
PHYSICAL REVIEW C, VOLUME 63, 015204
r-v mixing in asymmetric nuclear matter via a QCD sum rule approach
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We evaluate the operator product expansion~OPE! for a mixed correlator of the isovector and isoscalar
vector currents in the background of the nucleon density with intrinsic isospin asymmetry~i.e., excess of
neutrons over protons! and match it with its imaginary part, given by resonances and continuum, via the
dispersion relation. The leading density-dependent contribution tor-v mixing is due to the scattering term,
which turns out to be larger than any density dependent piece in the OPE. We estimate that the asymmetric
density ofnn2np;2.531022 fm23 induces the amplitude ofr-v mixing, equal in magnitude to the mixing
amplitude in vacuum, with the constructive interference for positive and destructive for negative values of
nn2np . We revisit sum rules for vector meson masses at finite nucleon density to point out the numerical
importance of the screening term in the isoscalar channel, which turns out to be one order of magnitude larger
than any density-dependent condensates over the Borel window. This changes the conclusions about the
density dependence ofmv , indicating;40 MeV increase at nuclear saturation density.

DOI: 10.1103/PhysRevC.63.015204 PACS number~s!: 24.85.1p, 21.65.1f, 12.38.Lg
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I. INTRODUCTION

Changes of hadronic properties in hot and dense nuc
medium are an intriguing issue which ties together mod
particle and nuclear physics. The interest in these quest
has intensified over the past decade due to the possibilit
studying the transition from hadrons to the deconfining ph
at heavy ion collisions. In particular, the modification of ve
tor meson properties in nuclear medium has been a subje
a persistent theoretical activity@1#. This was initiated by the
idea that in nuclear medium the vector meson masses sh
drop as a precursor to the chiral symmetry restoration@2#.
Several experiments have also been proposed to study
changes of masses, widths, and coupling constants of ve
resonances in dense~and/or hot! nuclear matter@3#.

The properties of vector resonances in vacuum and
effects of isospin symmetry violation on the mixing of ther,
v resonances in vacuum have been investigated rather
fully by means of QCD sum rules in the past@4–6#. In the
pioneering work of Ref.@6# it was found that the nonzer
value for ther-v mixing can be linked to the difference o
light quark masses, and the possibility ofmu50 is seemingly
excluded.

Later, the QCD sum rule method was extended to fin
temperatures and densities@7#. A number of analyses@8–11#
have found that the masses ofr andv resonances decreas
in nuclear medium.1 In Refs. @14,15# finite widths of the
vector mesons have been taken into account by hand an

1See, however, the work of Koike@12#, where opposite behavio
is claimed. A later analysis, based on the relation between
current-nucleon forward scattering amplitude and the scatte
length of the vector meson off the nucleon in the static limit, ag
revealed negative mass shifts in the linear density approxima
@13#.
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calculation of ther-meson self-energy in a chiral model fo
the spectral function, respectively. For ther-meson channe
it was found in Ref.@14# that at nuclear saturation density a
increasing width of ther-resonance necessitates an incre
ing r-meson mass. However, for large values of the wid
the mass is blurred over a large window of possible valu

