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Intrinsic quadrupole moment of the nucleon
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We address the question of the intrinsic quadrupole momentQ0 of the nucleon in various models. All
models give a positive intrinsic quadrupole moment for the proton. This corresponds to a prolate deformation.
We also calculate the intrinsic quadrupole moment of theD(1232). All our models lead to a negative intrinsic
quadrupole moment of theD1 corresponding to an oblate deformation.
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I. INTRODUCTION

Electron-proton scattering and atomic Lamb shift me
surements have shown that the spatial extension of the
ton charge distribution~charge radius! is aboutr p'0.9 fm
@1#. In addition to the charge radius, the elastic electron s
tering data provide precise information on the radial cha
densityr(r ) of the proton. However, they do not allow us
draw any definite conclusions concerning possible deviati
of the proton’s shape from spherical symmetry.

In order to learn something about the shape of a spati
extended particle one has to determine itsintrinsic quadru-
pole moment@2#,

Q05E d3rr~r !~3z22r 2!, ~1!

which is defined with respect to the body-fixed frame. If t
charge density is concentrated along thez direction~symme-
try axis of the particle!, the term proportional to 3z2 domi-
nates, Q0 is positive, and the particle is prolate~cigar
shaped!. If the charge density is concentrated in the equa
rial plane perpendicular toz, the term proportional tor 2 pre-
vails, Q0 is negative, and the particle is oblate~pancake
shaped!. The intrinsic quadrupole momentQ0 must be dis-
tinguished from thespectroscopicquadrupole momentQ
measured in the laboratory frame. Due to angular momen
selection rules, a spinJ51/2 nucleus, such as the nucleo
does not have a spectroscopic quadrupole moment; howe
it may have anintrinsic quadrupole moment as was realiz
more than 50 years ago@2#. Some information on the shap
of the nucleon or any other member of the baryon octet
be obtained by electromagnetically exciting the baryon
spin J53/2 or higher spin states.

With the Laser Electron Gamma Source at Brookhav
and various continuous electron beam accelerators, one
carry out high precision pion production experiments on
nucleon. In these experiments a photon~real or virtual! ex-
cites theN(939) to, for example, theD(1232) resonance
with spinJ53/2. Magnetic dipole (M1), electric quadrupole
(E2), and/or charge quadrupole (C2) excitation modes are
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allowed by angular momentum conservation and invaria
under the parity transformation. Once produced, theD(1232)
hadronically decays to a nucleon and pion. By measuring
momenta of the final state nucleon and pion in coinciden
individual electromagnetic multipoles can be extracted.

The E2 and C2 multipoles carry the information abou
the intrinsic deformation of the nucleon. If the charge dist
bution of the initial and final three-quark states were sph
cally symmetric, theE2 andC2 amplitudes would be zero
~Becchi-Morpurgo selection rule@3#!. The experimental val-
ues for these quadrupole amplitudes are small compare
the dominant magnetic dipole transition, but they are clea
nonzero. Recent data@4–6# indicate that the ratio of the elec
tric quadrupole amplitude to the magnetic dipole amplitu
is at leastE2/M1'23%. A C2/M1 ratio of the same sign
and comparable magnitude has been measured@7#. Recently,
an experimental value for theN→D quadrupole transition
moment has been derivedQexp

N→D520.10860.009
60.034 fm2 @5#. From these measurements one can c
clude that the nucleon and theD are intrinsically deformed.
However, the magnitude and sign of the intrinsicN and D
deformation can only be calculated within a model.

There is considerable uncertainty in the literature co
cerning the implications of the experimentalC2/M1 and
E2/M1 ratios for the intrinsic deformation of the nucleo
Even with respect to the sign of the intrinsic nucleon def
mation there is no consensus. For example, Refs.@8–10#
conclude that the nucleon is oblate, while Refs.@11–13# find
a prolate nucleon deformation. Several authors speak o
about ‘‘deformation’’ without specifying the sign.

The purpose of this paper is to calculate the intrin
quadrupole moment of the protonQ0

p in various models. In
particular, we want to predict its sign, i.e., we want to fin
out whether the proton is prolate or oblate. Before doing th
we discuss the possible origins of nucleon deformation in
quark model.

II. SOURCES OF QUADRUPOLE DEFORMATION

Two different sources contribute to a quadrupole def
mation of baryons. First, tensor forces between quarks l
to D-state admixtures in the single-quark wave functions o
baryon, and consequently to a deviation of thevalence quark
distribution from spherical symmetry. The one-gluon e
change interaction was originally proposed to provide
©2000 The American Physical Society02-1
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required tensor force@14,15#. An external photon can induc
a quadrupole transition, for example, by lifting anS state
quark in theN into a D state in theD via the one-body
current in Fig. 1~a!.

