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Intrinsic quadrupole moment of the nucleon
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We address the question of the intrinsic quadrupole mor@gnof the nucleon in various models. All
models give a positive intrinsic quadrupole moment for the proton. This corresponds to a prolate deformation.
We also calculate the intrinsic quadrupole moment ofAlj@232). All our models lead to a negative intrinsic
quadrupole moment of th&* corresponding to an oblate deformation.
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[. INTRODUCTION allowed by angular momentum conservation and invariance
under the parity transformation. Once produced Ak&232)

Electron-proton scattering and atomic Lamb shift mea-hadronically decays to a nucleon and pion. By measuring the
surements have shown that the spatial extension of the proromenta of the final state nucleon and pion in coincidence,
ton charge distributioricharge radiusis aboutr,~0.9 fm individual electromagnetic multipoles can be extracted.

[1]. In addition to the charge radius, the elastic electron scat- The E2 and C2 multipoles carry the information about
tering data provide precise information on the radial chargehe intrinsic deformation of the nucleon. If the charge distri-
densityp(r) of the proton. However, they do not allow us to bution of the initial and final three-quark states were spheri-
draw any definite conclusions concerning possible deviationsally symmetric, theE2 andC2 amplitudes would be zero
of the proton’s shape from spherical symmetry. (Becchi-Morpurgo selection rulg]). The experimental val-

In order to learn something about the shape of a spatiallpes for these quadrupole amplitudes are small compared to
extended particle one has to determineiiitsinsic quadru-  the dominant magnetic dipole transition, but they are clearly
pole momen{2], nonzero. Recent dafd—6] indicate that the ratio of the elec-

tric quadrupole amplitude to the magnetic dipole amplitude

is at leastE2/M 1~ —3%. A C2/M1 ratio of the same sign

QO:] drp(r)(32°~r?), (1) and comparable magnitude has been meadufe®ecently,

an experimental value for thl— A quadrupole transition
which is defined with respect to the body-fixed frame. If themoment has been derivedQQx}A: —0.108+0.009
charge density is concentrated along thirection(symme-  +0.034 fn? [5]. From these measurements one can con-
try axis of the particlg the term proportional to & domi-  clude that the nucleon and tie are intrinsically deformed.
nates, Qo is positive, and the particle is prolateigar  However, the magnitude and sign of the intrindlcand A
shapedl If the charge density is concentrated in the equatodeformation can only be calculated within a model.
rial plane perpendicular ta the term proportional to® pre- There is considerable uncertainty in the literature con-
vails, Qq is negative, and the particle is oblatpancake cerning the implications of the experimenta/M1 and
shapedl The intrinsic quadrupole mome®@, must be dis- E2/M1 ratios for the intrinsic deformation of the nucleon.
tinguished from thespectroscopicquadrupole momen®Q  Even with respect to the sign of the intrinsic nucleon defor-
measured in the laboratory frame. Due to angular momenturmation there is no consensus. For example, Rfs.10]
selection rules, a spid=1/2 nucleus, such as the nucleon, conclude that the nucleon is oblate, while R¢1s—13 find
does not have a spectroscopic quadrupole moment; howevey, prolate nucleon deformation. Several authors speak only
it may have anntrinsic quadrupole moment as was realized about “deformation” without specifying the sign.
more than 50 years ag@]. Some information on the shape  The purpose of this paper is to calculate the intrinsic
of the nucleon or any other member of the baryon octet caguadrupole moment of the protdg in various models. In
be obtained by electromagnetically exciting the baryon toyarticular, we want to predict its sign, i.e., we want to find
spinJ=3/2 or higher spin states. out whether the proton is prolate or oblate. Before doing this,

With the Laser Electron Gamma Source at Brookhavenye discuss the possible origins of nucleon deformation in the
and various continuous electron beam accelerators, one c@yark model.

carry out high precision pion production experiments on the
nucleon. In these experiments a photosal or virtua) ex-
cites theN(939) to, for example, the\(1232) resonance
with spinJ=3/2. Magnetic dipole {11), electric quadrupole Two different sources contribute to a quadrupole defor-
(E2), and/or charge quadrupol€2) excitation modes are mation of baryons. First, tensor forces between quarks lead
to D-state admixtures in the single-quark wave functions of a
baryon, and consequently to a deviation of Ylagence quark
*Electronic address: alfons.buchmann@uni-tuebingen.de distribution from spherical symmetry. The one-gluon ex-
"Electronic address: henley@phys.washington.edu change interaction was originally proposed to provide the

