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Extension of random-phase approximation preserving energy weighted sum rules:
An application to a 3-level Lipkin model

M. Grasso and F. Catara
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A limitation common to all extensions of random-phase approximation including only particle-hole configu-
rations is that they violate to some extent the energy weighted sum rules. Considering one such extension, the
improved RPA~IRPA!, already used to study the electronic properties of metallic clusters, we show how it can
be generalized in order to eliminate this drawback. This is achieved by enlarging the configuration space,
including also elementary excitations corresponding to the annihilation of a particle~hole! and the creation of
another particle~hole! on the correlated ground state. The approach is tested within a solvable 3-level model.
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I. INTRODUCTION

Collective excitations are a common feature of a la
variety of many body systems. Their properties are in
mately related to the structure of the ground state u
which they are built. The simplest theory of excited states
a quantum system where correlations are taken into acc
to some extent is the random-phase approximation~RPA!. In
this theory one introduces a set of operatorsQn

† , whose ac-
tion on the ground stateuC0& creates the collective excita
tions, while the ground state itself is the vacuum for theQn

operators. The latters are defined as linear superposition
particle-hole (ph) creation and annihilation operators, occ
pied (h) and unoccupied (p) single particle states being de
fined with respect to the Hartree-Fock ground stateuHF&.
The X andY coefficients of these linear forms are solutio
of equations which can be derived by using the equation
motion method@1,2#. If the Hamiltonian contains one- an
two-body terms, the solution of these equations would im
the evaluation of one- and two-body density matrices. St
dard RPA is obtained by replacing them by those calcula
in the uncorrelated ground stateuHF&. This approximation
introduces a visible inconsistency since, on one hand,
definition of uC0& as the vacuum of theQn operators is used
to derive the formal equations determining theX andY am-
plitudes; while, on the other hand,uHF& is used instead o
uC0& in calculating the expectation values appearing in th
equations.

Various attempts have been made to eliminate this inc
sistency. We quote the pioneering works@3,4# where the
renormalized RPA~RRPA! was introduced. The RRPA wa
applied to study the low-lying spectrum and the transit
densities of vibrational nuclei@5# and the double beta deca
@6–8# more recently. A very important contribution to th
solution of this problem has been given in Ref.@9#, where a
general scheme, the self-consistent RPA~SCRPA!, was de-
veloped~see also Ref.@10# and references therein!. In Ref.
@8# a fully renormalized RPA~fully RRPA! has been pro-
posed, which shares some similarities with the approach
are going to present in this paper. In Refs.@11# and @12# it
was shown that by using the number operator method@13# it
0556-2813/2000/63~1!/014317~6!/$15.00 63 0143
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is possible to get for theX andY coefficients a closed set o
equations having the same form as in RPA, where the d
sity matrices in the correlated ground state are expresse
terms of theX andY coefficients themselves. Thus the equ
tions to solve are non linear and their solution requires a
computational effort. In order to appreciate how much a b
ter treatment of correlations modifies the RPA results, in
same paper a simplified version of the approach was p
posed, the IRPA, based on the linearization of the equat
of motion. The simplification consists in contracting the tw
body terms appearing in the commutator of the Hamilton
with a one-bodyph operator with respect to the correlate
ground state. In this way only one-body density matric
have to be evaluated: the so obtained equations are still
linear, but they are much easier to be solved, since only
one-body density matrix appears. When the latter is ca
lated in uHF& rather than in the correlateduC0&, RPA is
again obtained@14#. This approach was applied in Refs.@11#
and @12# to the study of the electronic properties of som
simple metal clusters, obtaining a better description th
RPA. However, the formulation is quite general and its a
plicability is by no means limited to such systems.

A limitation common to all extensions of RPA includin
only ph configurations is that they violate to some extent t
energy weighted sum rules~EWSR’s!. In the present pape
we will show that this drawback can be eliminated by e
larging the configuration space, including also those confi
rations corresponding to the annihilation of a particle~hole!
and the creation of another particle~hole! on the ground
state. This is in the same spirit of Refs.@15# and@16#, where,
for the first time, the particle-particle and hole-hole config
rations were included within the SCRPA approximation.