Second, quark-antiquark pairs and gluons are present
physical baryon. These degrees of freedom also contribu
the observed quadrupole transition. We refer to theqq̄ and
gluon degrees of freedom generically asnonvalence quark
degrees of freedom. The latter are effectively described a
spin-dependent two-quark operators in the electromagn
current@16#. The two-body terms in the charge and curre
operators shown in Figs. 1~b!–~d! arise as a result of elimi
nating theqq̄ and gluon degrees of freedom from the wa
function, very much in the same way as the two-body pot
tials in the Hamiltonian result from the elimination of th
‘‘exchange particle’’ degrees of freedom from Hilbert spac

Hence tensor force inducedD waves in the single-quark
wave function~one-quark quadrupole transition! and nonva-
lence quark degrees of freedom~two-quark quadrupole tran
sition! contribute to the deformation of baryons. In princip
there can also be three-quark operators. We neglect t
here. In a different paper@17# we argue that their contribu
tion is suppressed by at least 1/Nc compared to the two-body
terms.

Experimental amplitudes contain both mechanisms,
that one cannot readily distinguish between the two differ
excitation modes~one-quark vs two-quark currents!. If, how-
ever, the single quark transition mode is strongly suppres
@3#, and if one measures anE2 strength that is large com
pared to the single quark estimate, one may conclude tha
deformation resides in the nonvalence quark degrees of f
dom, effectively described by the two-body current ope
tors.

A. Single quark operator: Deformed valence quark orbits

In a multipole expansion of the one-body charge opera
the term proportional to the spherical harmonic of rank tw
Y2( r̂ i) provides the one-body quadrupole operator,

Q̂[1]5A16p

5 (
i 51

3

eir i
2Y0

2~r i !5(
i

ei~3zi
22r i

2!, ~2!

where the sum is over the three quarks in the baryon. O
ously, this one-body operator needsD waves in the nucleon

FIG. 1. Feynman diagrams of the four vector currentJm

5(r,J): ~a! one-body currentJ[1]
m , and~b!–~d! two-body gluon and

pion exchange currentsJ[2]
m . The one-body charge density leads

a quadrupole operator of the type given in Eq.~2!. Both gluon and
pion exchange charge densities produce a two-body quadrupol
erator of the type given in Eq.~5!.
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or D in order to make a nonvanishing contribution. In
two-state model~only S and D waves!, the nucleon andD
wave functions can be written as

uN&5aSu~S51/2,L50!J51/2&

1aDu~S53/2,L52!J51/2&,
~3!

uD&5bSu~S53/2,L50!J53/2&

1bDu~S51/2,L52!J53/2&,

where the quark spinS couples with the orbital angular mo
mentumL to the total angular momentumJ of the baryon.
The D states in Eq.~3! are of mixed symmetry type with
respect to the exchange of quarks 1 and 2. We have
posely omitted the symmetricD state in theD wave function
cDu(S53/2, L52)J53/2&, which is smaller in magnitude
than the one listed here. The negative relative sign of thD
wave amplitudeaD520.04 @14,15# with respect to theS
wave amplitude indicates an oblate deformation of the
lence quark distribution in the nucleon. Similarly, the po
tive sign of theD state amplitudebD50.07 in theD corre-
sponds to a prolate deformation of its valence qu
distribution.

Applied to theN→D quadrupole transition, the one-bod
quadrupole operatorQ̂[1] sandwiched between theN andD
wave functions gives for the quadrupole transition mom
@18#

Qp→D152b2
4

A30
~aSbD2aDbS!, ~4!

where the smallaDbD term has been neglected. Here, t
harmonic oscillator parameterb describes the spatial exten
sion of the baryon wave function, and we refer to it as qu
core~matter! radius. The two terms of this single quark cu
rent matrix element are schematically shown in Fig. 2.

Using standardD state admixtures@14,15# and an un-
physically large quark core radius ofb51 fm in Eq.~4! one
could describe the experimental transition quadrup
Qp→D1

exp '20.11 fm2 @5# by the one-body term alone. How
ever, from the description of the baryon spectrum it is kno
that one needs an average single-quark excitation energv
51/(mqb2)'500 MeV @18#, which implies a quark core ra
diusb'0.5 fm. With this smaller value for the quark matt
radiusb one obtains only 20% of the experimental quad
pole strength.

That the single-quark excitation is not the dominant qu
rupole excitation mechanism becomes particularly appa
when one considers theE2/M1 ratio in the electromagnetic
excitation of theD1. Calculations of theE2/M1 ratio based
on spatial single quark currents giveE2/M1520.1% @20#,
which is an order of magnitude smaller than recent exp
ments. Thus, the experimentalE2/M1'23% ratio @4,5#
cannot be solely described by a single-quark transition. O
degrees of freedom must be taken into account. These po
have recently been discussed in more detail@19#.

p-
2-2
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INTRINSIC QUADRUPOLE MOMENT OF THE NUCLEON PHYSICAL REVIEW C63 015202
B. Two-quark operator: Deformed qq̄ cloud

Many people believe that the valence quarks must m
in D waves in order to obtain a nonvanishing quadrup
moment. However, a two-body spin tensor in the charge
erator also generates a quadrupole moment even when
valence quarks are in pureS states@19#. A similar observa-
tion was also made by Morpurgo@21#. The two-body quad-
rupole operator generated by theqq̄ pair currents of Figs.
1~b! and 1~c!,