Il. SOURCES OF QUADRUPOLE DEFORMATION
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or A in order to make a nonvanishing contribution. In a

g T T two-state modelonly S and D waves, the nucleon and
T § wave functions can be written as
Y IN)=ag/(S=1/2L=0)J=1/2)
(a) (b) (c) () +ap|(S=3/2L=2)=1/2),
3

FIG. 1. Feynman diagrams of the four vector curreht _ _ _ _
=(p,J): () one-body currendf;; , and(b)—(d) two-body gluon and |A>_ b5|(s 3/2L=0)3=312)
pion exchange current},; . The one-body charge density leads to +bp|(S=1/2L=2)3=3/2),
a quadrupole operator of the type given in E2). Both gluon and
pion exchange charge densities produce a two-body quadrupole o

erator of the type given in Eq5). Rhere the quark spifs couples with the orbital angular mo-

mentumL to the total angular momentuhof the baryon.

required tensor forcEl4,15. An external photon can induce 1he D states in Eq(3) are of mixed symmetry type with

a quadrupole transition, for example, by lifting &nstate  "€SPect to the exchange of quarks 1 and 2. We have pur-

quark in theN into a D state in theA via the one-body posely omitted the symmetria state in thed wave function

current in Fig. 1a). cpl|(S=3/2, L_=2)J=3/2>, which is _smaller in m_agnltude
Second, quark-antiquark pairs and gluons are present intan the one listed here. The negative relative sign oflthe

physical baryon. These degrees of freedom also contribute {§ave amplitudeap=—0.04[14,15 with respect to theS

the observed quadrupole transition. We refer to qlu_pand wave amplltuc_je |_nd|(_:ate_s an oblate deform_ann of the va-
X lence quark distribution in the nucleon. Similarly, the posi-
gluon degrees of freedom generically msnvalence quark tive sian of theD state amplituddon — 0.07 in theA corre-
degrees of freedonThe latter are effectively described as on dg, to a orolate de?ormatign_ O'f its valence quark
spin-dependent two-quark operators in the electromagnetic: . . ~~ . P q
: istribution.
current[16]. The two-body terms in the charge and current Applied to theN— A quadrupole transition. the one-bod
operators shown in Figs.(d)—(d) arise as a result of elimi- ppll — A quadrup tion, y

nating theqq and gluon degrees of freedom from the Wavequadrupole operataRyy sandwiched between thé and A

function, very much in the same way as the two-body potenyvave functions gives for the quadrupole transition moment

tials in the Hamiltonian result from the elimination of the [18]
“exchange particle” degrees of freedom from Hilbert space.

Hence tensor force inducdd waves in the single-quark 9
wave function(one-quark quadrupole transitipand nonva- Qp-ar=-b \/?)(asz ~apby), )
lence quark degrees of freeddiwo-quark quadrupole tran-
sition) contribute to the deformation of baryons. In principle
there can also be three-quark operators. We neglect th
here. In a different papdi7] we argue that their contribu-
tion is suppressed by at leasiNl/compared to the two-body
terms.

Experimental amplitudes contain both mechanisms, s
that one cannot readily distinguish between the two differe
excitation modesgone-quark vs two-quark currentsf, how-
ever, the single quark transition mode is strongly suppress
[3], and if one measures a2 strength that is large com- o L
pared to the single quark estimate, one may conclude that t er, from the description of the baryon spectrum itis known
deformation resides in the nonvalence quark degrees of fred?at one Zneeds an average single-quark excitation energy
dom, effectively described by the two-body current opera-— t/(Mqb”) =500 MeV[18], which implies a quark core ra-
tors. diusb~0.5 fm. With this smaller value for the quark matter
radiusb one obtains only 20% of the experimental quadru-
pole strength.

