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Lagrange mesh calculation of the effective range expansion
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The first terms of the effective range expansion are accurately determined with a small number of evalua-
tions of the potential. The method is based on Eheatrix theory with a Lagrange basis which leads to a
simple meshlike approximation. It is valid for both neutral and charged collisions for arbitrary partial waves.
The accuracy of the algorithm is illustrated with an analytically solvable example, with different cases of
potential scattering and in particular with the Paris and Bonn nucleon-nucleon potentials.
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I. INTRODUCTION nique [12—-14. In the R matrix method, the configuration
space is divided into an internal region and an external re-
The insensivity of nucleon-nucleon scattering at low en-gion at some distance called channel radius. Exact
ergies to details of the potential has led to the concept oasymptotic expressions of the wave functions are used in the
effective range expansiofil—4]. Low-energy phase shifts external region. Some convenient basis is used in the internal
can be accurately described with two or three parameters: thegion. The Lagrange mesh method provides such a basis
scattering length, the effective range, and the shape paramyith the important advantage that the final expressions re-
eter. Initially introduced for thes wave, this expansion can semble a mesh calculatiqd5—18. The potential matrix is
be extended to higher partial waés6]. When the colliding  diagonal and only involves values of the potential at the
particles do not interact through the Coulomb force, the efgitferent mesh points. In spite of the extreme simplicity of
fective range expansion is a truncated Taylor series of ghe method, its accuracy is excell§iP—14. Here we first
simple function of the phase shift which is analytic as agytend ther matrix theory to zero energy, both in the neutral
function of the energy. Such an analyt'lc function also emstgand charged cases. Then we show how the effective range
when both particles are charged, but is much more complig,eficients can be obtained from tRematrix and its energy

cate_d. When the determ|_nat|on of the parameters of the_ “Herivatives at zero energy. With the help of the Lagrange
fective range expansion is performed with an extrapolation

) . : mesh method, their determination is performed without ana-
to zero energy, numerical problems may limit their accuracy

For the effective range, this problem is circumvented withlyttilcr{:II C?kt:# Iatlotn gtr: d| wt|t?hon|1y ar“;n |te(r:innurr1‘nbeirn?f evalr
the Schwinger-Bethe formula which expresses this quantit)‘?l ons of the potential at the Lagrange mesh points.
Let us emphasize here that, at zero energy, the neutral

with an integral involving the wave function at zero energy. X - ,
In the absence of Coulomb interaction, the shape paramet&ASE€ iS not a limit of the charged case so that rather different

is given by a similar formula which involves the energy de-{reatments are needed. However, as much as possible, we
rivative of the wave function at zero ener{g,8]. shall try to unify the notations and the presentation in order
Recently, a new algorithm providing a direct calculation t0 take advantage of the fact that tRematrix and Lagrange
of the effective range expansion without extrapolation hagnesh parts of the algorithm are essentially common to both
been proposef®d]. The parameters are obtained by solvingcases.
the Schrdinger equation at the single enerf§y=0. The aim The simplicity of the present approach partly relies on the
of Ref.[9] was to avoid the extrapolation in a calculation of analytical knowledge of the limits at zero energy of the so-
the astrophysica$ factor and its derivatives at zero energy. lutions of the Schidinger equation and of their energy de-
It was found that the proposed algorithm simultaneously profivatives in the external region. The existence of several
vided an accurate new technique of determination of the efsmall corrections to the Coulomb potentifinite size,
fective range expansion for collisions between charged parvacuum polarization, magnetic moment interaction, , see
ticles. In particular, the calculation of the effective range isRef.[19], and references thergihave led to redefinitions of
much more accurate than with the Schwinger-Bethe formulathe effective range expansion for nucleon-nucleon scattering
However, the algorithm was mainly aimed at providing $1e [20,21. The present work provides the ordinary effective
factor expansion and is relatively complicated for the effectange expansion, with no potential or the Coulomb potential
tive range expansion because it requires solving energy déa the external region. Long range terms such as the mag-
rivatives of the Schrdinger equation. Moreover, since the netic moment interactiof22] can be handled by choosing a
astrophysical problem concerned charged patrticles, the effetarge value for the channel radius.
tive range expansion was determined in that case only. In Sec. Il, theR matrix theory on a Lagrange mesh is
In the present paper, we propose a new and accurate apammarized in a form which can be extended to zero energy.
proach to the calculation of the parameters in the effectivelhe expressions of the coefficients of the effective range
range expansion. This method is based on some of the ideagpansion are presented in Sec. lll. The method is applied to
of the algorithm of Ref[9] but combined with arR matrix  different examples in Sec. IV. It is shown that it remains
calculation[10,11] making use of the Lagrange mesh tech-very simple even in the presence of the velocity dependent
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terms of the Paris and Bonn potentials. Concluding remark3he coefficients\,, appearing in Eq(6) are then given by
are presented in Sec. V. 1 .