While appreciable efforts have been directed to estim
the density dependent modification of the masses and
time of the light vector mesons at finite density~and/or tem-
perature!, the question ofr-v mixing at finite densities
~and/or temperature! has not received much attention. In fa
finite nuclear densities can have a significant impact on
amplitude. The fact that nuclear matter can intrinsically
isospin asymmetric implies that ther-v mixing in matter
can potentially be larger than the vacuum part of the mix
which is induced by the difference inu andd quark masses
small in units of characteristic hadronic scales. This idea w
suggested first in Ref.@16# where it has been pointed out th
the presence of asymmetric nuclear matter has a profo
effect on the mixing of ther and v resonances. There th
mixing angle was determined from the matter induced n
diagonal self-energy of ther0 resonance by employing a
SU(2)F symmetric hadronic model. Subsequently such
matter induced mixing has also been analyzed on a m
elaborate footing in Ref.@17#. Along the same lines the au
thor of Ref.@18# investigated the nucleonic density and tem
perature dependentr0-v mixing at a fixed asymmetry
Thereby, an enhancement of the modulus of the vacu
mixing amplitude was found due to finite density. In a
model descriptions the vacuum part of the mixing serves
an input parameter, to which all the results are normalized
hand in the limit of vanishing density. To this end, it
desirable to obtain an independent analysis of the mix
using finite density QCD sum rules, which hopefully wou
allow to treat the vacuum part and the density part from
first principles. At this point we already notice one princip
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DUTT-MAZUMDER, HOFMANN, AND POSPELOV PHYSICAL REVIEW C63 015204
problem of finite density QCD sum rules. In the presence
nuclear matter there exist nonscalar condensates which
be related to the twists of different dimension. In gene
going from mass dimension 2n to 2(n11) the ratio of con-
tributionsR2k

2n with a nonzero, fixed twist 2k is

R2k
2n}

A2(k11)

A2k
S mN

M D 2

. ~1!

This requires the external momenta to be much larger t
mN for the OPE to converge. However, the possibility to li
properties of a ground state resonance to nonperturbativ
fects in the vacuum~the condensates! via the sum rule re-
quires external momenta of;mN . We will later show that
for the contribution of twist operators there is a numeri
suppression in the corresponding Wilson coefficients up
mass dimension six. Since at higher dimensions we have
parametrical smallness the above should limit the applica
ity of QCD sum rules at finite nucleonic density.

In this paper we study the behavior of the isoscal
isovector mixed correlator of the two vector currents in ord
to extract nuclear density effects. The asymptotic behavio
this correlator at large spacelike external momenta can
studied within the perturbative QCD framework, with th
power corrections represented by quark, gluon, quark-glu
etc., condensates. In the presence of finite nucleon den
the power correction due to these condensates will chang
compared to their vacuum values. Due to the presence o
preferred reference frame, in which the nucleons are at
new density-dependent power corrections will appear.
both cases we assume the small density regime and
only the linear terms in the external nuclear density. As
shall see, this approximation is justified for densities n
larger than the nuclear saturation density, which is smal
proper ‘‘vacuum’’ units.

The asymptotics of the two-point correlation functio
calculated this way, can be related to the ‘‘phenomenolog
part’’ which includes the contributions of vector resonanc
continuum and the screening terms@7#. A success or a failure
of the QCD sum rule analysis of vector meson proper
would depend on how reliably the contribution of individu
resonances (r,v, . . . ) can beseparated from the rest of th
contributions.

We carefully examine the density-dependent part of
operator product expansion~OPE! and find that the effects o
matter-induced mixing due to nucleonic matrix elements
nonscalar and scalar QCD operators in asymmetric nuc
matter follow a certain hierarchy. The asymmetric dens
induced effects start dominating vacuum contribution
asymmetriesapn[(np2nn)/(np1nn)'0.2 and an overall
nucleonic density twice the nuclear saturation densitynN

0

50.17 fm235(111 MeV)3. However, the analysis of th
phenomenological part of the QCD sum rules shows that
scattering contribution, usually called screening term, tu
out to be numerically by far more important. Brought to t
OPE-side of the sum rule, the screening term can be rega
as a mass dimension two power correction. Already at in
mediate asymmetriesapn'0.1 and saturation densit
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vacuum and matter inducedr-v mixing are of the same sign
and comparable in magnitude.