That the single-quark excitation is not the dominant quad-

In a multipole expansion of the one-body charge operatorupole excitation mechanism becomes particularly apparent
the term proportional to the spherical harmonic of rank two,when one considers tHg2/M 1 ratio in the electromagnetic
YZ(Fi) provides the one-body quadrupole operator, excitation of theA *. Calculations of th&€2/M 1 ratio based

T on spatial single quark currents gi#2/M 1= —0.1% [20],
- w 2,2 2 2 which is an order of magnitude smaller than recent experi-
Quj= \/?Zfl eiriYO(ri):Z &(3z7=17), (2 ments. Thus, the experiment@2/M1~—3% ratio [4,5]
cannot be solely described by a single-quark transition. Other
where the sum is over the three quarks in the baryon. Obvidegrees of freedom must be taken into account. These points
ously, this one-body operator neeswvaves in the nucleon have recently been discussed in more d¢ted].

' where the smalbpbp term has been neglected. Here, the
®Hhrmonic oscillator parametér describes the spatial exten-
sion of the baryon wave function, and we refer to it as quark
core (matte) radius. The two terms of this single quark cur-
rent matrix element are schematically shown in Fig. 2.

0 Using standardD state admixture$14,15 and an un-
nbhysically large quark core radius bf=1 fm in Eq.(4) one
eCé)uld describe the experimental transition quadrupole

gipwm —0.11 fn? [5] by the one-body term alone. How-

A. Single quark operator: Deformed valence quark orbits
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N(939) A (1232) S=3/2
S=3/2 S=3/2
1
f 1d) e A
3
apy (1s)2 bg (1s)
Cc2 L=0
L=2 L=0
FIG. 3. N—A quadrupole transition via the two-body quadru-
S=li ad’ pole operatoiQ,; of Eq. (5) originating from, e.g., the two-body
gluon exchange current in Fig(l). The quadrupole transition pro-
. ceeds by absorbing@2 photon on a quark-antiquark pair with all
ag (1s) valence quarks remaining in @state. This double spin flip quad-
rupole amplitude describes the deformation of ¢fgecloud in the
L=2 nucleon. It can be parameter-independently expressed in terms of

the neutron charge radiLQpHM:rﬁ/\/E: —0.80 fnf [19]. This
FIG. 2. N—A quadrupole transition via the one-body quadru- prediction is in agreement with the recent extractionQﬁ‘j’A=
pole operatoQ;; of Eq. (2) coming from the one-quark current in —0.108+0.009+0.034 by the LEGS groufb] indicating that the
Fig. 1(@). In this single-quark transition, the absorption ofC2 major part of the quadrupole strength resides in the colledjiye
photon is only possible if either the nucle@eft) or the A (right) degrees of freedom.
contains aD-wave admixturgdeformed valence quark orhitAc-

tually, theN—A quadrupole transition due Q) is a coherent  that the physical nucleon contains gga quarks whose dis-
superposition of the two orbital angular momentum changing butripution deviates from spherical symmetry.
intrinsic spinS conserving one-body transitioriepper and lower Using a quark model with two-body exchange currents
part of the figurg The resulting quadrupole transition matrix ele- the constanB has been calculated. It was found that the
ment of Eq.(4) is suppressed due to the smBHwave admixtures A andA quadrupole moments can be expressed in terms
in the N und A wave functions. . .

of the neutron charge radlutﬁ as follows[19]:

B. Two-quark operator: Deformed qq cloud \/EQpHM =Q,+=4B= rﬁ_ (6)

Many people believe that the valence quarks must move
in D waves in order to obtain a nonvanishing quadrupoleThe reason for the existence of such a relation betwggen
moment. However, a two-body spin tensor in the charge opand rﬁ is that both observables are dominated by exchange
erator also generates a quadrupole moment even when tiarrents. When expanding the gluon and pion exchange
valence quarks are in puf@states[19]. A similar observa- charge operators in Figs(ld and(c) into Coulomb multi-
tion was also made by Morpurd@1]. The two-body quad- pole operators one finds a fixed relative strength between the
rupole operator generated by the pair currents of Figs. monopole termCO=—2BXe;0;- o (giving rise to a nonva-
1(b) and Xc), nishing neutron charge radi(i$6]) and the quadrupole term
C2=BXg(30,0j,— 0i- g;) (leading to a nonzero transition
R 3 quadrupole momeritl9]). As a result, one obtains the same
Q2= B 7&1221 &(30i,0y,~ 0;- 0y), (5 analytic expression far2 and2Q,_, +, suggesting that the
deformation of the nucleon is closely connected to the non-
vanishing neutron charge radius. The quadrupole moment

acts in spin and isospin space, whereas the one-body 0pe,ccfa_llculrclted from the experimental neutron charge radius ac-

tor in Eq. (2) acts in isospin and orbital space. The constan€0rding to Eq.(6) is in good agreement with the transition
B with dimension frd contains the orbital and color matrix duadrupole moments extracted from &2/M1 andC2/M1

