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Foundations of self-consistent particle-rotor models and of self-consistent cranking models
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The Kerman-Klein formulation of the equations of motion for a nuclear shell model and its associated
variational principle are reviewed briefly. It is then applied to the derivation of the self-consistent particle-rotor
model and of the self-consistent cranking model, for both axially symmetric and triaxial nuclei. Two deriva-
tions of the particle-rotor model are given. One of these is of a form that lends itself to an expansion of the
result in powers of the ratio of single-particle angular momentum to collective angular momentum, which is
essential to reach the cranking limit. The derivation of the latter also requires a distinct, angular-momentum
violating step. The structure of the result implies the possibility of tilted-axis cranking for the axial case and
full three-dimensional cranking for the triaxial one. The final equations remain number conserving.
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I. INTRODUCTION

The aims of this paper are to study anew the foundati
of the particle-rotor model@1,2# and of the cranking mode
@2#. The basic procedure is to apply the Kerman-Klein~KK !
method@3–5# in a suitably defined strong-coupling limit to
standard microscopic shell model. Before entering into a
cussion of this subject matter, it may be useful to the rea
to begin with a brief history of a method that was introduc
almost four decades ago. Such a summary serves se
purposes. First of all, despite the fact that the KK meth
provides a fundamental theoretical formulation for the stu
of collective motion, its practical impact on the field o
nuclear structure has been minor. It may be importan
point out why this has so far been the case. We also exp
the timing of the current formal paper by its relationship
recent successful applications. Finally, we observe that in
role as a general method of applying Heisenberg matrix
chanics, the KK techniques have been applied success
outside the nuclear many-body problem, to particle quan
mechanics and to relativistic quantum field theories.

The KK method was introduced into the nuclear man
body problem as a method of restoring the broken symm
of mean-field theory@3#. The earliest papers@4,5# were de-
voted to the derivation, starting from a formulation that r
spected all the relevant symmetries, of the standard appr
mations for the study of vibrational and rotational nuclei a
the suggestion of ways of going beyond those approxim
tions. There followed more than a decade of developmen
applications, mostly, though not exclusively, by the writ
and associates, work that has been reviewed at length@6# and
more briefly@7#. Our applications were mainly to the stud
of nuclear vibrations, but at the same time there was furt
development of the theory. During the same period,
theory was reinvented by Belyaev and Zelevinsky@8–10#
and applied by them to the study of deformed nuclei, us
perturbative expansions about the deformed mean-field li
A suitably chosen subset of our papers and their papers
be regarded as permanent contributions to the subjec
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nuclear collective motion. With regard to our efforts to g
beyond standard approximations with the new method, th
were some partial successes, as detailed in the cited rev
but viewed in retrospect, the attempt to apply our meth
fully microscopically was premature: the shell model spa
underlying the calculations were too small, and our ea
algorithms had serious weaknesses. In any event, mainly
cause our attention was diverted elsewhere, no attemp
carry out applications were made between 1978 and 19
though we did produce the cited review during this period,
well as a paper devoted to a reexamination and extensio
the theoretical foundations@11#.

In 1993, we undertook a program of applications@12–17#,
currently in hiatus, more limited in scope than our ea
work, but, as outlined below, more successful in its resu
This program was inspired by and represents a further de
opment of the earlier work of Do¨nau and Frauendorf~DF!
@18,19#, who suggested that the KK approach be coup
with some phenomenological input and thus be implemen
as a semimicroscopic core-particle coupling model, m
general than any of the existing ones, but still not too di
cult to apply. The practical success of our recent efforts
tied to the fact that we are able to deal with large shell mo
spaces~essentially all bound single-particle levels! and the
availability of the necessary phenomenological input eit
from experiment or from standard models. We have stud
some strong-coupling spectra@12,13#, some backbending
cases@14#, and examined the relation of our results to tho
obtainable with the standard particle-rotor model@15#. More
importantly, we have proposed a solution to the Coriolis
tenuation problem@16#, and we have taken a step in th
direction of fully microscopic calculations@17# by showing
for a selected strong-coupling case, that the results of
semimicroscopic calculations satisfy certain sum rules t
play an essential role in such~future! calculations. From a
survey of the work done, it is clear that we have hard
scratched the surface covering the possible application
this theory.~As one example the KK method can also de
with transitional nuclei@19,20#.! The purpose of the presen
formal paper is both to provide some theoretical closure
our recent work and some stimulus for further application

The KK method has also had some impact, though no
©2000 The American Physical Society16-1
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decisive one, on our work on large amplitude collective m
tion. For details we direct the reader to a recent review@21#.

Finally, we sketch the systematic applications of the K
method to problems outside nuclear physics. We have h
continuing interest, for example, in the application to boun
state problems in quantum mechanics, both to provide a
native exact solutions to known solvable problems, as w
as to provide accurate numerical solutions in other ca
@22–24#. We have also shown that our method provide
powerful approach to the study of quantum mechanics in
semiclassical limit, both for separable and for nonsepara
systems~in the nonchaotic regime! @25–27#. In another se-
ries of papers, we have addressed the problem of resto
the broken symmetry in early examples of relativistic fie
theories with soliton solutions@28–32# and, more recently, in
the Skyrmion model@33#.

We turn now to the actual subject matter of this pap
The particle-rotor model~PRM! was introduced as an angu
lar momentum-conserving phenomenological description
odd deformed nuclei. Because of its relative ease of appl
tion and, on the whole, quite remarkable success, it has b
applied even up to the present~for instance, Ref.@34#!, with
various alterations of detail, to a myriad of applications, o
a lifetime of more than four and a half decades. Among
extensions, we mention in particular that to the description
triaxial nuclei @35–37#, the original model having been for
mulated for axially symmetric nuclei.

In one of the textbooks@2#, p. 109, we find, after a glow
ing appraisal of the success of the model, the following sta
ment: ‘‘However, until now a clear-cut microscopic deriv
tion has been missing.’’ In fact, a microscopic derivation h
been given earlier@38#, based on the~KK ! method. The mi-
croscopic foundation of the axially symmetric PRM w
studied more recently in Ref.@15#, starting from a semim-
icroscopic version of the KK approach, and compared
accuracy, for several examples of well-deformed nuclei, b
with its more accurate progenitor and with the inherently l
accurate cranking approximation. The first aim of the pres
paper is to provide a more comprehensive study of the fo
dations of the PRM than has hitherto been available in
literature.