The smallness of the density-dependent pieces in the O
as compared to the screening term indicates that any con
sion about the density-dependent piece in ther-v mixing
amplitude will mostly depend on the assumptions ma
about the spectral density, i.e., what is usually called
phenomenological part of the sum rules. This casts str
doubts on the applicability of the finite density QCD su
rules for the extraction of the isovector-isoscalar mixi
since the density-dependent ‘‘QCD input’’ is negligib
small. This concern led us to reexamine the screening te
in the isovector-isovector and isoscalar-isoscalar correla
which were used in previous works@8–11# to investigate the
modification ofr andv masses in nuclear matter. We ha
found that all previous analyses have used the same valu
the screening terms in the isovector-isovector and isosca
isoscalar correlators. This is an unfortunate error because
screening term in the omega channel turns out to be 9 ti
larger than the value used in Refs.@8–11#. This changes
dramatically all the conclusions about the behavior ofmv in
nuclear matter, and indicates thatmv is a growing function
of density in the linear density approximation.

II. ISOSINGLET-ISOTRIPLET CORRELATOR OF THE
TWO VECTOR CURRENTS AT FINITE DENSITIES

We start with the~causal! mixed correlator of isotriplet
and isosinglet currents in asymmetric nuclear matter

Pmn[ i E d4x eiqx^T j m
T~x! j m

S~0!&nN
, ~2!

where

j m
T[

1

2
~ ūgmu2d̄gmd!, j m

S[
1

2
~ ūgmu1d̄gmd!. ~3!

We choose the same normalization of the two curren
which also means that their couplings to physicalr and v
resonances are approximately equal. In Eq.~2! the Gibbs
average^&nN

(nN indicating finite nucleon density! is ap-
proximated by a vacuum and one-particle nucleon sta
@8–11#. Due to the presence of a singled out rest frame w
four-velocity um there are, in general, two independent, cu
rent conserving tensor structures~longitudinal and isotropic!
into which Pmn can be decomposed. However, in the lim
qW→0 one of the corresponding invariantsP l ,P i becomes
redundant@8#, and we therefore concentrate onP l which
satisfies the following dispersion relation@8#:

P l~Q0
2[2q0

2![
Pm

m

3Q0
2

5
1

pE0

`

ds
Im P l

s1Q0
2

1subtractions.

~4!

Subtracting the terms attributed to ther→g→v electromag
netic mixing from the spectral representation@6# and the
4-2
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OPE and appealing to the literature on density depend
OPE’s of r and v current correlators we arrive at the fo
lowing sum rule:

P l8~Q0
2!5

1

pE0

`

ds
Im P̃ l~s!

s1Q0
2

1subtractions. ~5!
01520
ntThe asymptotic behavior of the left-hand side of Eq.~5! can
be calculated by means of the operator product expan
~OPE!. The result is given in terms of the perturbative co
tribution and power corrections, proportional to the conde
sates, taken in the presence of the external nucleon den
Retaining terms up to the orderQ0

26, we present the result in
the following form:
rs.

ates. We
r of
atrix
at their
ll these
P l8~Q0
2!52

a

16p3

1

4
ln Q0

21
1

Q0
2

3

2p2

md
22mu

2

4

1
1

Q0
4 Fmu

2
^ūu&nN

2
md

2
^d̄d&nN

1
2

3

QmQn

Q2
^S~ ūgmDnu2d̄gmDnd!&nNG

2
1

Q0
6 Fpas

2 K ~ ūgmg5lau!22~ d̄gmg5lad!21
2

9
@~ ūgmlau!22~ d̄gmlad!2#L

nN

12pa K 4

9
~ ūgmg5u!22

1

9
~ d̄gmg5d!21

2

9 F4

9
~ ūgmu!22

1

9
~ d̄gmd!2G L

nN

1
8

3

QmQnQlQs

Q4
^S~ ūgmDnDlDsu2d̄gmDnDlDsd!&nNG . ~6!