Nn=[4Xn(1=Xp) ] [PN(2X,—1)] 7% (8

II. SUMMARY OF R MATRIX THEORY

Thex,, and\ , are easily available since they are nothing but
ON A LAGRANGE MESH

the abscissas and weights of a shifted Gauss-Legendre

The method is described in the single channel case but tguadraturg24] in the [0,1] interval
extension to several channels is straightforwjdr]. Let us . N
consider the potential scattering of two particles with relative _
coordinater and reduced masgs. The configuration space is J; g(x)dx~n§l Ang(Xn)- ©
divided in two regions at an arbitrary channel radéusho-
sen large enough so that the short-range part of the intera®Vith the Gauss approximatiof®) and the Lagrange condi-
tion can be neglected in the external region. InEmmatrix  tion (6), the kinetic matrix elements read
method[10,11], the phase shif§, of partial wavel at energy

E=%2k?/2u can be expressed as | I(1+ 1)k

a
an(r)T'fn,(r)dr~T =T+
0

nn’ nn’

2 ,uazxﬁ
(1) (10

where the matrix elemenf,,, corresponding to the second
In this expressionR is the R matrix andF, and G, are  derivative inT' are given by—\Y%",(x,)h%2ua? i.e.,
regular and irregular exact solutions of the asymptotic radial

F/(ka)—aR/(E)dF,(ka)/da

@nd(B)= - 5 k@) —aR(E)dG,(ka)/da’

Schralinger equation employed in the external region. N(N+1)X,(1—X,)—3x,+1 #2
In the internal region, the dimensionleRsmatrix can be an= > 5 > (17
expressed withN orthonormal basis functionf,(r) as 3Xn(1=Xn) 2pa
2 N , 2x§,—xn—xn/ Xn(1—X,) #?
R(E)=—— f()[(C—El 1], nfr(a), (2 T ,=(—)"tn'+1
(B)=5 21 NEVI Tnnrfe an=(—) vz Vi (L oxo i 2pa?
wherel is the NX N unit matrix. The matrixC involves the (n'#n). (12)
matrix elements
The matrix elements of the Bloch operator read
a
Cnn,=f fo(D[T +V(r)+L£]f,(r)dr, ©) 72
0 Lnn,:ﬂfn(a)f;,(a) (13
whereT'= — (£%/2u)[d?/dr2—1(1+1)/r?] is the kinetic en-
ergy operator of partial waveandV is the potential. The With
Bloch surface operatd3] is defined as _ _
peratdes] fo(@)=(- D' Yx(1-x)] 2 (14)
hz d -1 2 -1
£=55(r—a)a. (4) fla=a [N“+N+1—-(1-x,) ‘1f,(a). (15

The sum ofT,,» and L, is symmetric. The matrix elements
of the potential are calculated approximatively with the
Gauss formuld9) which leads to the simple diagonal expres-
sion

The matrix element&€,,, are obtained very easily when a
Lagrange basis is selected.