The cranking model was originally introduced in
nuclear physics@39#, within the framework of a prescribe
single-particle model, to deal with the enigma presented
the first values encountered for the moments of inertia
deformed nuclei. An extended version@40#, the one consid-
ered in most applications until recent years, was based on
self-consistent mean-field theory of a deformed rotating
ject. This early work was designed primarily to provide fo
mulas for the moment of inertia.

The full range of applicability of the self-consistent cran
ing model, as well as its limitations, was realized in the
called cranked shell model~CSM! @41#, that has been widely
applied to the analysis of band crossing and other high-s
phenomena.~For a current list of references, especially r
views, see Ref.@42#.! The formulations under discussion
which apply to axially symmetric nuclei, assume that colle
tive rotation occurs about a principal axis perpendicular
the symmetry axis. Such a formulation is referred to c
01431
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rently as principal-axis cranking~PAC! as opposed to a re
cent generalization, called tilted-axis cranking~TAC! @42–
46#. In the latter, even in the axial case, the system m
rotate about an axis in a principal plane of the assum
~quadrupole! intrinsic shape, and for the triaxial case abo
an arbitrary~dynamically determined! direction with respect
to the principal axes.

A second aim of the present paper is to establish the
lationship of the cranking models, including the recent ge
eralized versions, to a microscopic theory. The previous
erature on this subject is modest in extent. The stand
references are Refs.@47# ad @48#, the major results of which
are reproduced and discussed in Ref.@2#. Briefly, starting
from a formulation of the microscopic theory by means
generator coordinates, the energy is evaluated approxima
as a power series in the angular momentum by a method
to Kamlah @49#, valid for large deformations. When th
variational method is applied to the lowest nontrivial a
proximation of this procedure, it can be shown that t
cranking theory is a solution of the resulting equations. T
is summarized by stating that cranking is a solution, invo
ing a semiclassical approximation, of the method of variat
after projection as opposed to the exact procedure of va
tion beforeprojection.

To our knowledge, the only other studies of this subje
are those based on the KK method, a brief treatment of
case of rotation in a plane@50# that predates the above-cite
work and two studies that postdated them, one again on
problem of rotation in a plane@51# and the second a re
stricted study of the triaxial case@52,53#. ~Some discussion
of the cranking limit, also based on a variant of the K
method, can be found in Ref.@54#.! Up to now we have
never presented a full account of the three-dimensional tr
ment either for axial or for triaxial nuclei, an approach th
differs from anything found in the standard literature@2#.
Stimulation for the present undertaking has come both fo
its relation to our recent work and from the renewed inter
in generalized cranking models@42–46#.

The foundations of the study are presented in Sec. II.
utilize a shell model Hamiltonian, widely employed for m
dium and heavy nuclei, with two-particle interactions
which the latter are separated into two parts clearly dis
guished as multipole and pairing forces, respectively. T
advantage of such a model is that the~c-number! equations
of motion that can be derived from it by the KK method a
completely rigorous. It is a simplifying feature for the furth
study to recognize that these equations can be derived fro
variational principle that we called the trace variational pr
ciple, suggested in our earliest paper@4# and developed more
fully in @54#. This variational principle has several notewo
thy features:~i! It is formulated for the many-body problem
in the language of second quantization.~ii ! The quantities
varied are not wave functions, but rather a suitably cho
set of matrix elements, in our case coefficients of fractio
parentage~to be discussed at the appropriate point of Sec.!.
~iii ! Rather than involving the Rayleigh-Ritz principle fo
one state at a time, the functional to be varied is the trac
6-2
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FOUNDATIONS OF SELF-CONSISTENT PARTICLE- . . . PHYSICAL REVIEW C 63 014316
energy expectation values over a prescribed space of sta1

The theory is elaborated in Sec. II only as far as is
quired for the remaining body of the text. Further develo
ment is presented in the Appendix. We turn to application
Sec. III, where we derive the self-consistent PRM from
variational principle associated with the KK equations.~With
one possible exception@60#, we are unaware of any recen
work, other than our own, that has examined the foundati
of the PRM.!

The formalism presented in Sec. III does not lend its
naturally to a derivation of the self-consistent cranki
theory, which should be a limit of the self-consistent PR
In Sec. IV we describe an alternative derivation of the PR
following ideas first advanced briefly in Ref.@50#, that does
lead directly to the cranking limit. The considerations
Secs. III and IV apply to axially symmetric nuclei. Bot
treatments are extended to the case of triaxial nuclei in S
V. Further discussion of results and conclusions are give
Sec. VI.

II. EQUATIONS OF MOTION AND VARIATIONAL
PRINCIPLE

We choose a shell-model Hamiltonian in the form

H5haaa
†aa1

1

2
Fagdbaa

†agab
†ad1

1

2
Gagbdaa

†ag
†adab .

~2.1!

In this standard model, theaa ,aa
† are the destruction, cre

ation operators for fermions in the shell-model modea
5(nl jmt) (t distinguishing neutrons from protons!; Fagdb
describes multipole forces andGagdb pairing forces. In this
version, all multipolarities allowed by angular momentu
conservation are included, though in practice we limit o
selves to the lowest few multipoles of each type. We sh
also consistently use the summation convention, exc
when we wish to highlight some set of indices. With the he
of the definitions

Fagdb5sg~ j amaj c2mcuLML!

3sb~ j dmdj b2mbuLML!Facdb~L !, ~2.2!

1It turns out that not all aspects of our formulation are novel. Th
an incomplete version of the trace variational principle is to
found in one of the initial series of papers on matrix mechan
@55#, in which the variational parameters are matrix elements of
coordinates and momenta. This application to particle quantum
chanics was discovered and developed independently by us in
eral accounts of which the most recent is Ref.@27#. A version of the
trace variational principle can, furthermore, be found is in a clas
text in mathematical physics@56#. Here the formulation is close to
standard Rayleigh-Ritz, in that the quantities varied are wave fu
tion. This formulation has found its way into the theory of dens
functionals@57,58#. Most recently the trace variational principle fo
fields has appeared in a quaternion generalization of quantum
chanics@59#.
01431
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Gagdb5~ j amaj cmcuLML!~ j dmdj bmbuLML!Gacdb~L !,
~2.3!

sg5~21! j c2mc5A2 j c11~ j cmcj c2mcu00!, ~2.4!

where (jm j8m8uLM ) is a Clebsch-Gordon~CG! coefficient,
the operator equations of motion can be obtained in the fo

@aa ,H#5ha8aa1Faa8b8baa8ab
†ab81Gaa8bb8aa8

† ab8ab ,
~2.5!

ha85ha2
1

2
Fabab

2L11

2 j a11
, ~2.6!

