects occur inP andD waves.
Empirical evidence for CSB is seen in the Nolen-Schif
~NS! anomaly@4# regarding the energies of neighboring m
ror nuclei. A recent study@5# has shown that the CSB in
partial waves withL.0 as derived from the Bonn model i
crucial for a quantitative explanation of the NS anomaly.

The charge-independence breaking~CIB! of the NN in-
teraction has also been investigated@6#. Pion mass splitting
is the major cause, and it is well known that the one-p
exchange~OPE! explains about 50% of the CIB difference i
the singlet scattering lengths. However, the 2p-exchange
model and the diagrams of three and four irreducible p
exchanges contribute additional CIB which can amount up
50% of the OPE CIB contribution, inS, P, and D waves.
This effect is not negligible.

Other important issues related to the nuclear force
relativistic effects, medium effects, and many-body forces
be expected in the nuclear many-body problem. The med
effects on the nuclear force when inserted into nuclear ma
have been calculated thoroughly. A large repulsive contri
tion to these medium effects comes from intermediateD iso-
bar states which also give rise to energy dependence. On
other hand, isobars create many-body forces that are at
tive. Thus, large cancellations between these two classe
many-body forces/effects occur and it has been shown
the net contribution is very small@7#. Relativistic effects,
however, may play an important role in the nuclear man
body problem@2#.

Multimeson exchange diagrams are very involved. Mo
over, contributions of this kind are, in general, energy dep
dent. This would make theNN potential—defined as the sum
of irreducible diagrams—energy dependent. ANN potential
that depends on energy creates conceptual and prac
problems when applied in nuclear many-body systems. F
large class of nuclear structure problems, these complicat
are without merit.

For these reasons, already early in the history of the m
son theory of nuclear forces, the so-called one-bos
©2001 The American Physical Society01-1
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exchange ~OBE! model was designed which—b
definition—includes only single-meson exchanges~which
can be represented in an energy-independent way!. Usually,
the model includes all mesons with masses below
nucleon mass, i.e.,p, h, r(770), andv(782) @8#. In addi-
tion, the OBE model typically introduces a scalar, isosca
boson—commonly denoted bys ~or e). Based upon wha
we discussed above concerning multimeson exchange co
butions, it is clear now that thiss must approximate more
than just the 2p exchange. In particular, it has to simula
2p1pr exchanges which are clearly not of purely scal
isoscalar nature. Consequently, thes approximation is poor
~as demonstrated in Fig. 11 of Ref.@1#!. One way to make up
for this deficiency is to readjust the parameters of thes
boson in each partial wave. Moreover, the 2p1pr ex-
changes create—in terms of ranges—a very broad contr
tion that cannot be reproduced well by a single boson m
two masses will do better. The fact that we are dealing h
with a very broad mass distribution is supported by an en
in the Particle Data Tables@9# which lists as ~or f 0) with a
mass between 400 and 1200 MeV.

Based upon the philosophy just outlined, we have c
structed aNN potential that is energy independent and d
fined in the framework of the usual~nonrelativistic!
Lippmann-Schwinger equation. Thus, it can be applied in
same way as any other conventionalNN potential. The cru-
cial point, however, is that it reproduces important pred
tions by the Bonn full model, while avoiding the problem
that the Bonn full model creates in applications. The cha
dependence~CD! predicted by the Bonn full model is repro
duced accurately by the new potential, which is why we c
it the CD-Bonn potential. The off-shell behavior of CD-Bon
is based upon the relativistic Feynman amplitudes for me
exchange. Therefore, the CD-Bonn potential differs off-sh
from conventionalNN potentials—a fact that has attractiv
consequences in nuclear structure applications.

An earlier version of the CD-Bonn potential—which
however, did not contain all the charge dependence—
published in Ref.@10# where the off-shell aspects are di
cussed in great detail.

In Sec. II, we present the potential model. Charge dep
dence is discussed in Sec. III. The results forNN scattering
and the deuteron are presented in Secs. IV and V, res
tively. Conclusions are given in Sec. VI. The paper has th
appendices which spell out in detail the mathematical f
malism of our potential and of two-nucleon momentu
space calculations. Many parts of the formalism are not n
but we include them to make the paper self-contained.

II. THE MODEL

As discussed in the Introduction, the CD-Bonn poten
is based upon meson exchange. We include all mesons
masses below the nucleon mass, i.e.,p, h, r(770), and
v(782). In addition to this, we introduce two scalar-isosca
s bosons.

For the h ~with a mass of 547.3 MeV!, we assume a
vanishing coupling to the nucleon, which implies that—de
facto—we drop theh. This assumption is supported by sem
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empirical evidence from various sources. AnalyzingNN
scattering data in terms of forward dispersion relatio
Grein and Kroll@11# determined thehNN coupling constant
to be consistent with zero. Tiator and co-workers@12# ex-
tracted theh coupling from h photoproduction data and
foundgh

2/4p50.4. Such a small coupling constant genera
a negligible contribution in theNN system@if no nucleon
resonances, such as theN(1535)S11, are included in the
model#. In the development of the Bonn full model for th
NN interaction@1#, it was noticed that a good fit of theNN
data favors a vanishingh contribution.

In Table I, we list the hadrons involved in our mod
together with their masses and coupling parameters. For
pNN coupling constant, we choose the ‘‘small’’ valu
gp

2 /4p513.6—consistent with recent determinations by t
Nijmegen@13,14# and VPI group@15–17#. It is appropriate
to mention that the precise value of thepNN coupling con-
stant is an unsettled issue at this time, and we refer the
terested reader to Refs.@18,19# for a critical discussion and
review of the topic. For the vector mesonsr and v, for
which precise empirical determinations of the coupling co
stants are difficult~if not impossible!, we use the values from
the Bonn full model@1#.

We start from the following Lagrangians that describe t
coupling of the mesons of interest to nucleons:

L p0NN52gp0c̄ ig5t3cw (p0), ~2.1!

L p6NN52A2gp6c̄ ig5t6cw (p6), ~2.2!

LsNN52gsc̄cw (s), ~2.3!

LvNN52gvc̄gmcwm
(v) , ~2.4!

LrNN52grc̄gmtc•wm
(r)

2
f r

4M p
c̄smntc•~]mwn

(r)2]nwm
(r)!, ~2.5!

wherec denotes nucleon fields,w meson fields, andt3,6 are
standard definitions of Pauli matrices and combinatio
thereof for isospin1

2 @20#. M p is the proton mass which is
used as scaling mass in therNN Lagrangian to makef r

dimensionless. To avoid the creation of unmotivated cha

TABLE I. Basic constants and parameters adopted for the C
Bonn potential.

Particle Mass~MeV! a g2/4p f /g L ~GeV!

p6 139.56995 13.6 1.72
p0 134.9764 13.6 1.72
r6,r0 769.9 0.84 6.1 1.31
v 781.94 20.0 0.0 1.5
Proton (p) 938.27231
Neutron (n) 939.56563

aHadron masses are from Ref.@8#.
1-2
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HIGH-PRECISION, CHARGE-DEPENDENT BONN . . . PHYSICAL REVIEW C63 024001
dependence, the scaling massM p is used in therNN vertex
no matter what nucleons are involved.

In the c.m. system of the two interacting nucleons,
OBE Feynman amplitude generated by mesona is

2 iV̄a~q8,q!5
ū1~q8!G1

(a)u1~q!Paū2~2q8!G2
(a)u2~2q!

~q82q!22ma
2

,

~2.6!

where G i
(a) ( i 51,2) are vertices derived from the abov

Lagrangians,ui Dirac spinors representing the interactin
nucleons, andq and q8 their relative four-momenta in the
initial and final states, respectively;Pa divided by the de-
nominator is the appropriate meson propagator.

The one-boson-exchange potential is defined by (i times!
the sum over the OBE Feynman amplitudes of the mes
included in the model~Fig. 1!; i.e.,

V~q8,q!5AM

E8
AM

E (
a5p0,p6,r,v,s1 ,s2

V̄a~q8,q!

3F a
2~q8,q;La!. ~2.7!

As customary, we include a square-root factorM /AE8E
~with E5AM21q2, E85AM21q82, and M the nucleon
mass! and form factors,Fa(q8,q;La), applied to the meson
nucleon vertices. The square root factors make it possibl
cast the unitarizing, relativistic, three-dimension
Blankenbecler-Sugar~BbS! equation@21# for the scattering
amplitude@a reduced version of the four-dimensional Beth
Salpeter~BS! equation@22## into the following form ~see
Appendix A for a proper derivation!:

T~q8,q!5V~q8,q!1E d3kV~q8,k!
M

q22k21 i e
T~k,q!.

~2.8!

Notice that this is the familiar~nonrelativistic! Lippmann-
Schwinger equation. Thus, Eq.~2.7! defines a relativistic po-
tential which can be consistently applied in convention
nonrelativistic nuclear structure, in the usual way. The fo
factors in Eq.~2.7! @see Appendix B, Eq.~B9!, for details#
regularize the amplitudes for large momenta~short distances!
and account for the extended structure of nucleons in a p
nomenological way.

The Feynman amplitudes, Eq.~2.6!, are in general nonlo-
cal expressions; i.e., Fourier transform into configurat
space will yield functions ofr and r 8, the relative distances

FIG. 1. One-boson exchange Feynman diagrams that define
CD-BonnNN potential.
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between the two in- and out-going nucleons, respectiv
The square root factors in Eq.~2.7! create additional nonlo-
cality.

While for heavy vector-meson exchange~corresponding
to short distances! nonlocality appears quite plausible, w
have to stress here that even the one-pion-exchange~OPE!
Feynman amplitude is nonlocal. This fact is often ove
looked. It is important because the pion creates the domin
part of the tensor force which plays a crucial role in nucle
structure.

Applying the pNN Lagrangian, Eq.~2.1!, to the ampli-
tude, Eq.~2.6!, yields the one-pion-exchange~OPE! potential
~suppressing charge-dependence and isospin factors fo
moment!

V̄p~q8,q!52
gp

2

4M2

~E81M !~E1M !

~q82q!21mp
2 S s1"q8

E81M
2

s1"q

E1M D
3S s2"q8

E81M
2

s2"q

E1M D . ~2.9!

If we would now apply the approximation,E8'E'M
~static approximation!, then this simplifies to

Vp
(loc)~k!52

gp
2

4M2

„s1"k…„s2"k…

k21mp
2

~2.10!

with k5q82q. Fourier transform of this latter expressio
yields

Vp
(loc)~r !5

gp
2

12p S mp

2M D 2F S e2mpr

r
2

4p

mp
2

d (3)~r !D s1"s2

1S 11
3

mpr
1

3

~mpr !2D e2mpr

r
S12G . ~2.11!

This is the local OPE potential that is used by most pra
tioners. However, the important point to notice here is t
this local OPE is not the full, original OPE Feynman amp
tude; it is an approximation.

The obvious question to raise at this point is: How mu
does the local approximation change the original result or
other words, how drastic is the local approximation? For t
purpose, we show in Fig. 2 the half off-shell3S1–3D1 po-
tential that can be produced only by tensor forces. The
shell momentumq8 is held fixed at 265 MeV~equivalent to
150 MeV laboratory energy!, while the off-shell momentum
q runs from zero to 2000 MeV. The on-shell point (q5265
MeV! is marked by a solid dot. The solid curve is the re
tivistic OBE amplitude ofp1r exchange. Now, when the
relativistic OPE amplitude, Eq.~2.9!, is replaced by the
static-local approximation, Eq.~2.10!, the dashed curve is
obtained. When this approximation is also used for the o
r exchange, the dotted curve results. It is clearly seen
the static-local approximation does change the potential d
tically off shell: it makes the tensor force substantially stro
ger off shell.

he
1-3
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R. MACHLEIDT PHYSICAL REVIEW C 63 024001
We note that the effect demonstrated in Fig. 2 has
impact on theT50 np system. Forpp, whereT51, the
transition potential of lowest angular momentumJ is
3P2–3F2. Since the importance of off-shell effects go
down with increasingJ, the pp system is not affected a
much by the off-shell tensor force as thenp system.

In summary, one characteristic point of the CD-Bonn p
tential is that it uses the Feynman amplitudes of meson
change in its original form; local approximations are not a
plied. This has impact on the off-shell behavior of t
potential, particularly, the off-shell tensor potential. It is we
known that the off-shell behavior of anNN potential is an
important factor in microscopic nuclear structure calcu
tions. Therefore, the predictions by the CD-Bonn poten
for nuclear structure problems differ in a characteristic w
from the ones obtained with localNN potentials. For more
discussion of this issue, see Sec. VI and Refs.@10,23#.

III. CHARGE DEPENDENCE

By definition, charge independenceis invariance under
any rotation in isospin space. A violation of this symmetry
referred to as charge dependence or charge independ
breaking~CIB!. Charge symmetryis invariance under a ro
tation by 180° about they axis in isospin space if the positiv
z direction is associated with the positive charge. The vio
tion of this symmetry is known as charge symmetry break
~CSB!. Obviously, CSB is a special case of charge dep
dence.

CIB of the strongNN interaction means that, in the iso
pin T51 state, the proton-proton (Tz511), neutron-proton
(Tz50), or neutron-neutron (Tz521) interactions are
~slightly! different, after electromagnetic effects have be
removed. CSB of theNN interaction refers to a differenc

FIG. 2. Half off-shell 3S1–3D1 potential. The on-shell momen
tum q8 is held fixed at 265 MeV~equivalent to 150 MeV lab en
ergy!, while the off-shell momentumq runs from zero to 2000
MeV. The on-shell point (q5265 MeV! is marked by a solid dot.
The solid curve is the relativistic OBE amplitude ofp1r ex-
change. When the relativistic OPE amplitude, Eq.~2.9!, is replaced
by the static/local approximation, Eq.~2.10!, the dashed curve is
obtained, and when this approximation is also used for the onr
exchange, the dotted curve results.
02400
n

-
x-
-

-
l
y

nce

-
g
-

n

between proton-proton (pp) and neutron-neutron (nn) inter-
actions, only. For recent reviews on these matters, see R
@24,25#.

CIB is seen most clearly in the1S0 NN scattering lengths.
The latest empirical values for the singlet scattering lengta
and effective ranger are

app
N 5217.360.4 fm @25#, r pp

N 52.8560.04 fm @25#,
~3.1!

ann
N 5218.960.4 fm @26,27#, r nn

N 52.7560.11 fm @25#,
~3.2!

anp5223.74060.020 fm @28– 30#,

r np52.7760.05 fm @ 28– 30#. ~3.3!