Let us introduceN functionsf,(r) related to a mesh dfl
pointsax, defined by

PN(ZXn— 1)20' (5) Vnn’ V(axn)énn’ . (16)
Let us note that the basig) is not strictly orthonormal but

where Py(X) is a Legendre polynomidl12,13. The basis that we treat it as such because it is orthonormal at the Gauss
functions f,(r) and the shifted Legendre mesh satisfy theapproximation. Then all expressions appearing in mafrix

Lagrange conditions are very simple.
1 In order to study limits wherk tends towards zero, we
for(axy)=(akn) ““npnr - (6)  have to conveniently choose the definition of the asymptotic

solutions. To this end, we renormalize the standard Coulomb

The basis related to shifted Legendre polynomials is exfunctionsF, andG,. We shall try to treat as much as pos-

pressed as sible the neutral and charged cases with the same formalism
1=x. rPy[2(r/a)—1] but their low-energy behaviors are completely different.
f.(r)=(—1)"a" 2 / n N . (7)  Therefore definitions must be given in a different way in the
Xn r—ax neutral and charged cases. The renormalized functiBns
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and G, will be defined in such a way that their limit at zero
energy does not vanish and remains fifidi¢ In the neutral
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with p;=1(1+1)(21+1) and p,=21(12—1)(41%2—1)(5l
+6), and wherén(E) can be approximated by

case, let us introduce the renormalized spherical Bessel func-

tions
F(E,r)=k"rj(kr) 17

and
G(E,r)=K*trn(kr). (18)

In the charged case we follow R¢f] and define

F(E, )=k Y2exp 7 n)F(kr) (19)

and
G(E.1) =5k Yexp(— )Gy (kr), (20)

where7 is the Sommerfeld parameter. Equatidn can now
be rewritten as

F(E,a)—aR(E)dF(E,a)loa
" G(E,a)—aR(E)dG(E,a)loa

D\(E)= (21)

In this expressionD, has two different meanings, i.e.,

D,(E)=k ?"1tans (E) (22
in the neutral case and
2

D((E)= ;exp(ern)tané,(E) (23

in the charged case.

Ill. EFFECTIVE RANGE EXPANSION

With these notations, the effective range expansion can be

written in the neutral case §4]

1

DB 29

1 1
~at STik?= Prik*+O(k®).

In this expressiong, is the scattering length, is the effec-
tive range, andP, is the shape parameter of partial wdvé
similar but more complicated expression in the charged ca
reads[4—6]

uvZI;ﬁ?l %”‘(E)}%— a£|+ %r|k2—P|r|3k4
+O(K), (25
wherew,(E) can be expanded as
wi(E)~1+ L PoE” (26)
6En 14483

S

E2

h(E)~ —+ ——.
® 12BN 12062

(27)

These expressions involve the nuclear Bohr radius

an="12Inz,Z,e?, (28)
whereZ; and Z, are the atomic numbers of the colliding
nuclei, and the nuclear Rydberg energy
En=7%2%12uad. (29

For theswave,ay andr have the dimension of a length and
Py is dimensionless. For other partial waves, their dimen-
sions are more complicated but identical in the neutral and
charged cases. For this reason, we do not follow R&f.
where the definitions of the coefficients are modified in the
charged case for higher partial waves because the modifica-
tion would not be applicable to the neutral case.

In the following, we shall usprimesto designateleriva-
tives with respect to energgnda superscriptO to represent
functions at zero energyrhe R matrix and its energy deriva-
tives at zero energy are expressed very simply with(Eyg.
The jth derivative reads

2 N

. h .
(1O -j-1 o,
R =i 20 (@€ Dnnfo(@).

(30)
The matrixC /"1 is the (j+1)th power of the inverse of
matrix C and is thus easily obtained.

The energy derivatives of the solutions of the asymptotic
equation at zero energy are given in the neutral case by

P j pl+2i+1
Mopy=l-= —————
FURO= "3 @iz on 31
and
. M j i
Go(r) = Py (21—2j—1)1r1+2, (32

In the charged case, the energy derivatives at zero energy are
%btained in Ref[9] from the properties of Coulomb func-
tions[25,24 as

FAr)= (1) Y2 (%), (33

Go(r)=(mr)Y2go(x), (34)

with

1The coefficientsa,, r,, and P, of Ref.[9] can be obtained by
multiplying the present coefficients by factors 2ay?', 11%a2 ,
andl! ~*ay*, respectively.

