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Lagrange mesh calculation of the effective range expansion
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Physique Nucle´aire Théorique et Physique Mathe´matique, C.P. 229, Universite´ Libre de Bruxelles, B-1050 Brussels, Belgium
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The first terms of the effective range expansion are accurately determined with a small number of evalua-
tions of the potential. The method is based on theR matrix theory with a Lagrange basis which leads to a
simple meshlike approximation. It is valid for both neutral and charged collisions for arbitrary partial waves.
The accuracy of the algorithm is illustrated with an analytically solvable example, with different cases of
potential scattering and in particular with the Paris and Bonn nucleon-nucleon potentials.
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I. INTRODUCTION

The insensivity of nucleon-nucleon scattering at low e
ergies to details of the potential has led to the concep
effective range expansion@1–4#. Low-energy phase shifts
can be accurately described with two or three parameters
scattering length, the effective range, and the shape pa
eter. Initially introduced for thes wave, this expansion ca
be extended to higher partial waves@5,6#. When the colliding
particles do not interact through the Coulomb force, the
fective range expansion is a truncated Taylor series o
simple function of the phase shift which is analytic as
function of the energy. Such an analytic function also ex
when both particles are charged, but is much more com
cated. When the determination of the parameters of the
fective range expansion is performed with an extrapolat
to zero energy, numerical problems may limit their accura
For the effective range, this problem is circumvented w
the Schwinger-Bethe formula which expresses this quan
with an integral involving the wave function at zero energ
In the absence of Coulomb interaction, the shape param
is given by a similar formula which involves the energy d
rivative of the wave function at zero energy@7,8#.

Recently, a new algorithm providing a direct calculati
of the effective range expansion without extrapolation h
been proposed@9#. The parameters are obtained by solvi
the Schro¨dinger equation at the single energyE50. The aim
of Ref. @9# was to avoid the extrapolation in a calculation
the astrophysicalS factor and its derivatives at zero energ
It was found that the proposed algorithm simultaneously p
vided an accurate new technique of determination of the
fective range expansion for collisions between charged
ticles. In particular, the calculation of the effective range
much more accurate than with the Schwinger-Bethe form
However, the algorithm was mainly aimed at providing theS
factor expansion and is relatively complicated for the eff
tive range expansion because it requires solving energy
rivatives of the Schro¨dinger equation. Moreover, since th
astrophysical problem concerned charged particles, the e
tive range expansion was determined in that case only.

In the present paper, we propose a new and accurate
proach to the calculation of the parameters in the effec
range expansion. This method is based on some of the i
of the algorithm of Ref.@9# but combined with anR matrix
calculation@10,11# making use of the Lagrange mesh tec
0556-2813/2000/63~1!/014605~8!/$15.00 63 0146
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nique @12–14#. In the R matrix method, the configuration
space is divided into an internal region and an external
gion at some distance called channel radius. Ex
asymptotic expressions of the wave functions are used in
external region. Some convenient basis is used in the inte
region. The Lagrange mesh method provides such a b
with the important advantage that the final expressions
semble a mesh calculation@15–18#. The potential matrix is
diagonal and only involves values of the potential at t
different mesh points. In spite of the extreme simplicity
the method, its accuracy is excellent@12–14#. Here we first
extend theR matrix theory to zero energy, both in the neutr
and charged cases. Then we show how the effective ra
coefficients can be obtained from theR matrix and its energy
derivatives at zero energy. With the help of the Lagran
mesh method, their determination is performed without a
lytical calculation and with only a limited number of evalu
ations of the potential at the Lagrange mesh points.

Let us emphasize here that, at zero energy, the neu
case is not a limit of the charged case so that rather diffe
treatments are needed. However, as much as possible
shall try to unify the notations and the presentation in or
to take advantage of the fact that theR matrix and Lagrange
mesh parts of the algorithm are essentially common to b
cases.

The simplicity of the present approach partly relies on
analytical knowledge of the limits at zero energy of the s
lutions of the Schro¨dinger equation and of their energy d
rivatives in the external region. The existence of seve
small corrections to the Coulomb potential~finite size,
vacuum polarization, magnetic moment interaction,. . . , see
Ref. @19#, and references therein! have led to redefinitions o
the effective range expansion for nucleon-nucleon scatte
@20,21#. The present work provides the ordinary effecti
range expansion, with no potential or the Coulomb poten
in the external region. Long range terms such as the m
netic moment interaction@22# can be handled by choosing
large value for the channel radius.