The values given forpp and nn scattering refer to the
nuclear part of the interaction as indicated by the supersc
N; i.e., electromagnetic effects have been removed from
experimental values.

The above values imply that charge-symmetry is brok
by the following amounts:

DaCSB[app
N 2ann

N 51.660.6 fm, ~3.4!

Dr CSB[r pp
N 2r nn

N 50.1060.12 fm ~3.5!

and, focusing onpp andnp, the following CIB is observed:

DaCIB[app
N 2anp56.4460.40 fm, ~3.6!

Dr CIB[r pp
N 2r np50.0860.06 fm. ~3.7!

In summary, theNN singlet scattering lengths show a sma
amount of CSB and a clear signature of CIB.

The current understanding is that—on a fundamen
level—the charge dependence of nuclear forces is due
difference between the up and down quark masses and
tromagnetic interactions among the quarks. As a con
quence of this—on the hadronic level—major causes of C
are mass differences between hadrons of the same iso
multiplet, meson mixing, and irreducible meson-photon e
changes.

A. Charge symmetry breaking

The difference between the masses of neutron and pr
represents the most basic cause for CSB of the nuclear fo
Therefore, it is important to have a very thorough account
of this effect.

The most trivial consequence of nucleon mass splitting
a difference in the kinetic energies: for the heavier neutro
the kinetic energy is smaller than for protons. This raises
magnitude of thenn scattering length by 0.26 fm as compa
to pp. The nucleon mass difference also affects the O
diagrams, Fig. 1, but only by a negligible amount. In su
mary, the two most obvious and trivial CSB effects expla
only about 15% of the empiricalDaCSB ~see Table II!. Usual
models for the nuclear force include only the two CSB

-

1-4
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HIGH-PRECISION, CHARGE-DEPENDENT BONN . . . PHYSICAL REVIEW C63 024001
fects just discussed and, therefore, do not reproduce the
pirical CSB.

However, in Ref.@3# it was found that the irreducible
diagrams of two-boson exchange~TBE! create a much large
CSB effect than the OBE diagrams and, in fact, fully expla
the empirical CSB splitting of the singlet scattering leng
The major part of the CSB effect comes from diagrams
2p exchange where those withND intermediate states mak
the largest contribution. The CSB effect from irreducible d
grams that exchange ap andr meson were also included i
the study. Thepr diagrams give rise to non-negligible CS
contributions that are typically smaller and of opposite s
as compared to the 2p effects. The net effect explainsDaCSB
quantitatively.

The above mentioned investigation@3# was based upon
the Bonn full model@1#. This model uses thepNN coupling
constantgp

2 /4p514.4 which is not current. For that reaso
we have revised the Bonn full model usinggp

2 /4p513.6 and
then repeated the CSB calculations of Ref.@3#. The total
DaCSB predicted by the revised model is 1.508 fm~about 5%
less than what was obtained in Ref.@3# with the original
model!, implying a TBE effect of 1.275 fm.

The only reliable empirical information about CSB of th
NN interaction is the scattering length difference in the1S0
state, Eq.~3.4!. As discussed, the TBE model of Refs@1,3#
can explain this entirely from nucleon mass splitting. For t
reason, we have confidence in the CSB predictions by
model. Therefore, we will use its predictions also for en
gies and states where no empirical information is availa
namely, higher energies in the1S0 state and partial wave
other than1S0.

Thus, using the revised Bonn full model, we have cal
lated the differencenn phase shift minuspp phase shift
without electromagnetic interactionsdnn2dpp that is caused
by CSB of the strong nuclear force due to nucleon m
splitting. The total effect obtained is listed in the last colum
~‘‘total’’ ! of Table III for energies up to 300 MeV and parti
wave states in which these effects are non-negligible. In
table, we also list the very small effects from the OBE d
grams~Fig. 1! @31# and the kinematical effects~column ‘‘Ki-
nematics’’! @32#. CSB phase shift differences are plotted
Fig. 3. It is clearly seen that in most states the TBE effec
the largest and, therefore, certainly not negligible as co
pared to the other CSB effects shown.

Because of the outstanding importance of the CSB ef
from TBE, we include it in our model@33#. By doing so, we
go beyond what is usually done in charge-dependentNN

TABLE II. Differences between thepp and nn 1S0 effective
range parameters@as defined in Eqs.~3.4! and ~3.5!# due to the
impact of nucleon mass splitting on the kinetic energy~kin. en.!,
one-boson exchange~OBE! diagrams @31#, and two-boson ex-
changes~TBE!. Total denotes the sum of the three contributio
and empirical information is given in the last column.

Kin. en. OBE TBE Total Empirical

DaCSB ~fm! 0.263 20.030 1.275 1.508 1.660.6
Dr CSB ~fm! 0.004 0.000 0.022 0.026 0.1060.12
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potentials. In most recent models, only the kinematical
fects and the effect of nucleon mass splitting on the O
diagrams are included. However, as discussed, this does
explain the CSB scattering length difference. Thus, so
models leave CSB simply unexplained@34#, while other
models add a purely phenomenological term to the poten
that fitsDaCSB @35#.

TABLE III. Difference dnn2dpp ~in degrees! due to the impact
of nucleon mass splitting on kinematics@32#, one-boson exchange
~OBE! diagrams@31#, and two-boson exchanges~TBE!. Total is the
sum of all.

Tlab ~MeV! Kinematics OBE TBE Total

1S0

0.38254 0.404 20.045 1.795 2.154
1 0.324 20.036 1.440 1.728
5 0.165 20.018 0.785 0.932

10 0.114 20.013 0.591 0.692
25 0.062 20.006 0.408 0.464
50 0.031 20.001 0.310 0.340

100 0.003 0.005 0.239 0.247
150 20.013 0.010 0.206 0.203
200 20.023 0.014 0.185 0.176
300 –0.039 0.021 0.160 0.142

3P0

5 0.006 0.001 0.001 0.008
10 0.013 0.003 0.002 0.018
25 0.022 0.010 0.008 0.040
50 0.021 0.021 0.014 0.056

100 0.004 0.036 0.020 0.060
150 20.011 0.045 0.024 0.058
200 20.022 0.052 0.024 0.054
300 20.040 0.063 0.025 0.048

3P1

5 20.003 0.000 0.002 20.001
10 20.006 0.000 0.004 20.002
25 20.011 0.001 0.012 0.002
50 20.017 0.002 0.027 0.012

100 20.026 0.006 0.049 0.029
150 20.033 0.009 0.065 0.041
200 20.039 0.011 0.076 0.048
300 20.050 0.016 0.090 0.056

1D2

10 0.001 0.000 0.000 0.001
25 0.002 0.000 0.002 0.004
50 0.005 0.000 0.006 0.011

100 0.011 0.002 0.019 0.032
150 0.016 0.005 0.033 0.054
200 0.019 0.010 0.046 0.075
300 0.022 0.022 0.068 0.112

3P2

5 0.001 0.000 0.001 0.002
10 0.003 0.000 0.004 0.007
25 0.010 0.001 0.013 0.024
50 0.021 0.002 0.031 0.054

100 0.032 0.006 0.062 0.100
150 0.036 0.010 0.081 0.127
200 0.035 0.015 0.093 0.143
300 0.032 0.023 0.105 0.160
1-5
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Before finishing this subsection, a word is in order co
cerning other mechanisms that cause CSB of the nuc
force. Traditionally, it was believed thatr0-v mixing ex-
plains essentially all CSB in the nuclear force@25#. However,
recently some doubt has been cast on this paradigm. S
researchers@36–39# found thatr0-v exchange may have
substantialq2 dependence such as to cause this contribu
to nearly vanish inNN. Our finding that the empirically
known CSB in the nuclear force can be explained sol
from nucleon mass splitting~leaving essentially no room fo
additional CSB contributions fromr0-v mixing or other
sources! fits well into this scenario. On the other hand, Mill
@24# and Coon and co-workers@40# have advanced counte
arguments that would restore the traditional role ofr-v ex-

FIG. 3. Differencesdnn2dpp due to the impact of nucleon mas
splitting on kinematics~dotted line labeled ‘‘kin.’’!, one-boson ex-
change diagrams~dashed double-dotted, OBE!, and two-boson ex-
changes~dashed, TBE!. The solid line~‘‘tot’’ ! represents the total
Notice that each frame has a different scale.
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change. The issue is unresolved. Good summaries of the
troversial points of view can be found in Refs.@24,41,42#.
We do not includer2v mixing in our model.

Finally, for reasons of completeness, we mention that
reducible diagrams ofp andg exchange between two nucle
ons create a charge-dependent nuclear force. Recently,
contributions have been calculated to leading order in ch
perturbation theory@43#. It turns out that to this order thepg
force is charge symmetric~but does break charge indepe
dence!.

B. Charge independence breaking

The major cause of CIB in theNN interaction is pion
mass splitting. Based upon the Bonn full model for theNN
interaction, the CIB due to pion mass splitting has been c
culated carefully and systematically in Ref.@6#.

The largest CIB effect comes from the OPE diagra
which accounts for about 50% of the empiricalDaCIB , Eq.
~3.6! ~see Table IV!. In pp scattering, the one-pion-exchang
potentialVOPE is given by

VOPE~pp!5Vp0 , ~3.8!

while in T51 np scattering, we have,

VOPE~np,T51!52Vp012Vp6 . ~3.9!

If the pion masses were all the same, these would be ide
cal potentials. However, due to the mass splitting, theT51
np potential is weaker as compared to thepp one. This
causes a difference betweenT51 pp andnp that is known
as CIB. For completeness, we also give theT50 np OPE
potential which is

VOPE~np,T50!52Vp022Vp6 . ~3.10!

Due to the small mass of the pion, OPE is also a siza
contribution in all partial waves withL.0; and due to the
pion’s relatively large mass splitting~3.4%!, OPE creates
relatively large charge-dependent effects in all partial wa
~see Tables V and VI and Fig. 4!. Therefore, all modern
phase shift analyses@15,46# and all modernNN potentials
@34,35,10# include the CIB effect created by OPE.

However, pion mass splitting creates further CIB effe
through the diagrams of 2p exchange and other two-boso
exchange diagrams that involve pions. The evaluation of
CIB contribution is very involved, but it has been accom
plished in Ref.@6#. The CIB effect from all the relevan
two-boson exchanges~TBE! contributes about 1.3 fm to
m-
TABLE IV. Differences between thepp andnp 1S0 effective range parameters@as defined in Eqs.~3.6!
and~3.7!# produced by various CIB mechanisms and phenomenology~phenom.! @44#. Total is the sum of all
contributions listed left of column ‘‘total.’’DM denotes all effects caused by nucleon mass splitting. E
pirical information is given in the last column.

DM OPE TBE pg Phenom. Total Empirical

DaCIB ~fm! 0.754 3.035 1.339 20.405 1.555 6.278 6.4460.40
Dr CIB ~fm! 0.013 0.092 0.016 20.004 0.057 0.174 0.0860.06
1-6
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TABLE V. Differencednp2dpp ~in degrees! in the 1S0 state as produced by various CIB mechanisms a
phenomenology~phenom.! @44#. DM stands for all effects caused by nucleon mass splitting@45#. Total is the
sum of all contributions listed left of column ‘‘total.’’ ‘‘All’’ denotes the sum of total and Coulomb, whe
Coulomb is the differencedpp2dpp

C .

Tlab ~MeV! DM OPE TBE pg Phenom. Total Coulomb All

0.38254 1.077 3.541 1.655 20.412 1.953 7.814 32.085 39.894
1 0.859 2.851 1.260 20.305 1.521 6.186 23.114 29.300
5 0.468 1.650 0.654 20.152 0.982 3.602 5.219 8.821

10 0.350 1.271 0.482 20.106 0.909 2.906 1.896 4.802
25 0.240 0.875 0.320 20.058 0.970 2.347 20.044 2.304
50 0.182 0.656 0.233 20.028 1.142 2.185 20.589 1.597

100 0.139 0.513 0.165 20.002 1.433 2.248 20.772 1.476
150 0.119 0.469 0.130 0.012 1.656 2.386 20.796 1.590
200 0.108 0.457 0.103 0.021 1.839 2.528 20.796 1.733
300 0.094 0.477 0.058 0.034 2.124 2.787 20.782 2.005
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DaCIB . Concerning phase shift differences, it is noticea
up toD waves and can amount up to 50% of the OPE eff
in some states~cf. Tables V and VI@47#!.

Another source of CIB is irreduciblepg exchange. Re-
cently, these contributions have been evaluated in the fra
work of chiral perturbation theory by van Kolcket al. @43#.
Based upon this work, we have calculated the impact of
pg diagrams on the1S0 scattering length and onnp phase
shifts. ~see column ‘‘pg ’’ in Tables IV, V, and VI.! In L
.0 states, the size of this contribution is typically the sa
as the CIB effect from TBE.

In the 1S0 state, thepg contribution increases the dis
crepancy between theory and experiment~see Table IV!. As
a matter of fact, about 25% ofDaCIB is not explained. For
that reason, a quantitative fit of the empiricalDaCIB requires
a small phenomenological contribution@44#. The same is
true for the difference between the empiricalnp and pp
phase shifts in the1S0 state~see Table V!.

For convenience, the major CIB effects on the strongNN
force are plotted in Fig. 4. In Fig. 5 the total CIB phase sh
effect caused by the strong force is compared to the C
lomb effect onpp phase shifts (dC denotes the phase shift i
the presence of the Coulomb force, see Appendix A 3
precise definitions ofd anddC).

From the figures and tables it is evident that TBE andpg
create sizable CIB effects in states withL.0. Therefore, we
will include these two effects in our model@33#. We note
that conventional charge-dependentNN models ignore these
two contributions.