Very recently a paper@17# came to our knowledge, wher
the same problem is tackled and studied within a solva
4-level model with a separable residual interaction. As
will show below, there are several differences with t
present paper:

~i! We explicitly show that the EWSR is exactly satisfie
when the configuration space is enlarged;

~ii ! By comparison with the exact solutions of the mod
we can judge the quality of the results obtained in IRPA a
its enlarged version, with respect to the RPA ones;
©2000 The American Physical Society17-1
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M. GRASSO AND F. CATARA PHYSICAL REVIEW C63 014317
~iii ! This comparison allows us to point out that, besid
the merit of solving the EWSR problem, the approach h
the shortcoming that spurious solutions appear. This prob
is not discussed in Ref.@17# where, indeed, probably becau
a separable residual interaction is used, only one collec
state is found despite the fact that three elementary excita
modes are present in the model. In this context, it is wo
mentioning that spurious solutions are also found in Ref.@8#,
where they are interpreted as ‘‘new excitation modes.’’

The paper is organized as follows. In Sec. II we shor
recall the main IRPA equations, pointing to the origin of t
EWSR violations. Then we show how this problem is solv
when the enlarged space is considered. In Sec. III we il
trate the approach by applying it to a solvable 3-level mo
@19–21# and comparing the different approximations amo
themselves and with the exact results.

II. FORMULATION OF THE APPROACH

In this section we recall the main steps leading to
IRPA equations, presented in detail in Refs.@11# and @12#,
and illustrate why, being limited toph excitations, the IRPA
approximation violates the EWSR@2#. Then we show that
enlarging the space by including alsopp andhh configura-
tions, this difficulty is overcome. In this respect, our a
proach is similar to the fully RRPA@8#.

A. IRPA and the EWSR problem

Let uC0& be the ground state of the system anduCn& its
excited states. Assuming that the latters are linear comb
tions ofph andhp configurations built uponuC0& one writes

uCn&[Qn
†uC0&[(

ph
@Xph

n Bph
† 2Yph

n Bph#uC0&, ~1!

wherep (h) denotes the quantum numbers of an unoccup
(p) and occupied (h) single particle state in the uncorrelate
Hartree-Fock reference stateuHF&. In Eq. ~1! we have intro-
duced renormalizedph creation (B†) and annihilation (B)
operators. In Refs.@11# and@12# it is shown that in the basis
diagonalizing the one-body density matrix they can be w
ten as

Bph
† 5Dph

21/2ap
†ah , ~2!

with

Dph[nh2np , ~3!

wherenh andnp are, respectively, the hole and particle o
cupation numbers in the correlated ground stateuC0&. As-
suming thatuC0& is the vacuum of theQn operators,

QnuC0&50, ~4!

the ortonormality conditions for the excited states leads

dnn85^CnuCn8&5(
ph

@Xph
n* Xph

n82Yph
n* Yph

n8 #. ~5!
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The equations determining theXn andYn amplitudes and the
excitation energiesEn of the statesuCn& are obtained by
using the equations of motion method@1,2#. They read

S A B

B* A* D S Xn

YnD 5EnS Xn

2YnD , ~6!

with the A andB matrices given by

Aph,p8h85^C0u@Bph ,H,Bp8h8
† uC0& ~7!

and

Bph,p8h852^C0u@Bph
† ,H,Bp8h8

†
#uC0&. ~8!

In Eqs.~7! and ~8! H is the Hamiltonian of the system and

@A,B,C#[
1

2
~@A,@B,C##1@@A,B#,C# !. ~9!

The standard RPA equations can be obtained by put
nh51, np50 in the expressions for the operatorsB and B†

~2! and by replacing the correlated ground stateuC0& appear-
ing in Eqs.~7! and ~8! with the Hartree-Fock oneuHF&. In
Ref. @14# it is shown that the RPA equations can equivalen
be obtained by linearizing the commutator@H,Bp8h8

†
# in Eqs.

~7! and ~8!, i.e., by contracting it with respect touHF&. A
better approximation is done in IRPA, where the lineariz
tion is made by contraction inuC0&. In a loose notation, this
means

@H,ap
†ah#→a†a1a†a†aa;a†a1^C0ua†auC0&a

†a.
~10!