@aā
† ,H#52ha9aā

†
2Fbb8a8āab8

† abaa8
†

2Gbb̄8a8āaa8ab
†ab̄8

† ,

~2.7!

ha95ha812
2L11

2 j a11
Gabab~L !. ~2.8!

Here, for example,ā5( j a ,2ma).
To develop a dynamical scheme, we turn to the probl

of obtaining equations for the matrix elements of Eqs.~2.5!
and~2.7!. We designate a state of interest of an odd nucl
asuJMn&, whereJ is the total angular momentum,M is its z
component, andn are the remaining quantum numbers ne
essary for unique specification of the state. Neighboring e
nuclei are specified, correspondingly, asuIMn&, referring to
a heavier neighbor, anduIMn&, referring to a lighter neigh-
bor. Below we shall then derive equations for the mat
elements, referred to as CFP~coefficients of fractional par-
entage!,

^JMnuaauIM In&5VJMn~aIM In!, ~2.9!

^JMnuaā
† uIM In&5UJMn~aIM In!. ~2.10!

We shall require the full notation when we turn to applic
tions in the next section. For the formal developments of t
section, however, we utilize a compressed notation, with

JMn→ i , IM In→n. ~2.11!

With new symbols defined and discussed below, we t
obtain the equations

EiVi~an!5~ea82En̄
* !Vi~an!

1Faa8b8b@Vi 8
* ~bn8!Vi 8~b8n!#Vi~a8n8!

1Gaā8bb̄8@Ui 8
* ~b8n8!Vi 8~bn!#Ui~a8n8!,

~2.12!
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ABRAHAM KLEIN PHYSICAL REVIEW C 63 014316
EiUi~an!5~2ea92En* !Ui~an!

2F b̄b̄8ā8ā@Ui 8
* ~bn8!Ui 8~a8n!#Ui~b8n8!

1Gāa8b̄8b@Vi 8
* ~bn8!Ui 8~b8n!#Vi~a8n8!.

~2.13!

In the definitions, to be given below, of the various energ
that appear in these equations, we understand thatEi is the
energy of the stateu i & and thatEn̄ and En are, correspond-
ingly the energies of the neighboring even states, with
subscript 0 standing either for the ground state, or for
lowest energy state considered, which for conciseness
shall continue to refer to as the ground state. We thus
counter the quantities

Ei52Ei1
1

2
~E0̄1E0!, ~2.14!

ea85ha82l, ~2.15!

l5
1

2
~E0̄2E0!, ~2.16!

En* 5En2E0 . ~2.17!

The physical significance of the quantities defined in E
~2.14!–~2.17! is evident.Ei are the negatives of the energi
of the odd nucleus relative to the ground-state energies o
even neighbors,ea , variously primed, are single-particle en
ergies measured relative to the chemical potentiall, andEn*
are excitation energies of the appropriate even nuclei. Fin
in achieving the form of Eq.~2.13!, we have assumed thatF
andG are real. Given the Hamiltonian~2.1!, Eqs.~2.12! and
~2.13! are an exact set of consequences that define a no
ear eigenvalue problem with eigenvalueEi . The elements on
the right-hand sides of these equations define an effec
Hamiltonian that will be discussed in considerable furth
detail in the course of this work.

We display next a functional,F, whose vanishing first
variations yield the equations of motion, namely,

F5ea8uVi~an!u22ea9uUi~an!u2

1
1

2
Faa8b8b@Vi 8

* ~bn8!Vi 8~b8n!#@Vi* ~an!Vi~a8n8!#

1Gaā8b8b̄@Ui 8
* ~bn8!Vi 8~b8n!#@Vi* ~an!Ui~a8n8!#

2
1

2
F b̄ā8b̄8ā@Ui 8

* ~bn8!Ui 8~b8n!#@Ui* ~an!Ui~a8n8!#

2Ei@ uVi~an!u21Ui~an!u2#2En̄
* uVi~an!u2

2En* uUi~an!u2 ~2.18!

[G2Ei@ uVi~an!u21uUi~an!u2#. ~2.19!
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One verifies that the equations of motion~2.12! and ~2.13!
emerge, respectively, from the requirements

dF
dVi* ~an!

5
dF

dUi* ~an!
50. ~2.20!

It is natural to inquire at this point if the functionalF has
any simple physical significance, in particular, if it is relat
to a Rayleigh-Ritz principle. To answer this question, w
evaluate the sum

Tr~H̄1H !5(
n

@^n̄uHun̄&1^nuHun&#. ~2.21!

The evaluation of this sum with the aim of eventually reco
nizing the relevant pieces ofF requires, in addition to the
standard tool of completeness, some algebraic rearrange
of the trace involving the lighter system, just as was nec
sary in the equations of motion. We then find that the int
action terms match exactly those in Eq.~2.18!, but that the
single particle terms do not. Instead we find

ha8→ha[h̄a , ~2.22!

ha-→ha12
2L11

2 j a11
Gacac~L !1A2 j b11

2 j a11
Faabb~0![ha .

~2.23!

We are thus tempted to replace the functionalF, as basis
for the theory, by a functional that contains the new sing
particle energies. We do not make this change becaus
destroys the simple physical significance of the Lagran
multiplier terms in Eq.~2.18! to which we next turn our
attention.~In practice, these extra single-particle terms a
often ignored anyway.!

We consider then the Lagrange-multiplier terms that
pear in Eq.~2.18!. The relevant question concerns the co
straints that have been imposed on the variations. Since

(
ia

uVi~an!u25(
a

^n̄uaa
†aaun̄&5^n̄uN̂un̄&, ~2.24!

whereN̂ is the number operator, we see that the excitat
energiesEn̄

* enter as Lagrange multipliers for the conserv
tion of nucleons in the heavier even nucleus. Similarly t
term involving the sum over theuUi(an)u2 expresses~to an
additive constant! the conservation of nucleons in the light
system. Finally, we show that the eigenvalueEi is ~no sur-
prise here! a Lagrange multiplier for an appropriate norma
ization condition. To see this we take the matrix element
the stateu i & of the summed anticommutator,

(
a

$aa ,aa
†%5V,V5(

j a

~2 j a11!5(
a

Va , ~2.25!

and thus find
6-4
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1

V (
an

@ uVi~an!u21uUi~an!u2#51. ~2.26!

Orthogonality constraints on the solutions need not be
posed, since they follow directly from the equations of m
tion.