014605-3



D. BAYE, M. HESSE, AND R. KAMOUNI

x=2(2r/ay)*2 (35

The energy derivatives at zero energy are given by

o ( )1/2

FIO =gz Pifo) 11001, (36)

g% =" 1,2[ ()= g1(%)] 37

| 125, P190 01 )

( )1/2

Fior)= 1z ———[(p2= P fo(X) = 2paf1(X) +F2(x)],

" (39)

(77 1/2

g/IO( )

[(P2—PD)go(X) —2p191(X)+a(X)].

PHYSICAL REVIEW C63 014605

and the functiong); read

9o(X) =Ky 41(X), (43
x\2 X
91(X)=<§) 3(I+1)K2|+3(x)—§K2|+4(x), (44)
x4
02(X)= ( ) 9(1+1)(1+2)Ky15(x)
8\ x x\2
—6(|+§ §K2|+6(X)+<§ Ka47(X) |, (49

(12E)? where the functions$,, andK,, are modified Bessel functions
(390  [24]. Since expressiori21) also involves derivatives with
) _ respect tar, one can use in the charged case
In these expressions, the functiohsread
fo()=121+1(x), (40) dH _ M
2 dar o H+ XX (46)
f1(x0) = ( ) 314+ D)o+ 5 |2|+4<x> (41) | |
for H=F{° andG{’°. From these expressions, the coeffi-
x\4 8\ x cients of the Taylor expansion @ (E) can be derived as
fao(x)= E) (I +1)(1+2)1545(x)+6| I+ 5 §|2|+6(X)
Fl(a)—aR’dF{(a)/da
2 | |
+ i | (X) (42) D|(0):_ 0 0 0 ’ (47)
o) s+t G/(a)—aR'dG /(a)/da
D/(0) F|%a)—aR/ °dF)(a)/da—aR’dF|/%a)/da ( G/%a)—aR/°dg?(a)/da—aR’dG /°(a)/da
e ¢%a)—aRrdg%(a)/da | ¢%a)—aRrdg%(a)/da
(48)
|
and so on. In the charged case, Eq$25)—(27) lead to expressions

The coefficients of the effective range expansion can novequivalent to those derived in R¢f]. The scattering length

be derived. In the neutral case, Eg4) leads to the scatter-

ing length
a;=—Dy(0). (49
The effective range is given by

ﬁZ
r=--—D/(0). (50)
na,

The shape paramet&; reads

2 \2

p=tty 2 DI(0). (51

4r|+8_r|

nar

reads

|,2 21+1
a=— D,(0). (52

The effective range is given by

1 4p,

24E\D (0)
h= 21| 1t B
3I12%ag D,(0)

D|(0)?

(53

The shape paramet&; reads
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TABLE |. Effective range coefficients for the Bargmann poten- B—a

tial. b= Bra’ (56)
N a ay Io Po It . . .

s phase shifts are exactly given by the effective range ex-
exact —23.7654321 2.5974026 0 pansion
15 10 —23.7638 2.59734 —5.7x10°° 3 1

5 o

20 10 —23.7651 259732  —5.6x10 K cot = n K2, (57)
20 12 —23.76547 2597397 —5.1x10°° B-—a p-a
30 12 —23.765418 2.597398 —5.1x10°© . .
20 15 —23.764978 2597409 —3.3x10°7 For «=0.04 andB=0.81, one obtains the results displayed
30 15 237654320 25974025 —9.4%10 8 in Table I, which are compared with the exact values. Good

results are already obtained with only 15 points &t 10.
To improve the accuracy, we first increase the number of
points for fixeda until the results are stable over the re-