Q̂[2]5B (
iÞ j 51

3

ei~3s izs jz2si•sj !, ~5!

acts in spin and isospin space, whereas the one-body op
tor in Eq. ~2! acts in isospin and orbital space. The const
B with dimension fm2 contains the orbital and color matri
elements. As a spin-tensor of rank 2, the operatorQ̂[2] may
simultaneously flip the spin of two quarks~double spin flip!
in such a way that the total spin changes from 1/2 to 3/2~see
Fig. 3!.1

We emphasize thatalthough the operator Qˆ
[2] formally

acts on valence quark spin states, it does not describe
deformation of the valence quark core. Instead, it refle

1The name double spin flip becomes clear if one rewrites one t
in Eq. ~5! in the spherical basis with spin raising (s1) and lowering
(s2) operators, e.g.,Be1(2s1zs2z1s12s211s11s22).

FIG. 2. N→D quadrupole transition via the one-body quadr

pole operatorQ̂[1] of Eq. ~2! coming from the one-quark current i
Fig. 1~a!. In this single-quark transition, the absorption of aC2
photon is only possible if either the nucleon~left! or theD ~right!
contains aD-wave admixture~deformed valence quark orbit!. Ac-

tually, the N→D quadrupole transition due toQ̂[1] is a coherent
superposition of the two orbital angular momentum changing
intrinsic spinS conserving one-body transitions~upper and lower
part of the figure!. The resulting quadrupole transition matrix el
ment of Eq.~4! is suppressed due to the smallD-wave admixtures
in the N und D wave functions.
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that the physical nucleon contains qq¯sea quarks whose dis
tribution deviates from spherical symmetry.

Using a quark model with two-body exchange curre
the constantB has been calculated. It was found that theN
→D andD quadrupole moments can be expressed in te
of the neutron charge radiusr n

2 as follows@19#:

A2Qp→D15QD154B5r n
2 . ~6!

The reason for the existence of such a relation betweenQD

and r n
2 is that both observables are dominated by excha

currents. When expanding the gluon and pion excha
charge operators in Figs. 1~b! and ~c! into Coulomb multi-
pole operators one finds a fixed relative strength between
monopole termC0522B(eisi•sj ~giving rise to a nonva-
nishing neutron charge radius@16#! and the quadrupole term
C25B(ei(3s izs jz2si•sj ) ~leading to a nonzero transitio
quadrupole moment@19#!. As a result, one obtains the sam
analytic expression forr n

2 andA2Qp→D1, suggesting that the
deformation of the nucleon is closely connected to the n
vanishing neutron charge radius. The quadrupole mom
calculated from the experimental neutron charge radius
cording to Eq.~6! is in good agreement with the transitio
quadrupole moments extracted from theE2/M1 andC2/M1
measurements@5#.

Let us summarize. The quark model shows thatboth the
N(939) ground state and the excitedD(1232) state are de
formed. This conclusion is reached in the single quark tr
sition model where tensor forces lead toD-state admixtures
in both theN andD wave function. It is also obtained in th
two-quark transition model, where exchange currents p
duce a nonzero quadrupole moment of theS51 diquark in
theN andD. It is impossible to have a spherical nucleon a
a deformedD or vice versa. If the quarks interact via vect
or pseudoscalar type potentials, either both baryons are
formed or both are spherical. The latter possibility is rul
out by experiment. Furthermore, we understand that tw

m

t

FIG. 3. N→D quadrupole transition via the two-body quadr

pole operatorQ̂[2] of Eq. ~5! originating from, e.g., the two-body
gluon exchange current in Fig. 1~b!. The quadrupole transition pro
ceeds by absorbing aC2 photon on a quark-antiquark pair with a
valence quarks remaining in anS state. This double spin flip quad

rupole amplitude describes the deformation of theqq̄ cloud in the
nucleon. It can be parameter-independently expressed in term
the neutron charge radiusQp→D15r n

2/A2520.80 fm2 @19#. This
prediction is in agreement with the recent extraction ofQp→D

exp 5
20.10860.00960.034 by the LEGS group@5# indicating that the

major part of the quadrupole strength resides in the collectiveqq̄
degrees of freedom.
2-3



to
ti

o
t
te
th
no

th
rin

n

tr
m
n
et
ite
it
f

tri
in

en

th
we
t t
ud
th
w

en

in

nc-

c-
spin
s

nc-

ich
ro-
ad-

mo-
ird
ob-
ts

di-

is
ers
we
to

ad-
d

rge

A. J. BUCHMANN AND E. M. HENLEY PHYSICAL REVIEW C63 015202
body qq̄ pair currents provide the major contribution
baryon quadrupole moment, suggesting that the deforma
resides in the baryon’sqq̄ cloud.