In Sec. II, theR matrix theory on a Lagrange mesh
summarized in a form which can be extended to zero ene
The expressions of the coefficients of the effective ran
expansion are presented in Sec. III. The method is applie
different examples in Sec. IV. It is shown that it remai
very simple even in the presence of the velocity depend
©2000 The American Physical Society05-1
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terms of the Paris and Bonn potentials. Concluding rema
are presented in Sec. V.

II. SUMMARY OF R MATRIX THEORY
ON A LAGRANGE MESH

The method is described in the single channel case bu
extension to several channels is straightforward@14#. Let us
consider the potential scattering of two particles with relat
coordinater and reduced massm. The configuration space i
divided in two regions at an arbitrary channel radiusa cho-
sen large enough so that the short-range part of the inte
tion can be neglected in the external region. In theR matrix
method@10,11#, the phase shiftd l of partial wavel at energy
E5\2k2/2m can be expressed as

tand l~E!52
Fl~ka!2aRl~E!dFl~ka!/da

Gl~ka!2aRl~E!dGl~ka!/da
. ~1!

In this expression,Rl is the R matrix andFl and Gl are
regular and irregular exact solutions of the asymptotic ra
Schrödinger equation employed in the external region.

In the internal region, the dimensionlessR matrix can be
expressed withN orthonormal basis functionsf n(r ) as

Rl~E!5
\2

2ma (
n,n851

N

f n~a!@~C2EI !21#n,n8 f n8~a!, ~2!

whereI is theN3N unit matrix. The matrixC involves the
matrix elements

Cnn85E
0

a

f n~r !@Tl1V~r !1L# f n8~r !dr, ~3!

whereTl52(\2/2m)@d2/dr22 l ( l 11)/r 2# is the kinetic en-
ergy operator of partial wavel and V is the potential. The
Bloch surface operator@23# is defined as

L5
\2

2m
d~r 2a!

d

dr
. ~4!

The matrix elementsCnn8 are obtained very easily when
Lagrange basis is selected.

Let us introduceN functionsf n(r ) related to a mesh ofN
pointsaxn defined by

PN~2xn21!50, ~5!

where PN(x) is a Legendre polynomial@12,13#. The basis
functions f n(r ) and the shifted Legendre mesh satisfy t
Lagrange conditions

f n8~axn!5~aln!21/2dnn8 . ~6!

The basis related to shifted Legendre polynomials is
pressed as

f n~r !5~21!na21/2A12xn

xn

rPN@2~r /a!21#

r 2axn
. ~7!
01460
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The coefficientsln appearing in Eq.~6! are then given by

ln5@4xn~12xn!#21@PN8 ~2xn21!#22. ~8!

Thexn andln are easily available since they are nothing b
the abscissas and weights of a shifted Gauss-Lege
quadrature@24# in the @0,1# interval

E
0

1

g~x!dx' (
n51

N

lng~xn!. ~9!

With the Gauss approximation~9! and the Lagrange condi
tion ~6!, the kinetic matrix elements read

E
0

a

f n~r !Tl f n8~r !dr'Tnn8
l

5Tnn81
l ~ l 11!\2

2ma2xn
2

dnn8 ,

~10!

where the matrix elementsTnn8 corresponding to the secon
derivative inTl are given by2ln

1/2f n8
9 (xn)\2/2ma2, i.e.,

Tnn5
N~N11!xn~12xn!23xn11

3xn
2~12xn!2

\2

2ma2
, ~11!

Tnn85~2 !n1n811
2xn8

2
2xn2xn8

xn~xn82xn!2
A xn~12xn!

xn8~12xn8!
3

\2

2ma2

~n8Þn!. ~12!

The matrix elements of the Bloch operator read

Lnn85
\2

2m
f n~a! f n8

8 ~a! ~13!

with

f n~a!5~21!na21/2@xn~12xn!#21/2, ~14!

f n8~a!5a21@N21N112~12xn!21# f n~a!. ~15!