B 1 p,  24p,E\D((0) quested digits. Then the radiasis also increased and the
P'__—36H2a2"3r g tPit D,(0) D (0)2 procedure is iterated. The accuracy is very high wih
N ' =30 anda=15.
,| DI'(0)  2D{(0)? ] (54
- - - B. Potential scatterin
D02 Di(0? °

We now illustrate the algorithms described in Sec. Il with
a few examples. In the neutral case, we consider %hie
+n system with the potential of Refl29] and #2%/2u
=(10/9)20.735 MeVfr. It is a Woods-Saxon potential
V(r)=—-Vo{l+exd(r—R)/al}"t, with strength V,

First we test our approach with the solvable Bargmann=50.45 MeV, radiusR=2.642 fm, and diffusenessa
potential[27] with the conditions of Ref[28] which simu- =0.67 fm. This potential has a large negative scattering
late neutron-proton scattering when interpreted in fm. Thdength. This property is believed to be important to explain
potential reads the halo structure of thélLi nucleus. As shown in Table I,

a reasonable choice faris 12 fm. Small numbers of points
allow one to find accurate values of the different coefficients.

The charged examples have already been studied in Ref.
[9] because of their utility for radiative capture reactions. We
recalculate their properties here to allow a comparison with
with the previous approach. Two types of potentials are encoun-

IV. APPLICATIONS

A. Solvable potential

_ 5 exp(—2p8r)
Vir)=-8bs [1+bexp —28r)]? 59

TABLE Il. Effective range coefficients for different potentials.

Collision I N a (fm) a (fm?+h ri(fm=2'*1 P (fm*)
%Li+n 0 20 12 —25.389 7.2207 —0.032392
30 12 —25.3818 7.2210 —0.032391
30 14 —25.3835 7.2213 —0.032378
a+°3He 0 15 10 36.905 0.97274 —0.09016
20 10 36.886 0.97260 —0.09007
30 12 36.885 0.97262 —0.09010
Be+p(1=2) 0 20 12 —7.8521 4.2442 —0.0833
30 12 —7.8516 4.2444 —0.0833
30 14 —7.8527 4.2452 —0.0832
Bet+p(l=1) 0 20 12 2.6096 1.901 0.4038
30 12 2.6098 1.901 0.4038
30 14 2.6090 1.9101 0.4088
%0+ p 0 30 10 6848 1.2101 —0.2448
40 10 6850 1.2101 —0.2448
40 12 6851 1.2102 —0.2437
1 20 12 402.1 —0.02902 10296
30 12 402.4 -0.02897 10363
30 14 402.0 —0.02908 10234
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TABLE lll. Effective range coefficients foNN potentials.

Potential NN 25FI N a(fm) a.gy; (fM?*Y) gy (M 2H*Y)  Pgy (fm)
Minnesota  np s, 15 5 —16.801 2.8849 —0.02864
20 6 —16.8038 2.88504 —0.02862
33, 15 5 5.42652 1.75766 —0.033118
20 6 5.42652 1.75766 —0.033118
pp s, 15 5 —7.8153 2.7223 —0.03154
20 6 —7.8158 2.7224 —0.03152
Reid np s, 30 12 —17.137 2.801 0.026
40 12 —17.139 2.801 0.026
40 14 —17.144 2.805 0.029
s, 30 12 5.3890 1.7222 —0.0162
40 12 5.3899 1.7224 —-0.0162
40 14 5.3897 1.7221 —0.0169
pp s, 30 12 -7.773 2.716 0.033
40 12 —7.774 2.716 0.033
40 14 —7.776 2.722 0.037
Paris np s, 60 12 —17.69 2.876 0.0272
80 15 —17.702 2.881 0.0312
80 20 —17.707 2.882 0.0327
s, 50 12 5.4272 1.7636 —0.0045
60 15 5.4270 1.7634 —0.00532
60 20 5.4270 1.7635 —0.00524
p, 30 20 2.985 —5.955 —0.00080
40 25 2.987 —5.979 —0.00063
3P, 30 20 —3.056 3.58 —-0.022
40 25 —3.055 3.596 —0.0168
pp s, 50 12 —7.886 2.79 0.034
60 15 —7.890 2.802 0.040
60 20 —7.872 2.807 0.042
3P, 30 20 —-3.318 3.56 —-0.024
50 25 —-3.318 3.583 -0.0178
Bonn np s, 40 12 —23.74 2.657 0.036
40 15 —23.749 2.661 0.0399
50 20 —23.750 2.662 0.0412
g, 40 12 5.4237 1.7590 —0.0048
40 15 5.4235 1.7587 —0.0057
50 20 5.4234 1.7589 —0.0057
p, 30 20 3.067 —5.828 —0.0088
40 25 3.0689 —5.851 —0.0070
3P, 30 20 —3.1596 3.104 -0.017
40 25 —3.1599 3.115 -0.0117
pp s, 40 12 —8.671 2.593 0.044
40 15 —8.6746 2.600 0.050
50 20 —8.6751 2.602 0.0522
3P, 30 20 —3.4177 3.132 —0.019
40 25 —3.4183 3.144 —0.0129

