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We evaluate the operator product expansi@fE for a mixed correlator of the isovector and isoscalar
vector currents in the background of the nucleon density with intrinsic isospin asymtnetryexcess of
neutrons over protonsand match it with its imaginary part, given by resonances and continuum, via the
dispersion relation. The leading density-dependent contributigindomixing is due to the scattering term,
which turns out to be larger than any density dependent piece in the OPE. We estimate that the asymmetric
density ofn,—n,~2.5% 10 2 fm~2 induces the amplitude gf-w mixing, equal in magnitude to the mixing
amplitude in vacuum, with the constructive interference for positive and destructive for negative values of
n,—n,. We revisit sum rules for vector meson masses at finite nucleon density to point out the numerical
importance of the screening term in the isoscalar channel, which turns out to be one order of magnitude larger
than any density-dependent condensates over the Borel window. This changes the conclusions about the
density dependence aofi,,, indicating~40 MeV increase at nuclear saturation density.
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[. INTRODUCTION calculation of thep-meson self-energy in a chiral model for
the spectral function, respectively. For theneson channel
Changes of hadronic properties in hot and dense nucledrwas found in Ref[14] that at nuclear saturation density an
medium are an intriguing issue which ties together modernincreasing width of the-resonance necessitates an increas-
particle and nuclear physics. The interest in these questiongg p-meson mass. However, for large values of the width
has intensified over the past decade due to the possibility ahe mass is blurred over a large window of possible values.
studying the transition from hadrons to the deconfining phase \while appreciable efforts have been directed to estimate
at heaVy ion collisions. In particular, the modification of vec- the density dependent modification of the masses and life-
tor meson properties in nuclear medium has been a subject gfne of the light vector mesons at finite densignd/or tem-
a persistent theoretical activifit]. This was initiated by the peratur¢, the question ofp-w mixing at finite densities
idea that in nuclear medium the vector meson masses shou{elnd/or temperatuyenas not received much attention. In fact
drop as a precursor to the chiral symmetry restoraf®n  finite nuclear densities can have a significant impact on this
Several experiments have also been proposed to study thgnplitude. The fact that nuclear matter can intrinsically be
changes of masses, widths, and coupling constants of vecCtospin asymmetric implies that thew mixing in matter
resonances in dengand/or hot nuclear mattef3]. can potentially be larger than the vacuum part of the mixing
The properties of vector resonances in vacuum and th@hich is induced by the difference inandd quark masses,
effects of isospin symmetry violation on the mixing of he  small in units of characteristic hadronic scales. This idea was
w resonances in vacuum have been investigated rather carggggested first in Ref16] where it has been pointed out that
fully by means of QCD sum rules in the pdgt-6]. In the  the presence of asymmetric nuclear matter has a profound
pioneering work of Ref[6] it was found that the nonzero effect on the mixing of they and w resonances. There the
value for thep-w mixing can be linked to the difference of mixing angle was determined from the matter induced non-
light quark masses, and the possibilityof=0 is seemingly  diagonal self-energy of thg® resonance by employing an
excluded. SU(2): symmetric hadronic model. Subsequently such a
Later, the QCD sum rule method was extended to finitematter induced mixing has also been analyzed on a more
temperatures and densitigd. A number of analysei8—11]  elaborate footing in Ref.17]. Along the same lines the au-
have found that the masses @fand w resonances decrease thor of Ref.[18] investigated the nucleonic density and tem-
in nuclear mediurﬁ.ln Refs. [14,15 finite widths of the perature dependenﬂjo-w mixing at a fixed asymmetry_
vector mesons have been taken into account by hand and h‘Shereby, an enhancement of the modulus of the vacuum
mixing amplitude was found due to finite density. In all
model descriptions the vacuum part of the mixing serves as
1See, however, the work of KoikeL2], where opposite behavior an input parameter, to which all the results are normalized by
is claimed. A later analysis, based on the relation between th@and in the limit of vanishing density. To this end, it is
current-nucleon forward scattering amplitude and the scatteringlesirable to obtain an independent analysis of the mixing
length of the vector meson off the nucleon in the static limit, againusing finite density QCD sum rules, which hopefully would
revealed negative mass shifts in the linear density approximatio@llow to treat the vacuum part and the density part from the
[13]. first principles. At this point we already notice one principal
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problem of finite density QCD sum rules. In the presence ofjacuum and matter inducgde mixing are of the same sign
nuclear matter there exist nonscalar condensates which camd comparable in magnitude.