III. INTRINSIC DEFORMATION OF THE NUCLEON

In this section we discuss the intrinsic quadrupole m
ment of the nucleon. Here,intrinsic quadrupole momen
means the one obtained in a body-fixed coordinate sys
that rotates with the nucleon. Most work that deals with
problem of nucleon deformation in the quark model does
distinguish between intrinsic and spectroscopic~measured!
quadrupole moment. This is all the more surprising since
shape of the nucleon is in the first place related to the int
sic, and not to the spectroscopic quadrupole moment@2#.

The spectroscopic quadrupole moment of the nucleo
zero. Nevertheless, the nucleon can have anintrinsic quad-
rupole moment. This is analogous to a deformedJ50
nucleus. All orientations of a deformedJ50 nucleus are
equally probable, which results in a spherical charge dis
bution in the ground state and a vanishing quadrupole
ment Q in the laboratory. The intrinsic quadrupole mome
Q0 can then only be obtained by measuring electromagn
quadrupole transitions between the ground and exc
states, or by measuring the quadrupole moment of an exc
state withJ.1/2 of that nucleus. If a sufficient number o
quadrupole transitions to excited states are known, the in
sic quadrupole moment could be extracted from the data
model-independent way as suggested by Kumar@22#. Here,
we follow a somewhat different approach, which is less g
eral than Kumar’s method.

Given only the experimental information of theD and the
N→D quadrupole moments what can we learn about
intrinsic quadrupole moment of the nucleon? The ans
which we give is model dependent. However, with respec
the sign of the intrinsic quadrupole moment all models st
ied in this paper yield the same answer, namely that
nucleon is prolate shaped. In the following three sections,
will use three different models of the nucleon andD, ~i! a
quark model,~ii ! a collective model,~iii ! and a pion cloud
model in order to calculate the intrinsic quadrupole mom
of the nucleon.

A. Quark model

In standard notation the SU~4! spin-flavor part of the pro-
ton wave function is composed of a spin-singlet and a sp
triplet part:

up&5
1

A2
H 1

A6
u~2uud2udu2duu!&

3
1

A6
~2↑↑↓2↑↓↑2↓↑↑ !&1

1

A2
u~udu2duu!&

3u
1

A2
~↑↓↑2↓↑↑ !&J . ~7!
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The angular momentum coupling factors 2,21, 21 in front
of the three terms in the spin symmetric proton wave fu
tion express~i! the coupling of the first two quarks to anS
51 diquark, and~ii ! the coupling of theS51 diquark with
the third quark to totalJ51/2.

Sandwiching the quadrupole operatorQ̂[2] between the
proton’s spin-flavor wave function yields a vanishing spe
troscopic quadrupole moment. The reason is clear. The
tensorQ̂[2] applied to the spin singlet wave function give
zero, and when acting on the proton’s spin triplet wave fu
tion it gives

~3s1zs2z2s1•s2!
1

A6
u~2↑↑↓2↑↓↑2↓↑↑ !&

5
4

A6
u~↑↑↓1↑↓↑1↓↑↑ !&, ~8!

where the right-hand side is a spin-3/2 wave function, wh
has zero overlap with the spin-1/2 wave function of the p
ton in the final state. Consequently, the spectroscopic qu
rupole moment

Qp5^puQ̂[2] up&5B~22121!50 ~9!

vanishes due to the spin coupling coefficients inup&.
Although the spinS51 diquarks (uu andud) in the pro-

ton have nonvanishing quadrupole moments, the angular
mentum coupling of the diquark spin to the spin of the th
quark prevents this quadrupole moment from being
served. Setting ‘‘by hand’’ all Clebsch-Gordan coefficien
in the spin part of the proton wave function of Eq.~7! equal
to 1, while preserving the normalization, one obtains a mo
fied ‘‘proton’’ wave functionu p̃&:

u p̃&5
1

A2
H F u

1

A6
~2uud2udu2duu!&

1
1

A2
u~udu2duu!G 1

A3
u~↑↑↓1↑↓↑1↓↑↑ !&J .

~10!

The renormalization of the Clebsch-Gordan coefficients
undoing the averaging over all spin directions, which rend
the intrinsic quadrupole moment unobservable. Note that
do not modify the flavor part of the wave function in order
ensure that we deal with a proton.2

We consider the expectation value of the two-body qu
rupole operatorQ̂[2] in the state of the spin-renormalize
proton wave functionu p̃& as an estimate of theintrinsic
quadrupole moment of the protonQ0

p :

2In the case of the neutron we must divide by the negative cha
of the dd diquark. We then obtainQ0

n5Q0
p .
2-4
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INTRINSIC QUADRUPOLE MOMENT OF THE NUCLEON PHYSICAL REVIEW C63 015202
Q0
p5^ p̃uQ[2] u p̃&52BS 2

3
2

8

3D524B52r n
2 , ~11!

where the two contributions arise from the spin 1 diqua
with projection M51 and M50. The latter dominates
Comparing with Eq.~6!, we find that theintrinsic quadrupole
moment of the proton is equal to thenegativeof the neutron
charge radiusr n

2 and is thereforepositive.
Similarly, with theD1 wave function with maximal spin

projectionMJ53/2,

uD1&5
1

A3
u~uud1udu1duu!&u↑↑↑&, ~12!

we find for the intrinsic quadrupole moment of theD1

Q0
D1

5QD1
5r n

2 . ~13!

