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Foundations of self-consistent particle-rotor models and of self-consistent cranking models
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The Kerman-Klein formulation of the equations of motion for a nuclear shell model and its associated
variational principle are reviewed briefly. It is then applied to the derivation of the self-consistent particle-rotor
model and of the self-consistent cranking model, for both axially symmetric and triaxial nuclei. Two deriva-
tions of the particle-rotor model are given. One of these is of a form that lends itself to an expansion of the
result in powers of the ratio of single-particle angular momentum to collective angular momentum, which is
essential to reach the cranking limit. The derivation of the latter also requires a distinct, angular-momentum
violating step. The structure of the result implies the possibility of tilted-axis cranking for the axial case and
full three-dimensional cranking for the triaxial one. The final equations remain number conserving.
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[. INTRODUCTION nuclear collective motion. With regard to our efforts to go
beyond standard approximations with the new method, there
The aims of this paper are to study anew the foundationsvere some partial successes, as detailed in the cited review,
of the particle-rotor mod€]l1,2] and of the cranking model but viewed in retrospect, the attempt to apply our method
[2]. The basic procedure is to apply the Kerman-KIg{iK)  fully microscopically was premature: the shell model spaces
method[3-5] in a suitably defined strong-coupling limit to a underlying the calculations were too small, and our early
standard microscopic shell model. Before entering into a disalgorithms had serious weaknesses. In any event, mainly be-
cussion of this subject matter, it may be useful to the readecause our attention was diverted elsewhere, no attempts to
to begin with a brief history of a method that was introducedcarry out applications were made between 1978 and 1993,
almost four decades ago. Such a summary serves sevetabugh we did produce the cited review during this period, as
purposes. First of all, despite the fact that the KK methodwell as a paper devoted to a reexamination and extension of
provides a fundamental theoretical formulation for the studythe theoretical foundatiorjg.1].
of collective motion, its practical impact on the field of  In 1993, we undertook a program of applicatipng—17,
nuclear structure has been minor. It may be important teurrently in hiatus, more limited in scope than our early
point out why this has so far been the case. We also explaiwork, but, as outlined below, more successful in its results.
the timing of the current formal paper by its relationship to This program was inspired by and represents a further devel-
recent successful applications. Finally, we observe that in itepment of the earlier work of Dmau and FrauendorDF)
role as a general method of applying Heisenberg matrix mef18,19, who suggested that the KK approach be coupled
chanics, the KK techniques have been applied successfullyith some phenomenological input and thus be implemented
outside the nuclear many-body problem, to particle quantunas a semimicroscopic core-particle coupling model, more
mechanics and to relativistic quantum field theories. general than any of the existing ones, but still not too diffi-
The KK method was introduced into the nuclear many-cult to apply. The practical success of our recent efforts is
body problem as a method of restoring the broken symmetryied to the fact that we are able to deal with large shell model
of mean-field theory3]. The earliest papeis},5] were de- spacegessentially all bound single-particle levelsnd the
voted to the derivation, starting from a formulation that re-availability of the necessary phenomenological input either
spected all the relevant symmetries, of the standard approxirom experiment or from standard models. We have studied
mations for the study of vibrational and rotational nuclei andsome strong-coupling spectfd2,13, some backbending
the suggestion of ways of going beyond those approximaeased 14|, and examined the relation of our results to those
tions. There followed more than a decade of development abbtainable with the standard particle-rotor mofdes]. More
applications, mostly, though not exclusively, by the writerimportantly, we have proposed a solution to the Coriolis at-
and associates, work that has been reviewed at [d6¢tind  tenuation problen{16], and we have taken a step in the
more briefly[7]. Our applications were mainly to the study direction of fully microscopic calculationsl7] by showing
of nuclear vibrations, but at the same time there was furthefor a selected strong-coupling case, that the results of the
development of the theory. During the same period, thesemimicroscopic calculations satisfy certain sum rules that
theory was reinvented by Belyaev and Zeleving®y-10| play an essential role in sudfuture) calculations. From a
and applied by them to the study of deformed nuclei, usingsurvey of the work done, it is clear that we have hardly
perturbative expansions about the deformed mean-field limitscratched the surface covering the possible applications of
A suitably chosen subset of our papers and their papers maiiis theory.(As one example the KK method can also deal
be regarded as permanent contributions to the subject afith transitional nucle{19,20.) The purpose of the present
formal paper is both to provide some theoretical closure to
our recent work and some stimulus for further applications.
*Email address: akleinnucth.physics.upenn.edu The KK method has also had some impact, though not a
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decisive one, on our work on large amplitude collective mo-rently as principal-axis crankinPAC) as opposed to a re-
tion. For details we direct the reader to a recent re\(i29yj. cent generalization, called tilted-axis crankiiGAC) [42—
Finally, we sketch the systematic applications of the KK46]. In the latter, even in the axial case, the system may
method to problems outside nuclear physics. We have hadratate about an axis in a principal plane of the assumed
continuing interest, for example, in the application to bound<quadrupol¢ intrinsic shape, and for the triaxial case about
state problems in quantum mechanics, both to provide altean arbitrary(dynamically determineddirection with respect
native exact solutions to known solvable problems, as welto the principal axes.
as to provide accurate numerical solutions in other cases A second aim of the present paper is to establish the re-
[22-24. We have also shown that our method provides dationship of the cranking models, including the recent gen-
powerful approach to the study of quantum mechanics in theralized versions, to a microscopic theory. The previous lit-
semiclassical limit, both for separable and for nonseparablerature on this subject is modest in extent. The standard
systems(in the nonchaotic regimg25-27. In another se- references are Ref47] ad[48], the major results of which
ries of papers, we have addressed the problem of restoringre reproduced and discussed in Ré&fl. Briefly, starting
the broken symmetry in early examples of relativistic fieldfrom a formulation of the microscopic theory by means of
theories with soliton solutior{28—32 and, more recently, in  generator coordinates, the energy is evaluated approximately
the Skyrmion modef33]. as a power series in the angular momentum by a method due

We tgrn now to the actual subjgct matter of this Paperiy Kamlah [49], valid for large deformations. When the
The particle-rotor modelPRM) was introduced as an angu- ariational method is applied to the lowest nontrivial ap-

lar momentum-conserving phenomenological description ?};roximation of this procedure, it can be shown that the

qdd deformed nuclei. Because of its relative ease pf applic cranking theory is a solution of the resulting equations. This
tion and, on the whole, quite remarkable success, it has been

applied even up to the preseffitr instance, Ref[34]), with summar|Ted by Istatmg t_hattgrank:crlgr;] IS a ;?Ilét'op’ my?_lv—
various alterations of detail, to a myriad of applications, overNd @ semiciassical approximation, of the method of vaniation

a lifetime of more than four and a half decades. Among theafter projection as opposed to the exact procedure of varia-

extensions, we mention in particular that to the description ofiOn Peforeprojection. , , _
triaxial nuclei[35—37, the original model having been for- 1O our knowledge, the only other studies of this subject
mulated for axially symmetric nuclei. are those based on the KK method, a brief treatment of the
In one of the textbookE2], p. 109, we find, after a glow- case of rotation in a plané&0] that predates the above-cited
ing appraisal of the success of the model, the following statework and two studies that postdated them, one again on the
ment: “However, until now a clear-cut microscopic deriva- problem of rotation in a plang51] and the second a re-
tion has been missing.” In fact, a microscopic derivation hadstricted study of the triaxial cag®2,53. (Some discussion
been given earlief38], based on théKK) method. The mi- of the cranking limit, also based on a variant of the KK
croscopic foundation of the axially symmetric PRM was method, can be found in Ref54].) Up to now we have
studied more recently in Ref15], starting from a semim- never presented a full account of the three-dimensional treat-
icroscopic version of the KK approach, and compared inment either for axial or for triaxial nuclei, an approach that
accuracy, for several examples of well-deformed nuclei, botlgiffers from anything found in the standard literaty@.
with its more accurate progenitor and with the inherently lessstimulation for the present undertaking has come both form

accurate cranking approximation. The first aim of the presengs relation to our recent work and from the renewed interest
paper is to provide a more comprehensive study of the founy, generalized cranking modelé2—46.