be related to the twists of different dimension. In general, The smallness of the density-dependent pieces in the OPE
going from mass dimensionn2to 2(n+1) the ratio of con-  as compared to the screening term indicates that any conclu-

tributions R5; with a nonzero, fixed twist R is sion about the density-dependent piece in ghe mixing
amplitude will mostly depend on the assumptions made
o Asger 1y [ My 2 about the spectral density, i.e., what is usually called the
RSk A (V) (1) phenomenological part of the sum rules. This casts strong
2

doubts on the applicability of the finite density QCD sum
rules for the extraction of the isovector-isoscalar mixing
This requires the external momenta to be much larger thasince the density-dependent “QCD input” is negligibly
my, for the OPE to converge. However, the possibility to link small. This concern led us to reexamine the screening terms
properties of a ground state resonance to nonperturbative efi the isovector-isovector and isoscalar-isoscalar correlators
fects in the vacuunithe condensatgwvia the sum rule re- which were used in previous work8—11] to investigate the
quires external momenta of my. We will later show that modification ofp and w masses in nuclear matter. We have
for the contribution of twist operators there is a numericalfound that all previous analyses have used the same value for
suppression in the corresponding Wilson coefficients up tdhe screening terms in the isovector-isovector and isoscalar-
mass dimension six. Since at higher dimensions we have nigoscalar correlators. This is an unfortunate error because the
parametrical smallness the above should limit the applicabilscreening term in the omega channel turns out to be 9 times
ity of QCD sum rules at finite nucleonic density. larger than the value used in Ref8-11]. This changes

In this paper we study the behavior of the isoscalar-dramatically all the conclusions about the behaviomgfin
isovector mixed correlator of the two vector currents in ordemuclear matter, and indicates that, is a growing function
to extract nuclear density effects. The asymptotic behavior 0bf density in the linear density approximation.
this correlator at large spacelike external momenta can be
studied within the perturbative QCD framework, with the
power corrections represented by quark, gluon, quark-gluon,
etc., condensates. In the presence of finite nucleon density
the power correction due to these condensates will change as We start with the(causal mixed correlator of isotriplet
compared to their vacuum values. Due to the presence of thend isosinglet currents in asymmetric nuclear matter
preferred reference frame, in which the nucleons are at rest,
new density-dependent power corrections will appear. In ) 4 ik TS
both cases we assume the small density regime and keep HWE'J d*x €T ] ,(X)] 2(0))n,; 2
only the linear terms in the external nuclear density. As we
shall see, this approximation is justified for densities not,nare
larger than the nuclear saturation density, which is small in
proper “vacuum” units.

The asymptotics of the two-point correlation function, j
calculated this way, can be related to the “phenomenological
part” which includes the contributions of vector resonances,
continuum and the screening terfil3. A success or a failure We choose the same normalization of the two currents,
of the QCD sum rule analysis of vector meson propertiegvhich also means that their couplings to physigaind w
would depend on how reliably the contribution of individual resonances are approximately equal. In E2). the Gibbs
resonancesgw, . .. ) can beseparated from the rest of the average(),  (ny indicating finite nucleon densilyis ap-
contributions. proximated by a vacuum and one-particle nucleon states

We carefully examine the density-dependent part of thg8—11]. Due to the presence of a singled out rest frame with
operator product expansi¢®PE and find that the effects of four-velocityu, there are, in general, two independent, cur-
matter-induced mixing due to nucleonic matrix elements ofrent conserving tensor structur@sngitudinal and isotropic
nonscalar and scalar QCD operators in asymmetric nucleanto whichII,, can be decomposed. However, in the limit
matter follow a certain hierarchy. The asymmetric density-q_,0 one of the corresponding invariarig ,IT; becomes
induced effects start dominating vacuum contribution atequndantg], and we therefore concentrate & which

asymmetriesap,=(np—ny)/(np+n,)~0.2 and an overall  gaisfies the following dispersion relatif8l:
nucleonic density twice the nuclear saturation densi