IV. NUCLEON-NUCLEON SCATTERING

We construct threeNN interactions: a proton-proton
(pp), a neutron-neutron (nn), and a neutron-proton (np)
potential. The three potentials are not independent. They
all based upon the model described in Sec. II and the dif
ences between them are determined by CSB and CIB as
cussed in Sec. III. Thus, when one of the three potential
fixed, then theT51 parts of the other two potentials are al
fixed due to CSB and CIB.
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We start with thepp potential since thepp data are the
most accurate ones. Data fitting is done in three steps. In
first step, thepp potential is adjusted to reproduce close
the pp phase shifts of the Nijmegen multienergypp phase
shift analysis@46#. This is to ensure that phase shifts are
the right ballpark. In the second step, thex2 that results from
applying the Nijmegenpp error matrix @48# is minimized.
The error matrix allows us to calculate thex2 in regard to the
pp data in an approximate way requiring little comput
time. Finally, in the third and crucial step, thepp potential
parameters are fine-tuned by minimizing the exactx2 that
results from a direct comparison with all experimentalpp
data. During these calculations, it was revealed that
Nijmegenpp error matrix yields very accuratex2 up to 75
MeV. Therefore, in this final step, we used the error mat
up to 75 MeV and directx2 calculations above this energy

A word is now in place concerning the parameters
volved in fitting theNN data. For the ‘‘basic’’ mesonsp, v,
andr, we use, in general, the parameters shown in Tabl
Note that~except for the cutoff masses! these parameters ar
determined from empirical or semiempirical sources a
therefore, they are not free parameters of our model.
intermediate range attraction is described by two scalar is
calar bosonss1 ands2, that are also used for the fine-tunin
of individual partial waves. Thes parameters for thepp
(T51) potential are given in Table VII. In states of larg
orbital angular momentumL, we do not consider the contri
bution from s2 ~indicated by a blank in Tables VII–IX!,
because large meson masses~equivalent to short-ranged con
tributions! are ineffective for largeL. For all partial waves
with J>6 ~of all potentials, i.e.,pp, nn, andnp), we use
gs1

2 /4p52.3 andms1
5452 MeV. The cutoff mass for the

two s is Ls1
5Ls2

52.5 GeV, for all partial waves and a
potentials. In two cases, we vary the cutoff parameter of
of the ‘‘basic’’ mesons: in1P1 we applyLv→` ~i.e., thev
cutoff is omitted!, and in 3P2 /3F2 we useLp53.0 GeV;
otherwise, the same cutoff masses~namely, the ones shown
in Table I andLs1

5Ls2
52.5 GeV! are used in all cases.

Thenn T51 potential is constructed by starting from th
1-7
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TABLE VI. Difference dnp2dpp ~in degrees! for partial waves withL.0 as produced by various CIB
mechanisms. Notation as in Table V.

Tlab ~MeV! DM OPE TBE pg Total Coulomb All

3P0

1 0.000 20.030 0.000 0.000 20.030 0.073 0.043
5 0.000 20.230 20.003 0.000 20.233 0.262 0.029

10 0.000 20.448 20.009 0.000 20.457 0.353 20.104
25 0.012 20.770 20.027 20.017 20.802 0.320 20.481
50 0.032 20.846 20.050 20.050 20.914 0.111 20.803

100 0.050 20.742 20.074 20.087 20.853 20.142 20.996
150 0.050 20.649 20.083 20.104 20.786 20.255 21.041
200 0.047 20.586 20.088 20.113 20.740 20.314 21.054
300 0.045 20.513 20.096 20.125 20.689 20.369 21.058

3P1

1 0.000 0.016 0.000 0.000 0.016 20.043 20.026
5 0.002 0.110 0.001 20.002 0.111 20.140 20.028

10 0.004 0.193 0.003 20.002 0.198 20.187 0.011
25 0.006 0.298 0.008 0.003 0.315 20.224 0.091
50 0.008 0.330 0.018 0.016 0.372 20.240 0.133

100 0.016 0.307 0.038 0.038 0.399 20.265 0.133
150 0.022 0.274 0.055 0.054 0.405 20.287 0.118
200 0.028 0.246 0.069 0.064 0.407 20.303 0.103
300 0.033 0.202 0.099 0.077 0.411 20.325 0.085

1D2

5 0.000 20.009 0.000 0.000 20.009 0.007 20.002
10 0.000 20.024 0.000 0.000 20.024 0.015 20.009
25 0.000 20.049 0.001 0.001 20.047 0.031 20.016
50 0.002 20.043 0.005 20.002 20.038 0.049 0.011

100 0.014 0.003 0.013 20.011 0.019 0.071 0.090
150 0.024 0.041 0.023 20.018 0.070 0.081 0.151
200 0.034 0.068 0.030 20.025 0.107 0.083 0.190
300 0.045 0.095 0.042 20.033 0.149 0.073 0.222

3P2

5 0.000 20.009 20.001 0.000 20.010 0.049 0.040
10 0.001 20.028 20.002 0.000 20.029 0.094 0.065
25 0.004 20.090 20.005 20.001 20.092 0.188 0.097
50 0.017 20.162 20.011 20.006 20.162 0.257 0.095

100 0.043 20.211 20.024 20.020 20.212 0.260 0.048
150 0.058 20.210 20.032 20.030 20.214 0.221 0.007
200 0.065 20.196 20.035 20.037 20.203 0.184 20.019
300 0.072 20.169 20.034 20.044 20.175 0.130 20.044

3F2

10 0.000 20.004 0.000 0.000 20.004 0.001 20.002
25 0.000 20.019 0.000 0.000 20.019 0.004 20.015
50 0.000 20.043 0.000 0.001 20.042 0.007 -0.036

100 0.000 20.068 0.000 0.002 20.066 0.008 20.058
150 0.003 20.081 20.001 0.002 20.077 0.007 20.070
200 0.007 20.090 20.001 0.002 20.082 0.003 20.079
300 0.008 20.099 20.001 0.002 20.090 20.009 20.098
ro

m Eq.
pp T51 potential, replacing the proton mass by the neut
mass and adjusting the coupling constants of the twos such
that the CSB phase shift differences listed in the last colu
~‘‘total’’ ! of Table III are reproduced. Thus, thes coupling
constants of thenn potential~which are given in Table VIII!
02400
n

n

are not free parameters. The procedure for theT51 np po-
tential is similar. We start from thepp T51 potential, re-
place the proton mass by the average mass given in
~B47!, apply the appropriate OPE potential@i.e., we replace
Eq. ~B48! by ~B50!#, and then adjust thes coupling con-
1-8
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TABLE VI. ~Continued!.

Tlab ~MeV! DM OPE TBE pg Total Coulomb All

e2

5 0.000 0.011 0.000 0.000 0.011 20.008 0.004
10 0.001 0.034 0.000 20.001 0.034 20.016 0.018
25 0.002 0.086 0.000 20.002 0.086 20.028 0.058
50 20.001 0.111 0.003 0.001 0.114 20.025 0.089

100 20.004 0.087 0.007 0.010 0.100 20.003 0.097
150 20.004 0.051 0.010 0.018 0.075 0.017 0.0
200 20.001 0.020 0.012 0.024 0.055 0.032 0.0
300 0.008 20.020 0.014 0.032 0.034 0.047 0.08
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stants such that the CIB phase shift differences listed in
umn ‘‘total’’ of Table VI are reproduced which, again, doe
not generate any free parameters~Table VIII!. The exception
is the 1S0 state where thes parameters are used to min
mized thex2 in regard to thenp data. The charge depen
dence caused by the Bonn full model andpg exchange pro-
duces also a small charge-dependent tensor force that ca
simulated with the help of ther coupling. A noticeable effec
occurs only in the coupled3P2 /3F2 states where we us
gr

2/4p50.844 fornn andgr
2/4p50.862 fornp ~in all other

casesgr
2/4p50.84). Again, these choices are made to rep

FIG. 4. Differencesdnp2dpp as produced by various CIB
mechanisms. Shown are the contributions from OPE~dashed
curve!, TBE ~dashed-dotted!, and irreduciblepg exchange~dotted!.
02400
l-

be

-

duce the CSB and CIB as predicted by the Bonn full mo
@3,6# and bypg exchange@43# and, thus, do not introduce
new parameters.

After the np T51 potential ~exceptnp 1S0) has been
fixed as explained in the previous paragraph, thenp T50
~andnp 1S0) potential is fitted by going through the entir
three-step procedure: fit of NijmegenT50 ~and np 1S0)
phase shifts, minimizing the approximatex2 obtained from
the Nijmegen error matrix, and finally minimizing the exa
x2 that results from a direct comparison with all experime

FIG. 5. The differencednp2dpp due to the charge-dependenc
of the strong force~dashed curve labeled ‘‘tot’’! and (dpp2dpp

C )
due to the Coulomb force~dotted, Cb!. The sum of both is repre-
sented by the solid line labeled ‘‘all.’’
1-9
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tal np data. The resultings parameters are shown in Tab
IX.

The free ~‘‘fit’’ ! parameters of our model are the on
given in Tables VII and IX plus two parameters for1S0 np
and the cutoff masses which adds up to a total of 43 f
parameters. The resulting phase shifts forpp, nn, and np
scattering in partial waves withJ<4 are given in Tables
X–XIII; pp phase shifts are plotted in Fig. 6 andnp phase
shifts are shown in Fig. 7. Forpp scattering, we show the
phase shifts of the nuclear plus relativistic Coulomb inter
tion with respect to Coulomb wave functions; that is—in t
notation of Ref.@50#—we useVC5a8/r for the Coulomb
potential and calculate the phase shiftsdC1N

C ([dC in our
notation!. We note that, for the calculation of observabl
~e.g., to obtain thex2 in regard to experimental data!, we use
electromagnetic phase shifts,as necessary,which we obtain
by adding to the Coulomb phase shifts the effects from tw
photon exchange, vacuum polarization, and magnetic
ment interactions as calculated by the Nijmegen gro
@50,51#. This is important for1S0 below 30 MeV and negli-
gible otherwise. Fornn and np scattering, we show the

TABLE VII. Parameters of the scalar isoscalar bosonss1

ands2, for the pp T51 potential. An asterisk denotes the defa
which is the1S0 parameters. The boson massesms1

andms2
are in

units of MeV. A blank indicates that thes2 contribution is not
considered.

gs1

2 /4p (ms1
) gs2

2 /4p (ms2
)

1S0 4.24591 (452) 17.61(1225)
3P0 7.866~560! * (*)
3P1 2.303~424! * (*)
3P2 4.166~470! 24.80 (*)
1D2 2.225~400! 190.7 (*)
3F2 , 3F3 1.5 (*) 56.21, 74.44~793!
3F4 , 3H4 3.8 (*) * (*)
1G4 * (*)
3H5 * (*)

TABLE VIII. Coupling constants of the scalar isoscalar boso
s1 ands2, for theT51 np andnn potentials. Note that these ar
not free parameters~except for1S0 np). The boson masses are th
same as for thepp T51 potential~Table VII!. A blank indicates
that thes2 contribution is not considered.

neutron-proton neutron-neutron
gs1

2 /4p gs2

2 /4p gs1

2 /4p gs2

2 /4p

1S0 3.96451 22.50007 4.26338 17.54
3P0 7.866 5.8 7.892 16.747
3P1 2.346 19.22 2.326 17.61
3P2 4.194 24.562 4.180 24.737
1D2 2.236 189.7 2.241 190.7
3F2 , 3F3 1.573, 1.53 56.21, 74.85 1.522, 1.53 56.28, 74.
3F4 , 3H4 3.8115, 3.85 17.61 3.81, 3.83 17.61
1G4 4.27591 4.284
3H5 4.24591 4.24591
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phase shifts of the nuclear interaction with respect to Ricc
Bessel functions. All details of our phase shift calculatio
are given in Appendix A 3.

The low-energy scattering parameters are shown in Ta
XIV. For nn andnp, the effective range expansion withou
any electromagnetic interaction is used. In the case ofpp
scattering, the quantitiesapp

C and r pp
C are obtained by using

the effective range expansion appropriate in the presenc
the Coulomb force~see Appendix A 4 for details!. Note that
the empirical values forapp

C and r pp
C that we quote in Table

XIV were obtained by subtracting from the correspondi
electromagnetic values the effects due to two-photon
change and vacuum polarization. Thus, the comparison
tween theory and experiment conducted in Table XIV is a
equate.

For the comparison with theNN data, we consider three
databases: 1992 database, after-1992 data, and 1999
base. The 1992 database is identical to the one used by
Nijmegen group for their phase shift analysis@53,46#. It con-
sists of allNN data below 350 MeV published between Jan
ary 1955 and December 1992 that were not rejected in
Nijmegen data analysis~for details of the rejection criteria
and a complete listing of the data references, see R
@50,53,46#!. The 1992 database contains 1787pp data and
2514np data.

After 1992, there has been a fundamental breakthroug
the development of experimental methods for conduct
hadron-hadron scattering experiments. In particular,
method of internal polarized gas targets applied in stor
cooled beams is now working perfectly in several hadr
facilities, e.g., IUCF and COSY. Using this new technolog
IUCF has produced a large number ofpp spin correlation
parameters of very high precision. In Table XV, we list t
new IUCF data together with otherpp data published be-
tween January 1993 and December 1999. Table XV lists
published after-1992pp data below 350 MeV except for on
set, namely, 14pp differential cross sections at 45°~lab!
between 299.8 and 406.8 keV by Dombrowskiet al. @60#;
according to the Nijmegen rejection criteria@50#, this set is
to be discarded. The total number of~accepted! after-1992

TABLE IX. Parameters of the scalar isoscalar bosons,s1

ands2, for the T50 np potential. An asterisk denotes the defau
which is the3S1 parameters. The boson massesms1

andms2
are in

units of MeV. A blank indicates that thes2 contribution is not
considered.

gs1

2 /4p (ms1
) gs2

2 /4p (ms2
)

3S1 0.51673 (350) 14.01164 (793)
1P1 , 3D2 0.81, 0.53 (*) 71.5, 154.5~1225!
3D1 0.575 (*)
3D3 3.4 ~452!
1F3 0.73 (*)
3G3 0.29 (*)
3G4 0.62 (*)
3G5 , 3I 5 0.96 (*)
1H5 * (*)
1-10
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TABLE X. pp phase shifts in degrees.

Tlab ~MeV! 1S0
3P0

3P1
1D2

3P2
3F2 e2

3F3
1G4

3F4

1 32.79 0.13 20.08 0.00 0.01 0.00 0.00 0.00 0.00 0.0
5 54.85 1.58 20.90 0.04 0.22 0.00 20.05 0.00 0.00 0.00

10 55.20 3.72 22.05 0.17 0.66 0.01 20.20 20.03 0.00 0.00
25 48.63 8.58 24.90 0.70 2.50 0.10 20.81 20.23 0.04 0.02
50 38.86 11.54 28.31 1.71 5.84 0.33 21.73 20.70 0.15 0.12

100 24.91 9.57 213.37 3.77 10.97 0.78 22.72 21.53 0.42 0.50
150 14.73 4.76 217.62 5.67 13.98 1.10 22.99 22.12 0.69 1.04
200 6.58 20.49 221.49 7.26 15.68 1.27 22.88 22.48 0.97 1.63
250 20.29 25.62 225.05 8.55 16.63 1.26 22.59 22.68 1.26 2.19
300 26.26 210.48 228.36 9.54 17.12 1.08 22.21 22.75 1.55 2.69
350 211.56 215.04 231.45 10.27 17.33 0.73 21.80 22.72 1.83 3.11
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pp data is 1145, which should be compared to the numbe
pp data in the 1992 base, namely, 1787. Thus, thepp data-
base has increased by about 2/3 since 1992. The import
of the newpp data is further enhanced by the fact that th
are of much higher quality than the old ones.