The sum ofTnn8 andLnn8 is symmetric. The matrix element
of the potential are calculated approximatively with t
Gauss formula~9! which leads to the simple diagonal expre
sion

Vnn8'V~axn!dnn8 . ~16!

Let us note that the basis~7! is not strictly orthonormal but
that we treat it as such because it is orthonormal at the G
approximation. Then all expressions appearing in matrixC
are very simple.

In order to study limits whenE tends towards zero, we
have to conveniently choose the definition of the asympto
solutions. To this end, we renormalize the standard Coulo
functionsFl and Gl . We shall try to treat as much as po
sible the neutral and charged cases with the same forma
but their low-energy behaviors are completely differe
Therefore definitions must be given in a different way in t
neutral and charged cases. The renormalized functionsFl
5-2
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andGl will be defined in such a way that their limit at zer
energy does not vanish and remains finite@9#. In the neutral
case, let us introduce the renormalized spherical Bessel f
tions

Fl~E,r !5k2 l r j l~kr ! ~17!

and

Gl~E,r !5kl 11rnl~kr !. ~18!

In the charged case we follow Ref.@9# and define

Fl~E,r !5k21/2exp~ph!Fl~kr ! ~19!

and

Gl~E,r !5
p

2
k21/2exp~2ph!Gl~kr !, ~20!

whereh is the Sommerfeld parameter. Equation~1! can now
be rewritten as

Dl~E!52
Fl~E,a!2aRl~E!]Fl~E,a!/]a

Gl~E,a!2aRl~E!]Gl~E,a!/]a
. ~21!

In this expression,Dl has two different meanings, i.e.,

Dl~E!5k22l 21tand l~E! ~22!

in the neutral case and

Dl~E!5
2

p
exp~2ph!tand l~E! ~23!

in the charged case.

III. EFFECTIVE RANGE EXPANSION

With these notations, the effective range expansion ca
written in the neutral case as@4#

1

Dl~E!
52

1

al
1

1

2
r lk

22Plr l
3k41O~k6!. ~24!

In this expression,al is the scattering length,r l is the effec-
tive range, andPl is the shape parameter of partial wavel. A
similar but more complicated expression in the charged c
reads@4–6#

2
wl~E!

l ! 2aN
2l 11 F 2

Dl~E!
1h~E!G'2

1

al
1

1

2
r lk

22Plr l
3k4

1O~k6!, ~25!

wherewl(E) can be expanded as

wl~E!'11
p1E

6EN
1

p2E2

144EN
2

~26!
01460
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with p15 l ( l 11)(2l 11) and p25 2
5 l ( l 221)(4l 221)(5l

16), and whereh(E) can be approximated by

h~E!'
E

12EN
1

E2

120EN
2

. ~27!

These expressions involve the nuclear Bohr radius

aN5\2/mZ1Z2e2, ~28!

where Z1 and Z2 are the atomic numbers of the collidin
nuclei, and the nuclear Rydberg energy

EN5\2/2maN
2 . ~29!

For thes wave,a0 andr 0 have the dimension of a length an
P0 is dimensionless. For other partial waves, their dime
sions are more complicated but identical in the neutral a
charged cases. For this reason, we do not follow Ref.@9#
where the definitions of the coefficients are modified in t
charged case for higher partial waves because the modi
tion would not be applicable to the neutral case.1

In the following, we shall useprimesto designatederiva-
tives with respect to energyanda superscript0 to represent
functions at zero energy. TheR matrix and its energy deriva
tives at zero energy are expressed very simply with Eq.~2!.
The j th derivative reads

Rl
( j )05 j !

\2

2ma (
n,n851

N

f n~a!~C2 j 21!n,n8 f n8~a!. ~30!

The matrixC2 j 21 is the (j 11)th power of the inverse o
matrix C and is thus easily obtained.

The energy derivatives of the solutions of the asympto
equation at zero energy are given in the neutral case by

F l
( j )0~r !5S 2

m

\2D j
r l 12 j 11

~2l 12 j 11!!!
~31!

and

G l
( j )0~r !5S m

\2D j

~2l 22 j 21!!! r 2 l 12 j . ~32!

In the charged case, the energy derivatives at zero energ
obtained in Ref.@9# from the properties of Coulomb func
tions @25,26# as

F l
0~r !5~pr !1/2f 0~x!, ~33!