dations of the PRM than has hitherto been available in the The foundations of the study are presented in Sec. II. We

Iiterarl]ture. . del winally introduced i utilize a shell model Hamiltonian, widely employed for me-

TI € cLan.ln%gmo.t?]. v;/r?sforlgma yk |r]1tro uce ,b'n(tjo dium and heavy nuclei, with two-particle interactions in
nuclear pny sic339)], within the Famework of a prescribed \pich the latter are separated into two parts clearly distin-
smglg-pamcle model, to deal with the enigma pregentgd b uished as multipole and pairing forces, respectively. The
the first values encountered for the moments of inertia o . ' e
deformed nuclei. An extended versip40], the one consid- advar?agethoftsuchba rgoc_iel (;sfthat _tgmkt:,nlf[;]nbeK)Kequﬁlogs
ered in most applications until recent years, was based on th(g mol |on| atcan eI jerve rlc_)m_l fy € f mhe fo r?re
self-consistent mean-field theory of a deformed rotating obOMPIetely rigorous. Itis a simplifying feature for the further

study to recognize that these equations can be derived from a

ject. This early work was designed primarily to provide for- >*-7 A, ue -
mulas for the moment of inertia. variational principle that we called the trace variational prin-

The full range of applicability of the self-consistent crank- CiPIe, suggested in our earliest papéf and developed more
ing model, as well as its limitations, was realized in the sofully in [54]. This variational principle has several notewor-
called cranked shell modéCSM) [41], that has been widely thy featuresti) It is formulated for the many-body problem
applied to the analysis of band crossing and other high-spii the language of second quantizatigi) The quantities
phenomena(For a current list of references, especially re-varied are not wave functions, but rather a suitably chosen
views, see Ref[42].) The formulations under discussion, set of matrix elements, in our case coefficients of fractional
which apply to axially symmetric nuclei, assume that collec-parentagéto be discussed at the appropriate point of Sec. Il
tive rotation occurs about a principal axis perpendicular ta(iii) Rather than involving the Rayleigh-Ritz principle for
the symmetry axis. Such a formulation is referred to cur-one state at a time, the functional to be varied is the trace of

014316-2



FOUNDATIONS OF SELF-CONSISTENT PARTICLE . . PHYSICAL REVIEW C 63014316

energy expectation values over a prescribed space of tates. Guyop= (jaMal M| LM ) (jgMgi pMp| LM ) Gacar(L),

The theory is elaborated in Sec. Il only as far as is re- (2.3
quired for the remaining body of the text. Further develop-
ment is presented in the Appendix. We turn to applications in
Sec. lll, where we derive the self-consistent PRM from the
variational principle associated with the KK equatiofwith
one possible exceptiof60], we are unaware of any recent Where (mj'm’|LM) is a Clebsch-GordofCG) coefficient,
work, other than our own, that has examined the foundationte operator equations of motion can be obtained in the form
of the PRM)

The formalism presented in Sec. Ill does not lend itself 13 H]=hla,+ Faa,ﬁ,ﬁaa,agaﬁ,+Gaa,ﬂﬁ,a’;,aﬁ,aﬁ,
naturally to a derivation of the self-consistent cranking (2.5
theory, which should be a limit of the self-consistent PRM.

In Sec. IV we describe an alternative derivation of the PRM,

following ideas first advanced briefly in Rd60], that does h!=h.— EF 2L+1 (2.6)

lead directly to the cranking limit. The considerations of a~la prababpi 41’ '

Secs. Il and IV apply to axially symmetric nuclei. Both
treatments are extended to the case of triaxial nuclei in Sec al H]= —hal-F -alta.a’ ~G.o ,a.,atak
V. Further discussion of results and conclusions are given i & a% " PBlalaCpr S PpBala%a! SpT g0
Sec. VI. (2.7

Sy:(_l)jcimcz \/2jc+1(jcmcjc_mc|oo)r (2.9

II. EQUATIONS OF MOTION AND VARIATIONAL

L, 2L+l
PRINCIPLE ha=hat257—7 CabalL)- (2.8

We choose a shell-model Hamiltonian in the form o
Here, for exampleg=(j,,—my).
1 1 To develop a dynamical scheme, we turn to the problem
H= haaLaa+ zFawﬁaLayaLaﬁ EGayﬁﬁaLa;aﬁaB' of obtaining equations for the matrix elements of EE5)
(2.1) and(2.7). We designate a state of interest of an odd nucleus
as|JMwv), wherel is the total angular momentur is its z
component, and are the remaining quantum numbers nec-

. T . _
In this standard model, tha, ,a, are the destruction, cre essary for unique specification of the state. Neighboring even

ation operators for fermions in the shell-model mode lei fied dinaly. |a8tn fori
=(nljm7) (7 distinguishing neutrons from protons- sz nuclei are specified, correspondingly, [&1n), referring to

describes multipole forces ar@,, sz pairing forces. In this 2 heavier neighbor, andMn), referring to a lighter neigh-
version, all multipolarities allowed by angular momentum POr- Below we shall then derive equations for the matrix
conservation are included, though in practice we limit our-€/€ments, referred to as CKeoefficients of fractional par-

selves to the lowest few multipoles of each type. We shalf"t29¢,

also consistently use the summation convention, except

when we wish to highlight some set of indices. With the help (IMv]a,|IM Ny =Viy,(alMn), (2.9
of the definitions

T —
Faygﬁzsy(jamajc_mclLML) <JMV|ajIM|n>—UJMV(C¥|M|n). (21@

XSp(jaMaip = MolLMU)Facab(L), (2.2 e shall require the full notation when we turn to applica-
tions in the next section. For the formal developments of this
section, however, we utilize a compressed notation, with