. A measurements].
elements. As a spin-tensor of rank 2, the oper&gyi may Let us sum%s”l]arize. The quark model shows thath the

;imultaneously flip the spin Of. two quarkdouble spin flip N(939) ground state and the excitAq1232) state are de-
:Di;usc’:)hla way that the total spin changes from 1/2 to(8¢2 f(_)r_med. This conclusion is reached in the single qgark tran-
T ) - sition model where tensor forces leadDestate admixtures
We emphasize thailthough the operator @, formally i, hoththe N andA wave function. It is also obtained in the
acts on valence quark spin states, it does not describe thgq_quark transition model, where exchange currents pro-

deformation of the valence quark core. Instead, it reflectsy,ce a nonzero quadrupole moment of 8rel diquark in
theN andA. It is impossible to have a spherical nucleon and
a deformedA or vice versa. If the quarks interact via vector
The name double spin flip becomes clear if one rewrites one ter®’ pseudoscalar type potentials, either both baryons are de-
in Eq. (5) in the spherical basis with spin raising () and lowering ~ formed or both are spherical. The latter possibility is ruled
(o) operators, e.gBe;(20,,00,%+01_0y, +01,05_). out by experiment. Furthermore, we understand that two-
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body ¢q pair currents provide the major contribution to The angular momentum coupling factors21, —1 in front

baryon quadrupole moment, suggesting that the deformatio@f the three terms in the spin symmetric proton wave func-
resides in the baryon'gq cloud. tion expresgi) the coupling of the first two quarks to &

=1 diquark, andii) the coupling of theS=1 diquark with
the third quark to total=1/2.

Il INTRINSIC DEFORMATION OF THE NUCLEON Sandwiching the quadrupole operafQy,; between the
, i ) o proton’s spin-flavor wave function yields a vanishing spec-
In this section we discuss the intrinsic quadrupole Mo+gscopic quadrupole moment. The reason is clear. The spin

ment of the nucleon. Herdntrinsi rupole momen A . . . .
mga;sothte Ei)neuf)g;inedei:r: bosd():/-lsi];:g gggrgina?e seysttegﬁnsorQ[Z] applied to the spin smglyet wave _functlon gives
that rotates with the nucleon. Most work that deals with the’- 2! and when acting on the proton’s spin triplet wave func-
problem of nucleon deformation in the quark model does noEIon It gives
distinguish between intrinsic and spectroscofiiteasuregd 1
guadrupole moment. This is all the more surprising since the _ L _ _
shape of the nucleon is in the first place related to the intrin- (301,0%,~ 01 02)\/§|(2T” TT=1T1)
sic, and not to the spectroscopic quadrupole morfizit

The spectroscopic quadrupole moment of the nucleon is
zero. Nevertheless, the nucleon can havenarinsic quad- = %|(TTL+TLT+HT)>1 ()
rupole moment. This is analogous to a deform&d 0

nucleus. Al orientations of a d_eformeijz() nucleus are  \where the right-hand side is a spin-3/2 wave function, which
equally probable, which results in a spherical charge distri;

bution in the ground state and a vanishing quadrupole mor_las zero overlap with the spin-1/2 wave function of the pro-
. NN ton in the final state. Consequently, the spectroscopic quad-
mentQ in the laboratory. The intrinsic quadrupole moment
. ; -rupole moment

Qo can then only be obtained by measuring electromagnetic
guadrupole transitions between the ground and excited R
states, or by measuring the quadrupole moment of an excited Qp=(PIQ[P)=B(2-1-1)=0 )
state withJ>1/2 of that nucleus. If a sufficient number of ) ) i . i
quadrupole transitions to excited states are known, the intrinéanishes due to the spin coupling coefficientgp.
sic quadrupole moment could be extracted from the data in a Although the spirS=1 diquarks (u andud) in the pro-
model-independent way as suggested by Kufaaf. Here, ton have nonvanishing quadrupole moments, the angular mo-
we follow a somewhat different approach, which is less genmentum coupling of the diquark spin to the spin of the third
eral than Kumar's method. quark prevents this quadrupole moment from being ob-

