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Transport with three-particle interaction
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Starting from a pointlike two- and three-particle interaction the kinetic equation is derived. While the drift
term of the kinetic equation turns out to be determined by the known Skyrme mean field the collision integral
appears in two- and three-particle parts. The cross section results from the same microscopic footing and is
naturally density dependent due to the three-particle force. By this way no hybrid model for drift and cross
section is needed for nuclear transport. Besides the mean field correlation energy the resulting equation of state
also has a two- and three-particle correlation energy which are both calculated analytically for the ground state.
These energies contribute to the equation of state and lead to an occurrence of a maximum at three times
nuclear density in the total energy.
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I. INTRODUCTION

The equation of state of nuclear matter is known to sa
rate at the density ofn050.16 fm23 with a binding energy
of 216 MeV. Refined two-particle calculations usin
Brueckner theory@1# and beyond@2# are not crossing the
‘‘Coester line’’ in that they lead to binding energies and/
densities above the saturation ones. Only density depen
Skyrme parametrizations originally introduced by Skyrm
@3,4#, three-particle interactions@5,6# or relativistic treat-
ments@7#, can reproduce the correct binding energy and sa
ration density of nuclear matter. The Skyrme parametri
tions are derived from an effective three-particle interact
@8#. This leads to a nonlinear density dependence in the
fective three-particle part which is responsible for saturati
The importance of three-particle collisions in nuclear ma
transport has been demonstrated, e.g., in Ref.@9#. The den-
sity dependence deviating from that arising by three-bo
contact interaction has been introduced and compared
experiments in Ref.@10#.

The relativistic approach, on the other hand, yields imm
diately the correct saturation with two-particle exchange
teractions. This has been traced down to the nonlinear d
sity dependence of scalar density and consequently nonli
mean fields@11# which leads to a density contribution to th
binding energy of (n/n0)8/3. Higher order effects have bee
shown to lead to a (n/n0)3.4 dependence, see Ref.@12# and
citations therein. Therefore the physics of the saturat
mechanism is certainly a nontrivial density dependence
the mean field. Though the Skyrme interaction has b
overwhelmingly successful and the evidence of saturation
three-particle interaction@5,6#, it is puzzling that a transpor
theory with three-particle contact interaction has not be
formulated. In this paper we will derive the correspondi
kinetic equation using nonequilibrium Green’s function a
we will show that the three-body interaction term leads t
(n/n0)10/3 contribution to the binding energy.

The transport theory including three-particle interactio
seems to be of wider interest, e.g., in Ref.@13# it has been
found that the three-body interactions have a measurable
fluence on thermodynamic properties of fluids in equil
0556-2813/2000/63~1!/014609~7!/$15.00 63 0146
-

ent

u-
-

n
f-
.
r

y
ith

-
-
n-
ar

n
f
n
y

n

a

s

in-
-

rium. The description of nonequilibrium in nuclear matter
mostly based on the Boltzmann~BUU! equation which uses
the Skyrme parametrization to determine the mean field
drift side of the kinetic equation. The collisional integral
then calculated with a cross section which arises from diff
ent theoretical impact. In addition one usually neglects
three-particle collision integral. These hybrid models ha
worked quite successfully despite their weak rigour in mic
scopic foundation.

In this paper the transport equation will be derived f
two- and three-particle contact interactions. We will see t
a natural density dependent mean field appears, in agree
with variational methods. Further we will obtain, on th
same ground, density dependent cross sections. This ha
advantage that we can derive a BUU equation which has
same microscopic impact on the drift and collisional sid
Finally the three-particle collision integral appears natura
from this treatment. From balance equations we will der
the density dependent energy which gives the equation
state.

II. THREE-PARTICLE KADANOFF
AND BAYM EQUATION

We consider a Hamilton system with the Hamiltonian

H5(
i

ai
1

\2¹2

2m
ai1

1

2 (
i j

ai
1aj

1aiajV2~ i , j !