In Eq. ~6!, the symbolS denotes the operation of making tensors symmetric and traceless. As usual~for example, Refs.
@8,14,12,15#! the averages over mixed operators and twist four contributions have been omitted in Eq.~6!. The former can
either be reduced to four quark operators by use of the equation of motion~these contributions are already included!, or they
are suppressed atm2'1 GeV2 since there the gluon content of the nucleonic wave function is small@8#. The latter has been
argued in Ref.@9# to have no substantial effect on ther andv mass shifts, and we will therefore omit twist four operato
Further progress in calculating the OPE depends on how accurately we can predict the size of various contributions toP8. We
restrict ourselves to the case of low and medium densities, so that the linear~mean field! approximation is justified, and the
density dependent part enters in the final expression multiplied by the matrix elements over the single nucleon st
further make use of the vacuum saturation hypothesis@4#, which becomes an exact relation in the limit of a large numbe
colors. This hypothesis is known to ‘‘work’’ reasonably well in vacuum. However, its application to the nucleon m
elements is not fully justified. We use this hypothesis to estimate the order of magnitude of dim 6 contribution, noting th
numerical weight in the final result turns out to be small as the OPE is largely dominated by dim 4 contributions. With a
assumptions, Eq.~6! can be reduced to the following form:

P l8~Q0
2!52

a

16p3

1

12
ln Q0

21
1

Q0
2 F 3

2p2

md
22mu

2

12
2G

1
1

Q0
4 Fmu2md

2 H ^q̄q&0~m2!1
SpN~m2!

2m̄
nNJ 2m̄^puūu2d̄dup&kW p50apnnN1

1

2
mpapnnNA2

u2d~m2!G
1

1

Q0
6 F2

112

81
pFas^q̄q&0

2~m2!H 2g1
a

8as~m2!
J 12^q̄q&0^puūu2d̄dup&kW p50apnnNG2

5

12
mp

3apnnNA4
u2d~m2!G .

~7!

In Eq. ~7! nN (np ,nn) denotes the total nucleonic~proton, neutron! density;apn the p-n asymmetry, defined asapn[(np

2nn)/nN ; mp the proton mass;̂ q̄q&0 the value of theu-quark condensate;g the asymmetry ofu-quark andd-quark
condensate defined asg[^d̄d&0 /^ūu&021; SpN5(4567) MeV @9# the nucleon sigma term; andm̄ is defined asm̄
[1/2(mu1md). The electromagnetic coupling isa, the strong coupling at scalem is as(m

2). In Eq. ~7! we have already used
4-3
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DUTT-MAZUMDER, HOFMANN, AND POSPELOV PHYSICAL REVIEW C63 015204
the numerical smallness of isospin and chiral symmetry v
lating parameters as compared to the normal hadronic s
and thus neglected terms proportional tomu(d)g, g2 and so
on. For similiar reasons it is justified to neglect the effects
isopsin violation in nucleon matrix elements and ta

^puūu2d̄dup&52^nuūu2d̄dun&, which leads to the depen
dence on the asymmetry factorapn . The scalar matrix ele-
ment^puūu2d̄dup& is related to the baryon octet mass sp
ting, (mJ2mS)/ms , and it is numerically close to 0.7@19#.

As for the contribution of symmetric and traceless tw
two quark bilinears@9# of dimension 4 and 6, their nucleoni
matrix elements are determined by the quark parton distr
tions A2

u2d(m2) andA4
u2d(m2) as @8#

^Sq̄gm1
Dm2

q&N(k)~m2!

52 iA2
u2d~m2!S km1

km2
2

1

4
gm1m2

k2D ,

^Sq̄gm1
Dm2

Dm3
Dm4

q&N(k)~m2!

5 iA4
u2d~m2!~km1

km2
km3

km4
2traces!, ~8!

wherekm denotes the nucleon momentum,Dm is the gauge
covariant derivative. In general, the factorAk

q(m2) can be
obtained from the parton distributionsQ(x,m2) and
Q̄(x,m2) in the proton as

Ak
q~m2!52E

0

1

dx xk21
„Q~x,m2!1~2 !kQ̄~x,m2!…. ~9!

In Ref. @21# the parton distributions in the nucleon have be
fitted to experiment at a resolution scalem250.26 GeV2.
Using these distributions and performing the integrations
Eq. ~9!, we obtain

A2
u2d~m250.26, GeV2!50.429,

A4
u2d~m250.26, GeV2!50.097. ~10!