There is more to the story, however. We must note t
Eq. ~2.26! is only a sum of required normalization cond
tions. From the summed anticommutator for each level,

(
ma

$aa ,aa
†%5Va , ~2.27!

we have

1

Va
(
man

@ uVi~an!u21Ui~an!u2#51. ~2.28!

If Eqs. ~2.12! and~2.13! described a linear eigenvalue pro
lem, it would be impossible to impose the additional norm
ization conditions represented by Eq.~2.28!. For the general
nonlinear problem, there is noa priori inconsistency; the
satisfaction of these conditions will be a part of any fu
satisfactory algorithm. The form of the normalization con
tion ~2.28! suggests, furthermore, that it may be both use
and natural to rescale the CFP,

Vi~an!5A2 j a11v i~an!, ~2.29!

Ui~an!5A2 j a11ui~an!. ~2.30!

There is considerably more to the formal theory than w
has been presented thus far. However, we have all the t
needed for the further development in the text and thus
egate the additional theoretical considerations to the App
dix.

III. DERIVATION OF PARTICLE-ROTOR MODEL:
AXIALLY SYMMETRIC CASE

As a first illustration of the formalism presented in th
previous section, we assume that the even~core! nuclei are in
a single axially symmetric banduIM IK&, where K is the
component of the angular momentum along the figure a
There are at least two cases where it makes some phy
sense to isolate a singleK value, where it is the ground-stat
band withK50, or where the band has a largeK value and
we are dealing with an isomeric state.

Our first task is to express the CFPV andU in terms of
the amplitudes that occur in the PRM. This is done by int
ducing deformed intrinsic basis states and applying stand
properties of the rotation group, leading to Eqs.~3.7! and
~3.8! below. These equations underlie the further consid
ations of this section, and variants of them play a similar r
in Secs. IV and V. We first use rotational invariance to stu
the structure of the amplitudesV andU defined in Eqs.~2.9!
and~2.10!, respectively. We thus introduce a complete se
statesuR& localized in the Euler angles,R5(abg), where
01431
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a, b are the usual polar and azimuthal angles, respectiv
and write

uIM IK&5E dR uR&^RuIM IK&

5S 2I 11

8p2 D 1/2E dR uR&DMIK
(I ) ~R!. ~3.1!

The identification of a scalar product ofmany-body states
with the WignerD function is not a trivial statement, but i
rather an essential element in the definition of the mode
be studied. In fact, the designationuR& for the many-body
state is insufficiently detailed and is made more explicit
the statement

uR&5U~R!u0̂K&, ~3.2!

where u0̂K& is an axially symmetric intrinsic state spinnin
with angular momentumK about its symmetry axis, and
U(R) is the unitary rotation operator in the many-body spa
defined by the Euler angles that specify the rotationR. For
such a state, we thus note the relation, with (abg)5(n̂g),

U~ n̂g!u0̂K&exp~2 iKg!5U~ n̂0!u0K&. ~3.3!

The introduction of strictly localized states is, of course,
idealization that ignores the reality of band termination, b
it is a standard approximation for well-deformed nuclei.2

When Eq.~3.1! is substituted into the definitions~2.9! of
V and~2.10! of U, and use is made of completeness, stand
properties of the rotation group, and of the definitions

~21! j 1mxJMn~ jm,K !5^JMnuajmu0̂K&, ~3.5!

fJMn~ jm,K !5^JMnuaj 2m
† u0̂K&, ~3.6!

we obtain the formulas

VJMn~aIM IK !5(
ka

A 8p2

2 j a11
~21!J2M

3~ IM IJ2M u j ama!~JK2kaj akauIK !

3~21! j a1kaxJK2kan~ j aka ,K !, ~3.7!

2The previous discussion and that which follows does not t
into accountR invariance, the invariance of the quadrupole sha
under a rotation ofp about a principal axis. To include this sym
metry in the discussion, we replace the stateuIM IK& by an eigen-
function of R,

uIMIK]5 1
2 $uIMIK&1~21!I1KuIMI2K&%. ~3.4!

We then imitate the arguments starting on p. 8 of Ref.@1#. The task
is to sort and collect the extra terms that appear both in the e
tions of motion and in formulas for one- and two-particle obse
ables.
6-5



he

io
-
th
s

cou-
e

ds in
. In
e in

to

t-
to

e

ABRAHAM KLEIN PHYSICAL REVIEW C 63 014316
UJMn~aIM IK !5(
ka

A 8p2

2 j a11

3~21!J2M1 j a2ka1 j a1ma

3~ IM IJ2M u j ama!

3~JK2kaj akauIK !fJK2kan~ j aka ,K !,

~3.8!

At this point we have a choice whether to transform t
equation of motion~EOM! or the variational principle to the
intrinsic system. It is most succinct to base further discuss
on the variational principle~2.18!. We evaluate this expres
sion when the core collective states are restricted to
members of a single band of an axial rotor, and the state
m

01431
n

e
of

the odd nucleus are any states that can arise from the
pling. Returning to a full nomenclature, this calls for th
identifications

n̄→IM IK, n→IM IK,

i→JMn. ~3.9!

We are assuming here that there are corresponding ban
the two even nuclei that couple to the given odd nucleus
the following we shall also suppress the bar and underlin
the CFP, understanding them from context, but continue
emphasize this distinction in the energies.

The calculation that now follows is mainly an uninteres
ing exercise in angular momentum algebra. We choose
immediately display the final result, following that with th
necessary definitions and a few relevant details.@Note that
there is also a condensation in the notation with (j aka ,K)
→(a), ( j aka61, K)→(a61).# We thus find
F5 (
Jn j aka

~ea82 «̄Jn!uxJK2kan~a!u22 (
Jn j aka

~ea91«Jn!ufJK2kan~a!u22
1

2 (
Jn j aka

xJK2kan* ~a! f̄ ~JK!

3@A~J1K2ka!~J2K1ka11!A~ j a2ka!~ j a1ka11!xJK2ka21n~a11!

1A~J2K1ka!~J1K2ka11!A~ j a1ka!~ j a2ka11!xJK2ka11n~a21!12~K2ka!kaxJK2kaj aka
~a!#

1
1

2 (
Jn j aka

fJK2kan* ~a! f ~JK!@A~J1K2ka!~J2K1ka11!A~ j a2ka!~ j a1ka11!fJK2ka21n~a11!

1A~J2K1ka!~J1K2ka11!A~ j a1ka!~ j a2ka11!fJK2ka11n~a21!12~K2ka!kafJK2kan~a!#.

1 (
I 9JJ8nn8 j a . . . ka . . .