G l
0~r !5~pr !1/2g0~x!, ~34!

with

1The coefficientsal , r l , and Pl of Ref. @9# can be obtained by
multiplying the present coefficients by factorsl ! 22aN

22l , l ! 2aN
2l ,

and l ! 24aN
24l , respectively.
5-3
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x52~2r /aN!1/2. ~35!

The energy derivatives at zero energy are given by

F l8
0~r !5

~pr !1/2

12EN
@p1f 0~x!2 f 1~x!#, ~36!

G l8
0~r !5

~pr !1/2

12EN
@p1g0~x!2g1~x!#, ~37!

F l9
0~r !5

~pr !1/2

~12EN!2
@~p22p1

2! f 0~x!22p1f 1~x!1 f 2~x!#,

~38!

G l9
0~r !5

~pr !1/2

~12EN!2
@~p22p1

2!g0~x!22p1g1~x!1g2~x!#.

~39!

In these expressions, the functionsf i read

f 0~x!5I 2l 11~x!, ~40!

f 1~x!5S x

2D 2F3~ l 11!I 2l 13~x!1
x

2
I 2l 14~x!G , ~41!

f 2~x!5S x

2D 4F9~ l 11!~ l 12!I 2l 15~x!16S l 1
8

5D x

2
I 2l 16~x!

1S x

2D 2

I 2l 17~x!G , ~42!
o
-

01460
and the functionsgi read

g0~x!5K2l 11~x!, ~43!

g1~x!5S x

2D 2F3~ l 11!K2l 13~x!2
x

2
K2l 14~x!G , ~44!

g2~x!5S x

2D 4F9~ l 11!~ l 12!K2l 15~x!

26S l 1
8

5D x

2
K2l 16~x!1S x

2D 2

K2l 17~x!G , ~45!

where the functionsI n andKn are modified Bessel function
@24#. Since expression~21! also involves derivatives with
respect tor, one can use in the charged case

dH
dr

5
1

2r S H1x
]H
]x D ~46!

for H5F l
( j )0 andG l

( j )0 . From these expressions, the coef
cients of the Taylor expansion ofDl(E) can be derived as

Dl~0!52
F l

0~a!2aRl
0dF l

0~a!/da

G l
0~a!2aRl

0dG l
0~a!/da

, ~47!
Dl8~0!52
F l8

0~a!2aRl8
0dF l

0~a!/da2aRl
0dF l8

0~a!/da

G l
0~a!2aRl

0dG l
0~a!/da

2Dl~0!
G l8

0~a!2aRl8
0dG l

0~a!/da2aRl
0dG l8

0~a!/da

G l
0~a!2aRl

0dG l
0~a!/da

,

~48!
and so on.
The coefficients of the effective range expansion can n

be derived. In the neutral case, Eq.~24! leads to the scatter
ing length

al52Dl~0!. ~49!

The effective range is given by

r l52
\2

mal
2

Dl8~0!. ~50!

The shape parameterPl reads

Pl5
al

4r l
1

1

8r l
S \2

malr l
D 2

Dl9~0!. ~51!
w
In the charged case, Eqs.~25!–~27! lead to expressions
equivalent to those derived in Ref.@9#. The scattering length
reads

al52
l ! 2aN

2l 11

4
Dl~0!. ~52!

The effective range is given by

r l5
1

3l ! 2aN
2l 21 F11

4p1

Dl~0!
2

24ENDl8~0!

Dl~0!2 G . ~53!

The shape parameterPl reads
5-4
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Pl52
1

36l ! 2aN
2l 23r l

3 H 3

5
1p11

p2

Dl~0!
2

24p1ENDl8~0!

Dl~0!2

272EN
2 F Dl9~0!

Dl~0!2
2

2Dl8~0!2

Dl~0!3 G J . ~54!

IV. APPLICATIONS

A. Solvable potential

First we test our approach with the solvable Bargma
potential@27# with the conditions of Ref.@28# which simu-
late neutron-proton scattering when interpreted in fm. T
potential reads

V~r !528bb2
exp~22br !

@11b exp~22br !#2
~55!

with

TABLE I. Effective range coefficients for the Bargmann pote
tial.