Lt turns out that not all aspects of our formulation are novel. Thus
an incgmplete versio.nigf the.trace variational pringiple is to pe IMyv—i, IM;n—n. (2.12
found in one of the initial series of papers on matrix mechanics
[55], in which the variational parameters are matrix elements of the ) ) )
coordinates and momenta. This application to particle quantum me- With new symbols defined and discussed below, we thus
chanics was discovered and developed independently by us in se@btain the equations
eral accounts of which the most recent is R&#]. A version of the
tracg variational principle pan, furthermore, be fou_nd i_s in a classic EVi(an)= (e;— Ei)Vi(an)
text in mathematical physid$6]. Here the formulation is close to n

standard Rayleigh-Ritz, in that the quantities varied are wave func- +F [V.* (BN )V, (B'M)Vi(a'n’)

tion. This formulation has found its way into the theory of density aa’BTAL T : !
f_unctlonals[57,58. qut recently the trace va_rlatl_onal principle for + GaZ',BE’[Ui*r(,B' n" )V (Bn)Ui(a’n’),
fields has appeared in a quaternion generalization of quantum me-

chanics[59]. (2.12
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EUi(an)=(—€e.—EX)U;(an) One verifies tha'F the equations of moti(ian) and (2.13
- emerge, respectively, from the requirements

—FagaalUN(BN)Ui(a'n)]Ui(B'n")
+Goa g sl V5 (BN)UL(B' M)V (a'n').
(2.13

§F  OF o
SVE(an) SUF(an)

(2.20

It is natural to inquire at this point if the function& has
In the definitions, to be given below, of the various energiesany simple physical significance, in particular, if it is related
that appear in these equations, we understandBha the  to a Rayleigh-Ritz principle. To answer this question, we
energy of the stat@i) and thatE,, andE,, are, correspond- evaluate the sum
ingly the energies of the neighboring even states, with the
subscript 0 standing either for the ground state, or for the — -
lowest energy state considered, which for conciseness we Tr(H+H)=2 [(n[H[n)+(n[Hn)]. (2.2
shall continue to refer to as the ground state. We thus en- "

counter the quantities The evaluation of this sum with the aim of eventually recog-

nizing the relevant pieces of requires, in addition to the
E=—FE+ E(E5+ Eo), (2.14 standard too_l of co_mpleten_ess, some alge_braic rearrangement
2 - of the trace involving the lighter system, just as was neces-
sary in the equations of motion. We then find that the inter-
e,=h,—\, (2.15  action terms match exactly those in Eg.18), but that the
single particle terms do not. Instead we find

1 _
A=5(Eo—Eo), (2.16 h.—h,=h,, (2.22
x_pE _ 2L+1 [2jp+1
En =En~Eo. 2.19 hy —hat ZmGacac(LH 2ja—+1Faabb(0)EEa-
The physical significance of the quantities defined in Egs. (2.23

(2.149—-(2.17) is evident.&; are the negatives of the energies
of the odd nucleus relative to the ground-state energies of it
even neighborse,, variously primed, are single-particle en-
ergies measured relative to the chemical potentjsedndE}

are excitation energies of the appropriate even nuclei. Finall

in achieving the form of Eq(2.13), we have assumed that . . ) :
andG are real. Given the Hamiltoniai®.1), Egs.(2.12 and attention.(In practice, these extra single-particle terms are
. ), =48-te often ignored anyway.

(2.13 are an exact set of consequences that define a nonlin- We consider then the Lagrange-multiplier terms that ap-

ear eigenvalue problem with eigenval§ie The elements on ear in Eq.(2.18. The relevant question concerns the con-
the right-hand sides of these equations define an effectivBe g-{2.29. . 4 e )
N . ; X : Straints that have been imposed on the variations. Since
Hamiltonian that will be discussed in considerable further
detail in the course of this work.
We display next a functionalF, whose vanishing first > Viten)|?= 2 (nlala,n)=(n[N|n), (224
variations yield the equations of motion, namely, ia a

We are thus tempted to replace the functiafalas basis
or the theory, by a functional that contains the new single-
particle energies. We do not make this change because it
destroys the simple physical significance of the Lagrange
¥nultiplier terms in EQ.(2.18 to which we next turn our

F=€l|Vi(an)|?— eilU;(an)|? whereN is the number operator, we see that the excitation
1 energiesEﬁ enter as Lagrange multipliers for the conserva-
+ =F pur g sl V(BN Vi (B M ][VF(an)Vi(a'n")] tion of nucleons in the heavier even nucleus. Similarly the
2 aa B'BLY i i i . . 2
term involving the sum over thigJ;(an)|* expressesto an
+Ga;rﬁrg[ui*,(ﬁn’)vir(ﬂ’n)][Vi*(an)Ui(a’n’)] additive constantthe conservation of nucleons in the lighter

system. Finally, we show that the eigenvalfjeis (no sur-
. prise herg a Lagrange multiplier for an appropriate normal-
- EF;;T(/E/Z[Uir(ﬁn')Ui'(B'n)][Uf(an)Ui(a'n')] ization condition. To see this we take the matrix element in
the statdi) of the summed anticommutator,
—&[IVi(an)|*+ Ui(an) ] - EF|Vi(an)|?

—Ex[Ui(an)|? (2.18 2 {2,,a}=0.0=2 (2t 1)=2 Qa, 229

=G—-&[|Vi(an)|?+|U;(an)|?]. (2.19  and thus find
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1 a, B are the usual polar and azimuthal angles, respectively,
a % [IVi(an)[?+|U;(an)|?]=1. (226 and write
Orthogonality constraints on the solutions need not be im- “M'K):f dR|R}(R|IM K)
posed, since they follow directly from the equations of mo-
tion. ol 41\ 12
There is more to the story, however. We must note that :( f dR|R)D{)«(R). (3.1)
Eqg. (2.26 is only a sum of required normalization condi- 812 !

tions. From the summed anticommutator for each level,
The identification of a scalar product ofiany-body states
with the WignerD function is not a trivial statement, but is

; {aa,a;‘,}:Qa, (2.27) rather an essential element in the definition of the model to
? be studied. In fact, the designati¢R) for the many-body
we have state is insufficiently detailed and is made more explicit by
the statement
1 2 21_ A
Q—a%[lvi(an)l +Uji(an)[?]=1. (2.28 IR)=U(R)|0K), (3.2

If Egs. (2.12 and(2.13 described a linear eigenvalue prob- W_here|OK> is an axially symmetrip intrinsic state spinning
lem, it would be impossible to impose the additional normal-With angular momentunK about its symmetry axis, and
ization conditions represented by E@.29. For the general U(R) is the unitary rotation operator in the many-body space
nonlinear problem, there is na priori inconsistency; the defined by the Euler angles that specify the rotafiorfor
satisfaction of these conditions will be a part of any fully such a state, we thus note the relation, with3f) = (ny),
satisfactory algorithm. The form of the normalization condi-
tion (2.28 suggests, furthermore, that it may be both useful U(ﬁy)|()K)exp(—iK v)= U(ﬁO)|OK>. (3.3
and natural to rescale the CFP,

The introduction of strictly localized states is, of course, an

Vi(an)=+2j,+ 1lvi(an), (2.29 idealization that ignores the reality of band termination, but
it is a standard approximation for well-deformed nuélei.
Ui(an)=+2j,+1u(an). (2.30 When Eq.(3.1) is substituted into the definition2.9) of

V and(2.10 of U, and use is made of completeness, standard

There is considerably more to the formal theory than whaproperties of the rotation group, and of the definitions
has been presented thus far. However, we have all the tools

needed for the further development in the text and thus rel- (=1 My (im,K) = (IMp|a,|0K), (3.5

egate the additional theoretical considerations to the Appen-

dix Gaw(im K) =(IMv]a]_,|0K), 3.6
lll. DERIVATION OF PARTICLE-ROTOR MODEL: we obtain the formulas

AXIALLY SYMMETRIC CASE

8

As a first illustration of the formalism presented in the , (alM K)=E _
previous section, we assume that the efeme) nuclei are in IMy ! Y 2]atl
a single axially symmetric banlM K), whereK is the . )
component of the angular momentum along the figure axis. X (IMI=M|jama) (JK= Kajara| 1K)

There are at least two cases where it makes some physical X(—1)a ay o (jara,K)y (B
sense to isolate a singkevalue, where it is the ground-state a

band withK=0, or where the band has a larevalue and

we are dealing with an isomeric state.

