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Transport with three-particle interaction
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Starting from a pointlike two- and three-particle interaction the kinetic equation is derived. While the drift
term of the kinetic equation turns out to be determined by the known Skyrme mean field the collision integral
appears in two- and three-particle parts. The cross section results from the same microscopic footing and is
naturally density dependent due to the three-particle force. By this way no hybrid model for drift and cross
section is needed for nuclear transport. Besides the mean field correlation energy the resulting equation of state
also has a two- and three-particle correlation energy which are both calculated analytically for the ground state.
These energies contribute to the equation of state and lead to an occurrence of a maximum at three times
nuclear density in the total energy.
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[. INTRODUCTION rium. The description of nonequilibrium in nuclear matter is
mostly based on the BoltzmariBUU) equation which uses

The equation of state of nuclear matter is known to satuthe Skyrme parametrization to determine the mean field and
rate at the density ofi,=0.16 fm 2 with a binding energy drift side of the kinetic equation. The collisional integral is
of —16 MeV. Refined two-particle calculations using then calculated with a cross section which arises from differ-
Brueckner theonf1] and beyond2] are not crossing the €nt theoretical impact. In addition one usually neglects the
“Coester line” in that they lead to b|nd|ng energies and/orthree—particle collision integral. These hybrld models have
densities above the saturation ones. Only density dependeworked quite successfully despite their weak rigour in micro-
Skyrme parametrizations originally introduced by Skyrmescopic foundation.
[3,4], three-particle interaction§5,6] or relativistic treat- In this paper the transport equation will be derived for
ments] 7], can reproduce the correct binding energy and satutwo- and three-particle contact interactions. We will see that
ration density of nuclear matter. The Skyrme parametrizad natural density dependent mean field appears, in agreement
tions are derived from an effective three-particle interactioriith variational methods. Further we will obtain, on the
[8]. This leads to a nonlinear density dependence in the esame ground, density dependent cross sections. This has the
fective three-particle part which is responsible for saturationadvantage that we can derive a BUU equation which has the
The importance of three-particle collisions in nuclear mattersame microscopic impact on the drift and collisional side.
transport has been demonstrated, e.g., in [Bf.The den-  Finally the three-particle collision integral appears naturally
Sity dependence deviating from that arising by three-bod}from this treatment. From balance equations we will derive
contact interaction has been introduced and compared witthe density dependent energy which gives the equation of

experiments in Ref10]. state.

The relativistic approach, on the other hand, yields imme-
:Jlatelty the _(;_ﬂrreﬁt sal;uratlctnn Wléh(;wo-p?rtltzle exc?angec;n- Il THREE-PARTICLE KADANOFE
eractions. This has been traced down to the nonlinear den- AND BAYM EQUATION

sity dependence of scalar density and consequently nonlinear
mean fieldd11] which leads to a density contribution to the  We consider a Hamilton system with the Hamiltonian
binding energy of i/n)®°. Higher order effects have been
shown to lead to ar(/ny)>* dependence, see Ré¢fL2] and A2v2 1
citations therein. Therefore the physics of the saturation H=> a' ——a+= > aa aaVali,j)
mechanism is certainly a nontrivial density dependence of ‘ 2m 27
the mean field. Though the Skyrme interaction has been 1
overwhelmingly successful and the evidence of saturation by += > aa’a) aaaVsi,j k), (1)
three-particle interactiofb,6], it is puzzling that a transport 6 %
theory with three-particle contact interaction has not been
formulated. In this paper we will derive the correspondingwhere a;" ,a; are creation and annihilation operators with
kinetic equation using nonequilibrium Green’s function andcumulative variables=(x; ,t;, . ..). Weassume the poten-
we will show that the three-body interaction term leads to &ijal is contactlike as
(n/ng) %2 contribution to the binding energy.
The transport theory including three-particle interactions Vo(iLj)=tod(i— )
seems to be of wider interest, e.g., in R3] it has been 2=l 1
found that the three-body interactions have a measurable in-
fluence on thermodynamic properties of fluids in equilib- Vs(i,j,k)=t38(i—j)s(i —k). 2
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equation of motion follows from Eq4) in the form of the
known Kadanoff and Baym equatigt4,15

(3.2 4 G, i((GylG™=G G, 1)=3RG~-G~3A, (5)

(DN -

FIG. 1. The definition of self-energy. We denote the two-\yhere one takes advantage of the retarded and advanced
particle interaction by long-dashed lines and the three-particle iNfunctions GRA= Fio[+(t;—t,)](G™FG<) and under-

teraction by short-dashed line. stands products as integration over inner variables.