In the case of theD, there are no Clebsch-Gordan coef
cients that could be ‘‘renormalized,’’ and there is no diffe

ence between the intrinsicQ0
D1

and the spectroscopic quad

rupole momentQD1
.

Summarizing, in the quark model, the intrinsic quad
pole moment of the proton and theD1 are equal in magni-
tude but opposite in sign,

Q0
p52Q0

D1
. ~14!

We conclude that the proton is a prolate and theD1 an
oblate spheroid. The same conclusion is also obtained
quite different approach to which we turn in the next secti

B. Collective model

Quadrupole moments of strongly deformed nuclei are
adequately described in a single-nucleon transition mo
The measured quadrupole moments of strongly deformed
clei exceed the quadrupole moment due to a single vale
nucleon in a deformed orbit usually by a factor of 10
more. The collective nuclear model, which involves the c
lective rotational motion of many nucleons of the nucle
gives a more realistic description of the data.

In the collective nuclear model@2#, the relation between
the observable spectroscopic quadrupole momentQ and the
intrinsic quadrupole momentQ0 is

Q5
3K22J~J11!

~J11!~2J13!
Q0 , ~15!

whereJ is the total spin of the nucleus, andK is the projec-
tion of J onto thez axis in the body fixed frame~symmetry
axis of the nucleus!. The intrinsic quadrupole momentQ0
characterizes the deformation of the charge distribution
the ground state. The ratio betweenQ0 andQ is the expec-
tation value of the Legendre polynomialP2(cosQ) in the
substate with maximal projectionM5J. This factor repre-
sents the averaging of the nonspherical charge distribtion
to its rotational motion as seen in the laboratory frame.
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We consider theD with spin J53/2 as a collective rota-
tion of the entire nucleon with an intrinsic angular mome
tum K51/2 ~see Fig. 4!. This is how theD(1232) is viewed
in the Skyrme model.3 In this model, the~rotational! energy
of the D is inversely proportional to its moment of inerti
@23#. Therefore it is energetically favorable to increase
moment of interia by assuming a deformed shape. Inser
the quark model relation for the spectroscopic quadrup
momentQD5r n

2 on the left-hand side4 one finds for the in-
trinsic quadrupole moment of the proton

Q0
p525r n

2 . ~16!

The large value forQ0
p is certainly due to the crudeness

the model. The rigid rotor model for the nucleon which u
derlies Eq.~15! is most certainly an oversimplification. A
more realistic description would treat nucleon rotation as
ing partly irrotational, e.g., only the peripheral parts of t
nucleon participate in the collective rotation. This results
smaller intrinsic quadrupole moments@2#. However, we
speculate that the sign of the intrinsic quadrupole mom
given by Eq.~16! is correct. If so, the nucleon is a prola
spheroid.

3With hindsight the Skyrme model is seen as an effective fi
theory of QCD corresponding to the limit of infinitely many colo
~and quarks! @23#.

4This may be justified because in the quark modelQD is domi-

nated by the collectiveqq̄ degrees of freedom.

FIG. 4. Representation of theD isobar as a collective rotation o
a prolate nucleon with intrinsic spinK51/2. The collective orbital
angular momentum is denoted byR. As a result of the collective
rotation of a cigar-shaped object~N! with intrinsic spinK51/2 one
obtains a pancake-shaped object (D) with total angular momentum
J53/2. The lengths of major half-axisa and minor half-axisb can
be calculated in the model of a homogeneously charged sphe
~see text!.
2-5
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A. J. BUCHMANN AND E. M. HENLEY PHYSICAL REVIEW C63 015202
We can also use the collective model to estimateQ0
D . For

this purpose one regards theD1 as theK5J53/2 ground
state of a rotational band. We then obtain from Eq.~15! a
negative intrinsic quadrupole moment for theD1,

Q0
D1

55r n
252Q0

p . ~17!

Obviously, the intrinsic quadrupole moments of the prot
and theD1 have the same magnitude but different sign
result that was also obtained in the quark model with tw

quark operators. The sign change betweenQ0
p andQ0

D1
can

be explained by imagining a cigar-shaped ellipsoid~N! col-
lectively rotating around thex axis. This leads to a pancake
shaped ellipsoid (D).

In classical electrodynamics the simplest model for a n
spherical homogeneous charge distribution is a rotationa
lipsoid with chargeZ, major axisa along, and minor axisb
perpendicular to the symmetry axis~see Fig. 4!. Its quadru-
pole moment is given by

Q05
2Z

5
~a22b2!5

4

5
ZR2d, ~18!

with the deformation parameterd52(a2b)/(a1b) and the
mean radiusR5(a1b)/2. We use this model to estimate th
degree of baryon deformation.