Our first task is to express the CRPandU in terms of 2The previous discussion and that which follows does not take
the amplitudes that occur in the PRM. This is done by intro-into accountR invariance, the invariance of the quadrupole shape
ducing deformed intrinsic basis states and applying standarghder a rotation ofr about a principal axis. To include this sym-
properties of the rotation group, leading to E¢3.7) and  metry in the discussion, we replace the staid K) by an eigen-
(3.8) below. These equations underlie the further considerfunction of R,
ations of this section, and variants of them play a similar role [IM,K]=3{IM K)+(— 1) K[IM, = K)}. (3.9
in Secs. IV and V. We first use rotational invariance to studywe then imitate the arguments starting on p. 8 of REE. The task
the structure of the amplitudésandU defined in Eqs(2.9) s to sort and collect the extra terms that appear both in the equa-
and(2.10, respectively. We thus introduce a complete set oftions of motion and in formulas for one- and two-particle observ-
states|R) localized in the Euler angleR=(aBy), where ables.

(-1
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82 the odd nucleus are any states that can arise from the cou-
UJMV(aIM,K)zz - pling. Returning to a full nomenclature, this calls for the
“a 2Jatl identifications

X(_l)J*MJrja*Ka*jaera H—>|M|K, n—>|M|K,

X (IMJ—M|jmy) i—JMv. (3.9

X (JIK—=k,j aKa||K)¢JK_KaV(jaKa,K), We are assuming here that there are corresponding bands in
the two even nuclei that couple to the given odd nucleus. In
(3.9 the following we shall also suppress the bar and underline in
the CFP, understanding them from context, but continue to
emphasize this distinction in the energies.

At this point we have a choice whether to transform the The calculation that now follows is mainly an uninterest-
equation of motioEOM) or the variational principle to the ing exercise in angular momentum algebra. We choose to
intrinsic system. It is most succinct to base further discussiommmediately display the final result, following that with the
on the variational principl€2.18. We evaluate this expres- necessary definitions and a few relevant detgfote that
sion when the core collective states are restricted to théhere is also a condensation in the notation withx( ,K)
members of a single band of an axial rotor, and the states of>(a), (jaxa=1, K)—(a=x1).] We thus find

_ 1 _
]:: E (Ei;_sJV)|XJK*KaV(a)|2_ 2 (E,E;+EJV)|¢JK*KaV(a)|2—§ 2 XjK*Kav(a)f(‘JK)

Jvjaky Jvjara Jvjara

X[ \/(‘:H' K—ka)(J—K+ka+1) \/(J a—Ka)(Jat Kot 1)XJK—Ka—1V(a+ 1)

+ \/(J_ K+ k) (J+K—ka+1) \/(ja+ Ka)(ja— Kat 1)XJK*Ka+1V(a_ 1)+ 2(K—ka) KaX k-« Ka(a)]

aja

1 - -
5 3 Bk DT INOTK= k) A=K F kot Do ko) (at Kat Dby, 1,(a+1)

Jvjara

+ \/(J_ K+ k) (J+K—ka+1) \/(ja+ Ka)(ja— Kat 1)¢JK7K3+11/(3_1)+2(K_ Ka)Ka(ﬁJK*KaV(a)]'

+ > °F L b")x3 b X
2 aa’b’b( )X\]K*KbrV( )XJK—KbV( )XJ’K*KarV’(a )XJfK_Kan(a)

4 ’ ’
1733 vv'jg. . kg ..

1
- EFba’b’a(L)¢JK—KbrV(bl)(ij—Kbv(b)(ﬁJ’K—Ka/V’(a,)¢j’K—KaV’(a)

1"

* ’— jar+i
+Gaa’b’bXJkabrv(b’)d)ijKbv(b)(z)J'K*Ka'V'(a,)XJ’KfKaV’(a) (_l)Kb+Kb trlar b Lt

X(ZL‘Fl){ja’ ja L](J J ||,, )(] J ||I! )(I// JK |J;K )(I,,
. . " - K rKpr Kpr — K 1 — Kgr|pK Kp— Kgr Kpr — K — Kp - K K
(2J'+1) ib: b I a alb’®b b a/\la a’'lb”b b a b a b a b

_KaIJK_Kb|J,K_KaI). (31@

Note also that the factors involving8=? in Egs.(3.7) and  f(JK) and the corresponding underline quantities. These

(3.8 have been absorbed in a rescaling of the intrinsic amarise as follows: As part of the definition of an axial rotor,

plitudesy and ¢. - we assume that, equally for the barred and underlined quan-
The only undefined quantities in this equation arg, tities,

014316-6



FOUNDATIONS OF SELF-CONSISTENT PARTICLE . . PHYSICAL REVIEW C 63014316

E*(IK)—E*(I2=K?) =E*(11+13+13-K?), With the aid of the previous considerations, we can finally
(3.11 provide the required definitions,

where we have introduced intrinsic components of the angu- . .
lar momentum. The arrow indicates the replacement of an £3,=&5,—E*[J(J+1)—K?], (3.19
eigenvalue by a vector operator. This is done by making use
of the appropriate one of the CG coefficients, namely,
, IE* .
E* (IK)(JK— kqaj axal 1K) 3 =f(J2-K?)J;, (3.15
i

=[JIK—kajakal EX (I?—K?)|IK]. (3.12

Further, we see from Ed3.12 that we may replacd? by  where in the simplest cask is just the reciprocal of the

J+ . and write(with j,—j), moment of inertia. There are corresponding definitions for
. B the underline quantities. These observations account for the
E*(12—K2)=E*[(J+])2—K?] form and origin of the first four terms of E¢3.10, which

constitute single-particle, normalizatiofeigenvalug and
Coriolis coupling terms. To reach the final form of the inter-
action term requires that one sum over all magnetic quantum
numbers in the laboratory system and over the core angular
It is not necessary for these considerations E(aK) have momenta. ThIS inVOIVeS baSica”y the deﬁning equations f0r
the simple form of a rotor spectrum, only that it be a function6—j, symbols, Egs(6.2.6 and(6.2.7 of Ref.[61] and the

as indicated. The first term of E¢B.13 may be replaced by sum rule(6.2.12 of the same reference.

an eigenvalueE*[J(J+1)—K?)], and the second term  BY varying in turn with respect toxjc-,,,(a) and
leads to the Coriolis coupling. b3k «,»,(a), we obtain the equations of motion

Bk e @1
( JFogditee. @13

_ 1 - -
€ 30X K-, () = €4X 3K — () — Ef(‘] K)VI+K=ka)(J=K+ kgt 1) V(ja= Ka)(jat Kot D xik-w,—1.(0)