1
1

6 (
i jk

ai
1aj

1ak
1aiajakV3~ i , j ,k!, ~1!

where ai
1 ,ai are creation and annihilation operators wi

cumulative variablesi 5(xi ,t i , . . . ). Weassume the poten
tial is contactlike as

V2~ i , j !5t0d~ i 2 j !,

V3~ i , j ,k!5t3d~ i 2 j !d~ i 2k!. ~2!
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The Heisenberg equations of motion for the annihilation
erators read

i\] t1
a15@a1 ,H#

52
\2¹1

2

2m
a11(

2
V~1,2!a2

1a1a2

1
1

2 (
23

V~1,2,3!a2
1a3

1a1a2a3 . ~3!

From this we get the equation of motion for the cau
Green’s functionG(1,2)51/i ^Ta1

1a2& with the time order-
ing T and the average taken about the nonequilibrium den
operator

S i\] t1
2

\2¹1
2

2m DG~1,18!

5d~1218!1E d2V~1,2!G2~1,2,18,21!

1
1

2E d2d3V~1,2,3!G3~1,2,3,18,21,31!

[d~1218!2E dx2SHF~x1 ,x2 ,t !G~x2 ,t,x1 ,t !

1E d2@S~1,2!G~2,18!2S.~1,2!G,~2,18!#,

~4!

where the 11 denotes the space-time point 15(x1 ,t11e)
with a time infinitesimally larger than 1. This equation
enclosed in the standard manner introducing the self-en
S. We have split the mean field partsSHF including ex-
change and have introduced for the rest the self-energy
the Keldysh contour. This is equivalent to the weakening
initial correlations. The correlation functions areG,(1,2)
5^a2

1a1& and G.(1,2)5^a1a2
1&, respectively, and thei

FIG. 1. The definition of self-energy. We denote the tw
particle interaction by long-dashed lines and the three-particle
teraction by short-dashed line.
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equation of motion follows from Eq.~4! in the form of the
known Kadanoff and Baym equation@14,15#

i ~G0
21G,2G,G0

21!5SRG,2G,SA, ~5!

where one takes advantage of the retarded and adva
functions GR/A57 iu@6(t12t2)#(G.7G,) and under-
stands products as integration over inner variables.

A. Mean field parts

We first calculate the mean field parts. These parts co
from the first order interaction diagrams of Fig. 1. To th
end we use the two- and three-particle Green’s function
lowest order approximation seen in Fig. 2.

Introducing these diagrams into Fig. 1, one obtains
contact interaction~2!

SHF~1,18!5Fg61

g
t0n~1!1

~g61!~g62!

2g2 t3n~1!2G
3d~1218!, ~6!

where we have used the fact that the density isn(1)
5G,(1,1)/g. Here and in the following we write the uppe
sign for Bosons and the lower sign for fermions. The res
~6! is the known Skyrme mean field expression in nucle
matter forg54. It resembles an effective density depende
two-particle interaction arising from three-particle contact
teraction. As a consistency check we see that forg52 de-
generated Fermionic system, like spin-1/2 Fermions,
three-body term appears. Pauli blocking forbids two partic
to meet at the same point with equal quantum numb
which one would have for three-particle contact interact
and degeneracy ofg52.

B. Kinetic equation

For the kinetic equation we need as the lowest order
proximation the next diagrams of Fig. 2 including one inte
action line. While there are different expansion technique
hand @16,13# we will perform here a scheme as close
possible to the causal Green’s function including all e
changes which are presented in Fig. 2. This will give us
advantage that we can consider all diagrams which differ
exchange of outgoing lines as equal. To this aim we int
duce the abbreviated symmetrized Green’s function with
spect to incoming lines in Fig. 3.

-

f

.