Therefore the occupation numbers in the correlated gro
state appear in the IRPA expressions, while those inuHF&
~i.e., 0 or 1! appear in standard RPA. This procedure leads

Aph,p8h85
1

2
~Dph

1/2Dp8h8
21/2

1Dp8h8
1/2 Dph

21/2!~ep8pdhh82ehh8dpp8!

1Dph
1/2Dp8h8

1/2
~hp8uH2uph8!, ~11!

where

ep8p[~p8uH1up!1(
a

na~p8auH2upa! ~12!

and

ehh8[~huH1uh8!1(
a

na~ahuH2uah8!. ~13!

For the matrixB one gets

Bph,p8h85Dph
1/2Dp8h8

1/2
~hh8uH2upp8!. ~14!

In the above equationsH1 is the one-body term of the
Hamiltonian andH2 its two-body part. We denote bya a
generic single particle state~occupied or unoccupied in
uHF&). As shown in Appendix A of Ref.@11#, using the
7-2
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EXTENSION OF RANDOM-PHASE APPROXIMATION . . . PHYSICAL REVIEW C 63 014317
number operator method@13# the occupation numbers ap
pearing in theA andB matrices can be expressed in terms
the X andY amplitudes as

np5 (
hnn8

S dnn82
1

2 (
p1h1

Dp1h1
Xp1h1

n8 Xp1h1

n* DDphYph
n Yph

n8* ,

~15!

nh512 (
pnn8

S dnn82
1

2 (
p1h1

Dp1h1
Xp1h1

n8 Xp1h1

n* DDphYph
n Yph

n8* .

~16!

Therefore Eqs.~6! are nonlinear. They have been solved
eratively in the case of metallic clusters@11,12#. It is, how-
ever, apparent that the approach is quite general and ca
applied to any many body system. The matricesA andB in
IRPA, Eqs.~11! and ~14!, are different from those in stan
dard RPA. On one side the Hartree-Fock single particle
ergies appearing in theA matrix of RPA are replaced by th
quantities appearing in the first line of Eq.~11!. On the other
side, the residual interaction in the expressions forA andB is
now renormalized by the factorsD1/2’s. In RRPA only the
latter modification is present. This latter modification
present also in RRPA.

A serious problem arises with respect to the EWSR. A
well known, if uC0& and uCn& are a complete set of exac
eigenstates of the Hamiltonian, with eigenvaluesE0 andEn ,
the following identity holds:

(
n

~En2E0!u^CnuFuC0&u25
1

2
^C0u@F,@H,F##uC0&,

~17!

whereF is any Hermitian single particle operator. The equ
ity ~17! is in general violated to some extent whenuC0&,
uCn& andEn are calculated within some approximation. T
which extent it is satisfied is a measure of the adequac
the approximation. A very important feature of RPA is th
Eq. ~17! is satisfied for any one-body operator if, in calc
lating its two sides, one considersuHF& instead ofuC0& and
the solutions of RPA foruCn& and (En2E0) @18#. This fea-
ture follows from the fact that, whenuHF& is used in Eq.~17!
instead ofuC0& only particle-hole matrix elements remain
the right-hand side. It is easy to show@11# that, if the tran-
sition operatorF has onlyp-h matrix elements, the two side
of Eq. ~17! are equal also within IRPA. However, this is n
the case in general.

Let us consider separately the two sides of Eq.~17! in
IRPA, with a general one-body Hermitian operatorF:

F5(
ab

f abaa
†ab . ~18!

The left-hand side is easily calculated and gives
01431
f
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n

~En2E0!u^CnuFuC0&u2

5(
n

~En2E0!u^C0uQnFuC0&u2

5(
n

~En2E0!u^C0u@Qn ,F#uC0&u2

5(
n

~En2E0!U(
ph

f phDph
1/2~Xph

n 1Yph
n !U2

,

~19!

which is formally equal to the RPA result, apart from th
factor Dph

1/2. Therefore only theph components ofF enter.
This is due to the fact that the excited states are describe
superpositions ofph configurations only. Starting from Eqs
~6! and using the properties of theX andY amplitudes, Eq.
~19! can be written as

(
n

~En2E0!u^CnuFuC0&u2

5(
ph

Dph
1/2f ph(

p8h8
Dp8h8

1/2 f p8h8~Aph,p8h82Bph,p8h8!.