F1

2
Faa8b8b~L !xJK2kb8n

~b8!xJK2kbn* ~b!xJ8K2ka8n8~a8!xJ8K2kan8
* ~a!

2
1

2
Fba8b8a~L !fJK2kb8n

~b8!fJK2kbn* ~b!fJ8K2ka8n8~a8!fJ8K2kan8
* ~a!

1Gaa8b8bxJK2kb8n
~b8!fJK2kbn* ~b!fJ8K2ka8n8~a8!xJ8K2kan8

* ~a!G~21!kb1kb8211 j a81 j b1L1I 9

3
~2L11!

~2J811!
H j a8 j a L

j b8 j b I 9J ~ j a2kaj b8kb8uI 9kb82ka!~ j a82ka8 j bkbuI 9kb2ka8!~ I 9kb82kaJK2kb8uJ8K2ka!~ I 9kb

2ka8JK2kbuJ8K2ka8!. ~3.10!
se
r,
an-
Note also that the factors involvingA8p2 in Eqs.~3.7! and
~3.8! have been absorbed in a rescaling of the intrinsic a
plitudesx andf.

The only undefined quantities in this equation are«̄Jn ,
-
f̄ (JK) and the corresponding underline quantities. The
arise as follows: As part of the definition of an axial roto
we assume that, equally for the barred and underlined qu
tities,
6-6
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E* ~ IK !→E* ~ IW22K2!5E* ~ Î 1
21 Î 2

21 Î 3
22K2!,

~3.11!

where we have introduced intrinsic components of the an
lar momentum. The arrow indicates the replacement of
eigenvalue by a vector operator. This is done by making
of the appropriate one of the CG coefficients, namely,

E* ~ IK !~JK2kaj akauIK !

5@JK2kaj akauE* ~ IW22K2!uIK #. ~3.12!

Further, we see from Eq.~3.12! that we may replaceIW by
JW1 jWa and write~with j a→ j ),

Ē* ~ IW22K2!5Ē* @~JW1 jW !22K2#

5Ē* ~JW22K2!1
]Ē*

] Ĵi

ĵ i1••• . ~3.13!

It is not necessary for these considerations thatE(IK ) have
the simple form of a rotor spectrum, only that it be a functi
as indicated. The first term of Eq.~3.13! may be replaced by
an eigenvalueĒ* @J(J11)2K2)], and the second term
leads to the Coriolis coupling.
01431
u-
n
e

With the aid of the previous considerations, we can fina
provide the required definitions,

«̄Jn5EJn2Ē* @J~J11!2K2#, ~3.14!

]Ē*

]Ji
5 f̄ ~JW22K2!Ji , ~3.15!

where in the simplest casef̄ is just the reciprocal of the
moment of inertia. There are corresponding definitions
the underline quantities. These observations account for
form and origin of the first four terms of Eq.~3.10!, which
constitute single-particle, normalization~eigenvalue!, and
Coriolis coupling terms. To reach the final form of the inte
action term requires that one sum over all magnetic quan
numbers in the laboratory system and over the core ang
momenta. This involves basically the defining equations
62 j , symbols, Eqs.~6.2.6! and ~6.2.7! of Ref. @61# and the
sum rule~6.2.12! of the same reference.

By varying in turn with respect toxJK2kan* (a) and

fJK2kan* (a), we obtain the equations of motion
«̄JnxJK2kan~a!5ea8xJK2kan~a!2
1

2
f̄ ~JK!A~J1K2ka!~J2K1ka11!A~ j a2ka!~ j a1ka11!xJK2ka21n~a!

2A~J2K1ka!~J1K2ka11!A~ j a1ka!~ j a2ka11!xJK2ka11n~a!22~K2ka!kaxJK2kan~a!

1@Faa8b8b~L !xJ8K2kb8n8~b8!xJ8K2kbn8
* ~b!xJK2ka8n

~a8!

1Gaa8b8b~L !xJ8K2kb8n8~b8!fJ8K2kbn8
* ~b!fJK2ka8n

~a8!#
2L11

2J11 H j a8 j a L

j b8 j b I J
3~ j a2kaj b8kb8uIkb82ka!~ j a82ka8 j bkbuIkb2ka8!

3~ Ikb82kaJ8K2kb8uJK2ka!~ Ikb2ka8J8K2kbuJK2ka8!, ~3.16!

«JnfJK2kan~a!52ea9fJK2kan~a!1
1

2
f ~JK!A~J1K2ka!~J2K1ka11!A~ j a2ka!~ j a1ka11!fJK2ka21n~a!

1A~J2K1ka!~J1K2ka11!A~ j a1ka!~ j a2ka11!fJK2ka11n~a!12~K2ka!kafJK2kan~a!

2@Fba8b8a~L !fJ8K2kb8n8~b8!fJ8K2kbn8
* ~b!fJK2ka8n

~a8!

1Gaa8b8b~L !fJ8K2kb8n8~b8!xJ8K2kbn8
* ~b!xJK2ka8n

~a8!#
2L11

2J11 H j a8 j a L

j b8 j b I J
3~ j a2kaj b8kb8uIkb82ka!~ j a82ka8 j bkbuIkb2ka8!

3~ Ikb82kaJ8K2kb8uJK2ka!~ Ikb2ka8J8K2kbuJK2ka8!. ~3.17!
6-7
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We add the normalization conditions for the particle-ro
model that follow from Eq.~2.28!. We find

(
ka

@ uxJK2kan~a!u21ufJK2kan~a!u2#52 j a11.

~3.18!

What we have derived is actually a generalized form of
PRM in that it conserves both angular momentum, as d
the usual model, and particle number. In contrast the u
model, it is also fully microscopic. The relation to the usu
PRM has been elucidated in a previous work@15#.

IV. ALTERNATIVE DERIVATION AND
ITS CRANKING LIMIT: AXIAL CASE

In addition to the PRM, self-consistent or otherwise,
are interested in the cranking theory, valid in the limit
which a single-particle angular momentumj a may be ne-
glected compared to the collective angular momentum
principle, we should be able to derive this limit from th
form of the theory developed in Sec. III. There is no proble
n
n
in

fo
en

a
en

01431
r

e
es
al
l

n

with the single-particle, eigenvalue, or Coriolis couplin
terms, as we shall see below. However, the interaction ter
as derived, do not provide a natural pathway to the lim
sought. Therefore we start anew in this section, but conc
trate on deriving an approximate version of the PRM
which an expansion in (^ j &/J) has been made, the main di
ference compared to the previous calculation residing in
treatment of the interaction terms. We derive an approxim
version of the PRM and then introduce the additional a
proximations necessary to reach the cranking limit.