The Heisenberg equations of motion for the annihilation op-

erators read A. Mean field parts

ifho, a;=[a;,H] We first_ calculate_the mean fie_Id parts. The_se parts come
1 from the first order interaction diagrams of Fig. 1. To this
72v2 end we use the two- and three-particle Green’s function in
=~ >m al+; V(1,2a, aja, lowest order approximation seen in Fig. 2.

Introducing these diagrams into Fig. 1, one obtains for

1 contact interactiori2)
- + .+
+5 % V(1,2,39a; aj a,ayas. 3 g1 (g*1)(g*2)
3L = g ton(1)+ 2—gzt3n(1)2

From this we get the equation of motion for the causal
Green’s functionG(1,2)=1/i(Ta; a,) with the time order- Xo(1-1"), (6)
ing T and the average taken about the nonequilibrium density
operator

where we have used the fact that the densityn{d)
ZVf =G=~(1,1)/g. Here and in the following we write the upper
(iﬁ(%l— 2—) G(1,1) sign for Bosons and the lower sign for fermions. The result
m . : o
(6) is the known Skyrme mean field expression in nuclear
matter forg=4. It resembles an effective density dependent
=o6(1-1")+ f d2Vv(1,2G,(1,2,1,2") two-particle interaction arising from three-particle contact in-
teraction. As a consistency check we see thatgfer2 de-
generated Fermionic system, like spin-1/2 Fermions, no
three-body term appears. Pauli blocking forbids two particles
to meet at the same point with equal quantum numbers
5(1_1,)_f %3 e (X X1 G (Xt 1) \;v:écge%r;?‘:r/gg}l/d(gi\/; for three-particle contact interaction

1
+§f d2d3V(1,2,3G4(1,2,3,1,2+,3")

! > < !
+j d2[2(1,2G(21)-27(129G™(217], B. Kinetic equation
(4) For the kinetic equation we need as the lowest order ap-
proximation the next diagrams of Fig. 2 including one inter-
where the T denotes the space-time point=1x,,t;+€) action line. While there are different expansion techniques at
with a time infinitesimally larger than 1. This equation is hand [16,13 we will perform here a scheme as close as
enclosed in the standard manner introducing the self-energyossible to the causal Green’s function including all ex-
2. We have split the mean field parE,r including ex-  changes which are presented in Fig. 2. This will give us the
change and have introduced for the rest the self-energy oadvantage that we can consider all diagrams which differ by
the Keldysh contour. This is equivalent to the weakening ofexchange of outgoing lines as equal. To this aim we intro-
initial correlations. The correlation functions a@&~(1,2)  duce the abbreviated symmetrized Green’s function with re-
=(aya;) and G”(1,2)=(a,a, ), respectively, and their spect to incoming lines in Fig. 3.
FIG. 2. The lowest order expansion of

G =2+ X
5 -
Green’s functions. The statistical factgrdue to

5 >< _ degeneracy in the system is indicated explicitly.
L VL LA RS
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S| _ 0 0 0 1 Go Gs
N Gs* = 7 G:;'> + Gs* + Gs* Gs - of * )( 3
FIG. 3. The symmetrized three-body Green’s function with re-
spect to incoming lines which are used in Fig. 5. - s s
+  +1 G + |G,
The expansion of the three-body Green’s function is given Gz
in Fig. 5. Besides the three-particle interaction potential we T
have to consider all possible single line interactions between
two incoming lines. This is shortened by the introduction of 1 0 s
the symmetrized Green’s function in Fig. 3 and the vertices G2 = G2 + G2
of Fig. 4.
Since we can also have nontrivial combinations of two
incoming lines and one free line for the three-body Green’s R 1 1 1
function we have introduced an auxiliary two-body Green’s G2 = G3 + G3 + G3
function G5 which is defined in Fig. 5. Please note that the

exchange of outgoing lines does not lead to distinguished
diagrams. The two-particle Green’s function is then given by  FIG. 5. The first order expansion of the two- and three-particle
Fig. 5. Introducing now this expansion into the definition of Green’s functions with respect to interaction.
self-energy in Fig. 1 we obtain the four diagrams of Fig. 6.
All other combinations lead either to disconnected diagrams
or to equivalent ones by interchanging outgoing lines. Here
the seemingly disconnected diagrams @&} in Fig. 5 lead
together with the corresponding diagrams fr@y to the Lett (@Jr n(l’))
vertex in front ofG3 of Fig. 6. o3 g

The enclosing diagram about the auxiliary Green’s func- - RS
tion G3 is given in Fig. 7. Please note that here the seemingly XG™(1,1)°G7(1"1)
disconnected diagrams of Fig. 5 vanish. We have used again 1
the fact that the interchange of outgoing lines does not lead + E(gtl)(gt2)t§G<(1,1’)3G>(1’1)2.
to distinguished diagrams.