=0.17 fm 3=(111 MeV)®. However, the analysis of the

II. ISOSINGLET-ISOTRIPLET CORRELATOR OF THE
TWO VECTOR CURRENTS AT FINITE DENSITIES

— — < 1= —
(uy,u—dy,d), jp=5(uyu+dyd. @

N

T
"

: me 1 (= ImII
phenomenological part of the QCD sum rules shows that the 17,(Q2=—qg?2)= _“2 :_J ds '2+subtractions.
scattering contribution, usually called screening term, turns 3Q; ™Jo  s+Qq
out to be numerically by far more important. Brought to the 4

OPE-side of the sum rule, the screening term can be regarded
as a mass dimension two power correction. Already at interSubtracting the terms attributed to the- y— w electromag
mediate asymmetriesa,,~0.1 and saturation density netic mixing from the spectral representatif] and the
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OPE and appealing to the literature on density dependerithe asymptotic behavior of the left-hand side of Eg).can
OPE’s of p and w current correlators we arrive at the fol- be calculated by means of the operator product expansion
lowing sum rule: (OPB. The result is given in terms of the perturbative con-
tribution and power corrections, proportional to the conden-
| sates, taken in the presence of the external nucleon density.
Qo)_ _f m—)+subtract|ons (5 Retaining terms up to the ord@rge, we present the result in
o the following form:

13mdmu

’ 2\
Qo= 167734| Vi 4
+Q_g 7<UU>nN_7<dd>nN 3 2 DVU_dYM’DVd)>nN
1

Tas [ — aZE ad22_a23ad2
76| 2 | (Uyuysh ) = (dy, yshd) T+ gL (uy, A )= (dy, A d)%]

Qo

(S(uy,D,D\D,u—dy,D,D,\D,d)), ] (6)

ny

4 _ 24
+27Ta<§(U7,L75U)2 (d%ﬂsd) +3 (UmU)Z——(dmd)

N

8 Q.Q,Q\Q,
"3 Q*

In Eqg. (6), the symbolS denotes the operation of making tensors symmetric and traceless. As(fmsuakample, Refs.
[8,14,12,19) the averages over mixed operators and twist four contributions have been omitted().Eche former can

either be reduced to four quark operators by use of the equation of n{thiese contributions are already incluglear they

are suppressed at’~1 Ge\? since there the gluon content of the nucleonic wave function is §8lThe latter has been
argued in Ref[9] to have no substantial effect on theand w mass shifts, and we will therefore omit twist four operators.
Further progress in calculating the OPE depends on how accurately we can predict the size of various contribiitiongto
restrict ourselves to the case of low and medium densities, so that the (imean field approximation is justified, and the
density dependent part enters in the final expression multiplied by the matrix elements over the single nucleon states. We
further make use of the vacuum saturation hypothigdiswhich becomes an exact relation in the limit of a large number of
colors. This hypothesis is known to “work” reasonably well in vacuum. However, its application to the nucleon matrix
elements is not fully justified. We use this hypothesis to estimate the order of magnitude of dim 6 contribution, noting that their
numerical weight in the final result turns out to be small as the OPE is largely dominated by dim 4 contributions. With all these
assumptions, Eq6) can be reduced to the following form:

(02— 1 3 m3— m?
+Q_é [<qq>0( 2)+ om ny _m<p|uu_dd|p>Ep:0apnnN+§mpa’pnnNAg (Mz)
=] 22 @D — vt — | +2(qa)o(pluu-dd]p) Al )
—| T @ -yt — uu-— < —oQpnNN | —s=Miap,n .
Qg 81 s0dQ9)olm Y By 1?) qq)olP P7k,=0%pnMN 12Mp%pnnAg (1