~20!

In order to evaluate the right-hand side of Eq.~17! one can
use for the commutator@H,F# the same linearization proce
dure already used in deriving Eqs.~11! and~14!. It is easy to
realize that the result of such calculation cannot be equa
Eq. ~20! since not only theph matrix elements of the re
sidual interaction will appear in it, but also other terms
they are present in the one-body operatorF. This happens
because the expectation value of the double commutato
taken in the correlated ground stateuC0&. We will show this
in the next subsection, where an enlarged configura
space, including alsopp andhh components, will be used to
express the excited states. Of course, if the correlati
present inuC0& are small and the occupation numbers do n
differ too much from 0 and 1, the violations of the EWSR a
small. But, in general, this is not the case. For example,
Na clusters, the discrepancy was found@11,12# to be about
25%.

B. The enlarged space

As shown in the previous subsection, the problem of v
lations of the EWSR arises because also in IRPA, as in R
the excited states are expressed as superpositions ofph con-
figurations. Let us then consider the more general expan

uC̄n&5Q̄n
†uC̄0&5 (

a.b
~X̄ab

n Bab
† 2Ȳab

n Bab!uC̄0&, ~21!

where a and b stand for any single particle state anda
.b means that we order these states according to decrea
occupation numbers, i.e.na,nb . The operatorsBab

† and
7-3
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Bab are an obvious generalization of Eqs.~2! and ~3!. As
before we defineuC̄0& as the vacuum of theQ̄n operators:

Q̄nuC̄0&50. ~22!

In order to make the notation simpler, we will omit the ba
in the collective operators and in the states, which, of cou
are different from those considered in IRPA since nowpp
and hh configurations are included, in addition to theph
ones. The derivation of the equations of motion can be d
by following the same linearization procedure as befo
They have the same form as in Eq.~6!, the matricesA andB
being now

Aab,gd5
1

2
~Dab

1/2Dgd
21/21Dgd

1/2Dab
21/2!~eagdbd2ebddag!

1Dab
1/2Dgd

1/2~bguH2uad! ~23!

and

Bab,gd5
1

2
~Dab

1/2Dgd
21/22Dgd

1/2Dab
21/2!~eaddbg2ebgdad!

1Dab
1/2Dgd

1/2~dbuH2uga!, ~24!

where

eab5~auH1ub!1(
g

ng~aguH2ubg!. ~25!

Apart from the fact that in Eqs.~23! and~24! the indices run
over all single particle states, the main difference with E
~11! and ~14! is the presence of thee terms also in theB
matrix.

Coming back to the EWSR problem, Eq.~20! is easily
generalized to

(
n

~En2E0!u^CnuFuC0&u2

5 (
a.b

f abDab
1/2(

g.d
f gdDgd

1/2~Aab,gd2Bab,gd!,

~26!

which, after some tedious manipulations, can be written

(
n

~En2E0!u^CnuFuC0&u2

5
1

2 (
ab

f abDab(
gd

f gd@eagdbd2ebddag

1~bguH2uad!Dgd]. ~27!

The double commutator is easily calculated by using
same linearization procedure adopted to derive the equa
of motion. Doing that one realizes that Eq.~17! is indeed
satisfied. Thus one obtains a kind of generalization of
Thouless theorem. Namely, Eq.~17! is satisfied if one calcu-
01431
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lates its two sides by using the solutions of the equations
motion and by making the same approximations introdu
in the derivation of the latters.

In principle the new approach does not appear to be m
difficult than IRPA and its equations can be solved in re
istic cases by the same iterative procedure used there
practice, however, the computational effort is much heav
since the configuration space is much larger. For this rea
we have decided to apply it to a solvable 3-level model@19–
21#.

We show this application in the next section, where
compare the results of IRPA and of its enlarged version w
the exact solutions of the model.