Inserting Fig. 7 into Fig. 6 we obtain the final result for )

the self-energy in the Born approximation: Note that all interactions vanish for the fermionic cape
=1 since the Pauli principle does not allow contact interac-
tion in this case. Fog=2 only the two-particle interactions
survive for fermions as one expects from the Pauli principle.
That the result is symmetric in the densities at the two time-
space points needs no further comment.

From the self-energy we can write down the Kadanoff
and Baym equatioit5) in closed form. If we employ stan-
— dard gradient expansion and convert Ef).into an equation

for the pole part of the Green’s function we obtain the final
kinetic equation

n(1)n(1’)
gZ

4t2+ 6t2

35(1,1)=(g* 1)[t3+(gt2)

i @ = G| + G,
. ©

FIG. 4. The introduced vertices. The three- and two-particle FIG. 6. The self-energy according to Fig. 1 with the expansion
interaction potentials are the same as in Fig. 1. of Fig. 5.
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] p1 d RTIR
Efl(t) Eﬁfl(t) i ()(?p fi(t)
dp.dp;dp; 2
th (2—ﬁ)6 S(py+pP2—pP1— pz)f drco (E1+E2 El—Ep)(t=17)

dp,dpsdp;dp,dp;
(27h)*?

X{FUD D)D) Fo(n) — Fu( D) FA DTN TR} + — f T38(p1+ P2t P3—P1— P2~ P3)

t t— -
xft dTCO{(El‘FE2+E3—Ei—Eé—Eé)TT}{fi(T)fé(T)fé(T)fl(T)fz(T)fg(T)
0

— ()T F ()T Fp(7)F(7)} (8)

with f=1—f, and the particle dispersioE=p?2m+¢"F.  ners, respectively. An effective cross section can be defined

The quasiparticle distribution functions are normalized to thdn the usual way and read up to constants
density agyf[dp/(274)3]f(p)=n. For the sake of simplic-

ity we have suppressgd the notation qf center of mass space dinZ 9t0+ §t3n +5totan
dependence. Neglecting the retardation in the distribution dQ 16
functions and taking,—~ gives the standard Boltzmann 27 1 2 1
two- and three-particle collision integrals. = tot Ztanl + =tanl to+ =t n)
. . . 0 3 3 0 3
The introduced two- and three-partidlenatrices are read 16 6 9 4
off from Eq. (7) as first Born approximation:
d0'3 2 3 t (10)
, g+ ,n(1)n(1’) dQ 3 64 ¥
Ti= "5 1{t24+(g=*2) 4t0+6t3—2
9° g If one compares this with the effective two-particle cross
, section derived in Ref17] one sees that it differs by the last
+5t,t 3( n(1) +n(1 )) two terms of Eq.(10) proportional tots. This is due to the
9 fact that the underlying three-particle process is taken into

account explicitly here while in Refl17] an effective two-
1 particle kinetic theory has been developed. Obviously we
T% %_(g 2)t3 9) have to face a partial cancellation between three- and two-
2 particle collisions. This will become explicit in the discus-
sion of correlation energies. We will see that the two- and
The reader is reminded that we have generally to sum ovahree-particle correlation energies indeed cancel partially
collision partners and to average over the outgoing productsgoncerning the terms.
While the summation is already taken into account explicitly  The ratio of the effective cross sections are for the case of
in the diagrammatic approach above we had to d|V|d@fby nuclear matter=4),

andg?® for the two- and three-particle outgoing collision part-
2
3
=4{99+° n2+5 "
t; 4

d0'2 T%

da; 73 (“)

This could serve as the measure of relative importance of the
Gs = GO + Gs co_rresponding coIIisio.n processes, but we prefer to discuss
2 8 3 this later in terms of dispersed energy by the two- and three-
particle collision integrals since this includes also the Pauli
blocking.
We would like to point out that we have fulfilled our task
+ s and have derived a kinetic equation where the drift as well as
G3 the collision integral follows from the same microscopic im-
pact. The drift represents a Skyrme mean field and the colli-
sion side shows a two- and three-particle collision integral
FIG. 7. The enclosing diagram of the auxiliary Green’s functionwhere the cross sections are calculated from the same param-
GS. eters as the mean field.