For present purposes it is convenient to work
coordinate-spin-isospin space, designated byx. We work
with amplitudes that we refer to as coordinate coefficients
fractional parentage~CCFP!,

VJMn~xIMIK !5^JMnuĉ~x!uIM IK&, ~4.1!

UJMn~xIMIK !5^JMnuĉ†~x!uIM IK&, ~4.2!

whereĉ(x) is the nucleon destruction operator at the spa
spin-isospin pointx. In terms of these amplitudes, we rewri
the variational functionalF of Eq. ~2.19! as
F5@e~xx8!2EJnd~x2x8!2Ē* ~ IK !d~x2x8!#VJMn~x8IM IK !VJMn* ~xIMIK !

2@e~xx8!1EJnd~x2x8!1E* ~ IK !d~x2x8!#UJMn~xIMIK !UJMn* ~x8IM IK !

1
1

2
F~xx8x9x-!VJ8M8n8~x9IM IK !VJ8M8n8

* ~x-I 8MI 8K !VJMn~x8I 8MI 8K !VJMn* ~xIMIK !

1G~xx8x9x-!VJ8M8n8~x9IM IK !UJ8M8n8
* ~x-I 8MI 8K !UJMn~x8I 8MI 8K !VJMn* ~xIMIK !

2
1

2
F~x-x8x9x!UJ8M8n8~x9IM IK !UJ8M8n8

* ~x-I 8MI 8K !UJMn~x8I 8MI 8K !UJMn* ~xIMIK !. ~4.3!
ame
We have sete85e95e and shall adhere to this simplificatio
for the remainder of our presentation. To carry out the tra
formation to Eq.~4.3!, we have made use of the basis
which e(xx8) is diagonal,

aa5wa* ~x!ĉ~x!, ~4.4!

eawa~x!5e~xx8!wa~x8!, ~4.5!

F~xx8x9x-!5Fagdbwa* ~x!wg~x8!wd* ~x9!wb~x-!,
~4.6!

G~xx8x9x-!5Gagbdwd* ~x-!wb* ~x8!wg~x8!wa~x!.
~4.7!

The major device of the present derivation is the trans
mation from angular momentum eigenfunctions to eig
functions localized in angle space, a technique that has
ready been exploited in Sec. III. We base the developm
s-

r-
-
l-
ts

on expressions for the CCFP that are derived by the s
initial transformations that led to Eqs.~3.7! and~3.8!, namely

S VJMn~xMIK !

UJMn~xMIK !
D

5E dRDMM8
(J)* ~R!S xJM8n~Rx,K !

fJM8n~Rx,K !
DA2I 11

8p2
DMIK

(I ) ~R!,

~4.8!

xJMn~Rx,K !5^JMnuĉ~Rx!u0̂K&, ~4.9!

fJMn~Rx,K !5^JMnuĉ†~Rx!u0̂K&, ~4.10!

ĉ~Rx!5U21~R!ĉ~x!U~R!. ~4.11!
6-8
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We now substitute Eq.~4.8! into Eq. ~4.3!, and using the
restricted completeness relation

(
IM

DMK
(I ) ~R!DMK

(I )* ~R8!
2I 11

8p2

5d~ n̂2n̂8!exp@2 iK ~g2g8!#
1

2p
~4.12!

and the relation~3.3!, we can eliminate the core angular m
menta. The further evaluation also requires elementary p
erties of theD function and the rotational invariance of th
Hamiltonian, as expressed by such relations as
01431
p-

e~RxRx8!5e~xx8!, ~4.13!

F~RxRx8Rx9Rx-!5F~xx8x9x-!. ~4.14!

Again we first quote the final result of the evaluatio
including the expansion in (^ j &/J) of the interaction term
and subsequently provide such details as are essential
find

F5F11F2 ,
ly
f those

eful for
a
herefore
ng
f the

order in
ional
F15@e~xx8!2 «̄Jnd~x2x8!#xJMn~x8!xJMn* ~x!2@e~xx8!1«Jnd~x2x8!#fJMn~x!fJMn* ~x8!1 (
JMn

f̄ ~JK!

3F1

2
A~J2M !~J1M11! j 1xJM11n~x!1

1

2
A~J1M !~J2M11! j 2xJM21n~x!1M j 3xJMn~x!GxJMn* ~x!

2 (
JMn

f ~JK!F1

2
A~J2M !~J1M11! j 1fJM11n~x!1

1

2
A~J1M !~J2M11! j 2fJM21n~x!1M j 3fJMn~x!GfJMn* ~x!,

~4.15!

F25 (
JMM8nn8

1

2J11 F1

2
F~xx8x9x-!xJMn8~x9!xJM8n8

* ~x-!xJM8n~x8!xJMn* ~x!

1G~xx8x9x-!xJMn8~x9!fJM8n8
* ~x-!fJM8n~x8!xJMn* ~x!2

1

2
F~x-x8x9x!fJMn8~x9!fJM8n8

* ~x-!fJM8n~x8!fJMn* ~x!G .
~4.16!

We shall not comment further on the derivation of the Coriolis coupling terms ofF1 both because the result is complete
equivalent to the corresponding terms of Eq.~3.10!, and because such details as might be of interest are a special case o
given in the next section on triaxial nuclei. We concentrate therefore on the origin of the interaction termsF2. We consider the
first term of the interaction at the stage that the sums overIM and I 8M 8 have been carried out,

1

2E dRdR8F~xx8x9x-!DM8M9
(J)

~R21R8!DMivM-
(J8)* ~R21R8!xJM8n~Ry8!xJM9n

* ~R8y!xJ8M-n8~R8x8!xJ8n ivn8
* ~Rx!. ~4.17!