Neutron-proton data published between January 1993
December 1999 are listed in Table XVI. There are 544 s
data, which is a small number as compared to the 2514np
data of the 1992 base. Note that Table XVI is not a list of
np data published after 1992. Not listed are four measu
ments ofnp differential cross sections@71–74#. We have
examined these data and found in each case that they
duced an improbably highx2 when compared to curren
phase shift analyses@46,49#. Applying the Nijmegen rejec-
tion rule @50,46#, the data of all four experiments are to b
discarded. We follow this rule here, because we use
Nijmegen database for the pre-1993 period. When we
data to this base, then consistency requires that we apply
same selection criteria used for assembling the older pa
the base. However, we would like to stress that we do
derstand that any discarding of published data~i.e., data that
have passed the refereeing process! is a highly questionable
procedure. The problem of thenp differential cross section
data is an unresolved issue that deserves the full attentio
all NN practitioners. Some aspects of the problem were
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cently discussed in Ref.@75#. Finally, our 1999 database i
the sum of the 1992 base and the after-1992 data and,
consists of the worldNN data below 350 MeV that were
published before the year of 2000~and not rejected!.

The x2/datum produced by the CD-Bonn potential in r
gard to the databases defined above are listed in Table X
For the purpose of comparison, we also give the correspo
ing x2 values for the Nijmegen phase shift analysis@46# and
the recent ArgonneV18 potential @35#. What stands out in
Table XVII are the rather large values for thex2/datum gen-
erated by the Nijmegen analysis and the Argonne poten
for the after-1992pp data, which are essentially the ne
IUCF data. This fact is a clear indication that these new d
provide a very critical test/constraint for anyNN model. It
further indicates that fitting the pre-1993pp data does not
necessarily imply a good fit of those IUCF data. On the ot
hand, fitting the new IUCF data does imply a good fit of t
pre-1993 data. The conclusion from these two facts is t
the new IUCF data provide information that was not co
tained in the old database. Or, in other words, the pre-1
data were insufficient and still left too much latitude for pi
ning downNN models. One thing in particular that we no
ticed is that the3P1 phase shifts above 100 MeV have to b
lower than the values given in the Nijmegen analysis.

The bottom line is that for the 1999 database~which con-
0

TABLE XI. nn phase shifts in degrees.

Tlab ~MeV! 1S0
3P0

3P1
1D2

3P2
3F2 e2

3F3
1G4

3F4

1 57.63 0.21 20.12 0.00 0.02 0.00 0.00 0.00 0.00 0.0
5 61.00 1.85 21.04 0.05 0.27 0.00 20.06 20.01 0.00 0.00

10 57.79 4.10 22.24 0.18 0.76 0.01 20.22 20.04 0.00 0.00
25 49.05 8.94 25.13 0.74 2.71 0.11 20.85 20.24 0.04 0.02
50 38.61 11.71 28.54 1.77 6.15 0.34 21.76 20.71 0.16 0.12

100 24.38 9.49 213.60 3.88 11.33 0.79 22.73 21.55 0.42 0.52
150 14.14 4.56 217.87 5.80 14.32 1.11 22.97 22.13 0.70 1.06
200 5.96 20.75 221.74 7.42 16.01 1.28 22.85 22.49 0.98 1.66
250 20.92 25.92 225.31 8.72 16.94 1.27 22.54 22.68 1.28 2.23
300 26.90 210.80 228.63 9.72 17.42 1.09 22.15 22.74 1.57 2.73
350 212.21 215.38 231.72 10.46 17.60 0.73 21.74 22.70 1.86 3.15
1-11
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TABLE XII. T51 np phase shifts in degrees.

Tlab ~MeV! 1S0
3P0

3P1
1D2

3P2
3F2 e2

3F3
1G4

3F4

1 62.09 0.18 20.11 0.00 0.02 0.00 0.00 0.00 0.00 0.0
5 63.67 1.61 20.93 0.04 0.26 0.00 20.05 0.00 0.00 0.00

10 60.01 3.62 22.04 0.16 0.72 0.01 20.18 20.03 0.00 0.00
25 50.93 8.10 24.81 0.69 2.60 0.09 20.76 20.20 0.03 0.02
50 40.45 10.74 28.18 1.73 5.93 0.30 21.64 20.62 0.13 0.11

100 26.38 8.57 213.23 3.86 11.01 0.72 22.63 21.42 0.39 0.48
150 16.32 3.72 217.51 5.82 13.98 1.03 22.90 21.98 0.67 1.01
200 8.31 21.55 221.38 7.45 15.66 1.19 22.79 22.33 0.96 1.59
250 1.59 26.68 224.96 8.76 16.59 1.17 22.50 22.51 1.26 2.15
300 24.25 211.54 228.27 9.76 17.08 0.98 22.13 22.57 1.56 2.65
350 29.44 216.10 231.37 10.49 17.28 0.62 21.72 22.53 1.85 3.06
e
r

a

cal

as
ble

al
tains 5990pp andnp data!, the CD-Bonn potential yields a
x2/datum of 1.02, while the Nijmegen analysis produc
1.04 and the Argonne potential 1.21. We have also compa
other recentNN potentials andNN analyses to the 1999
database and found in all case ax2/datum>1.05. Thus we
can conclude that the CD-Bonn potential fits the worldNN
data below 350 MeV available in the year of 2000 better th
any phase shift analysis and any otherNN potential.
02400
s
ed

n

V. THE DEUTERON

The CD-Bonn potential has been fitted to the empiri
value for the deuteron binding energyBd52.224575 MeV
@76# using relativistic kinematics. Once this adjustment h
been made, the other deuteron properties listed in Ta
XVIII are predictions. For the asymptoticD/S state ratio, we
find h50.0256—in accurate agreement with the empiric
solid
FIG. 6. pp phase parameters in partial waves withJ<4. The solid line represents the predictions by the CD-Bonn potential. The
dots and open circles are the results from the Nijmegen multienergypp phase shift analysis@46# and the VPI single-energypp analysis
SM99 @49#, respectively.
1-12
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TABLE XIII. T50 np phase shifts in degrees.

Tlab ~MeV! 1P1
3S1

3D1 e1
3D2

1F3
3D3

3G3 e3
3G4

1 20.19 147.75 20.01 0.11 0.01 0.00 0.00 0.00 0.00 0.0
5 21.49 118.18 20.18 0.68 0.22 20.01 0.00 0.00 0.01 0.00

10 23.05 102.62 20.68 1.17 0.85 20.07 0.01 0.00 0.08 0.01
25 26.35 80.63 22.80 1.81 3.72 20.42 0.05 20.05 0.55 0.17
50 29.73 62.73 26.44 2.13 8.97 21.11 0.33 20.26 1.61 0.72

100 214.43 43.06 212.25 2.45 17.22 22.15 1.45 20.94 3.49 2.17
150 218.33 30.47 216.50 2.79 22.09 22.87 2.70 21.76 4.83 3.64
200 221.77 20.95 219.68 3.18 24.51 23.48 3.70 22.60 5.76 4.99
250 224.84 13.21 222.12 3.60 25.36 24.08 4.31 23.39 6.40 6.18
300 227.57 6.65 224.03 4.00 25.21 24.73 4.54 24.09 6.83 7.21
350 230.00 0.92 225.53 4.38 24.44 25.45 4.44 24.71 7.14 8.07
n-

fe
lu

y

d-

t
ac-

ti-
determination by Rodning and Knutson@78#. The deuteron
matter radius is predicted to ber d51.966 fm which agrees
well with the value extracted from recent hydroge
deuterium isotope shift measurementsr d51.971(6) fm@79#.
Note that the deuteron effective rangerd[r(2Bd ,2Bd)
and the asymptoticS stateAS are not directly observable
quantities. Thus, ‘‘empirical’’ values forrd andAS quoted in
the literature are model dependent. Therefore, the per
agreement between our predictions and the empirical va
02400
ct
es

for rd and AS is of no fundamental significance. It onl
means that all models~including our own! are consistent
with each other.

More interesting is our prediction for the deuteron qua
rupole momentQd50.270 fm2 which is below the empiri-
cal value of 0.2859~3! fm2 @80,77#. Our calculation does no
include relativistic and meson current corrections which
cording to Henning@81# contribute typically about 0.010 fm2

for the Bonn OBE potentials. This would raise our theore
solid
FIG. 7. np phase parameters in partial waves withJ<4. The solid line represents the predictions by the CD-Bonn potential. The
dots and open circles are the results from the Nijmegen multienergynp phase shift analysis@46# and the VPI single-energynp analysis
SM99 @49#, respectively.
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cal value toQd'0.280 fm2, still 0.006 fm2 below experi-
ment. All recentNN potentials that use the ‘‘small’’pNN
coupling constantgp

2 /4p513.6 underpredictQd by about the
same amount. In Refs.@18,82# it was shown thatQd depends
sensitively ongp and that a valuegp

2 /4p>14.0 would solve
the problem. However, a largergp is inconsistent with the
low-energypp Ay data~see Ref.@18# for a detailed discus-

FIG. 7. ~Continued!.
02400
sion of this issue!. Thus, the accurate explanation of the de
teron quadrupole moment is an unresolved problem at
time.

In Table XVIII, we also give the deuteronD-state prob-
ability PD . This quantity is not an observable, but it is
great theoretical interest. CD-Bonn predictsPD54.85%
while local potentials typically predictPD'5.7%, which is
clearly reflected in the deuteronD waves, Figs. 8 and 9. The
smallerPD value of CD-Bonn can be traced to the nonloca
ties contained in the tensor force as discussed in Sec. II
demonstrated in Fig. 2. The CD-Bonn and the Nijmege
@34# potentials have nonlocal central forces which expla
the soft behavior of their deuteronSwaves at short distance
that is particularly apparent in the plot of Fig. 9. Numeric
values of our deuteron waves and a convenient paramet
tion are given in Appendix C which also contains an acco
of how to conduct deuteron calculations in momentum spa

VI. CONCLUSIONS

We have constructed charge dependentNN potentials,
that fit the world proton-proton data below 350 MeV~2932
data! with a x2/datum of 1.01 and the correspondin
neutron-proton data~3058 data! with x2/datum51.02. This
reproduction of theNN data is more accurate than by an
other knownNN potential or phase-shift analysis. This
achieved by the introduction of two effectives mesons the
parameters of which are partial-wave dependent. A partic
challenge are thepp spin correlation parameters that we
recently measured at the IUCF Cooler Ring with very hi
precision~1126 data below 350 MeV!. Our pp potential re-
produces these data withx2/datum51.03, while the high-
quality Nijmegen analysis@46# and the ArgonneV18 poten-
tial @35# producex2/datum of 1.24 and 1.74, respectively, fo
these data.

The charge dependence of the present potential~which we
call ‘‘CD-Bonn’’ ! is based upon the predictions by the Bo
full model for charge symmetry and charge-independe
breaking in all partial waves withJ<4. Thus, our model

TABLE XIV. Scattering lengths~a! and effective ranges~r! in
units of fm.

CD-Bonn Experiment Reference~s!

1S0

app
C 27.8154 27.814960.0029 @52#

r pp
C 2.773 2.76960.014 @52#

app
N 217.4602

r pp
N 2.845

ann
N 218.9680 218.960.4 @26,27#

r nn
N 2.819 2.7560.11 @25#

anp 223.7380 223.74060.020 @28#

r np 2.671 ~2.7760.05! @28#
3S1

at 5.4196 5.41960.007 @28#

r t 1.751 1.75360.008 @28#
1-14
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TABLE XV. After-1992 pp data below 350 MeV included in the 1999pp database. ‘‘Error’’ refers to the
normalization error. This table contains 1113 observables and 32 normalizations resulting in a total o
data.

Tlab ~MeV! No. observable Error~%! Institution~s! Ref.

25.68 8D 1.3 Erlangen, Zu¨rich, PSI @54#

25.68 6R 1.3 Erlangen, Zu¨rich, PSI @54#

25.68 2A 1.3 Erlangen, Zu¨rich, PSI @54#

197.4 41P 1.3 Wisconsin, IUCF @55#

197.4 41Axx 2.5 Wisconsin, IUCF @55#

197.4 41Ayy 2.5 Wisconsin, IUCF @55#

197.4 41Axz 2.5 Wisconsin, IUCF @55#

197.4 39Azz 2.0 Wisconsin, IUCF @56#

197.8 14P 1.3 Wisconsin, IUCF @57#

197.8 14Axx 2.4 Wisconsin, IUCF @57#

197.8 14Ayy 2.4 Wisconsin, IUCF @57#

197.8 14Axz 2.4 Wisconsin, IUCF @57#

197.8 10D None IUCF @58#

197.8 5R None IUCF @58#

197.8 5R8 None IUCF @58#

197.8 5A None IUCF @58#

197.8 5A8 None IUCF @58#

250.0 41P 1.3 IUCF, Wisconsin @59#

250.0 41Axx 2.5 IUCF, Wisconsin @59#

250.0 41Ayy 2.5 IUCF, Wisconsin @59#

250.0 41Axz 2.5 IUCF, Wisconsin @59#

280.0 41P 1.3 IUCF, Wisconsin @59#

280.0 41Axx 2.5 IUCF, Wisconsin @59#

280.0 41Ayy 2.5 IUCF, Wisconsin @59#

280.0 41Axz 2.5 IUCF, Wisconsin @59#

294.4 40P 1.3 IUCF, Wisconsin @59#

294.4 40Axx 2.5 IUCF, Wisconsin @59#

294.4 40Ayy 2.5 IUCF, Wisconsin @59#

294.4 40Axz 2.5 IUCF, Wisconsin @59#

310.0 40P 1.3 IUCF, Wisconsin @59#

310.0 40Axx 2.5 IUCF, Wisconsin @59#

310.0 40Ayy 2.5 IUCF, Wisconsin @59#

310.0 40Axz 2.5 IUCF, Wisconsin @59#

350.0 40P 1.3 IUCF, Wisconsin @59#

350.0 40Axx 2.5 IUCF, Wisconsin @59#

350.0 40Ayy 2.5 IUCF, Wisconsin @59#

350.0 40Axz 2.5 IUCF, Wisconsin @59#
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includes considerably more charge dependence than o
recently developed charge-dependent potentials@34,35#. For
example, the Nijmegen potentials@34# include essentially
only charge dependence due to OPE which produces C
but no CSB. Thus, the Nijmegen group does not offer a
genuine neutron-neutron potentials. To have distinctpp and
nn potentials is important for addressing several interes
issues in nuclear physics, such as the3H-3He binding energy
difference for which the CD-Bonn potential predicts 60 ke
in agreement with empirical estimates. Another issue is
Nolen-Schiffer anomaly@4#. Some potentials that includ
CSB focus on the1S0 state only, since this is where the mo
reliable empirical information is. However, this is not goo
02400
er

B,
y

g

e

enough. In Ref.@5# it has been shown that CSB in states w
J.0 is crucial for the explanation of the Nolen-Schiffe
anomaly.