To generate the respective values at the scalem2'1 GeV2

relevant for the sum rule we simply use the conversion f
tors f 2(m2

2 ,m1
2)[A2

u1d(m2
2)/A2

u1d(m1
2) and f 4(m2

2 ,m1
2)

[A4
u1d(m2

2)/A4
u1d(m1

2). Using A2
u1d and A4

u1d at 1 GeV
from Ref. @9#, we arrive at the following values of matri
elements of interest:

A2
u2d~1 GeV2!50.32, A4

u2d~1 GeV2!50.062. ~11!

Keeping this in mind, we will now proceed to the numeric
evaluation of OPE. Performing a Borel transformation of t
OPE of Eq.~7! and omitting the numerically strongly sup
pressed dimension two power correction, we obtain
01520
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P l8~M2!53.7310261
u^q̄q&u

M4 S 2 MeV21.5 MeV
anp

0.2

nN

nN
0 D

2
u^q̄q&u

M4

0.1 GeV2

M2

3S 1.4 MeV1
anp

0.2

nN

nN
0 @3.8 MeV22.4 MeV# D .

~12!

In this expression we have used the following set of valu
mu55 MeV; md59 MeV; m̄57 MeV; mp5940 MeV;
nN5nN

0 5(111 MeV)3 ~the nuclear matter saturation de

sity!; SpN545 MeV; ^q̄q&052(225 MeV)3; g521022

@20#; a51/137; andas(1 GeV2)50.5 @9#. The quark con-
densate has been factored out numerically for the sigma-t
and the twist contributions.

Several important observations should be made at
point. For M;1 GeV, a pure perturbative contribution
negligibly small as compared to power corrections. The la
are dominated by dimension 4, with the constant term or
nating from the mu and md mass difference and th
anpnN-dependent piece given by theA2

u2d contribution. At
the level of dimension 6 we observe three different ter
@second line of Eq.~12!#: vacuum part, density-depende
scalar condensate and twist contributions. At this dimens
the density dependent contributions from scalar conden
and twist tend to cancel each other. This cancellation can
an artifact of the chosen parameters and/or of the crude
ture of the approximations made in estimating the size of
four-quark matrix elements over the nucleon. Neverthele
M;1 GeV, and the OPE is dominated by dim 4 term
where at (anp/0.2)(nN /nN

0 );1 the suppression of dim 6 i
about 50%. For higher values of asymmetric dens
P8(M251 GeV) changes sign.

What does this behavior ofP8(M251 GeV) mean in
terms of thev-r resonance mixing amplitude? To answ
this question we should parametrize the spectral function
terms of the resonance contributions and analyze the re
ing sum rule~5!.

Following Refs.@6,7#, we approximate the imaginary pa
of the correlator by contributions ofr, v, r8, v8 resonances
and the QCD-continuum:

1

p
Im P̃ l~s,apn ,nN!5

1

4 F f rd~s2mr
2!2 f vd~s2mv

2 !

1 f r8d~s2mr8
2

!2 f v8d~s2mv8
2

!

1
rsc

ST

8p2
d~s!1

a

16p3
u~s2s0!G .

~13!

The contribution to the mixing due to the electromagne
continuum is small@4#. Therefore, we will neglect it in the
subsequent consideration. In Eq.~13! f r and f v refer to ther
4-4
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r-v MIXING IN ASYMMETRIC NUCLEAR MATTER VIA A . . . PHYSICAL REVIEW C 63 015204
andv residues of ther-v current propagator, andr8 andv8
symbolize the cumulative effect of higher resonances2 intro-
duced in the original analysis@6# in order to have consisten
asymptotic behavior ofP8(M2). In addition to the ‘‘usual’’
annihilation continuum above a certain thresholds0, Eq.~13!
exhibits a scattering term which behaves as a pole ats50
~Landau pole! @7#. The corresponding coefficient can be ca
culated explicitly, and the result in the leading order in Fer
momentum (pf /mN expansion! is given by

rsc
ST5

2p2

mN
@Fp

SFp
Tnp1Fn

SFn
Tnn#5

6p2

mN
apnnN . ~14!