Y

In Eq. (7) ny (ny,n,) denotes the total nucleoniproton, neutropdensity; a,, the p-n asymmetry, defined as,,=(n,
—ng)/ny; m, the proton mass{qq), the value of theu-quark condensatey the asymmetry ofUﬂuark andd-quark

condensate defined ag=(dd)y/(uu)o—1; 3.n=(45+7) MeV [9] the nucleon sigma term; anmh is defined asm
=1/2(m,+ my). The electromagnetic coupling ig the strong coupling at scajeis a¢(u?). In Eq.(7) we have already used
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the numerical smallness of isospin and chiral symmetry vio- |(EQ>|
lating parameters as compared to the normal hadronic scalél; (M?)=3.7x10 5+——

o n
2 MeV—1.5 MeV—2 —N)

and thus neglected terms proportionalntgqg , ¥? and so M4 0.2 ”%
on. For similiar reasons it is justified to neglect the effects of — N
isopsin violation in nucleon matrix elements and take _ [{qg)| 0.1 Ge
(p|luu—dd|p)=—(n|uu—dd|n), which leads to the depen- M* M2
dence on the asymmetry factat,,. The scalar matrix ele-
ment(p|uu—dd|p) is related to the baryon octet mass split- % | 1.4 Mevs Zne n—g'[3.8 MeV—2.4 MeV] | .
ting, (mz—ms)/mg, and it is numerically close to 0[29]. 0.2 nf

As for the contribution of symmetric and traceless twist (12

two quark bilinear$9] of dimension 4 and 6, their nucleonic
matrix elements are determined by the quark parton distribum this expression we have used the following set of values:

: —ds 2 —d/ 2 -
tions Az~ (%) andAy~ () asl8] m,=5 MeV; mg=9 MeV; m=7 MeV; m,=940 MeV;
- nNznﬁ,z(lll MeV)® (the nuclear matter saturation den-
(SA7,,D 1, Dngo (47) sity); 3 ,n=45 MeV; (qq)o=— (225 MeV)?; y=—102

[20]; @=1/137; andag(1 GeV?)=0.5[9]. The quark con-
densate has been factored out numerically for the sigma-term
and the twist contributions.
Several important observations should be made at this
— ) point. ForM~1 GeV, a pure perturbative contribution is
(&q 7M1Du2Du3Du4q>N(k)(r“ ) negligibly small as compared to power corrections. The latter
au—d 2 are dominated by dimension 4, with the constant term origi-
=iAg (W) (ky KKy Ky, —traces, (8 pating from them, and my mass difference and the
anpny-dependent piece given by th%_d contribution. At
wherek,, denotes the nucleon momentuB,, is the gauge the level of dimension 6 we observe three different terms
covariant derivative. In general, the factaf(u?) can be [second line of Eq(12)]: vacuum part, density-dependent
obtained from the parton distribution®(x,u?) and Scalar condensate and twist contributions. At this dimension
the density dependent contributions from scalar condensate
and twist tend to cancel each other. This cancellation can be
. an artifact of the chosen parameters and/or of the crude na-
o 1 2 K~ 2 ture of the approximations made in estimating the size of the
Allp )_Zfo dx X QU6 + (=) Qx,1%). (9) four-quark matrix elements over the nucleon. Nevertheless,
M~1 GeV, and the OPE is dominated by dim 4 terms,

In Ref.[21] the parton distributions in the nucleon have beenWhere at np/0.2) (My/ny) ~1 the suppression of dim 6 is

fitted to experiment at a resolution scal€é=0.26 Ge\,. about 50%. For higher values of asymmetric density

. o ' : . '(M2=1 GeV) changes sign.
Eglrzg)trﬁgeoggmbutlons and performing the integrations 01H What does this behavior off’(M2=1 GeV) mean in

terms of thew-p resonance mixing amplitude? To answer
u—d, 2 this question we should parametrize the spectral function in
Ay~ Y(u?=0.26, GeV)=0.429, terms of the resonance contributions and analyze the result-
ing sum rule(5).

Following Refs[6,7], we approximate the imaginary part
of the correlator by contributions @f, w, p’, ' resonances
and the QCD-continuum:

= —IAL(?) | Kk, = 7 9K |

Q(x,x?) in the proton as

A4S 4(u?=0.26, GeV)=0.097. (10)

To generate the respective values at the spate 1 Ge\?

relevant for the sum rule we simply use the conversion fac- 1  _ 1 ) 5
tors fo(us,uf)=A5 Y(ud)/AS Y(ud) and fa(us,us) —ImILi(s,apn,ny) = 7| f,0(s—mp) —f,8(s—my)
=AY ua) /AL Y(w?). Using AYTd and Ay at 1 GeV
from Ref. [9], we arrive at the following values of matrix +f,8(s— m2,)—f, 8(s—m?,)
elements of interest: g ¢
J P 5(S) + —— B(s—sp)
A59(1 GeV)=0.32, A Y1 GeV?)=0.062. (11) 872 1673 ek