tered: Gaussian potentials and Saxon-Woods potentials, with For «+ 3He, the Gaussian potential of R¢®] is adapted

a point-sphere Coulomb potential. The parameters are givefnom Ref. [31]. Because of the fast decrease of Gaussian
in Table | of Ref.[9]. In all cases, atomic massg30] are  potentials,a=10 fm already gives satisfactory results. The
employed. The coefficients of the effective range expansionkast displayed line is in almost perfect agreement with the
are displayed in Table II. results of Ref.[9]. However, it is obtained with far less
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evaluations of the potentigl30 in place of several thou- The realistic Paris and Bonn potentials contain an addi-
sands. In fact, for many practical applications, 20 points tional difficulty with a velocity dependence of the form
would be enough. FofBe+ p, the Woods-Saxon potential is oo b b )

taken from Ref[32)]. Because of the exponential decrease of V(r,p9) =(pTw)VAr)+ V) (pT w), (58)

the potential, the convergence with respectatis slower, where 11 is the reduced mass of tHeN system[30]. We
especially for the shape parameter. The agreement with R&f;e treated this term as other terms at the Gauss approxi-
[9] is excellent forl =2 and slightly less good fdr=1. The  ation which leads to the matrix elements
Gaussian potentials fol’O+p are defined in Refl9]. For
I=0,a=10 fm already provides good results but this value <V(rlp2)>nn’%2T:rmf[Vb(aXn)+Vb(axn’)]- (59)
is too small forl=1. The agreement with Ref9] is very
good if one takes footnote 1 into account in thel case. In  This approximation preserves the simplicity of the method
all cases, 30 or 40 mesh points lead to excellent results. since it has the same structure as the kinetic energy. Strik-
ingly, it does not significantly reduce the accuracy, although
C. Realistic potentials for nucleon-nucleon scattering it may slow down convergence. .
) . , ) ) . For the Paris potential, we first use the technique de-
In this section, we consider increasingly sophisticatetyerined in Ref[14] to calculate the deuteron binding energy.
nucleon-nucleonIN) interactions. We start with the simple \yith a=12 fm andN=40, one obtains-2.22472 MeV.
Minnesota central potential which is fitted to the deuteronypen increasing andN, only the last digit is modified. The
energy and low-energy scattering propertigs]. The fact  cqefficients of the effective range are calculated for different
that its form factor is a combination of Gaussians makes 'bartial waves of thexp and pp systems. FoiS waves, the
popular in resonating group calculations. Then we consideghanne| radius can be chosen as 15 fm or more. Even larger
the Reid soft core interaction and its Yukawa form factors,,5;,es are needed fd® waves. Larger numbers of mesh
[34]. An additional difficulty is introduced by the tensor noints than in the previous cases are needed to get stable
force which couples some partial waves. Finally we considetegits. Nevertheless stable results are obtained with numbers
the Parig 35] and Bonn[36] realistic interactions. They are ot mesh points of the order of 60 f&waves and 40 foP
less easily tractable because of the occurrence of velocity,4ves. The convergence of the shape parameter with respect
dependent terms. In all cases, we consider the neutrg), 5 is however, rather slow for the reasons discussed above.
neutron-proton 1fp) scattering and the charged proton- optaining accurate values &, s, requires increasing and
proton (pp) scattering. _ _ - henceN. Our results agree well with those in Table V of Ref.
The results for the Minnesota potential with®/2u  [35] Notice that ounp 1S, values should be compared with
=41.47 MeV fnf are displayed in Table Ill. Because of the the nn values of that reference in spite of a slight mass dif-
use of a common mass for proton and neutron,rtheand  ference. Thenp 1S, scattering length with this potential is
neutron-neutronr{n) “S, cases are identical. Because of the ot in good agreement with the experimental one because the
Gaussian decrease of the potential, the small vadue (gtential was fitted ompp scattering.
=5 fm can be selected for the channel radius. Excellen? For the Bonn potential, the deuteron binding energy with
results are obtained with a small number of mesh poiNts ( 3=12 fm andN=40 is —2.22466 MeV. When increasing
=15). Even the shape parameter displays a fast convergenggandN, only the last digit is modified. Similar comments as
Notice that the’s; results are more stable and more accuratgor the Paris potential can be made about the convergence of
than the other ones because of the shorter range of the pghe results for the effective range expansion. However, one
tential in that case. Fopp scattering, the same accuracy is gpserves that smaller numbers of mesh points are needed for
obtained as fonp Sy with the samea andN. In all cases  optaining a given accuracy for the Bonn potential with re-
the obtained scattering lengths and effective ranges agregect to the Paris potential. This is probably due to the dif-
with the values given in Ref33]. ferent behaviors of the nonlocal parts. Here the potential is
Accurate results for the Reid potential require a muchfjited onnp scattering and agrees with the experimental
larger channel radius since the potential decreases exponestattering length. The accuracy of the present method allows
tially. Hence larger number of mesh points are necessangne to detect small differences between the effective range