Here the coefficientsFp(n)
S(T) are defined via nucleon matri

elements of quark vector currents at vanishing momen
transfer

Fp
S5Fn

S5^puūg0u1d̄g0dup&53,

Fp
T52Fn

T5^puūg0u2d̄g0dup&51. ~15!

After Borel transformation the contribution of the Landa
screening term is usually carried to the lhs of the sum rule
effectively become a power correction of dimension 2 in
expansion of P l8(M2). Defining f rv[1/2(f r1 f v), m̄r

2

[1/2(mr
21mv

2 ), Dmr
2[mv

2 2mr
2 , and b5( f v

2 f r)m̄r
2/( f rvDmr

2) ~the primed quantities are defined ana
gously!, we quote the result of Ref.@6# relating f rv to the
measurable quantitiesm̄r

2 , Dmr
2 , gr , andgv

f rv'2
12m̄r

2

grgv

drv

Dmr
2
[

mr
4

Dmr
2
j, ~16!

where gr , gv are the respective decay constants, anddrv

enters the measurable mixing parameter« as follows:

«5
drv

~mv21/2iGv!22~mr21/2iGr!2
. ~17!

Thereby,« is defined as

v5v01«r0 , r5r02«v0 , ~18!

andG denotes the width of the respective resonance. It is
to remark at this point that the observable combination«
.drvGr

21mr
21 will have an additional dependence on de

sity due to a substantial increase ofGr with nN @23#. Thus,
finding the decrease ofj with density would certainly allow
to conclude that« is decreasing. The opposite behavior,
rising j, would complicate the prediction of«(nN).

The final sum rule is given by the following expression

2In Ref. @4# the cumulative valuesmr8
2 ,mv8

2 were chosen to be
about 1.5 GeV2, which is well below the physical masse
(;1.7 GeV) of the resonancesr8,v8.
01520
i

m

o
e

ir

-

1

4
j

m̄r
2

M2 S m̄r
2

M2
2b D e2m̄r

2/M2
1~r→r8,v→v8!

51.131022 GeV21H 18 MeV

M2

anp

0.2

nN

nN
0

1
1

M4

3S 2 MeV21.5 MeV
anp

0.2

nN

nN
0 D 2

0.1

M6

3S 1.4 MeV1
anp

0.2

nN

nN
0 @3.8 MeV22.4 MeV# D J ,

~19!

where all masses and the Borel parameter are taken in u
of GeV. It is remarkable that the screening term, brough
the OPE side of this sum rules, completely dominates ot
density dependent contributions. This shows that in
asymmetric nuclear matter background the influence of
screening term on thev-r mixing is by far more important
than any changes of the QCD condensates. Moreover,
any realisticM2 the screening term becomes comparable
the vacuum contribution to the mixing atnN.nN

0 and asym-
metries as low asanp;0.05.

In the limit of vanishing density, relation~19! reduces to
the known sum rule forr-v mixing. A naive evaluation of
this sum rule atr-meson massM25(0.77)2, and atnN50,
gives a reasonable agreement with experimentally meas
valuej51.131023 @22# with b.0.5, advocated in Ref.@6#.
Next, we parametrize the linear dependence ofj and b on
the density as follows:

j5j (0)1j (1)ñ; b5b (0)1b (1)ñ, ~20!

whereñ denotesanpnN in units of 0.2nN
0 .

The primary reason for the introduction of ther8-v8 con-
tribution in Ref.@6# was the absence of the 1/M2 term in the
OPE side of the sum rule, so thatr andv contribution alone
would not be consistent with the asymptotic behavior ofP8.
Thus, the role ofr8-v8 is to imitate the cancellation of 1/M2

terms in contributions of various resonances at largeM2. For
a semiquantitative determination of the linear density dep
dence ofj and b we proceed as in Ref.@4#. There the
vacuum values ofj and b were estimated by choosingM
5mr , which strongly suppresses the higher resonance
should then be legitimate to compare powers ofM 22 in the
OPE and the lowest resonance contribution. The resu
given by

j (1)

j (0)
1

b (1)

b (0)
522.031024

4

j (0)b (0)m̄r
2

. ~21!