Introducing the definition

R21R85R, ~4.18!

and replacing the integral overR8 by an integralR, we could do the integrals exactly by decomposing the amplitudesx into
irreducible tensors. We resist the temptation to do this, since a full calculation was carried out in Sec. III. It is more us
our purposes to proceed approximately by expandingR about the unit matrix wherever it appears as the argument ofx
function. This brings in at each order angular momentum operators acting on single-particle wave functions and t
dimensionally is the source of the expansion in (^ j &/J). For the interaction term the cranking limit will arise from the leadi
term of this expansion. With the help of the rotational invariance of the interaction and the orthonormality relations oD
functions, we reach the result

1

2 (
JMM8nn8

1

2J11
F~xx8x9x-!xJMn8~x9!xJM8n8

* ~x-!xJM8n~x8!xJMn* ~x!, ~4.19!

which is the first term ofF2.
We are finally ready to discuss the cranking limit. The essential observation is that once the expansion to leading

(^ j &/J) has been made both in the Coriolis coupling and in the interaction terms, the resulting approximate functF
presents itself as a single sum overJ. However,
6-9



co

d

ud

,

of

t
ent
nk-
al

-
e

ABRAHAM KLEIN PHYSICAL REVIEW C 63 014316
angular momentum is still conserved at this juncture. W
lose angular momentum conservation by assuming that
sistent with the condition (^ j &/J)!1 we may identifyM and
K, i.e., we may neglect the angular momentum transferre
or from the particle, and write, furthermore (v defined be-
low!,

xJKn~x!→A2J~v!11xvn~x!, ~4.20!

xJK61n~x!→A2J~v!11C7xvn~x!, ~4.21!

i.e., the amplitudes differing inK from the ‘‘central value’’
by a unit are assumed proportional to the central amplit
~which is defined as the cranking amplitude! up to scale fac-
tors C7 discussed below. Similar definitions hold for thef
amplitudes. The factorA2J11 is inserted for convenience
as will be evident from Eq.~4.24! given below.
ng

ig
b

ai
s
ro

uc

01431
e
n-

to

e

These assumptions suggest the following definitions
the components of the angular frequency~overline and un-
derline understood!:

v7~K !5 f ~JK!C7A~J7K11!~J6K !, ~4.22!

v35 f ~JK!K. ~4.23!

The introduction of the factorsC7 may appear gratuitous a
first sight, but it is needed, as will become especially evid
when we treat the triaxial case, to guarantee that in the cra
ing limit the theorem that the angular velocity is proportion
to the angular momentum is valid in this limit@62#.

Remembering the definition~3.14! and reinstating Carte
sian intrinsic coordinates for the Coriolis coupling terms, w
obtain the cranking variational expression
@F/~2J~v!11!#5e~xx8!xvn~x8!xvn* ~x!2e~xx8!fvn~x!fvn* ~x8!1@v̄ i j ixvn~x!#xvn* ~x!

1@v i j ifvn~x!#fvn* ~x!1
1

2
F~xx8x9x-!xvn8~x9!xvn8

* ~x-!xvn~x8!xvn* ~x!

1G~xx8x9x-!xvn8~x9!fvn8
* ~x-!xvn~x8!fvn* ~x!2

1

2
F~x-x8x9x!fvn8~x9!fvn8

* ~x-!fvn~x8!fvn* ~x!

2 «̄vnxvn~x!xvn* ~x!2«vnfvn~x!fvn* ~x!. ~4.24!
del

al
II
he
The equations of motion that follow are number conservi
and according to the definitions~4.22! and ~4.23! allow so-
lutions with principal axis cranking.

V. TRIAXIAL ROTOR: CORE-PARTICLE COUPLING
MODEL AND CRANKING LIMIT

In this section, we assume that states of interest of ne
boring even nuclei can be described phenomenologically
a Hamiltonian

Hc5
1

2
aiI i

21
1

4
ai j $I i

2 ,I j
2%1••• . ~5.1!

In the calculations to be described below, we shall ret
only the first term ofHc . The underlying model arises a
follows: We assume that we can identify states of the app
priate even nucleus asuIM Ins&, which we read as thenth
state of angular momentumI belonging to a triaxial intrinsic
structures. We also define a rotated intrinsic state

uRs&5U~R!u0̂s&. ~5.2!

It is part of the definition of the model that the scalar prod

^RsuIM Ins&[FMIn
(I ) ~R! ~5.3!

satisfies the eigenvalue equation

H cFMIn
(I ) 5E* ~ In !FMIn

(I ) . ~5.4!
,

h-
y

n

-

t

Further useful equations satisfied by or defining the mo
include

uIM Ins&5uIM IKs&cKn
(Is), ~5.5!

dnn85(
K

cKn
(Is)* cKn8

(Is), ~5.6!

dKK85(
n

cKn
(Is)* cK8n

(Is) , ~5.7!

^RsuIMKs&5A2I 11

8p2
DMK

(I ) ~R!. ~5.8!

We turn to the evaluation of the terms in the variation
functionalF. We shall follow the methods of both Secs. I
and IV, depending on the aim of a particular fragment of t
calculation. Starting from the representation

VJMn~aIM Ins!5^JMnuaauRs&FMIn
(I ) ~R!

5^JMnuaauRs&DMIK
(I ) ~R!cKn

(Is) , ~5.9!

we can derive a formula for the current version of the CFPV
that is analogous to Eq.~3.7!, namely
6-10
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VJMn~a;IM Ins!5(
Kka

A 8p2

2 j a11
~21!J2M

3~ IM IJ2M u j ama!~JK jakauIK 1ka!

3~21! j a1kaxJKn~ j akas!cK1kan
(Is) ,

~5.10!

~21! j 1mxJKn~ jms!5^JKnuajmu0̂s&. ~5.11!

The corresponding formula for the CFPU is

UJMn~aIM Ins!

5(
Kka

A 8p2

2 j a11
~21!J2M1 j a2ka1 j a1ma

3~ IM IJ2M u j ama!~JK jakauIK 1ka!

3fJKn~ j akas!cK1kan
(Is) , ~5.12!

fJMn~ j akas!5^JMnuaj a2ka

† u0̂s&. ~5.13!

With these formulas, we find the contributions of the si
plest single-particle terms to take the form, in the she
model or mode representation,

(
JKn j aka

@~ea2EJn!uxJKn~a!u22~ea1EJnufJKn~a!u2#.

~5.14!

We study next the term involving the Lagrange multipli
Ē* (In). With the help of the defining Eq.~5.4! and a sub-
sequent integration by parts, we have first of all

Ē* ~ In !VJMn~ IM Ins!5E dR@Hc~ Î i !

3^JMnuaauRs&#FMIn
(Is)~R!.

~5.15!
01431
-
-

With the help of the completeness relation

(
IM In

FMIn
(Is)~R!FIM In

(Is)* ~R8!5d~R2R8!, ~5.16!

we thus find for the total term

Ē* ~ Ins!uVJMn~aIM Ins!u25E dR@Hc~ Î i !^JMnuaauRs&#

3^JMnuaauRs&* . ~5.17!