The introduction of the tensor potential complicates the calparameters of the Paris and Bonn potentials for &g par-
culation for the®S, wave because of the coupling with the tia] wave.

3D, wave. This can easily be solved in the present approach
by enlarging the matrixC to both channels in the definition

of the single channdR matrix. Good results are already ob-
tained fora=12 fm. The convergence of the shape param- In this paper, we have developed a rather simple algo-
eter is, however, slower with respectdoThis is related to rithm based on the Lagrange mesh technique, which allows
the increasing spatial extension of the successive derivativesn accurate calculation of the coefficients of the effective
of the wave function with respect to ener@gee Fig. 1 of range expansion. The method of Rf] has been simplified
Ref.[9]). Obtaining an accurate shape parameter requires and extended to the neutral case.

broader internal region than for the scattering length and the The results are obtained without extrapolation and with-
effective range. The results agree well with those of Refout analytical calculations. They require few evaluations of
[34]. the potential. Changing from one potential to another is then

V. CONCLUSIONS
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very easy. This technique has also been extended to potesion to generalized effective range expansions corresponding

tials with coupled partial waves and with a velocity depen-to long range terms in the potential is therefore not obvious

dence, without apparent loss of accuracy. since these terms modify the wave functions at intermediate
We have tested the accuracy on a solvable example, odistances. This is in particular the case for the small correc-

different interesting cases of potential scattering and on diftions to the Coulomb potential. The coefficients of a gener-

ferentNN potentials. Obtaining accurate results requires peralized effective range expansion might however be obtain-

forming a few calculations with different values of the chan-able by increasing the channel radius and the number of

nel radius and with different number of mesh points. Themesh points. Small deviations from a pure Coulomb behav-

accuracy is then deduced by keeping the stable digits of th®r might remain within the accuracy of the present method.

different calculations. Accuracies beyond those requested bihis problem deserves further study.

physics are easily reached. The velocity dependence of the

real!s_t|c Paris anc_j Bc_JnN N potentlals can be treated without ACKNOWLEDGMENTS

additional complication and without loss of accuracy. The
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