Using this relation, we can findb (1) and j (1) separately,
evaluating~19! at M250.59. The final estimate ofj (1) reads

j (1).@2.320.8#3102351.531023, ~22!
4-5
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where 2.3 originates from the screening term and20.8
comes from the OPE. A similar number can be obtain
from the combination of Eq.~19! and its first derivative in
M2. This value ofj (1) leads to the doubling of mixing am
plitude and complete screening atnn2np;62.5
31022 fm23, respectively.

III. IMPORTANCE OF THE SCREENING TERM FOR
THE ISOSCALAR-ISOSCALAR CORRELATOR

Having found such an important role of the screen
term in the isoscalar-isovector mixed correlator, we wo
like to return to previous analyses of diagonal correlat
~isovector-isovector and isoscalar isoscalar! which were used
to extract the behavior ofmr andmv at finite nucleon den-
sity @8–11#. In all these papers it was found that masses
coupling constants ofr and v resonances behave similar
in nuclear matter, simply because the OPE sides of the
rules in both cases are the same after the application of
vacuum saturation hypotheses.

We use the same symmetric normalization of the two c
rents, Eq.~3!. From now on we neglect the asymmetry of t
nuclear matter and other isospin breaking effects. Then
sum rules for isovector-isovector and isoscalar-isoscalar
relators in medium take the following symbolic form:

1

M2
Fr* e2mr*

2/M2
5

1

8p2
~12e2Sr* /M2

!2
1

4

nN

mNM2
1

c4

M4

1
c6

2M6
, ~23!

1

M2
Fv* e2mv*

2/M2
5

1

8p2
~12e2Sv* /M2

!2
9

4

nN

mNM2
1

c4

M4

1
c6

2M6
, ~24!

wherec4 and c6 are the same for both expressions. Ob
ously, at vanishing nucleon densityFv.Fr andSv.Sr .

It is remarkable that the screening terms in Eqs.~23!, ~24!
are different by a factor of 9. The enhancement of the scre
ing term in the isoscalar-isoscalar channel is due to

rSc
SS

rSc
TT

5
Fp

SFp
S

Fp
TFp

T
59. ~25!

This difference was overlooked in Refs.@8,9,11#.3

The coefficientsc2 and c4 can be computed along th
same standard technique~again with considerable degree

3In Ref. @11# rsc was taken as a free search parameter and de
mined from the sum rules at the level consistent withrSc

TT for both
correlators. It casts a strong doubt on the validity of the wh
approach, since the actual value of the screening term forv should
be 9 times larger.
01520
d

d
s

d

m
he

r-

e
r-

-

n-

uncertainty forc6). When plugging these values into the su
rules~23!, ~24!, we obtain the following numerical relations

1

M2
Fr* e2mr*

2/M2
5

1

8p2
~12e2Sr* /M2

!

2
3.431024

M2

nN

nN
0

1
1024

M4 F4.113.8
nN

nN
0 G

1
1024

2M6 F22.811.2
nN

nN
0 G , ~26!

1

M2
Fv* e2mv*

2/M2
5

1

8p2
~12e2Sv* /M2

!

2
3131024

M2

nN

nN
0

1
1024

M4 F4.113.8
nN

nN
0 G

1
1024

2M6 F22.811.2
nN

nN
0 G , ~27!

where again all masses and dimensional coupling const
are taken in GeV units. It is remarkable that atM;1 GeV
the screening term in thev sum rule is larger by an order o
magnitude than any other density-dependent term from
OPE.

As in the previous case, it is convenient to parametrize
density dependence of masses and coupling constants a
lows:

m5m(0)S 11
m(1)

m(0)

nN

nN
0 D ; F5F (0)S 11

F (1)

F (0)

nN

nN
0 D ;

S05S0
(0)S 11

S0
(1)

S0
(0)

nN

nN
0 D . ~28!