The CD-Bonn potential is represented in terms of the
variant Feynman amplitudes for one-boson exchange wh
are nonlocal. Therefore, the off-shell behavior of the C
Bonn potential differs in a characteristic way from the one
commonly used local potentials.

The simplest system in which off-shell differences b
tweenNN potentials can be investigated is the deuteron~see
Ref. @83# for a thorough study of this issue!. Our plots of the
deuteron wave functions, Figs. 8 and 9, make this point v
clear. Empirical tests of deuteron wave functions can be c
1-15
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ducted via the structure functionsA(Q2), B(Q2), and the
tensor polarization in elastic electron-deuteron scatte
T20(Q

2) or, alternatively, via the three deuteron form facto
GC(Q2), GQ(Q2), and GM(Q2), for which the deuteron
wave functions are crucial input. Using the deuteron wa
functions derived from the Bonn model, Arenho¨vel and co-
workers@84# find a good agreement between theory and
periment for A(Q2), B(Q2), and T20(Q

2) up to Q2

530 fm22. Very recently, the tensor polarizationT20(Q
2)

has been measured up toQ2545 fm22 at the Jefferson
Laboratory@85#. The best reproduction of these new hig
precision data is provided by two calculations that are ba
upon the Bonn deuteron wave functions@86,87#.

Another way in which the off-shell behavior of our pote
tial shows up is by yielding larger binding energies in micr
scopic calculations of nuclear few- and many-body syste
@88#, where underbinding is a persistent problem. To dem
strate this, we have computed the binding energy of the tr
in a 34-channel, charge-dependent Faddeev calculation.
prediction by the CD-Bonn potential is 8.00 MeV. Loc

TABLE XVI. After-1992 np data below 350 MeV included in
the 1999np database. ‘‘Error’’ refers to the normalization erro
This table contains 524 observables and 20 normalizations resu
in a total of 544 data.

Tlab ~MeV! No. observable Error~%! Institution~s! Ref.

3.65–11.6 9DsT None TUNL @61#

4.98–19.7 6DsL None TUNL @62#

4.98–17.1 5DsT None TUNL @62#

14.11 6s 0.7 Tübingen @63#

15.8 1Dt None Bonn @64#

16.2 1DsT None Prague @65#

16.2 1DsL None Prague @66#

175.26 84P Floata TRIUMF @67#

203.15 100P 4.7 TRIUMF @67#

217.24 100P 4.5 TRIUMF @67#

260.0 8Rt 3.0 PSI @68#

260.0 8At 3.0 PSI @68#

260.0 3At 3.0 PSI @68#

260.0 8Dt 3.0 PSI @68#

260.0 3Dt 3.0 PSI @68#

260.0 8P 2.0 PSI @68#

260.0 3P 2.0 PSI @68#

261.00 88P 4.1 TRIUMF @67#

312.0 24P 4.0 SATURNE @69#

312.0 11Azz 4.0 SATURNE @70#

318.0 8Rt 3.0 PSI @68#

318.0 8At 3.0 PSI @68#

318.0 5At 3.0 PSI @68#

318.0 8Dt 3.0 PSI @68#

318.0 5Dt 3.0 PSI @68#

318.0 8P 2.0 PSI @68#

318.0 5P 2.0 PSI @68#

aThis data set is floated because all current phase shift analyse
np potentials predict a norm that is about 4 standard deviations
the experimental normalization error of 4.9%.
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potentials typically predict 7.62 MeV@89,90# and the experi-
mental value is 8.48 MeV. Thus, the nonlocality of the C
Bonn potential explains almost 50% of the gap that pers
between the predictions by local potentials and experim
Similar results are obtained for thea particle @90,91#. Con-
cerning the small difference that is left between the C
Bonn predictions and experiment, two comments are
place. First, in addition to the relativistic, nonlocal effec
that can be absorbed into the two-body potential conc
there are further relativistic corrections that come from
relativistic treatment of the three-body system. This
creases the triton binding energy by 0.2–0.3 MeV@92–
94,10#. Second, notice that the present nonlocal potential
cludes only the nonlocalities that come from mes
exchange and from the partial-wave dependence of ths
parameters. However, the composite structure~quark sub-
structure! of hadrons should provide additional nonlocaliti
@95# which may be even larger. It is a challenging topic f
future research to derive these additional nonlocalities,
test their impact on nuclear structure predictions.

The trend of the nonlocal Bonn potential to increase bin
ing energies has also a very favorable impact on predicti
for nuclear matter@7,23# and the structure of finite nucle
@96–98#. Due to the very accurate fit of even the latest hig
precisionNN data; due to the comprehensive and sophi
cated charge dependence incorporated in the model; and
to the well-founded off-shell behavior, the CD-Bonn pote
tial @99# represents a promising starting point for exact fe
body calculations and microscopic nuclear many-bo
theory.
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APPENDIX A: TWO-NUCLEON SCATTERING IN
MOMENTUM SPACE

1. Scattering equation

Two-nucleon scattering is described covariantly by t
Bethe-Salpeter~BS! equation@22# which reads in operato
notation

T5V1VGT ~A1!

with T the invariant amplitude for the two-nucleon scatteri
process,V the sum of all connected two-particle irreducib
diagrams, andG the relativistic two-nucleon propagato
Since this four-dimensional integral equation is very diffic
to solve, so-called three-dimensional reductions have b
proposed, which are more amenable to numerical solut
Furthermore, it has been shown by Gross@100# that the full
BS equation in ladder approximation~that is, the kernelV is
restricted to the exchange of single particles as, e.g., in
OBE model! does not have the correct one-body limit~i.e.,
when one of the particles becomes very massive! while a

ng

and
ff
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TABLE XVII. x2/datum for the CD-Bonn potential, the Nijmegen phase shift analysis@46#, and the
ArgonneV18 potential@35# in regard to various databases discussed in the text.

CD-Bonn Nijmegen Argonne
potential phase shift analysis V18 potential

proton-proton data
1992pp database~1787 data! 1.00 1.00 1.10
After-1992pp data~1145 data! 1.03 1.24 1.74
1999pp database~2932 data! 1.01 1.09 1.35

neutron-proton data
1992np database~2514 data! 1.03 0.99 1.08
After-1992np data~544 data! 0.99 0.99 1.02
1999np database~3058 data! 1.02 0.99 1.07

pp andnp data
1992NN database~4301 data! 1.02 0.99 1.09
1999NN database~5990 data! 1.02 1.04 1.21
n
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e

e
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large family of three-dimensional quasipotential equatio
does. These approximations to the BS equation are also
variant and satisfy relativistic elastic unitarity. Thre
dimensional reductions are typically derived by replac
Eq. ~A1! with two coupled equations@101#

T5W1WgT ~A2!

and

W5V1V~G2g!W, ~A3!

whereg is a covariant three-dimensional propagator with
same elastic unitarity cut asG in the physical region. In
general, the second term on the right-hand side of Eq.~A3! is
dropped to obtain a true simplification of the problem.

More explicitly, the BS equation for an arbitrary fram
reads@20#

T~q8;quP!5V~q8;quP!1E d4kV~q8;kuP!G~kuP!T~k;quP!

~A4!

with
02400
s
o-

e

G~kuP!5
i

2p

1

S 1

2
P” 1k”2M1 i e D (1)

1

S 1

2
P” 2k”2M1 i e D (2)

~A5!

5
i

2p F 1

2
P” 1k”1M

S 1

2
P1kD 2

2M21 i e
G (1)

3F 1

2
P” 2k”1M

S 1

2
P2kD 2

2M21 i e
G (2)

, ~A6!

where q, k, and q8 are the initial, intermediate, and fina
relative four-momenta, respectively, andP5(P0 ,P) is the
total four-momentum. For example, in the initial state w
haveq5 1

2 (p12p2),P5p11p2 ,andp1/25
1
2 6q with p1 and

p2 the individual four-momenta of particles 1 and 2. In th
center-of-mass~c.m.! frame, we will haveP5(As,0) with
As the total energy. For all four-momenta, our notation isk
5(k0 ,k); k”[gmkm . M denotes the nucleon mass. The s
TABLE XVIII. Deuteron properties.

CD-Bonn Empirical Ref~s!.

Binding energyBd ~MeV! 2.224575 2.224575~9! @76#

Deuteron effective rangerd5r(2Bd ,2Bd) ~fm! 1.765 1.765~9! @28,30,77#
AsymptoticS stateAS (fm21/2) 0.8846 0.8846~9! @30,77#
AsymptoticD/S stateh 0.0256 0.0256~4! @78#

Matter radiusr d ~fm! 1.966 1.971~6! @79#

Quadrupole momentQd (fm2) 0.270a 0.2859~3! @80,77#
D-state probabilityPD ~%! 4.85

aWithout meson current contributions and relativistic corrections.
1-17
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perscripts in Eq.~A6! refer to particles~1! and ~2!. At this
stage,T,V, andG are operators in spinor space, i.e., they
16316 matrices which, when sandwiched between Di
spinors, yield the corresponding matrix elements. It is co
mon to the derivation of all three-dimensional reductions t
the time component of the relative momentum is fixed
some covariant way, so that it no longer appears as an i
pendent variable in the propagator.

Following Blankenbecler and Sugar~BbS! @21#, one pos-
sible choice forg is ~stated in manifestly covariant form fo
an arbitrary frame!

gBbS~k,s!52E
4M2

` ds8

s82s2 i e
d (1)

3F S 1

2
P81kD 2

2M2Gd (1)F S 1

2
P82kD 2

2M2G
3F1

2
P” 81k”1M G (1)F1

2
P” 82k”1M G (2)

~A7!

with d (1) indicating that only the positive energy root of th
argument of thed function is to be included;P25s andP8
[As8/AsP. By construction, the propagatorgBbS has the
same imaginary part asG and, therefore, preserves the un
tarity relation satisfied byT. In the c.m. frame, integration
yields

gBbS~k,s!5d~k0!ḡBbS~k,s! ~A8!

with

ḡBbS~k,s!5
M2

Ek

L1
(1)~k!L1

(2)~Àk!

1

4
s2Ek

21 i e

, ~A9!

where

L1
( i )~k!5S g0Ek2g•k1M

2M D ( i )

~A10!

FIG. 8. Deuteron wave functions. The family of large curves
u(r ) and the family of small curves isw(r ). The solid lines repre-
sent the wave functions generated from the CD-Bonn poten
while the dashed and dotted lines are from the Nijmegen-I@34# and
ArgonneV18 @35# potentials, respectively.
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l i

uu~k,l i !&^ū~k,l i !u ~A11!

represents the positive-energy projection operator
nucleon i ( i 5 1 or 2! with u(k) a positive-energy Dirac
spinor of momentumk; ū[u†g0. l i denotes the helicity of
the respective nucleon, andEk[AM21k2 with M the
nucleon mass. The projection operators imply that virt
antinucleon contributions are suppressed.

Using the approximationW'V @see Eq.~A3!#, we obtain
the explicit form of Eq.~A2! by simply replacingG by gBbS
in Eq. ~A4!. This yields in the c.m. frame

T~0,q8;0,quAs!5V~0,q8;0,q!1E d3kV~0,q8;0,k!ḡBbS~k,s!

3T~0,k;0,quAs!. ~A12!

Note that four-momentum is conserved at each vertex,
that in the initial state the nucleons are on their mass-sh
thereforeq5(0,q). The total c.m. energy is

As52Eq52AM21q2. ~A13!

With this we obtain, simplifying our notation,

T~q8,q!5V~q8,q!1E d3kV~q8,k!
M2

Ek

L1
(1)~k!L1

(2)~Àk!

q22k21 i e

3T~k,q!. ~A14!

Taking matrix elements between positive-energy spin
yields an equation for the invariant scattering amplitude

T̄~q8,q!5V̄~q8,q!1E d3kV̄~q8,k!
M2

Ek

1

q22k21 i e
T̄~k,q!,

~A15!

where helicity and isospin indices are suppressed.
Defining

l,

FIG. 9. The deuteron wave functions of Fig. 8 in an alternat
representation. The family of large curves isu(r )/r and the family
of small curves isw(r )/r .
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T~q8,q!5A M

Eq8

T̄~q8,q!AM

Eq
~A16!

and

V~q8,q!5A M

Eq8

V̄~q8,q!AM

Eq
, ~A17!

which has become known as ‘‘minimal relativity’’@102#, we
can rewrite Eq.~A15! as

T~q8,q!5V~q8,q!1E d3kV~q8,k!
M

q22k21 i e
T~k,q!

~A18!

which has the form of the familiar Lippmann-Schwing
equation. The quantityT has the usual~nonrelativistic! rela-
tion to phase shifts andNN observables. Thus, theNN po-
tential V defined in Eq. ~A17! and used in the abov
Lippmann-Schwinger equation can be applied in the d
teron and in conventional nuclear structure physics in
same way as any other~nonrelativistic! potential. This is the
great virtue of the~relativistic! BbS equation.

2. R matrix and partial wave decomposition

In solving the scattering equation, it is more convenien
deal with real quantities. We shall therefore introduce
realR matrix ~better known as ‘‘K matrix’’ ! defined by@103#

R5T1 ipTd~E2H0!R. ~A19!