N a a0 r 0 P0

exact 223.7654321 2.5974026 0
15 10 223.7638 2.59734 25.731025

20 10 223.7651 2.59732 25.631025

20 12 223.76547 2.597397 25.131026

30 12 223.765418 2.597398 25.131026

20 15 223.764978 2.597409 23.331027

30 15 223.7654320 2.5974025 29.431028
01460
n

e

b5
b2a

b1a
. ~56!

Its phase shifts are exactly given by the effective range
pansion

k cotd5
ab

b2a
1

1

b2a
k2. ~57!

For a50.04 andb50.81, one obtains the results display
in Table I, which are compared with the exact values. Go
results are already obtained with only 15 points fora510.
To improve the accuracy, we first increase the number
points for fixeda until the results are stable over the r
quested digits. Then the radiusa is also increased and th
procedure is iterated. The accuracy is very high withN
530 anda515.

B. Potential scattering

We now illustrate the algorithms described in Sec. II w
a few examples. In the neutral case, we consider the9Li
1n system with the potential of Ref.@29# and \2/2m
5(10/9)20.735 MeV fm2. It is a Woods-Saxon potentia
V(r )52V0$11exp@(r2R)/a#%21, with strength V0
550.45 MeV, radius R52.642 fm, and diffusenessa
50.67 fm. This potential has a large negative scatter
length. This property is believed to be important to expla
the halo structure of the11Li nucleus. As shown in Table II,
a reasonable choice fora is 12 fm. Small numbers of points
allow one to find accurate values of the different coefficien

The charged examples have already been studied in
@9# because of their utility for radiative capture reactions. W
recalculate their properties here to allow a comparison w
the previous approach. Two types of potentials are enco
TABLE II. Effective range coefficients for different potentials.

Collision l N a ~fm! al(fm
2l 11) r l(fm

22l 11) Pl(fm
4l)

9Li1n 0 20 12 225.389 7.2207 20.032392
30 12 225.3818 7.2210 20.032391
30 14 225.3835 7.2213 20.032378

a13He 0 15 10 36.905 0.97274 20.09016
20 10 36.886 0.97260 20.09007
30 12 36.885 0.97262 20.09010

7Be1p(I 52) 0 20 12 27.8521 4.2442 20.0833
30 12 27.8516 4.2444 20.0833
30 14 27.8527 4.2452 20.0832

7Be1p(I 51) 0 20 12 2.6096 1.901 0.4038
30 12 2.6098 1.901 0.4038
30 14 2.6090 1.9101 0.4088

16O1p 0 30 10 6848 1.2101 20.2448
40 10 6850 1.2101 20.2448
40 12 6851 1.2102 20.2437

1 20 12 402.1 20.02902 10296
30 12 402.4 20.02897 10363
30 14 402.0 20.02908 10234
5-5
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TABLE III. Effective range coefficients forNN potentials.

Potential NN 2S11LJ N a ~fm! aLSJ (fm2L11) r LSJ (fm22L11) PLSJ (fm4L)

Minnesota np 1S0 15 5 216.801 2.8849 20.02864
20 6 216.8038 2.88504 20.02862

3S1 15 5 5.42652 1.75766 20.033118
20 6 5.42652 1.75766 20.033118

pp 1S0 15 5 27.8153 2.7223 20.03154
20 6 27.8158 2.7224 20.03152

Reid np 1S0 30 12 217.137 2.801 0.026
40 12 217.139 2.801 0.026
40 14 217.144 2.805 0.029

3S1 30 12 5.3890 1.7222 20.0162
40 12 5.3899 1.7224 20.0162
40 14 5.3897 1.7221 20.0169

pp 1S0 30 12 27.773 2.716 0.033
40 12 27.774 2.716 0.033
40 14 27.776 2.722 0.037

Paris np 1S0 60 12 217.69 2.876 0.0272
80 15 217.702 2.881 0.0312
80 20 217.707 2.882 0.0327

3S1 50 12 5.4272 1.7636 20.0045
60 15 5.4270 1.7634 20.00532
60 20 5.4270 1.7635 20.00524

1P1 30 20 2.985 25.955 20.00080
40 25 2.987 25.979 20.00063

3P0 30 20 23.056 3.58 20.022
40 25 23.055 3.596 20.0168

pp 1S0 50 12 27.886 2.79 0.034
60 15 27.890 2.802 0.040
60 20 27.872 2.807 0.042

3P0 30 20 23.318 3.56 20.024
50 25 23.318 3.583 20.0178

Bonn np 1S0 40 12 223.74 2.657 0.036
40 15 223.749 2.661 0.0399
50 20 223.750 2.662 0.0412

