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Extension of random-phase approximation preserving energy weighted sum rules:
An application to a 3-level Lipkin model
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A limitation common to all extensions of random-phase approximation including only particle-hole configu-
rations is that they violate to some extent the energy weighted sum rules. Considering one such extension, the
improved RPA(IRPA), already used to study the electronic properties of metallic clusters, we show how it can
be generalized in order to eliminate this drawback. This is achieved by enlarging the configuration space,
including also elementary excitations corresponding to the annihilation of a pahal® and the creation of
another particléhole) on the correlated ground state. The approach is tested within a solvable 3-level model.
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[. INTRODUCTION is possible to get for th& andY coefficients a closed set of
equations having the same form as in RPA, where the den-
Collective excitations are a common feature of a largesity matrices in the correlgted ground state are expressed in
variety of many body systems. Their properties are inti-terms of theX andY coefficients themselves: Thus the equa-
mately related to the structure of the ground state upofions to solve are non linear and their solution requires a big
which they are built. The simplest theory of excited states ofomputational effort. In order to appreciate how much a bet-
to some extent is the random-phase approximafma). [n ~ Same paper a simplified version of the approach was pro-
this theory one introduces a set of operathfg whose ac- posed, the IRPA, based on the linearization of the equations
tion on the ground statl¥ ) creates the collective excita of motion. The simplification consists in contracting the two-
0 -

. . X . rm aring in the commutator of the Hamiltonian
tions, while the ground state itself is the vacuum for @g body terms appearing

. . S with a one-bodyph operator with respect to the correlated
operators. The latters are defined as linear superpositions Bﬁound state. In this way only one-body density matrices

particle-hole ph) creation and annihilation operators, 0CCU- aye 1o be evaluated: the so obtained equations are still non-
pied (h) and unoccupiedy() single particle states being de- jinear, but they are much easier to be solved, since only the

fined with respect to the Hartree-Fock ground std€).  one-hody density matrix appears. When the latter is calcu-
The X andY coefficients of these linear forms are solutions|ated in |HF) rather than in the correlateld?y), RPA is
of equations which can be derived by using the equations cdgain obtained14]. This approach was applied in Refé1]
motion method 1,2]. If the Hamiltonian contains one- and and[12] to the study of the electronic properties of some
two-body terms, the solution of these equations would implysimple metal clusters, obtaining a better description than
the evaluation of one- and two-body density matrices. StanRPA. However, the formulation is quite general and its ap-
dard RPA is obtained by replacing them by those calculateglicability is by no means limited to such systems.
in the uncorrelated ground statelF). This approximation A limitation common to all extensions of RPA including
introduces a visible inconsistency since, on one hand, thenly ph configurations is that they violate to some extent the
definition of| W) as the vacuum of th@, operators is used energy weighted sum rulg€WSR’S. In the present paper
to derive the formal equations determining tkendY am-  we will show that this drawback can be eliminated by en-
plitudes; while, on the other hanghiF) is used instead of larging the configuration space, including also those configu-
| W) in calculating the expectation values appearing in thoseations corresponding to the annihilation of a parti¢iele)
equations. and the creation of another particlbole) on the ground
Various attempts have been made to eliminate this inconstate. This is in the same spirit of Ref45] and[16], where,
sistency. We quote the pioneering work34] where the for the first time, the particle-particle and hole-hole configu-
renormalized RPARRPA) was introduced. The RRPA was rations were included within the SCRPA approximation.
applied to study the low-lying spectrum and the transition Very recently a papdrl7] came to our knowledge, where
densities of vibrational nuclg¢b] and the double beta decay the same problem is tackled and studied within a solvable
[6—8] more recently. A very important contribution to the 4-level model with a separable residual interaction. As we
solution of this problem has been given in Rf], where a  will show below, there are several differences with the
general scheme, the self-consistent REELRPA, was de-  present paper:
veloped(see also Refl10] and references therginin Ref. (i) We explicitly show that the EWSR is exactly satisfied
[8] a fully renormalized RPAfully RRPA) has been pro- when the configuration space is enlarged;
posed, which shares some similarities with the approach we (ii) By comparison with the exact solutions of the model
are going to present in this paper. In Rdfs1] and[12] it  we can judge the quality of the results obtained in IRPA and
was shown that by using the number operator mefiagiit its enlarged version, with respect to the RPA ones;
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(iii) This comparison allows us to point out that, besidesThe equations determining th&€ andY” amplitudes and the
the merit of solving the EWSR problem, the approach ha®xcitation energie€, of the state§¥,) are obtained by
the shortcoming that spurious solutions appear. This problerasing the equations of motion methft}2]. They read
is not discussed in Reff17] where, indeed, probably because
a separable residual interaction is used, only one collective A B[X") X"
state is found despite the fact that three elementary excitation B* A*/\yv] vl —yv)? 6)
modes are present in the model. In this context, it is worth
mentioning that spurious solutions are also found in R&gf.  with the A and B matrices given by
where they are interpreted as “new excitation modes.” +