From the collective model we getQ0
p50.565 fm2, and

with the recent value for the proton charge radius@1# we
obtain for the ‘‘equivalent’’ radiusRp5A5/3r p51.15 fm.
Eq. ~18! then leads to a deformation parameterdN'0.53,
and a ratio of major to minor semi-axesa/b'1.73. Simi-
larly, for the D one gets with the help of the charge radi
relationr D1

2
5r p

22r n
2 @25,26#, dD520.48, anda/b520.62.

On the other hand, if we insert the quark model resultQ0
p

52r n
250.113 fm2 on the left-hand side of Eq.~18!, we

obtain a deformation parameterdN50.11. This correspond
to a ratio of major to minor semi-axesa/b51.11. For the
deformation parameter of theD we find dD520.09 and a
half-axis ratioa/b520.91.

Summarizing, the collective model leads in combinati
with the experimental information to a positive intrins
quadrupole moment of the nucleon and a negative intrin
quadrupole moment for theD1. Although the magnitude o
the deformation is uncertain, we are confident that our
signment of a prolate deformation for the nucleon and
oblate deformation for theD is correct.

C. Pion cloud model

Finally, we consider the physical proton with spin u
denoted byup↑&, as a coherent superposition of three diffe
ent terms:~i! a spherical quark core contribution with sp
1/2, called a bare protonp8; ~ii ! a bare neutronn8 sur-
rounded by a positively charged pion cloud; and~iii ! a bare
p8 surrounded by a neutral pion cloud@24#. In the last two
terms the spin~isospin! of the bare proton and of the pio
cloud are coupled to total spin and isospin of the phys
proton. Similarly, the physicalD1 is considered as superpo
sition of a spherical quark core term with spin 3/2, called
01520
n
a
-

-
l-

ic

s-
n

-

l

a

bareD18, a baren8 surrounded by ap1 cloud, and a barep8
surrounded by ap0 cloud. In each term, the spin/isospin o
the quark core and pion cloud are coupled to the total s
and isospin of the physicalD1. We then write

up↑&5aup8↑&1b
1

3
~ up8↑p0Y0

1&2A2up8↓p0Y1
1&

2A2un8↑p1Y0
1&12un8↓p1Y1

1&),

un↑&5aun8↑&1b
1

3
~2un8↑p0Y0

1&1A2un8↓p0Y1
1&

1A2up8↑p2Y0
1&22up8↓p2Y1

1&),

uD1↑&5a8uD18↑&1b8
1

3
~2up8↑p0Y0

1&1A2up8↓p0Y1
1&

1A2un8↑p1Y0
1&1un8↓p1Y1

1&), ~19!

whereb and b8 describe the amount of pion admixture
the N and D wave functions. These amplitudes satisfy t
normalization conditionsa21b25a82 1b8251, so that we
have only two unknowsb and b8. The p and D1 wave
functions are normalized and orthogonal. Here,Y0

1 and Y1
1

are spherical harmonics of rank 1 describing the orbital w
functions of the pion. Because the pion moves predomina
in a p wave, the charge distributions of the proton andD1

deviate from spherical symmetry, even if the bare proton a
bare neutron wave functions are spherical.

The quadrupole operator to be used in connection w
these states is

Q̂p5epA16p

5
r p

2 Y0
2~ r̂p!, ~20!

whereep is the pion charge operator divided by the char
unit e, andr p is the distance between the center of the qu
core and the pion. Our choice ofQ̂p implies that the quark
core is spherical and the entire quadrupole moment co
from the pionp-wave orbital motion.5

The p0 terms do not contribute when evaluating the o
eratorQ̂p between the wave functions of Eq.~19!. We then
obtain for the spectroscopicD and N→D quadrupole mo-
ments

QD152
2

15
b82r p

2 , Qp→D15
4

15
b8br p

2 . ~21!

Only the Y1
1 part of the pion wave function~pion cloud

aligned inx-y plane! contributes toQD1. This leads to an
oblate intrinsic deformation of theD1.

We have to determine three parametersb, b8, and r p .
From the experimentalN→D quadrupole transition momen

5A possible intrinsic deformation of the pion is neglected.
2-6
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Qp→D
exp '20.115r n

2 @5#, we can fix only one of them. There
fore we also calculate the nucleon andD charge radii in the
pion cloud model and obtain

r p
25~12b2!r p8

2
1b2S 1

3
r p8

2
1

2

3
r p

2 D ,

r n
25b2S 2

3
r p8

2
2

2

3
r p

2 D ,

r D1
2

5~12b82!r p8
2

1b82S 2

3
r p8

2
1

1

3
r p

2 D . ~22!

Here,r p8
2 is the charge radius of the bare proton. We assu

that the charge radii of the bare proton and of the bareD1

are equal. Adding the first two equations givesr p8
2

5r p
21r n

2 ,
which expresses the bare proton charge radius in terms o
experimental isoscalar nucleon charge radius. Subtracting
first and third equations one gets

r p
22r D1

2
5r p8

2 S 1

3
b822

2

3
b2D1r p

2 S 2

3
b22

1

3
b82D5r n

2

5b2S 2

3
r p8

2
2

2

3
r p

2 D . ~23!

Because the correction tor p
22r D1

2
5r n

2 is of orderO(1/Nc
2)

@25,26# and therefore small, we obtainb8522b. When the
latter condition is used in Eq.~21!, we get

QD15Qp→D15r n
2 . ~24!