The equation for the realR matrix corresponding to the com
plex T matrix of Eq.~A18! is

R~q8,q!5V~q8,q!1PE d3kV~q8,k!
M

q22k2
R~k,q!,

~A20!

whereP denotes the principal value.
Now, we need to also include the spin of the nucleo

Relativistic scattering of particles with spin is treated m
conveniently in the helicity formalism@104#. Therefore, we
will use a helicity state basis in our further formal develo
ments. Our presentation will be relatively brief; a more d
tailed derivation is given in Appendix C of Ref.@1# which is
based upon Refs.@104,105#.

The helicityl i of particle i ~with i 51 or 2! is the eigen-
value of the helicity operator12 si•pi /upi u which is 6 1

2 . Us-
ing helicity states, theR-matrix equation reads, after partia
wave decomposition

^l18l28uR
J~q8,q!ul1l2&

5^l18l28uV
J~q8,q!ul1l2&

1 (
h1 ,h2

PE
0

`

dkk2
M

q22k2
^l18l28uV

J~q8,k!uh1h2&

3^h1h2uRJ~k,q!ul1l2&, ~A21!
02400
-
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where J denotes the total angular momentum of the tw
nucleons. Here we are changing our notation for mome
in the above equation and throughout the rest of Appendix
momenta denoted by nonbold letters are the magnitude
three-momenta, e.g.,q[uqu, k[uku, etc.;h1 andh2 are the
helicities in intermediate states for nucleon 1 and 2, resp
tively. Equation~A21! is a system of coupled integral equ
tions which needs to be solved to obtain the desired ma
elements ofRJ.

Ignoring antiparticles, there are 434516 helicity ampli-
tudes forRJ. However, time-reversal invariance, parity co
servation, and the fact that we are dealing with two identi
fermions imply that only six amplitudes are independent. F
these six amplitudes, we choose the following set:

R1
J~q8,q![^11uRJ~q8,q!u11&,

R2
J~q8,q![^11uRJ~q8,q!u22&,

R3
J~q8,q![^12uRJ~q8,q!u12&,

R4
J~q8,q![^12uRJ~q8,q!u21&, ~A22!

R5
J~q8,q![^11uRJ~q8,q!u12&,

R6
J~q8,q![^12uRJ~q8,q!u11&,

where6 stands for6 1
2 . Notice that

R5
J~q8,q!5R6

J~q,q8!. ~A23!

We have now six coupled equations. To partially d
couple this system, it is useful to introduce the followin
linear combinations of helicity amplitudes:

0RJ[R1
J2R2

J ,

1RJ[R3
J2R4

J ,

12RJ[R1
J1R2

J , ~A24!

34RJ[R3
J1R4

J ,

55RJ[2R5
J ,

66RJ[2R6
J .

We also introduce corresponding definitions forVJ. Using
these definitions, Eq.~A21! decouples into the following
three subsystems of integral equations.

Spin singlet

0RJ~q8,q!50VJ~q8,q!

1PE
0

`

dkk2
M

q22k2
0VJ~q8,k!0RJ~k,q!.

~A25!

Uncoupled spin triplet
1-19
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1RJ~q8,q!51VJ~q8,q!

1PE
0

`

dkk2
M

q22k2
1VJ~q8,k!1RJ~k,q!.

~A26!

Coupled triplet states

12RJ~q8,q!512VJ~q8,q!

1PE
0

`

dkk2
M

q22k2
@12VJ~q8,k!12RJ~k,q!

155VJ~q8,k!66RJ~k,q!#,

34RJ~q8,q!534VJ~q8,q!

1PE
0

`

dkk2
M

q22k2
@34VJ~q8,k!34RJ~k,q!

166VJ~q8,k!55RJ~k,q!#,

55RJ~q8,q!555VJ~q8,q!

1PE
0

`

dkk2
M

q22k2
@12VJ~q8,k!55RJ~k,q!

155VJ~q8,k!34RJ~k,q!#,

66RJ~q8,q!566VJ~q8,q!

1PE
0

`

dkk2
M

q22k2
@34VJ~q8,k!66RJ~k,q!

166VJ~q8,k!12RJ~k,q!#. ~A27!

More common in nuclear physics is the representation
two-nucleon states in terms of anuLSJM& basis, whereS
denotes the total spin,L the total orbital angular momentum
andJ the total angular momentum with projectionM. In this
basis, we will denote theR matrix elements byRL8,L

JS

[^L8SJMuRuLSJM&. These are obtained from the helici
state matrix elements by the following unitary transform
tion.

Spin singlet

RJ,J
J0 50RJ. ~A28!

Uncoupled spin triplet

RJ,J
J1 51RJ. ~A29!

Coupled triplet states

RJ21,J21
J1 5

1

2J11
@J12RJ1~J11!34RJ

1AJ~J11!~55RJ166RJ!#,
02400
f

-

RJ11,J11
J1 5

1

2J11
@~J11!12RJ1J34RJ

2AJ~J11!~55RJ166RJ!#,

RJ21,J11
J1 5

1

2J11
@AJ~J11!~12RJ234RJ!

2J55RJ1~J11!66RJ!],

RJ11,J21
J1 5

1

2J11
@AJ~J11!~12RJ234RJ!

1~J11!55RJ2J66RJ!]. ~A30!

Similar notation and transformations apply toV.
One way to proceed is to solve the system of equati

~A27! and then apply the transformation~A30!. Alterna-
tively, one may apply the transformation~A30! directly in
Eq. ~A27! to obtain the system of four coupled integral equ
tions in theLSJ representation

R11
J1 ~q8,q!5V11

J1 ~q8,q!

1PE
0

`

dkk2
M

q22k2
@V11

J1 ~q8,k!R11
J1 ~k,q!

1V12
J1 ~q8,k!R21

J1 ~k,q!#,

R22
J1 ~q8,q!5V22

J1 ~q8,q!

1PE
0

`

dkk2
M

q22k2
@V22

J1 ~q8,k!R22
J1 ~k,q!

1V21
J1 ~q8,k!R12

J1 ~k,q!#,

R12
J1 ~q8,q!5V12

J1 ~q8,q!

1PE
0

`

dkk2
M

q22k2
@V11

J1 ~q8,k!R12
J1 ~k,q!

1V12
J1 ~q8,k!R22

J1 ~k,q!#,

R21
J1 ~q8,q!5V21

J1 ~q8,q!

1PE
0

`

dkk2
M

q22k2
@V22

J1 ~q8,k!R21
J1 ~k,q!

1V21
J1 ~q8,k!R11

J1 ~k,q!#, ~A31!

where we used the abbreviationsR11
J1 [RJ11,J11

J1 ,R22
J1

[RJ21,J21
J1 ,R12

J1 [RJ11,J21
J1 ,R21

J1 [RJ21,J11
J1 ; and similarly

for V.
The above integral equations can be solved numeric

by the matrix inversion method@106#. The method is ex-
plained in detail in Ref.@107# where also a computer code
provided. Each two-nucleon state carries a well-defined t
isospinT ~which is either 0 or 1! that is fixed by
1-20
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~21!L1S1T521. ~A32!

3. Phase shifts

Phase shifts are determined from the on-energy-sheR
matrix through the following.

Spin singlet

tan0dJ~Tlab!52
p

2
qM0RJ~q,q!. ~A33!

Uncoupled spin triplet

tan1dJ~Tlab!52
p

2
qM1RJ~q,q!. ~A34!

For thecoupled states, a unitary transformation is needed
diagonalize the two-by-two coupledR matrix. This requires
an additional parameter, known as the ‘‘mixing paramete
ẽJ . Using the convention introduced by Blatt and Biede
harn@108#, the eigenphases for the coupled channelsd̃7

J are
in terms of the on-shellR matrix

tand̃7
J ~Tlab!52

p

4
qMFR22

J 1R11
J 6

R22
J 2R11

J

cos 2eJ
G ,

tan2ẽJ~Tlab!5
2R12

J

R22
J 2R11

J
. ~A35!

Here, allR-matrix elements carry the arguments (q,q) where
q denotes the c.m. on-energy-shell momentum. For this
mentum and the nucleon massM we use the following.

Proton-proton scattering

q25
1

2
M pTlab, ~A36!

M5M p. ~A37!

Neutron-neutron scattering

q25
1

2
MnTlab, ~A38!

M5Mn. ~A39!

Neutron-proton scattering

q25
M p

2Tlab~Tlab12Mn!

~M p1Mn!212TlabM p

, ~A40!

M5
2M pMn

M p1Mn
5938.91852 MeV. ~A41!

In the above,M p denotes the proton mass,Mn the neutron
mass~see Table I for their accurate numerical values!, and
Tlab is the kinetic energy of the incident nucleon in the lab
ratory system. The relations betweenq2 and Tlab are based
upon relativistic kinematics.
02400
’’
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An alternative convention for the phase parameters
been introduced by Stappet al. @109# ~commonly known as
‘‘bar’’ phase shifts, but we denote them simply byd7

J and
eJ). These are related to the Blatt-Biedenharn parame
( d̃7

J and ẽJ) by

d1
J 1d2

J 5 d̃1
J 1 d̃2

J ,

sin~d2
J 2d1

J !5tan 2eJ /tan 2ẽJ , ~A42!

sin~ d̃2
J 2 d̃1

J !5sin 2eJ /sin 2ẽJ .

In this paper, all phase shifts shown in tables or figures ar
the Stapp convention.

The above formulas apply to the calculation of pha
shifts when only the short-range nuclear force is taken i
account~and no electromagnetic interaction!. This is, in gen-
eral, appropriate fornn andnp scattering. We also note tha
the above momentum space method is exactly equivalen
calculations conducted inr space where the radial Schro¨-
dinger equation

F d2

dr2
1q22

L~L11!

r 2
2MVGxL~r ;q!50, ~A43!

is solved for the radial wave functionxL(r ;q) which is then
matched to the appropriate asymptotic form of the wa
function to obtain the phase shift. When no long-range
tential is involved, the asymptotic wave functions a
Riccati-Bessel functions@110#.

In pp scattering, the long-range Coulomb potential mu
be taken into account. The asymptotic form of the wa
function then is~for an uncoupled case!

xL~r ;q!}FL~h8,qr !1tandL
CGL~h8,qr ! ~A44!

with FL andGL the regular and irregular Coulomb function
@110#. By dC we denote the phase shift of the nuclear p
Coulomb interaction with respect to Coulomb wave fun
tions; that is, in the notation of Ref.@50#, dC[dC1N

C . The
parameterh8 is the ‘‘relativistic’’ h defined by@111,112,50#

h85
a

v lab
5

M p

2q
a8, ~A45!

with

a85a
Eq

21q2

M pEq
, ~A46!

anda51/137.035989@8#. The total potentialV that appears
in Eq. ~A43! is now the sum of the nuclear potentialVN and
the Coulomb potentialVC ; i.e.,

V5VN1VC , ~A47!

where we use the ‘‘relativistic’’ Coulomb potential@112#
1-21
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VC5
a8

r
. ~A48!

Since we conduct our calculations in momentum space,
do not solve Eq.~A43! and, thus, do not have a numeric
x(r ;q) available that can be matched directly to t
asymptotic form, Eq.~A44!. However, there are ways to pe
form this matching within the framework of momentu
space calculations. We follow here the method proposed
Vincent and Phatak@113# in which the potential is divided
into a short-range partVS and a long-range partVL ; i.e.,

V5VS1VL ~A49!

with

VS5~VN1VC!u~R2r !, ~A50!

VL5VCu~r 2R!, ~A51!

where R is to be chosen such that the short-range nuc
potential has vanished forr .R (R'10 fm is an appropriate
choice!; andu is the usual Heaviside step function. First, o
calculates the phase shift~denoted bydL

S) that is produced by
VS alone. Notice thatVS is of rangeR and consists of the
nuclear potential plus the Coulomb potential cut off atr
5R. There is no problem in performing numerically th
Bessel transformation of a cutoff Coulomb potential to p
duce the momentum space version of this potential for
various partial waves. SinceVS is of finite range, the mo-
mentum space formalism can be used to calculatedL

S . The
asymptotic wave function associated withVS anddL

S is

xL
S~r ;q!}FL~h850,qr !1tandL

SGL~h850,qr !
~A52!

which should match smoothly the asymptotic function E
~A44! at r 5R. Note thatFL(h850,qr) and GL(h850,qr)
are equal to Riccati-Bessel functions. Matching the logar
mic derivatives yields the desired formula for the phase s
dL

C :

tandL
C5

AL~0!FL8~h8!2FL~h8!

GL~h8!2AL~0!GL8~h8!
~A53!

with

AL~0![
FL~0!1GL~0!tandL

S

FL8~0!1GL8~0!tandL
S

, ~A54!

where we are using the short notationFL(0)[FL(h8
50,qr), FL8(0)[dFL(0)/dr, FL(h8)[FL(h8,qr),
FL8(h8)[dFL(h8)/dr, and similarly forGL .

The above formalism, applies to uncoupled channels.
coupled channels, e.g.,3P2-3F2, the quantities in Eqs
~A44!, ~A52!, ~A53!, and ~A54! have to be replaced by 2
32 matrices, which we will define now:
02400
e

y

ar

-
e

.

-
ft

or

RS[S R̃22
S R̃21

S

R̃12
S R̃11

S D ~A55!

with

R̃L8L
S

52
p

2
qMpRL8L

S
~q,q!. ~A56!

The matrix elementsRL8L
S (q,q) are obtained by applying the

finite-range potential, Eq.~A50!, in a momentum space ca
culation. Further definitions

F0[S F2~0! 0

0 F1~0!
D , F08[S F28 ~0! 0

0 F18 ~0!
D ,

~A57!

G0[S G2~0! 0

0 G1~0!
D , G08[S G28 ~0! 0

0 G18 ~0!
D ,

~A58!

F1[S F2~h8! 0

0 F1~h8!
D , F18[S F28 ~h8! 0

0 F18 ~h8!
D ,

~A59!

G1[S G2~h8! 0

0 G1~h8!
D , G18[S G28 ~h8! 0

0 G18 ~h8!
D .

~A60!

We calculate

RC5@G12A0G18#21@A0F182F1# ~A61!

with

A0[~F01G0RS!~F081G08RS!21. ~A62!

The matrix elements ofRC are

RC[S R̃22
C R̃21

C

R̃12
C R̃11

C D ~A63!

with

R̃L8L
C

52
p

2
qMpRL8L

C
~q,q!. ~A64!