The paper is organized as follows. In Sec. Il we shortly Apnprr ={Wol[Bpn,H,Byy Vo) (7)
recall the main IRPA equations, pointing to the origin of the
EWSR violations. Then we show how this problem is solved®"d
when the enlarged space is considered. In Sec. Il we illus-
trate the approach by applying it to a solvable 3-level model
[19-21 and comparing the different approximations among
themselves and with the exact results.

Bph,p’h':_<‘I’o|[B;h,H,B;/h,]|\I’O>. (8)

In Egs.(7) and(8) H is the Hamiltonian of the system and

1
Il. FORMULATION OF THE APPROACH [A.B,C]=5([A[B.CII+[[A.B].CD. 9)

In this section we recall the main steps leading to theThe standard RPA equations can be obtained by putting

IRPA equations, presented in detail in Ref$1] and[12], n,=1, n,=0 in the expressions for the operatd@sand B

and illustrate why, being limited tph excitations, the IRPA (2) and b :

N ; y replacing the correlated ground statg) appear-
appro>$|mat|on violates t_he EV_VSEQ]' Then we shoyv that, ing in Egs.(7) and (8) with the Hartree-Fock on>¢HF>. In
enlarging the space by including alpp andhh configura-  pet 1147 it is shown that the RPA equations can equivalently
tlons,hth|s d|ff||culty E ofVﬁrcome. In this respect, our ap- be obtained by linearizing the commutaféf gt ]in Eqs

roach is similar to the fully RRPAS]. _ o P '
P y A8l (7) and (8), i.e., by contracting it with respect tF). A
better approximation is done in IRPA, where the lineariza-
A. IRPA and the EWSR problem tion is made by contraction i ). In a loose notation, this
Let |W,) be the ground state of the system gHd,) its ~ means
excited states. Assuming that the latters are linear combina- . : - . : :
tions of ph andhp configurations built upoft¥ ;) one writes [H,apa,]—a'at+a’a’'aa~a'a+(W¥gla'al¥o)a al(lO)

W ,)=QI[Wo)=> [X:5Bl—YiBonlWo), (1)  Therefore the occupation numbers in the correlated ground
ph state appear in the IRPA expressions, while thos¢HiR)

wherep (h) denotes the quantum numbers of an unoccupiecﬁ"e" 0 or 1 appear in standard RPA. This procedure leads to