3S1 40 12 5.4237 1.7590 20.0048
40 15 5.4235 1.7587 20.0057
50 20 5.4234 1.7589 20.0057

1P1 30 20 3.067 25.828 20.0088
40 25 3.0689 25.851 20.0070

3P0 30 20 23.1596 3.104 20.017
40 25 23.1599 3.115 20.0117

pp 1S0 40 12 28.671 2.593 0.044
40 15 28.6746 2.600 0.050
50 20 28.6751 2.602 0.0522

3P0 30 20 23.4177 3.132 20.019
40 25 23.4183 3.144 20.0129
w
iv

on

ian
e

the
s

tered: Gaussian potentials and Saxon-Woods potentials,
a point-sphere Coulomb potential. The parameters are g
in Table I of Ref.@9#. In all cases, atomic masses@30# are
employed. The coefficients of the effective range expansi
are displayed in Table II.
01460
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For a13He, the Gaussian potential of Ref.@9# is adapted
from Ref. @31#. Because of the fast decrease of Gauss
potentials,a510 fm already gives satisfactory results. Th
last displayed line is in almost perfect agreement with
results of Ref.@9#. However, it is obtained with far les
5-6
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evaluations of the potential~30 in place of several thou
sands!. In fact, for many practical applications, 20 poin
would be enough. For7Be1p, the Woods-Saxon potential i
taken from Ref.@32#. Because of the exponential decrease
the potential, the convergence with respect toa is slower,
especially for the shape parameter. The agreement with
@9# is excellent forI 52 and slightly less good forI 51. The
Gaussian potentials for16O1p are defined in Ref.@9#. For
l 50, a510 fm already provides good results but this val
is too small for l 51. The agreement with Ref.@9# is very
good if one takes footnote 1 into account in thel 51 case. In
all cases, 30 or 40 mesh points lead to excellent results.

C. Realistic potentials for nucleon-nucleon scattering

In this section, we consider increasingly sophistica
nucleon-nucleon (NN) interactions. We start with the simpl
Minnesota central potential which is fitted to the deuter
energy and low-energy scattering properties@33#. The fact
that its form factor is a combination of Gaussians make
popular in resonating group calculations. Then we cons
the Reid soft core interaction and its Yukawa form facto
@34#. An additional difficulty is introduced by the tenso
force which couples some partial waves. Finally we consi
the Paris@35# and Bonn@36# realistic interactions. They ar
less easily tractable because of the occurrence of velo
dependent terms. In all cases, we consider the neu
neutron-proton (np) scattering and the charged proto
proton (pp) scattering.

The results for the Minnesota potential with\2/2m
541.47 MeV fm2 are displayed in Table III. Because of th
use of a common mass for proton and neutron, thenp and
neutron-neutron (nn) 1S0 cases are identical. Because of t
Gaussian decrease of the potential, the small valuea
55 fm can be selected for the channel radius. Excell
results are obtained with a small number of mesh pointsN
515). Even the shape parameter displays a fast converge
Notice that the3S1 results are more stable and more accur
than the other ones because of the shorter range of the
tential in that case. Forpp scattering, the same accuracy
obtained as fornp 1S0 with the samea andN. In all cases
the obtained scattering lengths and effective ranges a
with the values given in Ref.@33#.

Accurate results for the Reid potential require a mu
larger channel radius since the potential decreases expo
tially. Hence larger number of mesh points are necess
The introduction of the tensor potential complicates the c
culation for the3S1 wave because of the coupling with th
3D1 wave. This can easily be solved in the present appro
by enlarging the matrixC to both channels in the definitio
of the single channelR matrix. Good results are already ob
tained fora512 fm. The convergence of the shape para
eter is, however, slower with respect toa. This is related to
the increasing spatial extension of the successive deriva
of the wave function with respect to energy~see Fig. 1 of
Ref. @9#!. Obtaining an accurate shape parameter requir
broader internal region than for the scattering length and
effective range. The results agree well with those of R
@34#.
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The realistic Paris and Bonn potentials contain an ad
tional difficulty with a velocity dependence of the form

V~r ,p2!5~p2/m!Vb~r !1Vb~r !~p2/m!, ~58!

where m is the reduced mass of theNN system@30#. We
have treated this term as other terms at the Gauss app
mation which leads to the matrix elements

^V~r ,p2!&nn8'2Tnn8
l

@Vb~axn!1Vb~axn8!#. ~59!