III. THE MODEL AND THE RESULTS

Let us first of all illustrate the solvable model to which w
applied the enlarged version of IRPA.

It consists of three levels, 0, 1, and 2, with energiese0 ,
e1 , ande2 , respectively. Let 2V be the degeneracy of eac
level andN52V the total number of fermions in the system

We define the operators

Ki j [(
m

aim
† ajm , ~28!

where the indicesi and j denote one of the three levels an
the indexm runs over the 2V substates of each of them. Th
operatorsK satisfy the following commutation relations:

@Ki j ,Kkl#5d jkKil 2d i l Kk j . ~29!

They are therefore the generators of the U~3! algebra. The
algebra becomes SU~3! if we consider the additional relation

N5(
i

Kii , ~30!

that fixes the total number of particles.
We introduce the Hamiltonian for our system as follow

H5(
iÞ0

e iKii 1V0 (
i , j Þ0

Ki0K0 j1V1 (
i , j Þ0

~Ki0K j 01K0 jK0i !

1V2 (
i , j ,kÞ0

~Ki0K jk1Kk jK0i !1V3 (
i , j ,k,lÞ0

Ki j Kkl .

~31!

The terms with theV0 and V1 strengths describe, respe
tively, thephphandpphhparts of the interaction. The term
with the V2 strength is related to theppph part, while the
last term represents thepppppart. In standard RPA the only
two-body terms ofH that enter in the expressions for th
matricesA and B of the equations of motion~6! are those
with the strengthsV0 andV1 , i.e., theph two-body terms. In
the IRPA approach@11,12# the ground state that is actuall
used in the calculations is correlated; so the single part
occupation numbers are not strictly 1 for hole states and 0
particle states, as inuHF&. In this case also thepppp term
enters in the expressions for the matrices~actually only in
the matrixA). In the IRPA approach with the enlarged co
figuration space all the terms contribute.
7-4
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The exact results for the system can be obtained eithe
using the SU~3! symmetry of the model or by diagonalizin
the Hamiltonian~31! in the complete set of states

un1n2&[C~K10!
n1~K20!

n2u0&, ~32!

whereu0& denotes the state in which all the particles are
the level 0,n1 and n2 are the numbers of particles in th
levels 1 and 2, respectively, andC represents a normalizatio
factor.

With the same set of parameters chosen for the exact
culation, after having performed a standard RPA calculat
we solved the equations of motion both in the IRPA a
proach of Refs.@11# and@12# and in the new approach, wit
the enlarged configuration space. In the IRPA case the
eratorsQn

† are defined as linear combinations ofph ( i0,
with: iÞ0) andhp (0i , with iÞ0) configurations, as in Eq
~1!,

Qn
†[(

i
~Xi

nK̃ i02Yi
nK̃0i !, ~33!

while in the enlarged calculation they are defined as in
~21!,

Qn
†[(

i . j
~Xi j

n K̃ i j 2Yi j
n K̃ j i !, ~34!

where

K̃ i j [
1

~2V!1/2Di j
21/2Ki j . ~35!

With the definition~35! we get, for the excited states of th
system, the same orthonormality conditions as given in
~5!.

Note that in Eq.~34! the indicesi and j run over all the
three single particle levels of the model. In both cases~33!
and ~34! we have solved the non linear problem of Eqs.~6!
by means of an iterative procedure. We fixed the numbe
particlesN equal to 10. In this case the number of exa
eigenstates of the Hamiltonian is 66. The RPA and IR
calculations will give two excited states, since their config
ration space is composed only by the two configuratio
(1,0) and (2,0). The enlarged IRPA will give three stat
since its configuration space is made by the three config
tions ~1,0!, ~2,1!, and~2,0!.

We tested various values for the four parametersV0 , V1 ,
V2 , and V3 and for the energies of the levels, the resu
being qualitatively the same. In Fig. 1 we show one ca
where

e050, e15e, e252.5e, ~36!

V052x, V15x, V25
2x

2
, V35

x

10
. ~37!