FIG. 2. The lowest order expansion o
Green’s functions. The statistical factorg due to
degeneracy in the system is indicated explicitly
9-2
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TRANSPORT WITH THREE-PARTICLE INTERACTION PHYSICAL REVIEW C63 014609
The expansion of the three-body Green’s function is giv
in Fig. 5. Besides the three-particle interaction potential
have to consider all possible single line interactions betw
two incoming lines. This is shortened by the introduction
the symmetrized Green’s function in Fig. 3 and the vertic
of Fig. 4.

Since we can also have nontrivial combinations of t
incoming lines and one free line for the three-body Gree
function we have introduced an auxiliary two-body Gree
function G2

s which is defined in Fig. 5. Please note that t
exchange of outgoing lines does not lead to distinguis
diagrams. The two-particle Green’s function is then given
Fig. 5. Introducing now this expansion into the definition
self-energy in Fig. 1 we obtain the four diagrams of Fig.
All other combinations lead either to disconnected diagra
or to equivalent ones by interchanging outgoing lines. H
the seemingly disconnected diagrams forG3

1 in Fig. 5 lead
together with the corresponding diagrams fromG2

1 to the
vertex in front ofG2

s of Fig. 6.
The enclosing diagram about the auxiliary Green’s fu

tion G2
s is given in Fig. 7. Please note that here the seemin

disconnected diagrams of Fig. 5 vanish. We have used a
the fact that the interchange of outgoing lines does not l
to distinguished diagrams.

Inserting Fig. 7 into Fig. 6 we obtain the final result f
the self-energy in the Born approximation:

FIG. 3. The symmetrized three-body Green’s function with
spect to incoming lines which are used in Fig. 5.

FIG. 4. The introduced vertices. The three- and two-parti
interaction potentials are the same as in Fig. 1.
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S,~1,18!5~g61!H t0
21~g62!F4t0

216t3
2 n~1!n~18!

g2

15t0t3S n~1!

g
1

n~18!

g D G J
3G,~1,18!2G.~181!

1
1

2
~g61!~g62!t3

2G,~1,18!3G.~181!2.

~7!

Note that all interactions vanish for the fermionic caseg
51 since the Pauli principle does not allow contact inter
tion in this case. Forg52 only the two-particle interactions
survive for fermions as one expects from the Pauli princip
That the result is symmetric in the densities at the two tim
space points needs no further comment.

From the self-energy we can write down the Kadan
and Baym equation~5! in closed form. If we employ stan
dard gradient expansion and convert Eq.~5! into an equation
for the pole part of the Green’s function we obtain the fin
kinetic equation

-

e

FIG. 5. The first order expansion of the two- and three-parti
Green’s functions with respect to interaction.

FIG. 6. The self-energy according to Fig. 1 with the expans
of Fig. 5.
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]

]t
f 1~ t !1

p1

m

]

]r
f 1~ t !2

]

]r
sHF~ t !

]

]p1
f 1~ t !

5
2

\2E dp2dp18dp28

~2p\!6
T2

2d~p11p22p182p28!E
t0

t

dt cosF1

\
~E11E22E182E28!~ t2t!G

3$ f 18~t! f 28~t! f̄ 1~t! f̄ 2~t!2 f 1~t! f 2~t! f̄ 18~t! f̄ 28~t!%1
2

\2E dp2dp3dp18dp28dp38

~2p\!12
T3

2d~p11p21p32p182p282p38!

3E
t0

t

dt cosF ~E11E21E32E182E282E38!
t2t

\ G$ f 18~t! f 28~t! f 38~t! f̄ 1~t! f̄ 2~t! f̄ 3~t!

2 f 1~t! f 2~t! f 3~t! f̄ 18~t! f̄ 28~t! f̄ 38~t!% ~8!
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with f̄ 512 f , and the particle dispersionE5p2/2m1sHF.
The quasiparticle distribution functions are normalized to
density asg*@dp/(2p\)3# f (p)5n. For the sake of simplic-
ity we have suppressed the notation of center of mass s
dependence. Neglecting the retardation in the distribu
functions and takingt0→` gives the standard Boltzman
two- and three-particle collision integrals.