— V= K+ ra) I+ K=kt D) V(jat+ ka) (Ja= Kat 1) Xak- eyt 10(8) = 2(K = Ka) KaX gk - e,()

+[Faarnb(L)Xark ey (B X3k ey (D) Xok— (@)

, * , 2L+1 ja' ja L
+Gaa'b/b(L)XJ'K*Kb/V’(b )¢.]’K7Kby’(b)¢JK7Ka/v(a )]2J+1 i dn |l
X(Ja— Kajb’Kb’“Kb’_Ka)(ja’_Ka’ijb“Kb_Ka’)
X (1 kpr — kqd K= kpr | IK= k) (1 kp— k00 I K= kp| IK— k5/), (3.16

1
£00bak—w(B) =~ €2k wp(@) T 5 F(IK) VA+HK=ka) (= K+ kgt D V(ja= ko) (ot Kat 1) ik, - 10(2)

V3= K+ k) I+ K= kgt 1)V(jat ka) (Ja= ka+ 1) dor— 1)+ 2(K— ko) Kadyk— (@)

—[Fba’b/a(L)(bJ’K*KbrV’(b/)¢j’K7KbV’(b)¢JK*KarV(a,)

, * , 2L+1 ja’ ja L
+Gaa’b’b(L)¢J’K—Kb/V’(b )XJ’K—KbV’(b)XJK—KarV(a )]2J+1 Jb/ ]b [
X(ja— Kajb’Kb’llKb’_Ka)(ja’_Ka’ijb“Kb_Ka’)
X(IKb/_KaJ,K_Kb/|JK_Ka)(IKb_Ka/J’K_Kb|JK_Ka/). (317)
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We add the normalization conditions for the particle-rotorwith the single-particle, eigenvalue, or Coriolis coupling
model that follow from Eq(2.28. We find terms, as we shall see below. However, the interaction terms,
as derived, do not provide a natural pathway to the limit
S (@)|2+ | (a)[2]=2j.+1 sought. Therefore we start anew in this section, but concen-
s XIK=rav K=Ky Ja™ L trate on deriving an approximate version of the PRM in
(3.1  Which an expansion in({)/J) has been made, the main dif-
ference compared to the previous calculation residing in the
What we have derived is actually a generalized form of thgreatment of the interaction terms. We derive an approximate
PRM in that it conserves both angular momentum, as doegersion of the PRM and then introduce the additional ap-
the usual model, and particle number. In contrast the usugiroximations necessary to reach the cranking limit.
model, it is also fully microscopic. The relation to the usual For present purposes it is convenient to work in

PRM has been elucidated in a previous wftk]. coordinate-spin-isospin space, designatedxbyWVe work
with amplitudes that we refer to as coordinate coefficients of
IV. ALTERNATIVE DERIVATION AND fractional parentageCCFP,

ITS CRANKING LIMIT: AXIAL CASE "
Vimu(XIMK) = (IM|4(x)[IM K), (4.1)

In addition to the PRM, self-consistent or otherwise, we R
are interested in the cranking theory, valid in the limit in U v (XIM K) = (IM o] ¢ (x) [ IM K, 4.2
which a single-particle angular momentup may be ne- . -
glected compared to the collective angular momentum. Irwherey(x) is the nucleon destruction operator at the space-
principle, we should be able to derive this limit from the spin-isospin poink. In terms of these amplitudes, we rewrite
form of the theory developed in Sec. Ill. There is no problemthe variational functionalF of Eq. (2.19 as

F=[e(xx') = E3,8(x—x") = E* (IK) 8(x—X") IV 31, (X' IM  K) V1, (XIM K)
—[e(xx’)+SJ,,é(x—x’)+E*(IK)5(X—X’)]UJMV(XIM|K)U§MV(X’IM 1K)

1
+ EF(xx’x”x”’)VJ,M,V,(x”lM ,K)Vj,M,V,(x”’I "MKV (X T M K) Vg, (XIEMK)
+FGOXX' X" X"V 3rm7r (X' ITM |K)Uj,M,V,(x"’I "M KU (X 1T M 1K)V (XM K)

1
= SFOXX ) Ugraaryr (X TMIK) UG, (XM K) Uy (X1 My K) Uy (XEMK). 4.3

We have set’ = €”= € and shall adhere to this simplification on expressions for the CCFP that are derived by the same
for the remainder of our presentation. To carry out the transkitial transformations that led to Eg.7) and(3.8), namely
formation to Eq.(4.3), we have made use of the basis in

which e(xx") is diagonal,
(VJMV(XMIK)>

a,= % () P(x), 44 \Us(xMK)
0u(X) = (XX’ N 4, _ (3 XJMrV(Rx,K)) /2141
€30,(X)=€(XX") @4(X") (4.5 deDMM'(R)(%MrV(RX,K) = Dik(R),
FOXX'X"X")=F ay580 0 (X) @, (X") 5 (X") pp(X"), (4.9
4.6
GOXX'X") =G50 s (X)) @55 (X ) 0(X ) @), Xomn(RXK)=(IM|(RX)|0K), 4.9
(4.7)
The major device of the present derivation is the transfor- b3m(RXK)=(IM| 4 (RX)|OK), (4.10

mation from angular momentum eigenfunctions to eigen-
functions localized in angle space, a technique that has al- . .
ready been exploited in Sec. lll. We base the developments H(R)=U"LYR)H(x)U(R). (4.1)
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We now substitute Eq4.8) into Eq. (4.3), and using the e(RXRX) = e(xx'), (4.13
restricted completeness relation
2|+1 ! " — P\
2 Dl(vll)K(R)D(hJI)z(R,) - F(RXRXRX'RX")=F(xx'x"x"). (4.19
IM o

A n, _ L1 Again we first quote the final result of the evaluation,
=do(n—n")exd —iK(y—y )]ﬂ (4.12 including the expansion in{({)/J) of the interaction term
and subsequently provide such details as are essential. We
and the relatior{3.3), we can eliminate the core angular mo- find
menta. The further evaluation also requires elementary prop-
erties of theD function and the rotational invariance of the
Hamiltonian, as expressed by such relations as F=F1+F,,

f1=[e(XX’)—S_JVE(X—X’)]xJMV(X’)XFMV(X)—[e(XX’)+53V5(X—X’)]¢JMV(X)¢§MV(X’)+J§M:vf_(J K)

XEM V(X)

1 1
X E\/(‘]_ M)(J+M+D)j i xam+1(¥)+ E\/(J‘*' M)(I=M+1)j_xam—1,(X)FM]zxamu,(X)

d’jMv(x)v

1 _ 1 : .
_%’} f(JK)[E\/(J_ M)(I+M+1)j1 dams1.(X)+ 5\/(34' M)I=M+1)j_dim-1,(X) +Mj3dim,(X)

(4.15

Fo= ! 1F(xx'x"x”’)x X)X 0 X" X (X)) X3 (X)
2 L 2J+1|2 JMv IM! ! JM’"v JMv

IMM’ vy

1
+GOXX"X") Xamor (X)) DTy (X)) bamr (X ) X3 (X) = EF(XI”X,X”X)(ﬁJMV’(XH)¢jMrVr(X,/I)¢JM’V(X,)¢jMV(X)