Both thee andx parameters have the units of an energy.
the figure the excitation energies are represented versu
increasing values of the strengthx. Dashed lines refer to
01431
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exact values of energies. Among all the 66 exact eigenva
the two represented ones are those with energies equal
and 2.5 atx50; i.e. those which correspond to the two RP
and IRPA excited states. Dotted lines refer to RPA and d
dashed lines to IRPA values. The three values correspon
to the enlarged IRPA approach are represented by full lin

The collapse point of RPA, where its first excitation e
ergy becomes imaginary, appears atx50.024. We observe
that both the IRPA and the enlarged IRPA calculations p
the collapse point towards greater values of the strength
rameterx; so, in this regard, both methods improve the RP
results. Moreover it can be seen that the two exact values
better approximated by the first and the third states obtai
in the enlarged IRPA approach, than by the two IRPA sta
This is especially evident for the higher state.

It is interesting to focus the attention on the presence
the additional state that the enlarged IRPA gives, with
spect to RPA and IRPA. Actually this state does not cor
spond to any of the found exact states. This fact seem
indicate that it is a spurious state. On the other hand
energy is not zero or very small, as it happens normally
spurious states. Its energy always starts, whenx starts from
zero, from the energy difference between the levels 1 an
and so it depends on how we fix the valuese1 ande2 . This
would mean that, if we applied our approach in a realis
calculation, the spurious states that would appear would
be easily recognized and eliminated, not having in princi
zero or very small energies. This could cause problems in
interpretation of the calculated spectrum of excitations.
similar situation is encountered in RPA at finite temperat
and was also found in Ref.@8#. Let us look at the transition
probabilities related to this state. Figure 2 shows the tra
tion probabilities related to the obtained states, for RPA a
EIRPA calculations, for differentx strengths. Let us observ
in the figure the transition probability related to the spurio
state,

FIG. 1. Excitation energies versusx/e, with the parameters of
Eqs.~36! and~37!. The energies in theY axis are expressed in unit
of e.
7-5
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Psp5u^Cnsp
uFuC0&u2, ~38!

whereuC0& is the ground state,uCnsp
& is the spurious state

andF the one-body operator~18! with all the f ab’s equal to
1. We can see thatPsp is very small, with respect to the othe
two transition probabilities, only whenx is far from the col-
lapse point; whenx approaches the collapse point the tra
sition probability~38! becomes appreciable~see the casex
50.04 in the figure!. The same trend is found for other se
of parameters.

This means that in the evaluation of any physical quant
in a realistic calculation, the existence of spurious sta
would have some influence and it would be important
recognize and eliminate them from the calculation. The pro
lem of how to recognize them is still open, as they do n
have in general small energies and/or small transit
probabilities.

FIG. 2. Transition probabilities for four values ofx/e, with the
parameters of Eqs.~36! and ~37!. The energies in theX axis are
expressed in units ofe.
01431
-

,
s

-
t
n

We present now, in Table I, the results obtained for
EWSR, in IRPA, and in enlarged IRPA cases. These res
refer again to the choice~36! and ~37! for the parameters
The violation of the EWSR, in the IRPA case, increases w
the increasing values of thex parameter and is about of 30%
for x50.03. In the enlarged IRPA case the EWSR is alwa
exactly satisfied, as expected.

This is an important achievement of the present meth
because, as stressed in Sec. I, all the methods that have
proposed so far in order to go beyond the RPA, by avoid
the inconsistency of the quasiboson approximation, alw
violate the EWSR identity.

IV. CONCLUSIONS

In conclusion, we have presented an extension of R
which avoids the use of the quasiboson approximation a
at variance with many other attempts made in the same
rection, preserves exactly the EWSR. This is obtained a
generalization of a previously studied approach by enlarg
the configuration space with respect to that commonly us
which contains only particle-hole elementary excitation
The approach has been tested on a 3-level solvable mod
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TABLE I. The left-hand side~lhs! of EWSR in the IRPA and in
the enlarged IRPA cases, together with the right-hand side~rhs!, for
different values ofx/e and with the parameters~33! and ~34!.

x/e lhs IRPA lhs enl. IRPA rhs

0.012 1.84957 2.1877893606 2.1877893605
0.03 0.89411 1.3607871867 1.3607871868
0.04 0.67858 1.5861229231 1.5861229230
ys.
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