Keeping this in mind, we will now proceed to the numerical (13
evaluation of OPE. Performing a Borel transformation of theThe contribution to the mixing due to the electromagnetic
OPE of Eq.(7) and omitting the numerically strongly sup- continuum is smal[4]. Therefore, we will neglect it in the
pressed dimension two power correction, we obtain subsequent consideration. In E3) f, andf, refer to thep
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2
)

andw residues of the-w current propagator, ang andw’ 1

symbolize the cumulative effect of higher resonafdeso-
duced in the original analys[§] in order to have consistent

E
M2

asymptotic behavior ofl’ (M?). In addition to the “usual” 18 MeV a 1
annihilation continuum above a certain threshgjdEq. (13) =1.1X102 GeV ! . np _g —
exhibits a scattering term which behaves as a pole=a0 VE N
(Landau pol¢[7]. The corresponding coefficient can be cal- 01
culated explicitly, and the r_esu_lt in the leading order in Fermi 2 MeV—1.5 Me\. &np "N
momentum f;/my expansiofis given by 0.2 MG
277_2 2
pee=m [FaFaMe PR A= gy, (14 1.4 MeV+ O—”ZP —N[3 8 MeV—2.4 MeV/
Here the coefficient§ ) are defined via nucleon matrix (19)
elements of quark vector currents at vanishing momentum
transfer where all masses and the Borel parameter are taken in units
of GeV. It is remarkable that the screening term, brought to
Fﬁ: F>=(p|uyou+dyd|p)=3, the OPE side of this sum_rult_as, comp.letely dommates other
density dependent contributions. This shows that in the
— — asymmetric nuclear matter background the influence of the
Fr=—Fa=(pluyou—dyod|p)=1. s oo y

screening term on the-p mixing is by far more important
than any changes of the QCD condensates. Moreover, for

After Borel transformation the contribution of the Landau
. . ; any realisticM? the screening term becomes comparable to
screening term is usually carried to the lhs of the sum rule t‘%he vacuum contribution to the mixing ag=n¢ and asym
0 -

effectively become a power correction of dimension 2 in the

2 _ —,  metries as low as,,~0.05.
expansmn OfH (M?). Deflnmg fro=12(f,+1,), m In the limit of vanishing density, relatiofl9) reduces to

2 2
=12m+m;),  Ami=mi-m and  B=(fu  the known sum rule fop-» mixing. A naive evaluation of
p)m /(fprm ) (the primed quantltles are defined analo- this sum rule ap-meson mas#?=(0.77¢, and atny=0,
gously, we quote the result of Ref6] relating f,, to the  gives a reasonable agreement with experimentally measured

measurable quantitiegrz' Amrz' 9, andg,, valueé=1.1X 103 [22] with B=0.5, advocated in Ref6].
Next, we parametrize the linear dependence @ind 8 on
12m2 5pw mf the density as follows:
fpo~— 5 &, (16)
9p90 Am?  Am; £= 04 {R: g=pO) 4 g (20)
whereg,, g, are the respective decay constants, apg - ) _ 0
enters the measurable mixing parametas follows: wheren denotesa, Ny in units of 0.21y.
The primary reason for the introduction of thé-w’ con-
5 tribution in Ref.[6] was the absence of theM? term in the
= . 2"‘” —. (17  OPE side of the sum rule, so thatandw contribution alone
(m,—1/2T )" (m,— /2T ) would not be consistent with the asymptotic behaviofldt

Thus, the role op’-w’ is to imitate the cancellation of W?
terms in contributions of various resonances at lavige For
a semiquantitative determination of the linear density depen-
dence of¢ and B we proceed as in Ref4]. There the
vacuum values ot and 8 were estimated by choosing

, Which strongly suppresses the higher resonances. It
should then be legitimate to compare powersvbf? in the
OPE and the lowest resonance contribution. The result is
given by

Thereby,¢ is defined as
w=wotepg, p=po—ewg, (18

andI” denotes the width of the respective resonance. It is fa|r
to remark at this point that the observable combination,
=3,,I", 'm_* will have an additional dependence on den-
sity due to a substantial increaselof with ny [23]. Thus,
finding the decrease &f with density would certainly allow
to conclude that is decreasing. The opposite behavior, a 1 )
rising &, would complicate the prediction af(ny). 5_ B_: _ —4 4

, Jo \ . + 2.0x10 . (21

The final sum rule is given by the following expression: &0 g £0p0m?