Given only the experimental information of theand the ~ Sérved. Setting “by hand” all Clebsch-Gordan coefficients
N—A quadrupole moments what can we learn about thd the spin part of the proton wave function of @) equal
intrinsic quadrupole moment of the nucleon? The answef© 1, While preserving the normalization, one obtains a modi-
which we give is model dependent. However, with respect tdied “proton” wave function|p):
the sign of the intrinsic quadrupole moment all models stud-
ied in this paper yield the same answer, namely that the _ 1
nucleon is prolate shaped. In the following three sections, we |p>=—[
will use three different models of the nucleon afd (i) a V2

1
|%(2uud—udu—duu))

quark model,(ii) a collective model{iii) and a pion cloud 1 1
model in order to calculate the intrinsic quadrupole moment +—|(UdU—dUU)1—|(TTl+TlT+lTT)> )
of the nucleon. V2 NE)

(10
A- Quark model The renormalization of the Clebsch-Gordan coefficients is
In standard notation the $4) spin-flavor part of the pro-  yndoing the averaging over all spin directions, which renders
ton wave function is composed of a spin-singlet and a spinthe intrinsic quadrupole moment unobservable. Note that we
triplet part: do not modify the flavor part of the wave function in order to
ensure that we deal with a protén.
We consider the expectation value of the two-body quad-

rupole operatorQ[Z] in the state of the spin-renormalized
proton wave functionp) as an estimate of théntrinsic

1|1
|p>=ﬁ{%|(2uud—udu—duu)>

1 1 D.

X— (2171 — _ +——l(udu=duu quadrupole moment of the prot@y :
Jé( TH=T01=111) ﬁ“ )

X |i(TlT— Tt (7) 2In the case of the neutron we must divide by the negative charge
2 of the dd diquark. We then obtai®p=Q} .
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S 2 8 ,
Q6=(PIQz|P)=2B| 3~ 3|=—4B=—r;, (1D

where the two contributions arise from the spin 1 diquark
with projection M=1 and M=0. The latter dominates.
Comparing with Eq(6), we find that thentrinsic quadrupole
moment of the proton is equal to tinegativeof the neutron
charge radiU$ﬁ and is thereforgositive

Similarly, with theA™ wave function with maximal spin
projectionM ;=3/2,

1
Ne

we find for the intrinsic quadrupole moment of the

[ATY=—|(uud+udu+duu))|T17), (12

A_ator2, (13)

y

In the case of the\, there are no Clebsch-Gordan coeffi-
cients that could be “renormalized,” and there is no differ- FIG. 4. Representation of the isobar as a collective rotation of

- . + . i i i i = I i
ence between the mtrmst@é and the spectroscopic quad- a prolate nucleon W|t_h intrinsic spik=1/2. The collective orbl_tal
angular momentum is denoted B As a result of the collective

f
rupole mom?nQA_ : o rotation of a cigar-shaped obje@) with intrinsic spink =1/2 one
Summarizing, in the quark model, the intrinsic quadru-gptains a pancake-shaped objett) (with total angular momentum
pole moment of the proton and the" are equal in magni-  j=3/2. The lengths of major half-axisand minor half-axis can
tude but opposite in sign, be calculated in the model of a homogeneously charged spheroid
(see text
A+
Q6=-Qp - (14
We consider the\ with spinJ=3/2 as a collective rota-
We conclude that the proton is a prolate and thé an tion of the entire nucleon with an intrinsic angular momen-
oblate spheroid. The same conclusion is also obtained in um K= 1/2 (see Fig. 4 This is how theA (1232) is viewed
quite different approach to which we turn in the next sectionin the Skyrme model.In this model, the(rotationa) energy
of the A is inversely proportional to its moment of inertia
B. Collective model [23]. Therefore it is energetically favorable to increase its

moment of interia by assuming a deformed shape. Inserting

Quadrupole moments of strongly deformed nuclei are nothe quark model relation for the spectroscopic quadrupole
adequately described in a single-nucleon transition mode omentQ,=r2 on the left-hand sideone finds for the in-
The measured quadrupole moments of strongly deformed NYrinsic quaAdru;;ole moment of the proton

clei exceed the quadrupole moment due to a single valence
nucleon in a deformed orbit usually by a factor of 10 or
more. The collective nuclear model, which involves the col-

lective rotational motion of many nucleons of the nucleus, b )
gives a more realistic description of the data. The large value foQg is certainly due to the crudeness of