This is in the same ballpark as the quark model prediction
Eq. ~6!.

We can now eliminate the model parameters and exp
them through the experimental charge radii:b25
2(3/8)r n

2/(r p
21r n

2) and r p
2 55(r p

21r n
2). The resulting nu-

merical valuesb50.26, b8520.52, r p51.77 fm corre-
spond to a pion probability of 7% in the nucleon. The spa
extension of the pion cloudr p is close to the Compton wav
length of the pion. Due to the larger lever arm ofr p com-
pared tor p8 the major part of the neutron charge radius a
the nucleon’s intrinsic quadrupole moment comes from
pion cloud.

Next, we calculate the spectroscopic quadrupole mom
of the proton in the pion cloud model. We find

Qp5
4

3
b2r p

2 F1

3 S 2

5D1
2

3 S 2
1

5D G . ~25!

The factors 1/3 and 2/3 are the squares of the Cleb
Gordan coefficients that describe the angular momen
coupling of the bare neutron spin 1/2 with the pion orbi
angular momentuml 51 to total spinJ51/2 of the proton.
They ensure that the spectroscopic quadrupole momen
the proton is zero. The factors 2/5 and21/5 are the expec
tation values of the Legendre polynomialP2(cosQ) evalu-
ated between the pion wave functionY0

1( r̂p) ~pion cloud
01520
e

he
he

f

ss

l

d
e

nt

h-
m
l

of

aligned alongz axis! and Y1
1( r̂p) ~pion cloud aligned along

an axis in thex-y plane!. If we set by handeach of the
coupling coefficients in front of̂Y0

1uP2uY0
1& and^Y1

1uP2uY1
1&

equal to 1/2, the cancellation between the two orientation
the cloud disappears. The normalization of the sum of c
pling coefficients is thereby preserved. We note that the fi
term in Eq.~25!, which comes from theY0

1 part of the pion
wave function, dominates. Therefore the probability for fin
ing the pion in the nucleon is largest at the poles. This te
is just the negative of the spectroscopicD1 quadrupole mo-
ment.

By this procedure we are undoing the geometric aver
ing over all angles, which prevents the nonsphericity of
pion cloud from being observed in the laboratory. One th
finds for the intrinsic quadrupole moment of the proton a
the D1

Q0
p5

4

3
b2r p

2 F1

2 S 2

5D1
1

2 S 2

5D G5
8

15
b2r p

2 52r n
2 , Q0

D1
5r n

2 .

~26!

Again, the intrinsic quadrupole moment of thep is positive
and that of theD1 negative. They are identical in magnitud
but opposite in sign.

The positive sign of the intrinsic proton6 quadrupole mo-
ment has a simple geometrical interpretation in this mode
arises because the pion is preferably emitted along the
(z axis! of the nucleon~see Fig. 5!. Thus the proton assume
a prolate shape. Here, we neglect the deformation of the
nucleon quark bag due to the pressure of the surround
pion cloud. We emphasize that in this model all of the d
formation comes from the pion cloud itself, none from t
valence quark core. Previous investigations in a quark mo
with pion exchange@9# concluded that the nucleon assum
an oblate shape under the pressure of the surrounding
cloud, which is strongest along the polar axis. However,
these studies the deformed shape of the pion cloud itself

6After dividing by the negative sign of thep2 cloud, the neu-
tron’s intrinsic quadrupole moment is also positive, i.e.,Q0

n5Q0
p .

FIG. 5. Intrinsic quadrupole deformation of the nucleon~left!
and D ~right! in the pion cloud model. In theN, the p-wave pion
cloud is concentrated along the polar~symmetry! axis, with maxi-
mum probability of finding the pion at the poles. This leads to
prolate deformation. In theD, the pion cloud is concentrated in th
equatorial plane producing an oblate intrinsic deformation.
2-7



io
y

in
n

ha

n
rg

o
th

th

els

ive
pre-
t,
his
inly
ce
sic
der
can

em-
ity
or
on
ar
l-

A. J. BUCHMANN AND E. M. HENLEY PHYSICAL REVIEW C63 015202
ignored. Inclusion of the latter leads to a prolate deformat
that exceeds the small oblate quark bag deformation b
large factor.

IV. SUMMARY

The experimental evidence for a nonvanishingN→D
transition andD quadrupole moments can be seen as an
dication for an intrinsic nucleon deformation. In the prese
paper, the intrinsic quadrupole moment of the nucleon
been estimated in~i! a quark model,~ii ! a collective model,
and~iii ! a pion cloud model, using the empirical informatio
on thep→D1 quadrupole moment and the nucleon cha
radii.