(4.1

We shall not comment further on the derivation of the Coriolis coupling ternss, dfoth because the result is completely
equivalent to the corresponding terms of E210, and because such details as might be of interest are a special case of those
given in the next section on triaxial nuclei. We concentrate therefore on the origin of the interactiotferide consider the
first term of the interaction at the stage that the sums bverandl’M’ have been carried out,

1 I M ) —1lp Q")* —1p7 AN ’ VAN
> dRARF(xX'X"X")D 7 mr(RT*R)D i (R™R) xamr o(RY ) X3mr(R'Y) Xarmm o (R'X) X5 v, (RX). (4.17)

Introducing the definition
R IR’ =R, (4.18

and replacing the integral ov&' by an integralR, we could do the integrals exactly by decomposing the amplitydeso
irreducible tensors. We resist the temptation to do this, since a full calculation was carried out in Sec. Ill. It is more useful for
our purposes to proceed approximately by expandingbout the unit matrix wherever it appears as the argumentof a
function. This brings in at each order angular momentum operators acting on single-particle wave functions and therefore
dimensionally is the source of the expansion{i(J). For the interaction term the cranking limit will arise from the leading

term of this expansion. With the help of the rotational invariance of the interaction and the orthonormality relationB of the
functions, we reach the result

1

s 1
2 s, 2341

F(XX,X,IX/”)XJMV’(X”)X:’;M’V’(XW)XJM’V(X,)XSMV(X)’ (4.19

which is the first term ofF>.

We are finally ready to discuss the cranking limit. The essential observation is that once the expansion to leading order in
((j)/J) has been made both in the Coriolis coupling and in the interaction terms, the resulting approximate furctional
presents itself as a single sum oveHowever,
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angular momentum is still conserved at this juncture. We These assumptions suggest the following definitions of
lose angular momentum conservation by assuming that corthe components of the angular frequer{oyerline and un-
sistent with the condition{{)/J)<1 we may identifyM and  derline understood

K, i.e., we may neglect the angular momentum transferred to

Ior f)rom the particle, and write, furthermore (defined be- w-(K)=f(JK)C: JITK+1)(J*K), (4.22
ow),
X3ko(¥) = 23(@) + 1x (%), (4.20 03=TIKK. (4.23
Xiks1,(X)—=V2J(w) +1C+x,.(X), (4.21)  The introduction of the factor€- may appear gratuitous at

first sight, but it is needed, as will become especially evident
i.e., the amplitudes differing il from the “central value”  when we treat the triaxial case, to guarantee that in the crank-
by a unit are assumed proportional to the central amplitudéng limit the theorem that the angular velocity is proportional
(which is defined as the cranking amplityidep to scale fac- to the angular momentum is valid in this linji2].

tors C~. discussed below. Similar definitions hold for the Remembering the definitiof8.14) and reinstating Carte-
amplitudes. The facto/2J+ 1 is inserted for convenience, sian intrinsic coordinates for the Coriolis coupling terms, we
as will be evident from Eq(4.24) given below. obtain the cranking variational expression

[F1(23(w) +1)]= (XX ) X (X )X 5(X) — €(XX') oy (X) b1, (X') + [01] 1 X0 () 1, (X)

1
L0 iJihuu(¥)]675,(X) + 5 FOXXX") Xaw (X)X g (X)X X )X 50(X)

1
+ GOXX'X") X (X") gy (X)X (X ) $5,04) = SF XX X)) iyt (X") 75,1 (X) o X') 5,(X)

_;wVXwV(X)X:)y(X)_8wv¢wv(x)¢:w(x)- (424)

The equations of motion that follow are number conservingFurther useful equations satisfied by or defining the model
and according to the definitior@.22 and(4.23 allow so- include
lutions with principal axis cranking.

IMno)=[IM Ka)cl, (5.5
V. TRIAXIAL ROTOR: CORE-PARTICLE COUPLING
MODEL AND CRANKING LIMIT (o)
. . . . Son =2, cUI*cl ) 5.6
In this section, we assume that states of interest of neigh- nn EK: Kn “Kn 5.6
boring even nuclei can be described phenomenologically by
a Hamiltonian
g lo
L S =2 ek e, (57
2 2 2
Hc=§a,||+za”{| ’Ij}+ (51)
In the calculations to be described below, we shall retain N AR N
only the first term ofH,. The underlying model arises as (Ro[IMK o) = 82 Dyk(R). (5.8

follows: We assume that we can identify states of the appro-
priate even nucleus d$M no), which we read as thath
state of angular momentuirbelonging to a triaxial intrinsic
structureo. We also define a rotated intrinsic state

We turn to the evaluation of the terms in the variational
functional 7. We shall follow the methods of both Secs. IlI
and 1V, depending on the aim of a particular fragment of the
|Ra)=U(R)|00). (5.2  calculation. Starting from the representation

It is part of the definition of the model that the scalar product Vu(alM no)=(IM V|aa|RU>FI(\JI)|n(R)
Ro|IMna)=F{) (R) (5.3
(RolIMino)=Fiy =(IMv|a,|Ra)D( (R)cky, (5.9

satisfies the eigenvalue equation

we can derive a formula for the current version of the GFP

() —Eg* (1
HcFhn=E7(IN)Fjin - (54 that is analogous to E@3.7), namely
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82 Ty With the help of the completeness relation
Vau(@iIMine) =2, \/5r—7(-1)
(lo) (lo) " — D!
X (IM 3= M| M) (IKjarcal IK + 1c5) ,len Fun(RIF (R)=6R-R"),  (5.18

X(— 1)ja+KaXJKv(j aKaO')CEZ)Kan )
(5.10

(_1)j+mX.]Kv(jm0'):<JKV|ajm|60>' (5.1 E*(|"‘0')|VJMV(C¥|M|n(7')|2:f dR[H(1))(IMv|a,|Ra)]

we thus find for the total term

The corresponding formula for the CRPis X(IMvla,|Ro)*. (5.17

UJMV(CYIM |n0')
The square bracket may be reexpressed as

8 : :
— _ (_1)J—M+Ja—xa+1a+ma R R , (e
Kra ¥ 2jatl HC(|i)<JMv|aa|Ra>=[Hc(|i)Dgﬂ%(*(R)Dm:Ka(R)]
X(IMJ—=M|jamg) (IK|akalIK+ k ~
(IMJ=M[jama) (IKjaky| a) <(3Kvla . 00 5.18
X ¢J Kv(j aKao-)Cf(li)Kan 1 (513
_ : ~ As far as the application @ in Eq.(5.18) is concerned, we
bam(jakac) =(IMv|aj _, [00). (5.13  then write

With these formulas, we find the contributions of the sim- IH
plest single-particle terms to take the form, in the shell- Ho (1) —=He(Ji+])=Ho(I)+ —)+--, (5.19
model or mode representation, i

> [(ea=E3)|xak(@)2— (€2t El ()21 and work only to the order indicated explicitly.
IKvjaxa At the same time it is convenient to rewrite