Using this relation, we can fing®) and ¢ separately,

9n Ref. [4] the cumulative valuesn ,,m , were chosen to be €valuating(19) at M2 0.59. The final estimate af") reads
about 1.5 Ge¥, which is well below the physical masses
(~1.7 GeV) of the resonancgg,w’ £M=[2.3-0.8]x10 3=1.5x 10 3, (22

015204-5



DUTT-MAZUMDER, HOFMANN, AND POSPELOV PHYSICAL REVIEW (63 015204

where 2.3 originates from the screening term an@.8  uncertainty forcg). When plugging these values into the sum
comes from the OPE. A similar number can be obtainedules(23), (24), we obtain the following numerical relations:
from the combination of Eq(19) and its first derivative in

M?2. This value of¢™!) leads to the doubling of mixing am- 1 ez > -
plitude and complete screening an,—n,~=2.5 —Fre ™ m :—2(1—9_39”\’I )
X102 fm~3, respectively. M 8m
3.4x10 4 ny 104 Ny
Ill. IMPORTANCE OF THE SCREENING TERM FOR - > —0+ 2 4.1+ 3.8—0
THE ISOSCALAR-ISOSCALAR CORRELATOR M nn M NN
Having found such an important role of the screening (O Ny
term in the isoscalar-isovector mixed correlator, we would + M6 _2-8+1-2n_o ' (26)
like to return to previous analyses of diagonal correlators N
(isovector-isovector and isoscalar isoscalahnich were used
to extract the behavior ah, andm,, at finite nucleon den- ip*e*mZZ/Mzzi(l_e*SZ/Mz)
sity [8—11]. In all these papers it was found that masses and p2 © 872
coupling constants gf and w resonances behave similarly
in nuclear matter, simply because the OPE sides of the sum 31x10 *ny 10°* Ny
rules in both cases are the same after the application of the T e 4.1+ 3'8n_°
vacuum saturation hypotheses. N N
We use the same symmetric normalization of the two cur- —4 n
N
rents, Eq(3). From now on we neglect the asymmetry of the + —28+1.21, (27)
nuclear matter and other isospin breaking effects. Then the M® Ny
sum rules for isovector-isovector and isoscalar-isoscalar cor-
relators in medium take the following symbolic form: where again all masses and dimensional coupling constants
are taken in GeV units. It is remarkable thatMt-1 GeV
1 22 1 oz 1Ny C4 the screening term in the sum rule is larger by an order of
WF: e ™ =Q(1—e_sp )= 7 WvL e magnitude than any other density-dependent term from the
N OPE.
c As in the previous case, it is convenient to parametrize the
_66' (23 density dependence of masses and coupling constants as fol-
2M lows:
e mavzs 1y smzy 9 M Ca I AL . F=FO 1 PO ,
M2 ¢ 82 4 myMm2 M4 m(© nd, FO nd
S &
M’ 24 So=88°’( 142 —Q)- 28
SUMLLIY

wherec, andcgz are the same for both expressions. Obvi- . ) o
ously, at vanishing nucleon densi,=F, andS,=S Using the sum rule&6) and(27), and the first derivatives of
’ (0] P (0] (2