The introduced two- and three-particleT matrices are read
off from Eq. ~7! as first Born approximation:

T2
25

g61

g2 H t0
21~g62!F4t0

216t3
2 n~1!n~18!

g2

15t0t3S n~1!

g
1

n~18!

g D G J
T3

25
1

2

g61

g3 ~g62!t3
2 . ~9!

The reader is reminded that we have generally to sum o
collision partners and to average over the outgoing produ
While the summation is already taken into account explic
in the diagrammatic approach above we had to divide byg2

andg3 for the two- and three-particle outgoing collision pa

FIG. 7. The enclosing diagram of the auxiliary Green’s functi
G2

s .
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ners, respectively. An effective cross section can be defi
in the usual way and read up to constants

ds2

dV
;T2

25
3

16F9t0
21

3

4
t3
2n215t0t3nG

5
27

16F S t01
1

6
t3nD 2

1
2

9
t3nS t01

1

4
t3nD G

ds3

dV
;T3

25
3

64
t3
2 . ~10!

If one compares this with the effective two-particle cro
section derived in Ref.@17# one sees that it differs by the las
two terms of Eq.~10! proportional tot3. This is due to the
fact that the underlying three-particle process is taken i
account explicitly here while in Ref.@17# an effective two-
particle kinetic theory has been developed. Obviously
have to face a partial cancellation between three- and t
particle collisions. This will become explicit in the discu
sion of correlation energies. We will see that the two- a
three-particle correlation energies indeed cancel parti
concerning thet3 terms.

The ratio of the effective cross sections are for the cas
nuclear matter (g54),

ds2

ds3
5

T2
2

T3
254F9

t0
2

t3
2 1

3

4
n215

t0

t3
nG . ~11!

This could serve as the measure of relative importance of
corresponding collision processes, but we prefer to disc
this later in terms of dispersed energy by the two- and thr
particle collision integrals since this includes also the Pa
blocking.

We would like to point out that we have fulfilled our tas
and have derived a kinetic equation where the drift as wel
the collision integral follows from the same microscopic im
pact. The drift represents a Skyrme mean field and the c
sion side shows a two- and three-particle collision integ
where the cross sections are calculated from the same pa
eters as the mean field.
9-4
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III. BALANCE EQUATION

By multiplying the kinetic equation with 1,p, andE, one
obtains the balance for densityn, momentumu, and energy
E. Since the collision integrals vanish for density and m
mentum balance we get the usual balance equations

]n

]t
1

]

]RE dp

~2p\!3

]E

]p
f 50,

]ui

]t
1

]

]Rj
E dp

~2p\!3 S pi

]E

]pj
f 1Ed i j D50, ~12!

where the mean field energy of the system varies as

dE5E dp

~2p\!3

dE
d f ~p!

d f ~p!5E dp

~2p\!3 Ed f ~p!

~13!

such that from Eq.~6! follows

E5 K k2

2mL 1
g61

2g
t0n21

~g61!~g62!

6g2 t3n3. ~14!

With the help of this quantity the balance of energy dens
reads

]E
]t

1
]

]RE dp

~2p\!3 E
]E

]p
f 52

]

]t
Ecorr2

~ t !2
]

]t
Ecorr3

~ t !

~15!

with the two-particle correlation energy@18,19#

Ecorr2
~ t !52

g

\Et0

t

dtE dp1dp2dp18dp28

~2p\!9

3T2
2d~p11p22p182p28!

3sinF ~E11E22E182E28!
t2t

\ G
3 f 18~t! f 28~t! f̄ 1~t! f̄ 2~t! ~16!

and the complete analogous expression for the three-par
energy.

Please note that in the balance equations for the den
and momentum no correlated density or correlated flux
pears. This is due to the Born approximation. For more n
trivial approximations as, e.g., the ladder summation th
correlated observables appear@20,21#.