(p) and occupiedlf) single particle state in the uncorrelated 1 s ap
Hartree-Fock reference stdtdF). In Eqg. (1) we have intro- Aph,prhr=§(Drl)/ﬁDp,h,+ Dp,h,Dgh”Z)(ep,@hh,— €nn Opp')
duced renormalizeghh creation 8') and annihilation B)

operators. In Refd.11] and[12] it is shown that in the basis +DY2DY2 (hp'|H,|ph) (11)
. .. . . . ph~p’h’ 2 ’
diagonalizing the one-body density matrix they can be writ-
ten as where
BT :D—1/2aTa ' (2)
P e e epp=(p'[H1lp)+ X nu(p'alHolpa) (12
with
and
DphEnh_ npa (3)
wheren,, andn, are, respectively, the hole and particle oc- fhh/E(h|H1|h')+§a: n.(eh|Hylah’). (13
cupation numbers in the correlated ground statg). As-
suming thaf W) is the vacuum of th&), operators, For the matrixB one gets
Q,|¥o)=0, (4) Bpn,phr =D D o (' [H,[pp'). (14)

the ortonormality conditions for the excited states leads to |n the above equationsi; is the one-body term of the
Hamiltonian andH, its two-body part. We denote by a

S = (T |¥ )= XxYr iy’ 5 generic single particle statéoccupied or unoccupied in
o =W Y) % [XphXph=Yph Ypn! ® |[HF)). As shown in Appendix A of Ref[11], using the
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number operator methodl3] the occupation numbers ap- )
pearing in theA andB matrices can be expressed in terms of > (E,~Eq)[(W,|F| W)l
the X and Y amplitudes as .

:ZV (E,—Eo)[(Wo|Q,F|¥o)|?

1
np: 2 (51/1/’_ E

hvy'

v’ vk [RV2E S
pthl Dplhlxplhl plhl)Dththph ’

(15) =2 (E,~E[(¥ol[Q, .F1[¥o)|?
2
1 v’ v v v’ :2 (E _E ) 2 f DIIZ(XV +YV )
nh:l_p%;r (5W’_ 2 gl Dplhlxplhlxpthl)Dththph*- Y Y gR P en T Ten
(16) (19

which is formally equal to the RPA result, apart from the
factor Dl’hz. Therefore only thggh components of enter.
t')l'gis is due to the fact that the excited states are described as

ever, apparent that the approach is quite general and can Superpositions oph configurations only. Starting from Eqs
applied to any many body system. The matriéeand in (6) and using the properties of th¢andY amplitudes, Eq.

IRPA, Egs.(11) and (14), are different from those in stan- (19 can be written as
dard RPA. On one side the Hartree-Fock single particle en:
ergies appearing in th& matrix of RPA are replaced by the
quantities appearing in the first line of Ed.1). On the other > (E,~Eq)[(¥,[F|¥g)|?
side, the residual interaction in the expressionsAfandB is v

now renormalized by the facto®?s. In RRPA only the

Therefore Eqs(6) are nonlinear. They have been solved it-
eratively in the case of metallic clustdrkl,12. It is, how-

latter modific_ation is present. This latter modification is => Déﬁfphz D;/,Zh,fp,h,(Aph’p,h,—Bphyp,h,).
present also in RRPA. ph p'h’

A serious problem arises with respect to the EWSR. As is (20)
well known, if | o) and | ¥ ,) are a complete set of exact
eigenstates of the Hamiltonian, with eigenvalgsandE,,, In order to evaluate the right-hand side of Efj7) one can
the following identity holds: use for the commutatdH,F] the same linearization proce-

dure already used in deriving Eq4.1) and(14). It is easy to
1 realize that the result of such calculation cannot be equal to
2 (E,~Eq)[(W,[F|Wo)|2=5(Wo|[F,[H,F1]| W), Eq. (20) since not only theph matrix elements of the re-
v 2 sidual interaction will appear in it, but also other terms if
(17 they are present in the one-body operdtorThis happens
because the expectation value of the double commutator is
whereF is any Hermitian single particle operator. The equal-taken in the correlated ground sta,). We will show this -
ity (17) is in general violated to some extent whgh,), N the next subsection, where an enlarged configuration
|¥,) andE, are calculated within some approximation. To SPace, including alspp andhh components, will be used to
which extent it is satisfied is a measure of the adequacy d#XPress the excited states. Of course, if the correlations
the approximation. A very important feature of RPA is thatPresent i) are small and the occupation numbers do not
Eq. (17) is satisfied for any one-body operator if, in calcu- differ too much from 0 and 1, the violations of the EWSR are
lating its two sides, one consideildF) instead off W) and ~ Small. But, in general, this is not the case. For example, for
the solutions of RPA fotW,) and €, E,) [18]. This fea- Na clusters, the discrepancy was fourid,12 to be about
ture follows from the fact that, whelivF) is used in Eq(17) ~ 25%.
instead of| W' y) only particle-hole matrix elements remain in
the right-hand side. It is easy to shg@l] that, if the tran- B. The enlarged space