Inserting theRL8L
C (q,q) into Eq. ~A35! yields d̃7

C and ẽJ
C ~in

Blatt-Bidenharn conventions!, which are further converted
into the Stapp parametersd7

C and eJ
C , by means of Eq.

~A42!.
All pp phase shifts shown in this paper are Coulom

phase shifts,dC, as defined and calculated above. Howev
we would like to stress that, for the calculation of obse
ables~e.g., to obtain thex2 in regard to experimental data!,
we use electromagnetic phase shifts, as is necessary, w
we obtain by adding to the Coulomb phase shifts the effe
from two-photon exchange, vacuum polarization, and m
1-22
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netic moment interactions as calculated by the Nijmeg
group@50,51#. This is important for1S0 below 30 MeV and
negligible otherwise.

4. Effective range expansion

For low-energyS-wave scattering,qcotd can be expanded
as a function ofq

q

tand
5q cotd'2

1

a
1

1

2
rq21O~q4!, ~A65!

where a is called the scattering length andr the effective
range~for which, in some parts of this paper, we also use
notationaN and r N). This is appropriate fornn andnp.

In the case ofpp scattering, where the Coulomb potenti
is involved, a more sophisticated effective range expans
must be applied@50#,

C0
2~h8!qcot~dpp

C !12qh8h~h8!52
1

app
C

1
1

2
r pp

C q21O~q4!,

~A66!

where dpp
C denotes the1S0 pp phase shift with respect to

Coulomb functions andC0
2 andh are the standard function

C0
2~h8!5

2ph8

e2ph821
, ~A67!

h~h8!52 ln~h8!1Re@c~11 ih8!# ~A68!
02400
n

e

n

52 ln~h8!2g1h82(
n51

`

@n~n21h82!#21,

~A69!

where c denotes the digamma function andg
50.5772156649... .

This formalism takes care of the Coulomb force. Ho
ever, the full electromagnetic interaction between two p
tons has contributions beyond Coulomb, e.g., from tw
photon exchange and vacuum polarization. To include
full electromagnetic interaction into the effective range e
pansion is very involved. Therefore, the empirical values
the pp effective range parameters~which naturally involve
the full electromagnetic interaction! have been corrected~in
a fairly model-independent way! for the electromagnetic ef
fects beyond Coulomb@52,50#. This procedure yields ‘‘em-
pirical’’ values for app

C and r pp
C which is what we quote in

Table XIV under ‘‘experiment.’’ The existence of empirica
values of this kind makes the comparison between the
and experiment much easier.

APPENDIX B: ONE-BOSON EXCHANGE POTENTIAL

1. OBE amplitudes

The Lagrangians, Eqs.~2.1!–~2.5!, imply the following
OBE amplitudes which we state here in terms ofi times the
Feynman amplitude:
^q8l18l28uV̄puql1l2&52
gp

2

~2p!3
ū~q8,l18!ig5u~q,l1!ū~2q8,l28!ig5u~2q,l2!/@~q82q!21mp

2 #, ~B1!

^q8l18l28uV̄suql1l2&52
gs

2

~2p!3
ū~q8,l18!u~q,l1!ū~2q8,l28!u~2q,l2!/@~q82q!21ms

2 #, ~B2!

^q8l18l28uV̄vuql1l2&5
gv

2

~2p!3
$ū~q8,l18!gmu~q,l1!%$ū~2q8,l28!gmu~2q,l2!%/@~q82q!21mv

2 #, ~B3!

^q8l18l28uV̄ruql1l2&5
t1•t2

~2p!3 H grū~q8,l18!gmu~q,l1!1
f r

2M p
ū~q8,l18!smni ~q82q!nu~q,l1!J H grū~2q8,l28!gmu~2q,l2!

2
f r

2M p
ū~2q8,l28!smni ~q82q!nu~2q,l2!J /@~q82q!21mr

2#

5
t1•t2

~2p!3 H ~gr1 f r!ū~q8,l18!gmu~q,l1!2
f r

2M p
ū~q8,l18!@~q81q!m1~E82E!~gm02gmg0!#u~q,l1!J

3H ~gr1 f r!ū~2q8,l28!gmu~2q,l2!2
f r

2M p
ū~2q8,l28!

3@~q81q!m1~E82E!~gm02gmg0!#u~2q,l2!J /@~q82q!21mr
2#, ~B4!
1-23
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where for the pion we have suppressed isospin factors
charge-dependence which will be included later. Working
the two-nucleon c.m. frame, the momenta of the two inco
ing ~outgoing! nucleons areq and 2q (q8 and 2q8). E
[AM21q2, E8[AM21q82, and M is the nucleon mass
Using the BbS equation@21#, the four-momentum transfe
between the two nucleons is (q82q)m5(0,q82q). The Gor-
don identity @20# has been applied in the evaluation of t
tensor coupling of ther; (q81q)m[(E81E,q81q) and
(q81q)m[(E81E,2q82q). The propagator for vecto
bosons is

i
2gmn1~q82q!m~q82q!n /mv

2

2~q82q!22mv
2

, ~B5!

where we drop the (q82q)m(q82q)n-term which vanishes
on-shell, anyhow, since the nucleon current is conserv
The off-shell effect of this term was examined in Ref.@114#
and found to be unimportant.

The Dirac spinors in helicity representation are given

u~q,l1!5AE1M

2M S 1

2l1uqu
E1M

D ul1&, ~B6!

u~2q,l2!5AE1M

2M S 1

2l2uqu
E1M

D ul2&, ~B7!

which are normalized such that

ū~q,l!u~q,l!51.0, ~B8!

with ū5u†g0.
At each meson-nucleon vertex, a form factor is appl

which has the analytical form

Fa@~q82q!2#5
La

22ma
2

La
21~q82q!2

~B9!

with ma the mass of the meson involved andLa the so-
called cutoff mass. Thus, to obtain the final OBE potentialV,
the amplitudes, Eqs.~B1!–~B4!, are to be multiplied byF a

2

and certain square-root factors@see Eq.~A17!#.

2. Partial wave decomposition

The potential is decomposed into partial waves accord
to

^l18l28uV
J~q8,q!ul1l2&52pE

21

11

d~cosu!dl12l2 ,l
182l

28
J

~u!

3^q8l18l28uVuql1l2&, ~B10!
02400
nd
n
-

d.

d

g

whereu is the angle betweenq andq8 anddm,m8
J (u) are the

conventional reduced rotation matrices which can be
pressed in terms of Legendre polynominalsPJ(cosu). The
following types of integrals occur:

I J
(0)[E

21

11

dt
PJ~ t !

~q82q!21ma
2

5
QJ~za!

q8q
, ~B11!

I J
(1)[E

21

11

dt
tPJ~ t !

~q82q!21ma
2

5
QJ

(1)~za!

q8q
, ~B12!

I J
(2)[

1

J11E21

11

dt
JtPJ~ t !1PJ21~ t !

~q82q!21ma
2

5
QJ

(2)~za!

q8q
,

~B13!

I J
(3)[A J

J11 E21

11

dt
tPJ~ t !2PJ21~ t !

~q82q!21ma
2

5
QJ

(3)~za!

q8q
,

~B14!

I J
(4)[E

21

11

dt
t2PJ~ t !

~q82q!21ma
2

5
QJ

(4)~za!

q8q
, ~B15!

I J
(5)[

1

J11E21

11

dt
Jt2PJ~ t !1tPJ21~ t !

~q82q!21ma
2

5
QJ

(5)~za!

q8q
,

~B16!

I J
(6)[A J

J11 E21

11

dt
t2PJ~ t !2tPJ21~ t !

~q82q!21ma
2

5
QJ

(6)~za!

q8q
,

~B17!

with t[cosu andza[(q821q21ma
2)/2q8q where our nota-

tion for momenta isq8[uq8u andq[uqu which we will use
throughout the remainder of the appendixes.

The QJ(z) are the Legendre functions of the second ki
@110#; e.g., Q0(z)5 1

2 ln@(z11)/(z21)#. The combinations
needed above are defined by

QJ
(1)~z![zQJ2dJ0 , ~B18!

QJ
(2)~z![

1

J11
~JzQJ1QJ21!, ~B19!

QJ
(3)~z![A J

J11
~zQJ2QJ21!, ~B20!

QJ
(4)~z![zQJ

(1)2
1

3
dJ1 , ~B21!

QJ
(5)~z![zQJ

(2)2
2

3
dJ1 , ~B22!
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QJ
(6)~z![zQJ

(3)1
1

3
A2dJ1 . ~B23!

The integrals, Eqs.~B11!–~B17!, can be evaluated either nu
merically or analytically by using the Legendre functions
the second kind. The latter method is better if the corr
threshold behavior ofVJ(q8,q) for q8,q→0 is important.

The above expressions still ignore the cutoff which is
cluded by replacing

1

~q82q!21ma
2
→

F a
2@~q82q!2#

~q82q!21ma
2

~B24!

in Eqs.~B11!–~B17!. If the Legendre functions of the secon
kind are used, then the product of propagator and cutoff m
be decomposed according to

F a
2@~q82q!2#

~q82q!21ma
2

5
1

~q82q!21ma
2

2S La2
2 2ma

2

La2
2 2La1

2 D 1

~q82q!21La1
2

1S La1
2 2ma

2

La2
2 2La1

2 D 1

~q82q!21La2
2

,

~B25!

where La1/2[La6e with e→0; i.e., e!La , e.g., e'1
MeV. To give an example,I J

(0) with cutoff is given by

I J
(0)5E

21

11

dt
PJ~ t !F a

2@~q82q!2#

~q82q!21ma
2

~B26!

5
QJ~ma!

q8q
2S La2

2 2ma
2

La2
2 2La1

2 D QJ~La1!

q8q

1S La1
2 2ma

2

La2
2 2La1

2 D QJ~La2!

q8q
, ~B27!

and similarly for the otherI J
( i ) . Notice that theI J

( i ) are func-
tions of q8, q, ma , andLa even though our notation doe
not indicate this.

3. Final potential expressions

Here, we will present the final potential expressions
partial wave decomposition. More details concerning th
derivation can be found in Appendix E of Ref.@1#. First, we
state the potentials in terms of the combinations of helic
states defined in Eq.~A24!.

One-pion-exchange:

0Vp
J 5Cp~Fp

(0)I J
(0)1Fp

(1)I J
(1)!,

1Vp
J 5Cp~2Fp

(0)I J
(0)2Fp

(1)I J
(2)!,
02400
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12Vp
J 5Cp~Fp

(1)I J
(0)1Fp

(0)I J
(1)!, ~B28!

34Vp
J 5Cp~2Fp

(1)I J
(0)2Fp

(0)I J
(2)!,

55Vp
J 5CpFp

(2)I J
(3),

66Vp
J 52CpFp

(2)I J
(3),

with

Cp5
gp

2

4p

1

2pM2
AM

E8
AM

E
~B29!

and

Fp
(0)5E8E2M2,

Fp
(1)52q8q, ~B30!

Fp
(2)52M ~E82E!.

One-sigma-exchange

0Vs
J 5Cs~Fs

(0)I J
(0)1Fs

(1)I J
(1)!,

1Vs
J 5Cs~Fs

(0)I J
(0)1Fs

(1)I J
(2)!,

12Vs
J 5Cs~Fs

(1)I J
(0)1Fs

(0)I J
(1)!, ~B31!

34Vs
J 5Cs~Fs

(1)I J
(0)1Fs

(0)I J
(2)!,

55Vs
J 5CsFs

(2)I J
(3) ,

66Vs
J 5CsFs

(2)I J
(3)

with

Cs5
gs

2

4p

1

2pM2
AM

E8
AM

E
~B32!

and

Fs
(0)52~E8E1M2!,

Fs
(1)5q8q, ~B33!

Fs
(2)5M ~E81E!.

One-omega-exchange

0Vv
J 5Cv~2E8E2M2!I J

(0) ,

1Vv
J 5Cv~E8EIJ

(0)1q8qIJ
(2)!,

12Vv
J 5Cv~2q8qIJ

(0)1M2I J
(1)!, ~B34!

34Vv
J 5Cv~q8qIJ

(0)1E8EIJ
(2)!,

55Vv
J 52CvMEIJ

(3) ,
1-25
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66Vv
J 52CvME8I J

(3)

with

Cv5
gv

2

4p

1

pM2
AM

E8
AM

E
. ~B35!

The one-rho-exchange potential is the sum of three te

Vr5Vvv1Vtt1Vvt . ~B36!

Vector-vector coupling

0Vvv
J 5Cvv~2E8E2M2!I J

(0) ,

1Vvv
J 5Cvv~E8EIJ

(0)1q8qIJ
(2)!,

12Vvv
J 5Cvv~2q8qIJ

(0)1M2I J
(1)!, ~B37!

34Vvv
J 5Cvv~q8qIJ

(0)1E8EIJ
(2)!,

55Vvv
J 52CvvMEIJ

(3) ,

66Vvv
J 52CvvME8I J

(3)

with

Cvv5
gr

2

4p

t1•t2

pM2
AM

E8
AM

E
. ~B38!

Tensor-tensor coupling

0Vtt
J 5Ctt$~q821q2!~3E8E1M2!I J

(0)

1@q821q222~3E8E1M2!#q8qIJ
(1)22q82q2I J

(4)%,

1Vtt
J 5Ctt$@4q82q21~q821q2!~E8E2M2!#I J

(0)

12~E8E1M2!q8qIJ
(1)2~q821q214E8E!q8qIJ

(2)

22q82q2I J
(5)%, ~B39!

12Vtt
J 5Ctt$@4M223~q821q2!#q8qIJ

(0)1@6q82q22~q82

1q2!~E8E13M2!#I J
(1)12~E8E1M2!q8qIJ

(4)%,

34Vtt
J 5Ctt$2~q821q214E8E!q8qIJ

(0)22q82q2I J
(1)

1@4q82q21~q821q2!~E8E2M2!#I J
(2)

12~E8E1M2!q8qIJ
(5)%,

55Vtt
J 5CttM $@E8~q821q2!1E~3q822q2!#I J

(3)

22~E81E!q8qIJ
(6)%,

66Vtt
J 5CttM $@E~q821q2!1E8~3q22q82!#I J

(3)

22~E81E!q8qIJ
(6)% ~B40!

with
02400
s

Ctt5
f r

2

4pM p
2

t1•t2

8pM2
AM

E8
AM

E
. ~B41!