A. Fit to nuclear matter ground state

As one can see, it is not enough to use the mean fi
parametrization to fit the equation of state as done in m
approaches so far. Since the collision integral induces a t
particle and three-particle correlation energy we have to t
this into account and have to refit the parametert0 ,t3 to the
binding properties of nuclear matter. To illustrate this fact
us evaluate the fit without two- and three-particle correlat
energy and therefore without collision integrals.
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1. Hartree-Fock parametrization

Taking into account only Hartree-Fock mean field cor
lations~14! the ground state energy for nuclear matter rea

E

A
5

E
n

5
3

5
e f1

3

8
t0n1

1

16
t3n2. ~17!

Then the nuclear binding atn050.16 fm23 with an energy
of EB5215.68 MeV is reproduced by the set

t052
16

15n0
~2e f25EB!521026.67 MeV fm3,

t35
16

5n0
2 ~e f25EB!514625 Mev fm6

which leads to a compressibility of

K59n2
]2E/A

]n2 5
9

8
t3n0

22
6

5
e f5377 MeV. ~18!

2. Parametrization with two- and three-particle
correlation energy

Now we consider the two-particle correlation energ
From Eq.~8! we obtain the total energy

E1Ecorr2
1Ecorr3

. ~19!

We want to calculate the long time limit which represen
the equilibrium value. From the identity*0

`sinxtdt5P/x a
principle value integration replaces the sin term in Eq.~16!,

Ecorr2
~`!52gE dp1dp2dp18dp28

~2p\!9
T2

2 P
E11E22E182E28

3d~p11p22p182p28! f 18 f 28 f̄ 1 f̄ 2 . ~20!

For ground state Fermi distributions this expression c
be integrated analytically@19# and we find from Eq.~20! the
known Galitskii result for the two-particle ground state co
relation energy@22#,

Ecorr2

n
54e f

2 ln 2211

35 S pfmT2

4p2\3D 2

52
5.791025

MeV fm2
n4/3F9t0

21
3

4
t3
3n215t3t0nG . ~21!

As pointed out in Ref.@23# we had to subtract here an infinit
value, i.e., the term proportional tof 1f 2 in Eq. ~20!. This can
be understood as renormalization of the contact potential
is formally hidden inEcorr(0) when time integrating Eq
~15!. For finite range potentials we have an intrinsic cuto
due to range of interaction and such problems do not oc

The correlational two-particle energy~21! is always nega-
tive for fermionic degeneracies 2,g,8 and for bosonic de-
generacyg,4. Since the leading density goes withn10/3 it
will dominate over the positive kinetic part which goes lik
9-5
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n2/3. We find that for densities around 3n0 the total energy
has a maximum and starts to decrease continuously
higher densities. The maximal energy is changed towa
higher values if we now include three-particle correlatio
since the latter remain positive and have the same lea
density term as the two-particle correlational energy.

The three-particle part reads

Ecorr3
~`!52gE dp1dp2dp3dp18dp28dp38

~2p\!15
T3

2

3d~p11p21p32p182p282p38! f 18 f 28 f 38 f̄ 1 f̄ 2 f̄ 3

3
P

E11E21E32E182E282E38
. ~22!

The analytic result for the contact potential has not be
given in the literature to my knowledge and reads

Ecorr3

n
54e f

9013

239325377313S pf
4mT3

4p4\6D 2

5
2.371026

MeV fm2
n10/3t3

2 . ~23!

This three-particle correlation energy remains positive a
has the same leading density behavior ofn10/3 as the two-
particle correlational energy. Since the prefactor is sma
than the one for the two-particle correlational energy we
tain a maximum at three times nuclear density beyond wh
the two-particle part dominates and the total energy diver
negatively which would mean a collapse of the system. T
clearly marks the limit of the Born approximation.