sition operatof has onlyp-h matrix elements, the two sides  Aq shown in the previous subsection, the problem of vio-
of Eq. (17) are equal also within IRPA. However, this is not |4tjons of the EWSR arises because also in IRPA, as in RPA,

the case in general. the excited states are expressed as superpositiqnis obn-

Let us consider separately the two sides of B) in i rations, Let us then consider the more general expansion
IRPA, with a general one-body Hermitian operakor

[¥,)=Qul¥o)= 2 (XisBLs~YagBap) Vo). (21

F=§B fopalag. (18) | |
where o and B stand for any single particle state aad
> 3 means that we order these states according to decreasing
The left-hand side is easily calculated and gives occupation numbers, i.e1,<ng. The operatorsBLB and
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B,s are an obvious generalization of Ed®) and (3). As  lates its two sides by using the solutions of the equations of
before we definéW,) as the vacuum of th®, operators; ~ motion and by making the same approximations introduced
in the derivation of the latters.
Q,|Wo)=0. (22) _In principle the new approach does not appear to be more
difficult than IRPA and its equations can be solved in real-
In order to make the notation simpler, we will omit the barsistic cases by the same iterative procedure used there. In
in the collective operators and in the states, which, of coursePractice, however, the computational effort is much heavier
are different from those considered in IRPA since nppy ~ Since the cor_1f|gurat|on space is much larger. For this reason
and hh configurations are included, in addition to tpe W€ have decided to apply it to a solvable 3-level mddé-
ones. The derivation of the equations of motion can be don@l]'

by following the same linearization procedure as before. W€ Show this application in the next section, where we
They have the same form as in E@), the matricesA andB compare the results of IRPA and of its enlarged version with
y ' the exact solutions of the model.

being now
I1l. THE MODEL AND THE RESULTS
1 12~ —1/2 1/2~ — 1/2
Aapys=5(DypDys D50, )(€ayOp5~ €p50ay) Let us first of all illustrate the solvable model to which we
applied the enlarged version of IRPA.
+DED YA BYIH | ad) (23 It consists of three levels, 0, 1, and 2, with energigs

€, ande,, respectively. Let 2 be the degeneracy of each
level andN=2() the total number of fermions in the system.
We define the operators

and

Baﬁ,ySZ%(DyED ;51/2_ D%D;,élz)( fasfsﬁy_ Eﬁylsa&)
Kij=2> afajm. (28)
+DYED VA 5BIH | ya), (24) :
where the indices andj denote one of the three levels and
where the indexm runs over the 2 substates of each of them. The
operator satisfy the following commutation relations:
€ap (a'|H1|B)+Ey ny(a7|H2|ﬁ7)- (25 [Kij Kul= 5ijiI _ 5iIKkj ) (29)

Apart from the fact that in Eq$23) and(24) the indices run 1 1€y are therefore the generators of thé8\klgebra. The
over all single particle states, the main difference with Eqs2/9€Pra becomes $8) if we consider the additional relation

(11) and (14) is the presence of the terms also in theB

matrix. N=2 Kj, (30)
Coming back to the EWSR problem, E®O) is easily :
generalized to that fixes the total number of particles.