Vector-tensor coupling

0Vvt
J 5CvtM @~q821q2!I J

(0)22q8qIJ
(1)#,

1Vvt
J 5CvtM @2~q821q2!I J

(0)12q8qIJ
(2)#,

12Vvt
J 5CvtM @6q8qIJ

(0)23~q821q2!I J
(1)#, ~B42!

34Vvt
J 5CvtM @2q8qIJ

(0)2~q821q2!I J
(2)#,

55Vvt
J 5Cvt~E8q213Eq82!I J

(3) ,

66Vvt
J 5Cvt~Eq8213E8q2!I J

(3)

with

Cvt5
gr f r

4pM p

t1•t2

2pM2
AM

E8
AM

E
. ~B43!

Note that in ther potential,M p is a scaling mass associate
with the tensor-coupling constantf r . For this scaling mass
the same is to be used inpp, np, andnn scattering.

The potential in terms of the more familiarLSJ states is
obtained by applying the transformations, Eqs.~A28!–~A30!,
with R replaced byV. The final charge-dependent potentia
are

V~N1N2!5VOPE~N1N2!1 (
a5r,v,s1 ,s2

Va@M ~N1N2!#

~B44!

with N1N2 eitherpp, nn, or np. The nucleon mass referre
to by M (N1N2) in the above equation is fixed as follows:

M ~pp!5M p , ~B45!

M ~nn!5Mn , ~B46!

M ~np!5M̌[AM pMn5938.91875 MeV, ~B47!

with the precise values forM p andMn given in Table I. For
the np potential, we choose the geometrical mean of
nucleon masses rather than twice the reduced mass,
~A41!, because the potential is essentially a product of f
Dirac spinors making this the more natural choice. Note t
the differences between the various mean nucleon ma
@see Eqs.~A41!, ~B47!, and~C8!# are negligibly small such
that it does not really matter what choice is made. T
charge-dependent OPE potentials are given by

VOPE~pp!5Vp@gp~M p!,mp0,M p#, ~B48!

VOPE~nn!5Vp@gp~Mn!,mp0,Mn#, ~B49!
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VOPE~np,T51!52Vp@gp~M̌ !,mp0,M̌ #

12Vp@gp~M̌ !,mp6,M̌ #, ~B50!

VOPE~np,T50!52Vp@gp~M̌ !,mp0,M̌ #

22Vp@gp~M̌ !,mp6,M̌ #, ~B51!

with mp0 andmp6 as given in Table I. Most modern dete
minations@13# of the pNN coupling constant yield a valu
for the so-called pseudovector coupling constantf p @29#. As-
suming that f p is fundamentally constant, thengp has a
small charge dependence, since the two coupling const
are related by

gp
2 ~M !

4p
5

4M2

mp6
2

f p
2

4p
, ~B52!

with M the mean of the masses of the two nucleons invol
in the pNN vertex. We take this very small effect into a
count by using in ourVOPE the pNN coupling constant

gp
2 ~M !

4p
[

M2

M p
2

ḡp
2

4p
, ~B53!

with

ḡp
2

4p
513.6. ~B54!

Defining

ḡp
2

4p
5

4M p
2

mp6
2

f p
2

4p
~B55!

recovers Eq.~B52!.
Since we use units such that\5c51, energies, masse

and momenta are in units of MeV. The potential is in units
MeV 22. The conversion factor is\c5197.327053 MeV fm.
If the user wants to relate our units and conventions to
ones used by other practitioners, he/she should compare
Eq. ~A25! and our phase shift relation, Eq.~A33!, with the
corresponding equations used by others. AFORTRAN77com-
puter code for the CD-Bonn potential is available from t
author.

APPENDIX C: DEUTERON CALCULATIONS

In momentum space, the deuteron wave function is gi
by

Cd
M~k!5@c0~k!Y 01

1M~ k̂!1c2~k!Y 21
1M~ k̂!#z0

0 , ~C1!

whereY LS
JM( k̂) are the normalized eigenfunctions of the tw

nucleon orbital angular momentumL, spinS, and total angu-
lar momentumJ with projectionM; zT

MT denotes the normal
ized eigenstates of the total isospinT with projectionMT of
the two nucleons. The normalization is
02400
nts

d

f

e
ur

n

^Cd
MuCd

M&5E
0

`

dkk2@c0
2~k!1c2

2~k!#51. ~C2!

The wave functions are obtained by solving the bou
state equation which is the homogeneous version of the s
tering equation~A18!:

c~k!5
M

2g22k2E d3k8V~k,k8!c~k8!. ~C3!

Note that the deuteron is a pole in theS matrix at q5 ig.
Since we use relativistic kinematics innp scattering@see Eq.
~A40!#, consistency requires that we determineg based upon
relativistic kinematics which is

Md[M p1Mn2Bd5AM p
22g21AMn

22g2, ~C4!

whereMd denotes the deuteron rest mass andBd the binding
energy. The formal solution of Eq.~C4! is

g25@4M p
2Mn

22~Md
22M p

22Mn
2!2#/4Md

2 , ~C5!

and, usingBd52.224575 MeV and\c5197.327053 MeV
fm, the accurate numerical value forg comes out to be

g50.2315380 fm21. ~C6!

To obtain more insight intog2, we rewrite Eq.~C5! in fac-
torized form

4Md
2g25@~Mn1M p!22Md

2#@Md
22~Mn2M p!2#

5Bd~4M̄2Bd!~Md
22dM2!, ~C7!

where we introduce the average nucleon mass

M̄[
M p1Mn

2
5938.91897 MeV, ~C8!

and the nucleon mass differencedM[Mn2M p51.29332
MeV, and usedMd52M̄2Bd . From this we get

g25M̄BdS 12
Bd

4M̄
D S 12

dM2

Md
2 D ~C9!

and, in terms of twice the reduced nucleon massM̂ , which is
defined by

M̂[
2M pMn

M p1Mn
5M̄ S 12

dM2

4M̄2D 5938.91852 MeV,

~C10!

we finally obtain
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TABLE XIX. Deuteron wave functions.

r ~fm! u(r ) (fm21/2) w(r ) (fm21/2) r ~fm! u(r ) (fm21/2) w(r ) (fm21/2)

0.10031021 0.30406131022 20.13727631025 0.2703101 0.4575503100 0.1072193100

0.20031021 0.60731331022 20.89521531025 0.2803101 0.4488373100 0.1025723100

0.30031021 0.90944431022 20.24949531024 0.2903101 0.4400643100 0.98076831021

0.40031021 0.12104831021 20.49231231024 0.3003101 0.4312753100 0.93745331021

0.50031021 0.15106531021 20.80427531024 0.3203101 0.4137783100 0.85592331021

0.60031021 0.18102931021 20.11661031023 0.3403101 0.3965523100 0.78123531021

0.70031021 0.21098431021 20.15552631023 0.3603101 0.3797273100 0.71317631021

0.80031021 0.24097531021 20.19481331023 0.3803101 0.3633873100 0.65136631021

0.90031021 0.27105031021 20.23205831023 0.4003101 0.3475833100 0.59534431021

0.1003100 0.31025531021 20.26487131023 0.4203101 0.3323433100 0.54462331021

0.2003100 0.62109331021 0.15564331023 0.4403101 0.3176783100 0.49872131021

0.3003100 0.99387631021 0.33507131022 0.4603101 0.3035923100 0.45717831021

0.4003100 0.1438693100 0.10893631021 0.4803101 0.2900783100 0.41956531021

0.5003100 0.1945453100 0.23557431021 0.5003101 0.2771263100 0.38548731021

0.6003100 0.2484543100 0.40906831021 0.5203101 0.2647213100 0.35458731021

0.7003100 0.3108413100 0.61280831021 0.5403101 0.2528493100 0.32654031021

0.8003100 0.3513743100 0.82403331021 0.5603101 0.2414913100 0.30105631021

0.9003100 0.3948063100 0.1021763100 0.5803101 0.2306293100 0.27787431021

0.1003101 0.4310723100 0.1191653100 0.6003101 0.2202453100 0.25676131021

0.1103101 0.4600463100 0.1326833100 0.6503101 0.1962523100 0.21171731021

0.1203101 0.4822133100 0.1426333100 0.7003101 0.1748463100 0.17567631021

0.1303101 0.4983703100 0.1492853100 0.7503101 0.1557593100 0.14661631021

0.1403101 0.5094153100 0.1530893100 0.8003101 0.1387473100 0.12301031021

0.1503101 0.5162223100 0.1545453100 0.8503101 0.1235893100 0.10369931021

0.1603101 0.5195793100 0.1541363100 0.9003101 0.1110843100 0.87799331022

0.1703101 0.5210583100 0.1522873100 0.9503101 0.98052531021 0.74628131022

0.1803101 0.5185243100 0.1493563100 0.1003102 0.87335431021 0.63656531022

0.1903101 0.5151383100 0.1456383100 0.1053102 0.77789131021 0.54470531022

0.2003101 0.5103743100 0.1413673100 0.1103102 0.69285931021 0.46743831022

0.2103101 0.5045333100 0.1367283100 0.1153102 0.61712031021 0.40217031022

0.2203101 0.4978563100 0.1318643100 0.1203102 0.54966031021 0.34682631022

0.2303101 0.4905393100 0.1268863100 0.1253102 0.48957331021 0.29973431022

0.2403101 0.4827363100 0.1218773100 0.1303102 0.43605531021 0.25953531022

0.2503101 0.4745733100 0.1169103100 0.1353102 0.38838631021 0.22512031022

0.2603101 0.4661503100 0.1120043100 0.1403102 0.34592931021 0.19558231022
lu

et
ide
rals

t is
g25M̂BdS 12
Bd

4M̄
D 12

dM2

Md
2

12
dM2

4M̄2

'M̂BdS 12
Bd

4M̄
D .

~C11!

The approximation involved in Eq.~C11! is good to one part
in 109. Therefore, this equation reproduces the exact va
for g to all digits given in Eq.~C6!. One can now identify the

term M̂Bd as the nonrelativistic approximation tog2 and the

factor (12Bd/4M̄ ) as the essential relativistic correction.
Partial wave decomposition of Eq.~C3! yields for the

coupled 3S1 and 3D1 states
02400
e

c0~k!52
M̂

g21k2E0

`

dk8k82@V00~k,k8!c0~k8!

1V02~k,k8!c2~k8!#,

c2~k!52
M̂

g21k2E0

`

dk8k82@V20~k,k8!c0~k8!

1V22~k,k8!c2~k8!#, ~C12!

from which c0 andc2 are obtained. Considering a finite s
of discrete arguments for the functions on the left-hand s
and using the same set of momenta to discretize the integ
on the right-hand side produces a matrix equation tha
solved easily by the matrix-inversion method@106#.
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The momentum-space wave functions can be Fou
transformed into the configuration-space wave functionu
andw by

uL~r !

r
5A2

p E
0

`

dkk2 j L~kr !cL~k!, ~C13!

with u0(r )[u(r ), u2(r )[w(r ), and j L the spherical Besse
functions. The normalization is

E
0

`

dr@u2~r !1w2~r !#51. ~C14!

The asymptotic behavior of the wave functions for large v
ues ofr are

u~r !;ASe2gr ,

w~r !;ADe2grF11
3

~gr !
1

3

~gr !2G , ~C15!

whereAS andAD are known as the asymptoticS- andD-state
normalizations, respectively. In addition, one defines
‘‘ D/S-state ratio’’ h[AD /AS . Other deuteron paramete
of interest are the quadrupole moment

Qd5
1

20E0

`

drr 2w~r !@A8u~r !2w~r !#, ~C16!

the root-mean-square or matter radius

r d5
1

2 H E
0

`

drr 2@u2~r !1w2~r !#J 1/2

, ~C17!

and theD-state probability

PD5E
0

`

drw2~r !. ~C18!

The predictions by the CD-Bonn potential for the propert
of the deuteron are given in Table XVIII; numerical valu
for the wave functions are listed in Table XIX and plots a
shown in Figs. 8 and 9.

In some applications, it is convenient to have the deute
wave functions in analytic form. Therefore, we present h
a simple parametrization of the deuteron functions~that was
first introduced in Ref.@115#!. The ansatz for the analyti
version of ther-space wave functions is

ua~r !5(
j 51

n

Cj exp~2mjr !, ~C19!

wa~r !5(
j 51

n

D j exp~2mjr !F11
3

mjr
1

3

~mjr !2G .

~C20!

The corresponding momentum space wave functions are
02400
r

-

e

s

n
e

c0
a~q!5~2/p!1/2(

j 51

n
Cj

q21mj
2

, ~C21!

c2
a~q!5~2/p!1/2(

j 51

n
D j

q21mj
2

. ~C22!

The boundary conditionsua(r )→r andwa(r )→r 3 as r→0
lead to one constraint for theCj and three constraints for th
D j @115#, namely,

Cn52 (
j 51

n21

Cj , ~C23!

Dn225
mn22

2

~mn
22mn22

2 !~mn21
2 2mn22

2 !
F2mn21

2 mn
2(

j 51

n23
D j

mj
2

1~mn21
2 1mn

2! (
j 51

n23

D j2 (
j 51

n23

D jmj
2G , ~C24!

and two other relations obtained by circular permutation
n22,n21,n. The masses are

mj5g1~ j 21!m0 ~C25!

with m050.9 fm21 andg given in Eq.~C6!. The parameters
are given in Table XX. The constraints, Eqs.~C23! and
~C24!, must be enforced by double precision~i.e., to about
15 decimal digits!, otherwise the wave function is not repro
duced correctly forr<0.5 fm. This applies, particularly, to
the D wave. The accuracy of the parametrization is char
terized by

H E
0

`

dr@u~r !2ua~r !#2J 1/2

52.231024 ~C26!

and

H E
0

`

dr@w~r !2wa~r !#2J 1/2

51.131024. ~C27!

Data files for the deuteron wave functions inr space as well
as in momentum space can be obtained from the author u
request.

TABLE XX. Coefficients for the parametrized deuteron wa
functions (n511).

j C j (fm21/2) D j (fm21/2)

1 0.884729853100 0.2262376231021

2 20.264087593100 20.504710563100

3 20.4411440431021 0.562788973100

4 20.143975123102 20.160797643102

5 0.855912563102 0.111268033103

6 20.318767613103 20.446674903103

7 0.703367013103 0.109859073104

8 20.900495863103 20.161149953104

9 0.661454413103 Eq. ~C24!
10 20.259588943103 Eq. ~C24!
11 Eq.~C23! Eq. ~C24!
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Côté, P. Pires, and R. de Tourreil, Phys. Lett.101B, 139
~1981!.
1-32