Using the sum rules~26! and~27!, and the first derivatives o
these expressions, we solve form* 2 as a function ofS0* , and
Borel parameterM. The dependence of the threshold on t
the density is obtained by requiring the Borel curv
m* (M2,S* ,n) be parallel over the Borel window which w
take from 0.6 to 1.2 GeV for different values of densitie
The slope of the Borel curvem(M2) in the Borel window at
zero density represents a ‘‘systematic uncertainty’’ int
duced by sum rules and the requirement of the Borel cur
to be parallel at different densities is equivalent to the
quirement that this uncertainty does not change while go
to finite but small densities. The resulting dependence ofS0

on the density,S0
(1)/S0

(0)520.2 forr and20.1 forv, allows
us to deduce the following estimates for the linear dep
dence of masses on the density:

mr
(1)

mr
(0)

;20.15,
mv

(1)

mv
(0)

;0.05. ~29!
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Our estimate formr
(1) agrees with the results of previou

analyses@8,9,11#. The result formv
(1) has the opposite sign

and correspond to an 40 MeV increase ofmv at the nuclear
saturation density. This difference could be easily explain
by the error in the screening term forv sum rule in Refs.
@8,9,11#. The disagreement with the results of Ref.@15#,
where the correct form of the screening terms is used
harder to explain, and we hypothesize that it could be
artifact of different numerical methods used to extract
density dependence of the resonance masses and thres

IV. DISCUSSION

Apart from the question of~non!convergence of the OPE
we would like to point out some concerns about usefuln
and validity of the sum rules at finite densities.

~1! Vacuum factorization at dim 6. It is unclear what the
status of factorization procedure is, especially in the prese
of nuclear matter. In principle, one could try to relate fou
fermion matrix elements over the nucleon states, which
pear in the calculation of the OPE, to some measured
cesses induced by weak interactions. Indeed, nonlept
hyperon decays and parity violating pion-nucleon coupl
constants could be reduced to similar matrix elements fr
the four-quark operators. It is unclear, though, whether s
an analysis is feasible.

~2! The importance of a particular choice of the spectr
function. In linear density approximation the analysis of t
examples of ther-v and v-v sum rules suggest that the
are large contributions from the respective screening ter
In fact, these contributions dominate all density depend
pieces in the OPE. It means that the ‘‘QCD input’’ in the
channels is not important in comparison with the choice
the spectral function at finite density.

~3! Is the linear density approximation valid up to n0 and
beyond?The use of the dilute Fermi gas to model the beh
ior of the scattering terms and the QCD condensates ha
limitations, and a more realistic description may greatly
fect the resulting sum rule. However, it seems unfeasible
s

89
cl.

s.

s.

s.
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n
e
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s

ce

p-
o-
ic

g
m
h
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nt

f
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-
to

calculate QCD operator averages over interacting mu
nucleon states which one would have to consider when go
beyond the dilute gas approximation. An inclusion of Fer
motion of noninteracting nucleons is practically doable b
does not alter the zero momentum result significantly.

In conclusion, we have considered the correlator
isovector and isosinglet vector currents in the presence of
asymmetric nuclear matter in linear density approximati
We see a significant dependence of the OPE onnn2np ,
which becomes comparable to vacuum contributions atnn

2np;0.05nN
0 . An attempt to extract ther-v mixing, using

the dispersion relation has shown that this mixing is m
affected by the presence of the scattering term than
density-dependent part of the OPE. A similar tendency ex
in the isosinglet-isosinglet channel, which is normally us
to deduce the dependence ofmv on density. Hence, in linea
density approximation the explicitly density dependent p
of the spectral functions~scattering terms! in the r-v and
v-v channels dominantly drive the density dependence
hadronic parameters. The density dependence of the wid
the resonances, which has been neglected here, does no
this finding. However, it may drastically change the conc
sions about the direction of resonance mixing at finite, asy
metric density.
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