We introduce the Hamiltonian for our system as follows:
2 (E,~Eg)[(W,[F|Wg)[?
! sz fiKiiJFVo,,E KioK0j+V1,z (KioKjo+ KojKoi)

i#0 i,j#0 i,j#0
— 1/2 1/2
—gﬂ FapDa Z«& fy6D35(Aapyo~ Bap,ys)s
7 +V, 2 (KioKjk+ KgjKoi) +V3 Z Kij Ky -
(26) i,j,k#0 i,j,k1#0

(32)

The terms with theV, and V, strengths describe, respec-
tively, thephphandpphh parts of the interaction. The term
with the V, strength is related to thppph part, while the

last term represents thp pp part. In standard RPA the only

which, after some tedious manipulations, can be written as

ZV (E,—Eo)[(W,|F|¥)|?

21 ORIINR; P two-body terms ofH that enter in the expressions for the
24y ePTabs vol €ayOps~ €850y matricesA and B of the equations of motioii6) are those
with the strength¥/, andV4, i.e., theph two-body terms. In

+(By|Haad)D,4. (270 the IRPA approacil1l,12 the ground state that is actually

used in the calculations is correlated; so the single particle
The double commutator is easily calculated by using thedccupation numbers are not strictly 1 for hole states and 0 for
same linearization procedure adopted to derive the equatiomrticle states, as ifHF). In this case also thpppp term
of motion. Doing that one realizes that E@.7) is indeed enters in the expressions for the matri¢astually only in
satisfied. Thus one obtains a kind of generalization of thehe matrixA). In the IRPA approach with the enlarged con-
Thouless theorem. Namely, E@.7) is satisfied if one calcu- figuration space all the terms contribute.
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The exact results for the system can be obtained either b

using the SWU3) symmetry of the model or by diagonalizing 3 *
the Hamiltonian(31) in the complete set of states
In1nz)=C(K109"(K50)"2|0), (32
where|0) denotes the state in which all the particles are in I -
the level 0,n; andn, are the numbers of particles in the o a values

levels 1 and 2, respectively, a@represents a normalization - g*'TAIRPA
—— Enl.

5
factor. 215y 1
With the same set of parameters chosen for the exact ca \
culation, after having performed a standard RPA calculation 1 i

we solved the equations of motion both in the IRPA ap-
proach of Refs[11] and[12] and in the new approach, with

the enlarged configuration space. In the IRPA case the of 0.5 -
eratorsQI are defined as linear combinations ph (i0,
with: i #0) andhp (0Oi, with i #0) configurations, as in Eq. 0
(1), °
QI=2> (X'Kio— YKo, (33 FIG. 1. Excitation energies versyde, with the parameters of
! Egs.(36) and(37). The energies in th¥ axis are expressed in units
of e.

while in the enlarged calculation they are defined as in Eq.

@), exact values of energies. Among all the 66 exact eigenvalues
. . . the two represented ones are those with energies equal to 1
QFZ (X Kij = YiiKji), (39 and 2.5 aty=0; i.e. those which correspond to the two RPA
! and IRPA excited states. Dotted lines refer to RPA and dot-
where dashed lines to IRPA values. The three values corresponding

to the enlarged IRPA approach are represented by full lines.
-~ 1 1 The collapse point of RPA, where its first excitation en-
KiFWDu Kij - (39 ergy becomes imaginary, appearsyat 0.024. We observe
that both the IRPA and the enlarged IRPA calculations push
With the definition(35) we get, for the excited states of the the collapse point towards greater values of the strength pa-

system, the same orthonormality conditions as given in Eqrametery; so, in this regard, both methods improve the RPA
(5). results. Moreover it can be seen that the two exact values are