This approximation preserves the simplicity of the meth
since it has the same structure as the kinetic energy. S
ingly, it does not significantly reduce the accuracy, althou
it may slow down convergence.

For the Paris potential, we first use the technique
scribed in Ref.@14# to calculate the deuteron binding energ
With a512 fm andN540, one obtains22.22472 MeV.
When increasinga andN, only the last digit is modified. The
coefficients of the effective range are calculated for differ
partial waves of thenp and pp systems. ForS waves, the
channel radius can be chosen as 15 fm or more. Even la
values are needed forP waves. Larger numbers of mes
points than in the previous cases are needed to get s
results. Nevertheless stable results are obtained with num
of mesh points of the order of 60 forS waves and 40 forP
waves. The convergence of the shape parameter with res
to a is, however, rather slow for the reasons discussed ab
Obtaining accurate values forPLSJ requires increasinga and
henceN. Our results agree well with those in Table V of Re
@35#. Notice that ournp 1S0 values should be compared wit
the nn values of that reference in spite of a slight mass d
ference. Thenp 1S0 scattering length with this potential i
not in good agreement with the experimental one because
potential was fitted onpp scattering.

For the Bonn potential, the deuteron binding energy w
a512 fm andN540 is 22.22466 MeV. When increasing
a andN, only the last digit is modified. Similar comments a
for the Paris potential can be made about the convergenc
the results for the effective range expansion. However,
observes that smaller numbers of mesh points are neede
obtaining a given accuracy for the Bonn potential with r
spect to the Paris potential. This is probably due to the
ferent behaviors of the nonlocal parts. Here the potentia
fitted onnp scattering and agrees with the experimentalnp
scattering length. The accuracy of the present method all
one to detect small differences between the effective ra
parameters of the Paris and Bonn potentials for the3S1 par-
tial wave.

V. CONCLUSIONS

In this paper, we have developed a rather simple al
rithm based on the Lagrange mesh technique, which allo
an accurate calculation of the coefficients of the effect
range expansion. The method of Ref.@9# has been simplified
and extended to the neutral case.

The results are obtained without extrapolation and wi
out analytical calculations. They require few evaluations
the potential. Changing from one potential to another is th
5-7



te
n

,
di
e
n
h
th

d
t
t

he
o

nl
th
ti
en

ding
us

iate
ec-
er-
in-

r of
av-
od.

ram
he
nd
l

D. BAYE, M. HESSE, AND R. KAMOUNI PHYSICAL REVIEW C63 014605
very easy. This technique has also been extended to po
tials with coupled partial waves and with a velocity depe
dence, without apparent loss of accuracy.

We have tested the accuracy on a solvable example
different interesting cases of potential scattering and on
ferentNN potentials. Obtaining accurate results requires p
forming a few calculations with different values of the cha
nel radius and with different number of mesh points. T
accuracy is then deduced by keeping the stable digits of
different calculations. Accuracies beyond those requeste
physics are easily reached. The velocity dependence of
realistic Paris and BonnNN potentials can be treated withou
additional complication and without loss of accuracy. T
results for these potentials are excellent with numbers
mesh points of the order of 60.

The simplicity of the present approach arises not o
from the use of the Lagrange mesh technique but also of
R matrix theory. It relies on the existence of known analy
cal expressions for the asymptotic wave functions. An ext
d

y

ay

on
dy
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sion to generalized effective range expansions correspon
to long range terms in the potential is therefore not obvio
since these terms modify the wave functions at intermed
distances. This is in particular the case for the small corr
tions to the Coulomb potential. The coefficients of a gen
alized effective range expansion might however be obta
able by increasing the channel radius and the numbe
mesh points. Small deviations from a pure Coulomb beh
ior might remain within the accuracy of the present meth
This problem deserves further study.
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