(5.19

We study next the term involving the Lagrange multiplier

.1 1 1
_ Ho(T)==by(I 1 _+1_1.)+ =by(12 +12)+ =bal?
E*(In). With the help of the defining Eq5.4) and a sub- A R 2738

sequent integration by parts, we have first of all (5.20
E*(ln)VJMV(|M|nO'):f dR[HC(TI) a1=b1+b2, a2=b1—b2, 33:b3. (521)
X(IMv|a RV FI(R). It is now straightforward to calculate the contributions aris-
“ in ing from the two terms of Eq(5.19. For the first term we
(5.19 find

1
[Xaku(@)[27 b2 (I=K+2)(I =K+ 1)(I+K=1)I+K) xsk-2,(2) X5k, (2)

2 1 2 1 2
~8a| | 5[ I(I+1)~K?]+ 5baK

1
+ 702+ K+2)(I+K+1)(I-K=1)(I-K) ks 2 Xk, (@) | (5.22

and for the second term,

1 1
—8? zbl\/(J_ K+1)(J+K)(jat kat1)(ja— ka) xok-1,(2+ 1)+ Ebl\/(J+ K+1)(J-K)(ja—kat1)(jat ka)

1
X xk+1(@a—1)+ Ebz\/(J_K+1)(J+ K)(Ja=xat 1) (jat ka)xak-1.(2—1)

1 . . .
+ Ebz\/(J"‘ K+1)(I=K)(jat kat1)(ja— ka) X3k+1,(2+ 1) +bsKkaxsku(jakao) | Xk, (Q)- (5.23
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Both of these ternjns.can .b_e |Qent|fled as familiar ;truc- Yaru(X)=(J Kv|fp(x)|()a) (5.34)
tures. By means of this identification we shall have achieved
both a simpler form for the particle-rotor formalism and for

its limiting case, the cranking formalism. First consider Eq. =X ar(X), (5.39
(5.22. Note that the content of Eq¢5.4) and (5.5) can be
rewritten as and the similar equations for the terms involvishg We thus
find the contributions
H DG =Dy ko (Hokrk (5.24
= €3,/ X3 ()2 €XX) X 37X ) X3 7,(X)
(M) e8P =E*(In)cl?. (5.25

+ [ 310 X 37X IX5(X),

This eigenvalue equation was associated with even nuclei 5 ) .

and thus with integer values of the angular momentum. By — &3 B3 (X)|*+ €(XX) by (X" ) $7,,(X)
analytic continuation, we can define a corresponding eigen- : %

value equation for odd nuclei as follows: +ai[3i]i(%) 637,(X) [ h37,(X). (5.36

(J) - ) The cranking limit of these terms may now be taken by
[He(d Mk G, =BT (IT)C7, (5.26 means of the replacements that generalize E421) and

(4.20,

where J,K are now half integral. We then see that if we

introduce a new set of particle amplitudes., by means of ,
the equation P PIHERS Y Xort(X)ZIFIC(7)x000, (3D

(5.27) and 7' refers tor or any of the values coupled toby the

XakoJ ) =Cx 3 &), _ T A _ _
matrices ofJ;, with C_(7)=1. This is the essential blurring

we can transform Eq5.22 into the form of angular momentum conservation that takes us from the
conserving particle-rotor approximation to the cranking ap-
roximation. It allows us as well to define the components of

~E*(I7)|xan(a)]% 528 P P

the angular velocity in generalization of Eg@.20),

Finally, as we did for the axial case, we can combine energy
terms by means of a definition o(n=a> CA7) (37 |3]37), (5.39

£3,=&5,+E*(J7). (5.29
T =7(7). (5.39
We turn our attention next to E¢6.23. We note first that

this expression is an expanded version of As usual, there are corresponding equations for the ampli-

s tudesq.
—[adijixak(@IXk(D), (5.30 We may thus replace E@5.36) by its cranking limit

whereJ; acts on the value oK andj; acts on the value of (234 1)[ &, |xu.(X)|2+ €(XX) xurn(X' )X, (X)
Kk,. Transforming to the new amplitudeg),,, expression

(5.30 becomes + @i 00 X)X, (0 (234 D[ = 8 4] b (X[
an +e(xx’ X" )* (X)+ wiji(x X X),
a3 @ (), (5,31 €00 ) (X ) B (X) + 01 (X) 6, (X)]5,(X)
(5.40

where now

- , which is indistinguishable in form from the corresponding

JiXam=X3:,(37"|Ji|I7), (532 terms of Eq.(4.24.

_ It remains for us to compute the contributions of the in-

(I7']3|37) = cfg],) L(IK'[ 3] IK) Q)™ (5.33 teraction terms. We consider first an exact calculation analo-

gous to that carried out in Sec. lll, starting from the repre-
For the purpose of taking the cranking limit and compar-sentationg5.10 and(5.12) for the CFP in the triaxial case.
ing the forms derived in Sec. IV, we rewrite the results foundlt is straightforward to generalize the corresponding calcula-
so far and the corresponding terms involvingamplitudes in  tions of Sec. Ill, as soon as one utilizes the orthonormality
coordinate space. For this we require only E@s27), the relations involving the coefficien ('21 at the first step. The
corresponding equations final result for the interaction terms is
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1
> =Faarbb(L)Xok— e o (D)X 5 e (DI X0rkr i (@)X e ()
I3 KK 0 g g L2 b b @ a

1
= S Fbarbra(L) Bk (D) B (D) bty (@) B ()

+ Gaa’b'bXJK—Kbrv(bl)¢jK' beV(b)d)J'K/ —KarV’(a,)Xj/K—Kay/(a)

X(_1)Kb+Kb,—1+ja,+jb+L+l"

(2L+1){ja’ ja
(23'+1) Lib b
X(I,/Kb/_KaJK_KbrlJ,K_Ka)(I”Kb_KarJK,_Kb|J,K,_Kar). (541)

|u} (Ja— Kajb’Kb’“HKb’_ Ka)(ja’_Ka’ijb“"Kb_ Kar)

Superficially, the change compared to E8,.10 is that instead of a fixed value &f, we have a double sum ovirandK’.

The same expression holds for a finite number of interadfifzands provided the sums are restricted correspondingly.
Finally, we consider the calculation of the interaction term by the method of Sec. IV, needed to obtain the cranking limit.

Here, in place of Eq94.8—(4.10, we utilize the forms

Vam(XMin) | (3)% (XJM'V(RXaU)) [21+1 0

(UJMV(XMIn))_JdRDMM/(R) bim (RX0) 82 FM'n(R)’ (5.42
Xau(RX.0)=(IM2|}(Rx)|00), (5.43
b (Rx,0)=(IMv| " (RX)|00). (5.44)

Once the full completeness relatidf.16) is utilized instead of the restricted completeness relatibh?), the calculation
mimics the one carried out in Sec. IV. In terms of the amplituges and ¢;,,, the result is

1 1 VIV AN " ’ *
2 535715 PO XK ) X (XX, (X Xar o X DX (%)

’ ’
Jrri vy

1
+ G(XX,X”XH/)XJTV’(X”) d)j,rr VI(X/”) ¢JT’ V(X, )XjTV(X) - E F(X/”X/X”X) ¢JTV’(X) ¢j-ﬂ V'(X’ ) ¢JT’ V(Xm) ¢j7’]}(x”) . (543