Note that in Eqg.(34) the indicesi andj run over all the better approximated by the first and the third states obtained
three single particle levels of the model. In both cai&s in the enlarged IRPA approach, than by the two IRPA states.
and(34) we have solved the non linear problem of E(®.  This is especially evident for the higher state.
by means of an iterative procedure. We fixed the number of It is interesting to focus the attention on the presence of
particlesN equal to 10. In this case the number of exactthe additional state that the enlarged IRPA gives, with re-
eigenstates of the Hamiltonian is 66. The RPA and IRPAspect to RPA and IRPA. Actually this state does not corre-
calculations will give two excited states, since their configu-spond to any of the found exact states. This fact seems to
ration space is composed only by the two configurationdndicate that it is a spurious state. On the other hand its
(1,0) and (2,0). The enlarged IRPA will give three statesgenergy is not zero or very small, as it happens normally for
since its configuration space is made by the three configursspurious states. Its energy always starts, whestarts from
tions (1,0, (2,1), and(2,0). zero, from the energy difference between the levels 1 and 2,

We tested various values for the four parametgysV,,  and so it depends on how we fix the valugsande,. This
V,, andV; and for the energies of the levels, the resultswould mean that, if we applied our approach in a realistic
being qualitatively the same. In Fig. 1 we show one casegalculation, the spurious states that would appear would not

where be easily recognized and eliminated, not having in principle
zero or very small energies. This could cause problems in the
=0, €17€, €=25, (36) interpretation of the calculated spectrum of excitations. A
similar situation is encountered in RPA at finite temperature
—X X and was also found in Refi8]. Let us look at the transition

Vo=—x, Vi=x, Vo=—-, V3:1_0' (37 probabilities related to this state. Figure 2 shows the transi-

tion probabilities related to the obtained states, for RPA and
Both thee and y parameters have the units of an energy. INEIRPA calculations, for different strengths. Let us observe
the figure the excitation energies are represented versus tihethe figure the transition probability related to the spurious
increasing values of the strenggh Dashed lines refer to state,

014317-5



. GRASSO AND F. CATARA

¥/e=0.012 /e =0.016 x /e=0.02 §/e=0.03 x/e=0.04
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FIG. 2. Transition probabilities for four values gf e, with the
parameters of Eq936) and (37). The energies in th& axis are
expressed in units of.

Poy=l(V,, |F[Vo)[2 (39

where|¥) is the ground statet,\[f,,sp) is the spurious state,

andF the one-body operatdd8) with all the f ,z's equal to
1. We can see thdg, is very small, with respect to the other
two transition probabilities, only whexg is far from the col-

PHYSICAL REVIEW C63 014317

TABLE I. The left-hand sidélhs) of EWSR in the IRPA and in
the enlarged IRPA cases, together with the right-hand (sidse for
different values ofy/e and with the parametef83) and (34).

xle lhs IRPA Ihs enl. IRPA rhs

0.012 1.84957 2.1877893606 2.1877893605
0.03 0.89411 1.3607871867 1.3607871868
0.04 0.67858 1.5861229231 1.5861229230

We present now, in Table I, the results obtained for the
EWSR, in IRPA, and in enlarged IRPA cases. These results
refer again to the choic&€36) and (37) for the parameters.
The violation of the EWSR, in the IRPA case, increases with
the increasing values of the parameter and is about of 30%
for xy=0.03. In the enlarged IRPA case the EWSR is always
exactly satisfied, as expected.

This is an important achievement of the present method,
because, as stressed in Sec. |, all the methods that have been
proposed so far in order to go beyond the RPA, by avoiding
the inconsistency of the quasiboson approximation, always
violate the EWSR identity.

IV. CONCLUSIONS

In conclusion, we have presented an extension of RPA
which avoids the use of the quasiboson approximation and,

lapse point; whery approaches the collapse point the tran-at variance with many other attempts made in the same di-

sition probability (38) becomes appreciabisee the casg

rection, preserves exactly the EWSR. This is obtained as a

=0.04 in the figurg The same trend is found for other sets generalization of a previously studied approach by enlarging

of parameters.

the configuration space with respect to that commonly used,

This means that in the evaluation of any physical quantitywhich contains only particle-hole elementary excitations.
in a realistic calculation, the existence of spurious statedhe approach has been tested on a 3-level solvable model.
would have some influence and it would be important to

recognize and eliminate them from the calculation. The prob-
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