In the collective nuclear modéR], the relation between the model. The rigid rotor model for the nucleon which un-

the observable spectroscopic quadrupole mor@eand the derlies Eq.(_lS) is most certainly an oversimplifica_ltion. A
intrinsic quadrupole momer@, is more realistic description would treat nucleon rotation as be-

ing partly irrotational, e.g., only the peripheral parts of the
3K2—J(J+1) nucleon participate in the collective rotation. This results in
= T oL A Koo (15 smaller intrinsic quadrupole momen{®]. However, we
(J+1)(23+3) ; A
speculate that the sign of the intrinsic quadrupole moment
given by Eq.(16) is correct. If so, the nucleon is a prolate
spheroid.

Qf=—5r3. (16)

wherelJ is the total spin of the nucleus, aidis the projec-
tion of J onto thez axis in the body fixed framéymmetry
axis of the nucleus The intrinsic quadrupole momei,
characterizes the deformation of the charge distribution in

the ground state. The ratio betwe®g andQ is the expec- Swith hindsight the Skyrme model is seen as an effective field
tation value of the Legendre polynomi&l,(cos®) in the  theory of QCD corresponding to the limit of infinitely many colors
substate with maximal projectiokl =J. This factor repre- (and quarks[23].

sents the averaging of the nonspherical charge distribtion due'This may be justified because in the quark moQgl is domi-

to its rotational motion as seen in the laboratory frame. nated by the collectiveq degrees of freedom.
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We can also use the collective model to estima@e For  pareA*', abaren’ surrounded by ar* cloud, and a barp’
this purpose one regards the" as theK=J=3/2 ground  surrounded by ar® cloud. In each term, the spin/isospin of
state of a rotational band. We then obtain from Ep) a  the quark core and pion cloud are coupled to the total spin

negative intrinsic quadrupole moment for thé, and isospin of the physical . We then write
+
Qo =5rp=—Q5. (17 'yt g (1o :
e e Iph)=alp’1)+B5(Ip"17°Y5) — V2[p’ L 7°Y})
Obviously, the intrinsic quadrupole moments of the proton
and theA™ have the same magnitude but different sign, a — \/§|n’Tw*Yé>+2|n’lq-r+Yi)),

result that was also obtained in the quark model with two-

quark operators. The sign change betw&gnhand Q§+ can ) 1 ) 1 ) 1
be explained by imagining a cigar-shaped ellips@il col- InT)=a[n’T)+Bz(~|n 1Yoy +2n’ | #0Y7)
lectively rotating around thz axis. This leads to a pancake-

shaped ellipsoid 4). +\2p 1Y = 2lp’ [ YY),

In classical electrodynamics the simplest model for a non-

spherical homogeneous charge distribution is a rotational el- o 1 oot oo
lipsoid with chargez, major axisa along, and minor axi® [ATT)=a'lA +B'z2lp 17 Yo+ V2|p’ | 70Y1)
perpendicular to the symmetry axisee Fig. 4. Its quadru-
pole moment is given by + \/§|H'T7T+Yé>+|n'l7T+Y%>), (19
Qozg(aZ_bZ): EZRZ& (189  whereB and B’ describe the amount of pion admixture in
5 5 the N and A wave functions. These amplitudes satisfy the

normalization conditiona?+ B°=a'? + B'?=1, so that we

have only two unknows8 and 8’. The p and A* wave
functions are normalized and orthogonal. HeYg,and Y;
are spherical harmonics of rank 1 describing the orbital wave
functions of the pion. Because the pion moves predominantly
in a p wave, the charge distributions of the proton akd
deviate from spherical symmetry, even if the bare proton and

with the deformation parameté=2(a—b)/(a+b) and the
mean radiulk= (a+b)/2. We use this model to estimate the
degree of baryon deformation.