The cranking limit of this expression is indistinguishable equations of motion for the CFP are formally exact. These
from the corresponding terms of E@.24) just as was the equations of motion and an associated variational principle,
case for the single-particle terns.40. Thus theformofthe  worked out in Sec. Il, form the basis for the remaining
cranking variational principle for the triaxial case is indistin- considerations.
guishable from that for the axial case and need not be written As the first application, we derived in Sec. Il a self-
again. It is understood, however, that we are dealing with full
three-dimensional cranking, and that the single-particle wave———

functions have suitably modified symmetry. 3In the earliest papers on the KK approddhs], a more general

shell-model interaction was used in the derivation cefiumber
VI. SUMMARY AND DISCUSSION equations. An essential part of the derivation involved the introduc-

h died th . ic f dati f th tion of the physical arguments needed to separate this interaction
We have studied the microscopic foundations of t €into multipole and pairing contributions. As a consequence of the

particle-rotor model and of the cranking model for both axialjimitations of this procedure, the equations of motion found from it
and triaxial nuclei. The microscopic model was chosen in e not exact. Nevertheless, the final equations are formally equiva-
form in which the interaction is given at the outset as a suMent to those utilized in this paper. The explanation for this concor-

of multipole and pairing forces. We carried out the studydance is that in the approach in this paper, the “error” involved in
from the point of view of the Kerman-Klein method based the separation has already been built into the starting Hamiltonian,

on the equations of motion for single fermion operators, ancs a further compromise, widely accepted, in the definition of the
this choice of interaction has the advantage thatthamber  microscopic theory.
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consistent particle-rotor model for axially symmetric nuclei. other feature of our derivations of cranking models is that
The derivation was carried out using basic ideas developedumber conservation is maintained.
in Ref.[15], where, starting from a semimicroscopic version Nevertheless, in the light of recent developments associ-
of the theory, we derived the standard non-self-consisterdated with tilted cranking42—46, possible limitations on our
version of the particle-rotor model. The present discussiowork have to be addressed. Superficially, our results apply to
complements the previous one in the sense that it starts frolwne quasiparticle spectra of odd nuclei, whereas the current
a microscopic theory and carries the reasoning up to the eddgecus of interest is on at least two quasiparticle spectra of
of the semimicroscopic form. even nuclei, and even more on multiquasiparticle states. In

We began this work with the prejudice that, as apposed tprinciple, however, these examples are covered by our con-
previous treatments, a natural path to the cranking modediderations. Thus the two quasiparticle case is readily derived
involved passing through the particle-rotor model. Thoughfrom the formalism developed in the Appendix. The multiple
we were ultimately able to confirm this prejudice, the versionquasiparticle case is covered if one replaces the reference
of the particle-rotor model derived in Sec. Ill, though a use-ground states of the even nuclei by suitably chosen band
ful one for application$15], does not appear to be useful in heads of two quasiparticle bands. Details of such calculations
the further transition to cranking. For this purpose we mustre best addressed within the framework of specific applica-
be able to expand all contributions in powers ¢f)(J), the  tions.
ratio of a characteristic single-particle angular momentum to
the collective angular momentum. We have not discovered aAppgENDIX: FURTHER FORMAL DEVELOPMENT
such an expansion for the interaction forms derived in this OF THE THEORY
first treatment. Therefore in Sec. IV we start anew, utilizing
an approach already described briefly for two-dimensional The theory developed in Sec. Il was sufficient for the
rotations in an early publicatiof50]. Rather than pushing purposes of the remainder of the body of this work, a study
through to a formally exact result, we stop the calculation apf the strong-coupling limit. However, for the formulation of
the leading order of the small parameter, and thus obtain a#seful algorithms applicable to obtaining solutions of the
approximate version of the particle-rotor model that still con-fully microscopic theory, it is also convenient to have a for-
serves angular momentum, but is only a step away from th&wlation in terms of a generalized density matrix.
cranking limit. This further step violates angular momentum To begin the extended development, it is helpful to intro-
conservation by the way in which an angular velocity is in-duce a more concise representation of the equations of mo-
troduced to replace the collective angular momentum. Irfion (2.12) and(2.13) for the CFP by defining the vector
Sec. V the considerations of both previous sections are gen-
eralized to the triaxial case. Vi(an)

Several special features of our treatment should be high- Ui(an))’
lighted. For the axial case, as soon as the neighboring even
nuclei are represented by bands with nonvanisiinglues, The equations of motion can then be written
we have tilted cranking in its simplest form.fortiori, in the
triaxial case we derive the possibility of full three- EVilan)=H(an,pn")¥;(Bn"), (A2)
dimensional cranking. Within our mode of analysis, these
statements may be taken to have the status of theorems. AwhereH(an,Bn’) is the Hermitian matrix

‘lfi(an)=( (A1)

(64— EX) Snn Sup+ T (an,pn’) A(an,Bn’)
H(an,Bn’)= R , (A3)
A*(Bn',an) (—ez— En)énnréaﬁvLE(an,,Bn’)
|
and the potentials are defined as A(an,yn")=G 5l UF (n")Vi(Bn)]
=G,ypsR1A BN, 6n"). (A6)

T(an, yn')=F 56l Vi (BN )Vi(N)] - . , ,
Here we have utilized a generalized density matrix

=FayspRua(on,BN"), (A4)  R(an,pn’), defined as
r Y — * ’ 7?'11 7?'12
Llan, yn")=F 550, U7 (Bn")Ui(6n)] R(an,pn')=Wi(amWi(pn)=| |, (A7)
21 22

1
=Fopay I 5 (1773 Rao( 60, 507), - (AS) satisfying the idempotent condition

014316-14



FOUNDATIONS OF SELF-CONSISTENT PARTICLE . . PHYSICAL REVIEW C 63014316

R2=Q7R. (A8) it follows that the variational condition applied to E@\10)
yields the equation
The remainder of this discussion is devoted to the formu-
lation of the theory in terms of the matriR. The first step is H-OR-—RO+OOQ=0. (A12)
to combine the equations of moti®A2) with their complex
conjugate equations so as to eliminate the eigenvafies From this condition, Eq(A9) is readily derived by forming
We thereby obtain the following equations for the generalthe appropriate commutator.
ized density matrixRr: However, Eq.(A9) does not exhaust the content of Eq.
(A12). Starting from the latter, we can derive the pair
0=R(an,yn")H(yn",pn")—H(an,yn")R(yn",pn"),
(A9) RH=ROR=HR, (A13)
i.e., we find the vanishing of the commutatpR,H]=0.
We exhibit next an alternative derivation of E#9) uti-

lizing a variant of the variational principl€.18, (2.19, a
formulation that contains, as we shall see, more information

than just Eq.(A9). Consider the functional Substituting this result back into E¢A12), we obtain

which implies that

H=0Q. (A14)

D=G—0(an,Bn)[R23Bn’,an)—QR(BN",an)],

(A10) H- 5 {RH)=0. (A15)

where the “new” constraint with Lagrange multiplier matrix

is for normalization in the density matrix form. Since Equations(A9) and(A15) taken together provide a powerful

s approach to the construction of algorithms for the solution of
—g=H(an,Bn’), (A11)  the KK equations. Further discussion at this point would be
SR(BN',an) severely premature.
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