The quark model with the two-body quadrupole operat
and the pion cloud model predict a negative sign for
spectroscopic D1 quadrupole moment, and thatQD1

'Qp→D1'r n
2 . In all three models we find that theintrinsic

quadrupole moment of the nucleon ispositive. This indicates
a prolate shape of the proton charge distribution. On
other hand, the intrinsic quadrupole moment of theD1 is
found to benegative, indicative of an oblateD1 charge dis-
,

.

01520
n
a

-
t
s

e

r,
e

e

tribution. As to the magnitude of the deformation, the mod
vary within a wide rangeQ0

p50.1120.55 fm2.
Despite their differences, all models emphasize collect

over single-particle degrees of freedom and lead to an ap
ciable spectroscopicp→D1 transition quadrupole momen
in agreement with recent experiments. In our opinion t
reflects that the intrinsic nucleon deformation resides ma
in the qq̄ cloud surrounding an almost spherical valen
quark core. It would be interesting to calculate the intrin
quadrupole moment of the nucleon in other models, in or
to check whether our finding of a prolate nucleon shape
be confirmed.
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of Tübingen for hospitality during his stay, when the idea f
this work was conceived. He also thanks the Alexander v
Humboldt Foundation for a grant. A.J.B. thanks the Nucle
Theory Group of the University of Washington for hospita
ity and some financial support.
e

s.

d

@1# R. Rosenfelder, Phys. Lett. B479, 381 ~2000!.
@2# A. Bohr and B. Mottelson,Nuclear Structure II~Benjamin,

Reading, MA, 1975!; J.M. Eisenberg and W. Greiner,Nuclear
Models ~North-Holland, Amsterdam, 1970!; see also P. Brix,
Z. Naturforsch. Teil A41A, 3 ~1986!; P. Brix and H. Kopfer-
mann, Z. Phys.126, 344 ~1949!.

@3# C. Becchi and G. Morpurgo, Phys. Lett.17, 352 ~1965!.
@4# R. Becket al., Phys. Rev. Lett.78, 606 ~1997!.
@5# G. Blanpiedet al., Phys. Rev. Lett.79, 4337 ~1997!; BNL-

67526 preprint~unpublished!.
@6# F. Kalleicheret al., Z. Phys. A359, 201 ~1997!.
@7# For more recent measurements ofE2/M1 and C2/M1 and

theoretical developments, seeProceedings of Baryons ’98
Bonn, Germany, edited by D.W. Menze and B. Metsch~World
Scientific, Singapore, 1999!.

@8# M.M. Giannini, D. Drechsel, H. Arenho¨vel, and V. Tornow,
Phys. Lett.88B, 13 ~1979!.

@9# V. Vento, G. Baym, and A.D. Jackson, Phys. Lett.102B, 97
~1981!.

@10# Z.Y. Ma and J. Wambach, Phys. Lett.132B, 1 ~1983!.
@11# G. Clément and M. Maamache, Ann. Phys.~N.Y.! 165, 1

~1984!.
@12# A.B. Migdal, Pis’ma Zh. E´ksp. Teor. Fiz.46, 256 ~1987!

@JETP Lett.46, 322 ~1987!#.
@13# A.J. Buchmann, inBaryons ’98, edited by D.W. Menze and B
Metsch~World Scientific, Singapore, 1999!, p. 731.
@14# S.S. Gershtein and G.V. Dzhikiya, Yad. Fiz.34, 1566 ~1981!

@Sov. J. Nucl. Phys.34, 870 ~1982!#.
@15# N. Isgur, G. Karl, and R. Koniuk, Phys. Rev. D25, 2394

~1982!.
@16# A.J. Buchmann, E. Herna´ndez, and K. Yazaki, Phys. Lett. B

269, 35 ~1991!; Nucl. Phys.A569, 661 ~1994!.
@17# A.J. Buchmann and E.M. Henley~unpublished!.
@18# M.M. Giannini, Rep. Prog. Phys.54, 453~1990!. Note that we

omit the unit chargee here and in the following and give th
quadrupole moments in units of fm2.

@19# A.J. Buchmann, E. Herna´ndez, and Amand Faessler, Phy
Rev. C 55, 448 ~1997!; A.J. Buchmann, E. Herna´ndez, U.
Meyer, and Amand Faessler,ibid. 58, 2478~1998!.

@20# S. Capstick and G. Karl, Phys. Rev. D41, 2767~1990!.
@21# G. Morpurgo, Phys. Rev. D40, 2997~1989!.
@22# K. Kumar, Phys. Rev. Lett.28, 249 ~1972!.
@23# R.K. Bhaduri, Models of the Nucleon, Lecture Notes an

Supplements in Physics, edited by Davis Pines~Addison-
Wesley, Redwood City, CA, 1988!, Vol. 22.

@24# E.M. Henley and W. Thirring,Elementary Quantum Field
Theory~McGraw-Hill, New York, 1962!.

@25# G. Dillon and G. Morpurgo, Phys. Lett. B448, 107 ~1999!.
@26# A.J. Buchmann and R.F. Lebed, Phys. Rev. D62, 096005

~2000!.
2-8