From the collective model we ge&®5=0.565 fnf, and
with the recent value for the proton charge radja$ we
obtain for the “equivalent” radiusR,= 5/3r,=1.15 fm.
Eq. (18) then leads to a deformation paramesy~0.53, bare neutron wave functions are spherical.

and a ratio of major to minor semi-axegb~1.73. Simi- The quadrupole operator to be used in connection with
larly, for the A one gets with the help of the charge rad'usthese states is

relationri+=r§—rﬁ [25,26], 5,= —0.48, anda/b= —0.62.

On the other hand, if we insert the quark model reQjfjt R 167 , o«

=-r2=0.113 fntf on the left-hand side of Eq18), we Qr=ez\ 5 =Voll), (20)
obtain a deformation parametég=0.11. This corresponds
to a ratio of major to minor semi-axesb=1.11. For the
deformation parameter of th& we find §,=—0.09 and a
half-axis ratioa/b=—0.91.

Summarizing, the collective model leads in combination
with the experimental information to a positive intrinsic . ) or®
guadrupole moment of the nucleon and a negative intrinsiérom theoplonp-wave orbital n_10t|o ‘ .
quadrupole moment for tha*. Although the magnitude of TheAa-r terms do not contrlbute. when evaluating the op-
the deformation is uncertain, we are confident that our as€ratorQ. between the wave functions of EQ.9). We then
signment of a prolate deformation for the nucleon and arPbtain for the spectroscopit and N—A quadrupole mo-
oblate deformation for tha is correct. ments

wheree,, is the pion charge operator divided by the charge
unit e, andr  is the distance between the center of the quark

core and the pion. Our choice Gf, implies that the quark
core is spherical and the entire quadrupole moment comes

C. Pion cloud model Qui=— 135,8’2@7, Q= 14_1_—),3'&37- (21)
Finally, we consider the physical proton with spin up,

denoted bypT), as a coherent superposition of three differ-
ent terms:(i) a spherical quark core contribution with spin
1/2, called a bare protop’; (i) a bare neutrom’ sur-
rounded by a positively charged pion cloud; diit) a bare ; ,
p’ surrounded by a neutral pion cloyi@4]. In the last two We have to .determme three parametgrsp’, andr .
terms the spifisospin of the bare proton and of the pion From the experimentdl— A quadrupole transition moment,
cloud are coupled to total spin and isospin of the physical
proton. Similarly, the physicak ™ is considered as superpo-
sition of a spherical quark core term with spin 3/2, called a °A possible intrinsic deformation of the pion is neglected.

Only the Y part of the pion wave functioripion cloud
aligned inx-y plane contributes toQ,-. This leads to an
oblate intrinsic deformation of tha ™.
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Qpha~ —0.11=r2[5], we can fix only one of them. There-
fore we also calculate the nucleon asdcharge radii in the
pion cloud model and obtain

2
T

1
2_ 2y 2 2 2
re=1=p9r,+B 3t 3

2 2
rﬁ=ﬁ2<§r§,— §T§T>,

1
+=r2

- 22

FIG. 5. Intrinsic quadrupole deformation of the nucle@erft)
and A (right) in the pion cloud model. In thé&|, the p-wave pion
cloud is concentrated along the polaymmetry axis, with maxi-

Fum probability of finding the pion at the poles. This leads to a

|

Here,rf), is the charge radius of the bare proton. We assum

that the charge radii of the bare proton and of the afe  prolate deformation. In tha, the pion cloud is concentrated in the
are equal. Adding the first two equations giv%sz rf,+ rﬁ, equatorial plane producing an oblate intrinsic deformation.
which expresses the bare proton charge radius in terms of the .
experimental isoscalar nucleon charge radius. Subtracting theigned alongz axis) and Y}(rw) (pion cloud aligned along
first and third equations one gets an axis in thex-y plane. If we setby handeach of the
coupling coefficients in front of Y3|P,|Y5) and(Yi|P,| Y1)

( E equal to 1/2, the cancellation between the two orientations of

3 the cloud disappears. The normalization of the sum of cou-
pling coefficients is thereby preserved. We note that the first
term in Eq.(25), which comes from thé(é part of the pion
wave function, dominates. Therefore the probability for find-
ing the pion in the nucleon is largest at the poles. This term
is just the negative of the spectroscopi¢ quadrupole mo-
ment.