G,
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I1l. BALANCE EQUATION 1. Hartree-Fock parametrization

By multiplying the kinetic equation with 1 p, andE, one 'Taking into account only Hartree-Fock mean field corre-
obtains the balance for densi[y momentumu, and energy |at|0nS(14) the grOUnd state energy for nuclear matter reads
£. Since the collision integrals vanish for density and mo- E £ 3 3 1
mentum balance we get the usual balance equations —_t_ Zton+ —tsn2. (17)

A n 5° 8 16
an J dp JE
TR 2nhi)? 3551 =0, Then the nuclear binding at,=0.16 fm 3 with an energy

P of Eg=—15.68 MeV is reproduced by the set

ﬁui O7 dp 6
it 2nh)? f+55'1 =0, (12 to=— 75— (2~ 5Eq) =~ 1026.67 MeV fnf,
0

where the mean field energy of the system varies as

6
(e;—5Eg)=14625 Mev fn}

t3:5—ng

o€

dp dp
2= | oot 510120~ | P | -
(13) which leads to a compressibility of

,°EIA 9 6
such that from Eq(6) follows K —9n2 =2 3n(2) §6f=377 MeV. (18)
k*\ g*1 (g=1)(g=2)
=(=—)+ ton?+ tnd. (14
& <2m> 29 on 69° 3N (14 2. Parametrization with two- and three-particle

correlation energy

With the help of this quantity the balance of energy densi
P a y 9y ty Now we consider the two-particle correlation energy.

reads :
From Eq.(8) we obtain the total energy
J J
(S’Rj ( wﬁ) - ﬁEcorrz(t) - EEcor@(t) &t ECO"2+ ECO"3' (19)
(15 We want to calculate the long time limit which represents
principle value integration replaces the sin term in Edp),
9 dpydp,dp;dp; o
Ecor,(1) = dp.dp.dp;dp; P
? o) T @ Ecor,(®) =~ 5
2 (27h)° E.+E,—E;—E)
2 ’ ’
XT56(p1+P2—P1—P2) T —
X 8(pytp2—pPr—P2)fifofifa. (20)
xsin (E1+E,—Ey—E)) 3 } For ground state Fermi distributions this expression can
_ be integrated analyticallj19] and we find from Eq(20) the
XF1(n)f5(7)fo(7)Fa(7) (16 known Galitskii result for the two-particle ground state cor-

relation energy22],
and the complete analogous expression for the three-particle

energy. Ecor, 2In2—11/p;mT,\?
Please note that in the balance equations for the density =4e; 2773
) n 35 A7°h
and momentum no correlated density or correlated flux ap-
pears. This is due to the Born approximation. For more non- 579105 3
trivial approximations as, e.g., the ladder summation these =— —2n4’3[9t§+ Zt§n2+5t3ton . (21
correlated observables appéa0,21]. MeV fm

As pointed out in Ref[23] we had to subtract here an infinite
value, i.e., the term proportional fof, in Eq.(20). This can

As one can see, it is not enough to use the mean fielthe understood as renormalization of the contact potential and
parametrization to fit the equation of state as done in moss formally hidden inE.,{(0) when time integrating Eq.
approaches so far. Since the collision integral induces a twd-L5). For finite range potentials we have an intrinsic cutoff
particle and three-particle correlation energy we have to takdue to range of interaction and such problems do not occur.
this into account and have to refit the parameget, to the The correlational two-particle energ®l) is always nega-
binding properties of nuclear matter. To illustrate this fact lettive for fermionic degeneracies<2g<8 and for bosonic de-
us evaluate the fit without two- and three-particle correlatiorgeneracyg<4. Since the leading density goes with®? it
energy and therefore without collision integrals. will dominate over the positive kinetic part which goes like

A. Fit to nuclear matter ground state

014609-5
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n?3, We find that for densities arounchg the total energy

—— Mean field

has a maximum and starts to decrease continuously fo ---- 243 part. correlations, refitted
higher densities. The maximal energy is changed towards 40| 2 part. correlations, refitied

higher values if we now include three-particle correlations
since the latter remain positive and have the same leadin(
density term as the two-particle correlational energy.