It is remarkable that the screening terms in Ha8), (24)  these expressions, we solve fot > as a function ofsg , and
are different by a factor of 9. The enhancement of the screerBorel parameteM. The dependence of the threshold on the

ing term in the isoscalar-isoscalar channel is due to the density is obtained by requiring the Borel curves
m*(M2,S* ,n) be parallel over the Borel window which we
pSS FﬁFﬁ take from 0.6 to 1.2 GeV for different values of densities.
=T o (250  The slope of the Borel curvea(M?) in the Borel window at
psc  FpFp zero density represents a “systematic uncertainty” intro-

o ] 3 duced by sum rules and the requirement of the Borel curves
This difference was overlooked in Ref8,9,11. to be parallel at different densities is equivalent to the re-
The coefficientsc, and c, can be computed along the quirement that this uncertainty does not change while going
same standard techniqéagain with considerable degree of (4 finjte but small densities. The resulting dependencg,of
on the densityS{H/S{”= —0.2 forp and— 0.1 for , allows
us to deduce the following estimates for the linear depen-
3In Ref.[11] p. Was taken as a free search parameter and deteldence of masses on the density:
minedfrom the sum rules at the level consistent wjth! for both

correlators. It casts a strong doubt on the validity of the whole m®) msul)
approach, since the actual value of the screening terms feinould % ~—0.15, —0) ~0.05. (29
be 9 times larger. m, m,
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Our estimate formgl’ agrees with the results of previous calculate QCD operator averages over interacting multi-
analyseqd8,9,11. The result formful) has the opposite sign hucleon states which one would have to consider when going
and correspond to an 40 MeV increasenyf at the nuclear beyond the dilute gas approximation. An inclusion of Fermi
saturation density. This difference could be easily explainednotion of noninteracting nucleons is practically doable but
by the error in the screening term far sum rule in Refs. does not alter the zero momentum result significantly.
[8,9,11. The disagreement with the results of REE5], In conclusion, we have considered the correlator of
where the correct form of the screening terms is used, igsovector and isosinglet vector currents in the presence of the
harder to explain, and we hypothesize that it could be a@symmetric nuclear matter in linear density approximation.
artifact of different numerical methods used to extract theVe see a significant dependence of the OPEngrn,,
density dependence of the resonance masses and threshoMibich becomes comparable to vacuum contributionsat
—np~0.051ﬁ. An attempt to extract the-w mixing, using
IV. DISCUSSION the dispersion relation has shown that this mixing is more
affected by the presence of the scattering term than by
Apart from the question ofnonconvergence of the OPE  density-dependent part of the OPE. A similar tendency exists
we would like to point out some concerns about usefulnesg the isosinglet-isosinglet channel, which is normally used
and validity of the sum rules at finite densities. to deduce the dependencerof, on density. Hence, in linear
(1) Vacuum factorization at dim.@t is unclear what the  density approximation the explicitly density dependent part
status of factorization prpcm_’-zdure is, especially in the presencgs the spectral functiongscattering termsin the p-» and
of nuclear matter. In principle, one could try to relate four-,_,, channels dominantly drive the density dependence of
fermion matrix elements over the nucleon states, which aphadronic parameters. The density dependence of the width of
pear in the calculation of the OPE, to some measured prahe resonances, which has been neglected here, does not alter
cesses induced by weak interactions. Indeed, nonleptonigis finding. However, it may drastically change the conclu-

hyperon decays and parity violating pion-nucleon couplingsions about the direction of resonance mixing at finite, asym-
constants could be reduced to similar matrix elements fromnetric density.

the four-quark operators. It is unclear, though, whether such
an analysis is feasible.

(2) The importance of a particular choice of the spectral
function In linear density approximation the analysis of the R.H. and M.P. would like to thank V. Eletsky and A.
examples of thep-ow and w-w sum rules suggest that there Vainshtein for sharing their skepticism about the relevance
are large contributions from the respective screening term&f QCD sum rules at finite density. M.P. is grateful to the
In fact, these contributions dominate all density dependen¥cGill University nuclear theory group, where this work
pieces in the OPE. It means that the “QCD input” in thesewas started, for the hospitality extended to him during his
channels is not important in comparison with the choice ofvisit. The work of R.H. was funded by Deutscher Akademis-
the spectral function at finite density. cher AustauschdiensDAAD). The work of A.K.D.M. has

(3) Is the linear density approximation valid up tg and  been supported by the Natural Sciences and Engineering Re-
beyond?The use of the dilute Fermi gas to model the behavsearch Council of Canada and the Fonds FCAR of the
ior of the scattering terms and the QCD condensates has iQueb& Government. The work of M.P. was supported in
limitations, and a more realistic description may greatly af-part by the Department of Energy under Grant No. DE-
fect the resulting sum rule. However, it seems unfeasible té-G02-94ER40823.
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