By this procedure we are undoing the geometric averag-

ing over all angles, which prevents the nonsphericity of the
pion cloud from being observed in the laboratory. One then

finds for the intrinsic quadrupole moment of the proton and
This is in the same ballpark as the quark model prediction ofj, A + g P P

Eq. (6).

2
rae=(L=Brg+ 8% 310

2
pr

2
™

+r

2 2
B'2— §ﬁ2 (§Bz_

|

Because the correction ©§—r3. =r2 is of order O(1/N?)
[25,26 and therefore small, we obtafgf = —28. When the
latter condition is used in Eq21), we get

2
ra—ry.=r

(23

o

Qa+=Qp a+=T12. (24)

We can now eliminate the model parameters and express 4 , 2l 2\ 1/2 8 - 5 At o
them through the experimental charge radi®= Q8:§B r=5\5/T2l5/|718F ==~ Qo =ra
—(3/8)ra/(r5+r7) and r2=5(r3+r3). The resulting nu- (26)

merical valuesp=0.26, 3’'=-0.52, r.=1.77 fm corre-

spond to a pion probability of 7% in the nucleon. The spatialAgain, the intrinsic quadrupole moment of tpes positive
extension of the pion cloud, is close to the Compton wave and that of theA ™ negative. They are identical in magnitude
length of the pion. Due to the larger lever armrqgf com-  but opposite in sign.

4

1
Qp=§,82rf,

3

2

5

2

3

1

- 25)

pion cloud. arises because the pion is preferably emitted along the spin
nucleon quark bag due to the pressure of the surrounding
5|
valence quark core. Previous investigations in a quark model
coupling of the bare neutron spin 1/2 with the pion orbital cloud, which is strongest along the polar axis. However, in
the proton is zero. The factors 2/5 andl/5 are the expec-

pared tor ,, the major part of the neutron charge radius and  The positive sign of the intrinsic protBiguadrupole mo-
the nucleon’s intrinsic quadrupole moment comes from thénent has a simple geometrical interpretation in this model. It
Next, we calculate the spectroscopic quadrupole momer(z axis) of the nucleor(see Fig. $. Thus the proton assumes

of the proton in the pion cloud model. We find a prolate shape. Here, we neglect the deformation of the bare
pion cloud. We emphasize that in this model all of the de-
formation comes from the pion cloud itself, none from the

The factors 1/3 and 2/3 are the squares of the Clebsciwith pion exchangg9] concluded that the nucleon assumes

Gordan coefficients that describe the angular momenturan oblate shape under the pressure of the surrounding pion

angular momenturh=1 to total spinJ=1/2 of the proton. these studies the deformed shape of the pion cloud itself was

They ensure that the spectroscopic quadrupole moment of

tation values of the Legendre polynomid,(cos®) evalu-

ated between the pion wave functioff(r,) (pion cloud

Safter dividing by the negative sign of the~ cloud, the neu-
tron’s intrinsic quadrupole moment is also positive, i@=QF .

015202-7



A. J. BUCHMANN AND E. M. HENLEY

PHYSICAL REVIEW C63 015202

ignored. Inclusion of the latter leads to a prolate deformatiortribution. As to the magnitude of the deformation, the models
that exceeds the small oblate quark bag deformation by ®ary within a wide rangeQf=0.11-0.55 fnt.

large factor.

IV. SUMMARY

The experimental evidence for a nonvanishiNg- A

transition andA quadrupole moments can be seen as an in-
dication for an intrinsic nucleon deformation. In the presen
paper, the intrinsic quadrupole moment of the nucleon ha

been estimated i) a quark model(ii) a collective model,

and(iii ) a pion cloud model, using the empirical information

on thep—A™*
radii.

The quark model with the two-body quadrupole operator,

guadrupole moment and the nucleon charge

Despite their differences, all models emphasize collective
over single-particle degrees of freedom and lead to an appre-
ciable spectroscopip—A™* transition quadrupole moment,
in agreement with recent experiments. In our opinion this
reflects that the intrinsic nucleon deformation resides mainly

ljn the q cloud surrounding an almost spherical valence

guark core. It would be interesting to calculate the intrinsic
quadrupole moment of the nucleon in other models, in order
to check whether our finding of a prolate nucleon shape can
be confirmed.
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