Taking now the correlational energy into account via E
~19! instead of only the Hartree-Fock energy~17! we obtain
a fit to the nuclear binding of

t̃ 052745.71 MeV fm3,

t̃ 358272.8 MeV fm6 ~24!

which leads to a compressibility of

K̃5351 MeV ~25!

which is somewhat lower than the mean field compressib
of Eq. ~18!. The comparison of the two equation of stat
with and without two- and three-particle correlations can
seen in Fig. 8. The inclusion of two-particle correlation e
ergy leads to a maximum at three times nuclear den
above which the system collapses. The complete resul
cluding three-particle correlational energy leads to a hig
reachable maximum.

B. Importance of three-particle collisions

We have seen that the three-particle contact interac
induces in a natural way a density dependence of the t
particle cross section. Additionally we have obtained an
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plicit three-particle collision integral on the same micr
scopic footing. We want now to answer the question of h
important the three-particle collisions are. Therefore we
as a measure the ratio of the two- and three-particle gro
state correlation energies, Eqs.~21! and~23!, since this gives
the measure of how much energy is maximally dispersed
the corresponding integrals. We obtain

UE2

E3
U52535311313

9013
~1122 ln 2!3F9

t0
2

n2t3
2 1

3

4
15

t0

t3nG .
~26!

This ratio is decreasing until it reaches the density

nmin52
18t0

5t3
50.32 fm23, ~27!

where the ratio has the minimum

UE2

E3
U

min

51.4. ~28!

For higher densities the constant value

UE2

E3
U

`

518.3 ~29!

is approached.
In other words this means that the importance of thr

particle collisions increase with increasing density up
twice the nuclear density where the correlational energies
nearly equal. For higher densities we have 18 times lar
two-particle correlational energies than three-particle on
At nuclear saturation density this ratio is

UE2

E3
U

n0

519.2 ~30!

FIG. 8. The equation of state due to mean field compared w
the equation of state including two- and three-particle collisions
the Born approximation.
9-6
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indicating that the three-particle collisions become import
between nuclear density and twice the nuclear density w
it can be neglected in the other cases.

IV. CONCLUSIONS

For a microscopic two- and three-particle contact inter
tion consisting of two parameters the Kadanoff and Ba
equation of motion is derived. From this a Boltzmann kine
equation is obtained with drift which turns out to be t
known Skyrme Hartree-Fock expression while the collis
side consists of two- and three-particle collision integra
The two-particle collision integral contains an explic
density-dependent cross section arising from the th
particle contact interaction. By this way both the drift side
well as collision side is derived from the same microsco
footing and no hybrid assumptions about separate den
dependent mean field and cross section is needed.

The correlational energy for the three- and the tw
particle part are calculated analytically. Due to the dens
dependent two-particle collision integral both correlation
energies have the same leading power of (n/n0)10/3 in den-
sity which shows that both contributions are of the sa
importance if three-particle interaction has to be conside
y

ys

ys

nt

01460
t
le

-

.
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-
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This is clearly motivated by the saturation point where no
relativistic two-particle approaches fail to overcome t
‘‘Coester line.’’

We find that there is a maximum in the energy at thr
times nuclear density if two- and three-particle correlatio
energies are included. Beyond this density the Born appr
mation fails at least in that the system collapses towa
diverging negative energy.

While the two-particle collision cross section has a natu
density dependence due to three-particle contact interac
it turns out that the explicit three-particle collision integr
can be neglected as long as one is below nuclear den
Around twice nuclear density the three-particle collision
tegral has the same importance as the two-particle one s
it disperses the same amount of energy. For higher dens
the three-particle collision integral is again negligible.
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~submitted!; K. Morawetz, Habilitation, University Rostock
1998.

@22# D. Pines and P. Nozieres,The Theory of Quantum Liquid
~Benjamin, New York, 1966!, Vol. 1.

@23# E. Lifschitz and L. P. Pitaevsky, inPhysical Kinetics, edited
by E. Lifschitz ~Akademie Verlag, Berlin, 1981!.
9-7