The three-particle part reads 20 L

U [MeV]

3

dp,dp,dpsdp;dp,dp;
E.. ()= — f p10p2dpPsap;,ap; ps_l_z
s (27Tﬁ)15 N

X 8(py1+p2tpPs—Pr—Po— pé)fiféféf_lf_zf_s

P \
X ) (22 - \
E,+E,+E3;—E;—E;—Ej _20 ‘ ‘ ‘ ‘ A
0 0.1 0.2 0.3 0.4 0.5 0.6
The analytic result for the contact potential has not been o}
given in the literature to my knowledge and reads FIG. 8. The equation of state due to mean field compared with
4 5 the equation of state including two- and three-particle collisions in
Ecorr3 4 9013 pimTs the Born approximation.
N 12X 9X 25X 77X 13| 47°h°

plicit three-particle collision integral on the same micro-

2.3710°6 10/3.2 scopic footing. We want now to answer the question of how
= mn 3 (23) important the three-pgrtlcle collisions are. Therefqre we use
as a measure the ratio of the two- and three-particle ground

This three-particle correlation energy remains positive angtate correlation energies, E¢21) and(23), since this gives
has the same leading density behaviom&? as the two- the measure of.hov_v much energy is maX|maIIy dispersed by
particle correlational energy. Since the prefactor is smallefN€ corresponding integrals. We obtain
than the one for the two-patrticle correlational energy we ob- E.l 25%5x11x13 2 3 t
tain a maximum at three times nuclear density beyond which | =2 =2 2" """"%11_ 5 |n 2)x| 9—2s + = + 5_0}
the two-particle part dominates and the total energy diverges Es 9013 n’t; 4 Ttan
negatively which would mean a collapse of the system. This (26)
clearly marks the limit of the Born approximation.

Taking now the correlational energy into account via Eq.
(19 instead of only the Hartree-Fock ener@y’) we obtain

a fit to the nuclear binding of Nmin= — ?020.32 fm 3, (27
3

This ratio is decreasing until it reaches the density

to=—745.71 MeV fnf, where the ratio has the minimum

1,=8272.8 MeVfnf (24) E,
E. =14 (28
which leads to a compressibility of 3l min
K=351 MeV (25) For higher densities the constant value
which is somewhat lower than the mean field compressibility E =183 (29)
of Eqg. (18). The comparison of the two equation of states =1

with and without two- and three-particle correlations can be

seen in Fig. 8. The inclusion of two-particle correlation en-is approached.

ergy leads to a maximum at three times nuclear density In other words this means that the importance of three-
above which the system collapses. The complete result inparticle collisions increase with increasing density up to

cluding three-particle correlational energy leads to a highetwice the nuclear density where the correlational energies are

reachable maximum. nearly equal. For higher densities we have 18 times larger
two-particle correlational energies than three-particle ones.
B. Importance of three-particle collisions At nuclear saturation density this ratio is

We have seen that the three-particle contact interaction
induces in a natural way a density dependence of the two- E.
particle cross section. Additionally we have obtained an ex- 3

=19.2 (30
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indicating that the three-particle collisions become importaniThis is clearly motivated by the saturation point where non-
between nuclear density and twice the nuclear density whileelativistic two-particle approaches fail to overcome the

it can be neglected in the other cases. “Coester line.”
We find that there is a maximum in the energy at three
IV. CONCLUSIONS times nuclear density if two- and three-particle correlational

} . ) . energies are included. Beyond this density the Born approxi-
~ For a microscopic two- and three-particle contact interacmation fails at least in that the system collapses towards
tion consisting of two parameters the Kadanoff and BayWUiverging negative energy.
equation of motion is derived. From this a Boltzmann kinetic  \yhjle the two-particle collision cross section has a natural
equation is obtained with drift which turns out to be the gensity dependence due to three-particle contact interaction
known Skyrme Hartree-Fock expression while the collisionjt tyms out that the explicit three-particle collision integral
The two-particle collision integral contains an explicit aArgund twice nuclear density the three-particle collision in-
density-dependent cross section arising from the threepgral has the same importance as the two-particle one since

particle contact interaction. By this way both the drift side asjt gisperses the same amount of energy. For higher densities
well as collision side is derived from the same microscopicine three-particle collision integral is again negligible.

footing and no hybrid assumptions about separate density
dependent mean field and cross section is needed.

The correlational energy for the three- and the two-
particle part are calculated analytically. Due to the density
dependent two-particle collision integral both correlational | would like to thank H. S. Kbler and P. Lipavsky for
energies have the same leading powermig)*%?in den-  numerous discussions and the LPC for a friendly and hospi-
sity which shows that both contributions are of the sameable atmosphere. P. Chocian is thanked for reading the
importance if three-particle interaction has to be considerednanuscript.
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