The square bracket may be reexpressed as

Hc~ Î i !^JMnuaauRs&5@Hc~ Î i !DMK
(J)* ~R!Dmaka

( j a)* ~R!#

3^JKnuaj aka
u0̂s&. ~5.18!

As far as the application ofHc in Eq. ~5.18! is concerned, we
then write

Hc~ Î i !→Hc~ Ĵi1 ĵ i !5Hc~ Ĵi !1
]Hc

] Ĵi

ĵ i1••• , ~5.19!

and work only to the order indicated explicitly.
At the same time it is convenient to rewrite

Hc~ Î i !5
1

4
b1~ I 1I 21I 2I 1!1

1

4
b2~ I 1

2 1I 2
2 !1

1

2
b3I 3

2

~5.20!

a15b11b2 , a25b12b2 , a35b3 . ~5.21!

It is now straightforward to calculate the contributions ar
ing from the two terms of Eq.~5.19!. For the first term we
find
28p2H F1

2
b1@J~J11!2K2#1

1

2
b3K2G uxJKn~a!u2

1

4
b2A~J2K12!~J2K11!~J1K21!~J1K !xJK22n~a!xJKn* ~a!

1
1

4
b2A~J1K12!~J1K11!~J2K21!~J2K !xJK12n~a!xJKn* ~a!J , ~5.22!

and for the second term,

28p2F1

2
b1A~J2K11!~J1K !~ j a1ka11!~ j a2ka!xJK21n~a11!1

1

2
b1A~J1K11!~J2K !~ j a2ka11!~ j a1ka!

3xJK11n~a21!1
1

2
b2A~J2K11!~J1K !~ j a2ka11!~ j a1ka!xJK21n~a21!

1
1

2
b2A~J1K11!~J2K !~ j a1ka11!~ j a2ka!xJK11n~a11!1b3KkaxJKn~ j akas!GxJKn* ~a!. ~5.23!
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Both of these terms can be identified as familiar str
tures. By means of this identification we shall have achie
both a simpler form for the particle-rotor formalism and f
its limiting case, the cranking formalism. First consider E
~5.22!. Note that the content of Eqs.~5.4! and ~5.5! can be
rewritten as

H cDMIK
(I ) 5DMIK8

(I )
~Hc!K8K , ~5.24!

~H!KK8cK8n
(Is)

5E* ~ In !cKn
(Is) . ~5.25!

This eigenvalue equation was associated with even nu
and thus with integer values of the angular momentum.
analytic continuation, we can define a corresponding eig
value equation for odd nuclei as follows:

@Hc~ Ĵi !#KK8cK8t
(J)

5E* ~Jt!cKt
(J) , ~5.26!

where J,K are now half integral. We then see that if w
introduce a new set of particle amplitudesxJtn by means of
the equation

xJKn~ j k!5cKt
(J)xJtn~ j k!, ~5.27!

we can transform Eq.~5.22! into the form

2E* ~Jt!uxJtn~a!u2. ~5.28!

Finally, as we did for the axial case, we can combine ene
terms by means of a definition

«Jn5EJn1E* ~Jt!. ~5.29!

We turn our attention next to Eq.~5.23!. We note first that
this expression is an expanded version of

2@ai Ĵi ĵ ixJKn~a!#xJKn* ~a!, ~5.30!

where Ĵi acts on the value ofK and ĵ i acts on the value o
ka . Transforming to the new amplitudesxJtn , expression
~5.30! becomes

2@ai Ĵi ĵ ixJtn~a!#xJtn* ~a!, ~5.31!

where now

ĴixJtn5xJt8n~Jt8uJi uJt!, ~5.32!

~Jt8uJî uJt!5cK8t8
(J)

~JK8uJi uJK!cKt
(J)* . ~5.33!

For the purpose of taking the cranking limit and comp
ing the forms derived in Sec. IV, we rewrite the results fou
so far and the corresponding terms involvingf amplitudes in
coordinate space. For this we require only Eqs.~5.27!, the
corresponding equations
01431
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xJKn~x!5^JKnuĉ~x!u0̂s& ~5.34!

5cKt
(J)xJtn~x!, ~5.35!

and the similar equations for the terms involvingf. We thus
find the contributions

2 «̄JnuxJtn~x!u21e~xx8!xJtn~x8!xJtn* ~x!

1āi@Ji j i~x!xJtn~x!#xJtn* ~x!,

2«JnufJtn~x!u21e~xx8!fJtn~x8!fJtn* ~x!

1ai@Ji j i~x!fJtn~x!#fJtn* ~x!. ~5.36!

The cranking limit of these terms may now be taken
means of the replacements that generalize Eqs.~4.21! and
~4.20!,

xJt8n~x!→A2J11Ct~t8!xvn~x!, ~5.37!

and t8 refers tot or any of the values coupled tot by the
matrices ofĴi , with Ct(t)51. This is the essential blurring
of angular momentum conservation that takes us from
conserving particle-rotor approximation to the cranking a
proximation. It allows us as well to define the components
the angular velocity in generalization of Eq.~4.20!,

v̄ i~t!5āi(
t8

Ct~t8!~Jt8uJi uJt!, ~5.38!

t85t8~t!. ~5.39!

As usual, there are corresponding equations for the am
tudesf.

We may thus replace Eq.~5.36! by its cranking limit

~2J11!@2 «̄vnuxvn~x!u21e~xx8!xvn~x8!xvn* ~x!

1v̄ i j i~x!xvn~x!#xvn* ~x!~2J11!@2«vnufvn~x!u2

1e~xx8!fvn~x8!fvn* ~x!1v i j i~x!fvn~x!#fvn* ~x!,

~5.40!

which is indistinguishable in form from the correspondin
terms of Eq.~4.24!.

It remains for us to compute the contributions of the
teraction terms. We consider first an exact calculation an
gous to that carried out in Sec. III, starting from the rep
sentations~5.10! and ~5.12! for the CFP in the triaxial case
It is straightforward to generalize the corresponding calcu
tions of Sec. III, as soon as one utilizes the orthonorma
relations involving the coefficientscKn

(I ) at the first step. The
final result for the interaction terms is
6-12
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(
I 9JJ8KK8nn8 j a . . . ka . . .

F1

2
Faa8b8b~L !xJK2kb8n

~b8!xJK82kbn
* ~b!xJ8K82ka8n8~a8!xJ8K2kan8

* ~a!

2
1

2
Fba8b8a~L !fJK2kb8n

~b8!fJK82kbn
* ~b!fJ8K82ka8n8~a8!fJ8K2kan8

* ~a!

1Gaa8b8bxJK2kb8n
~b8!fJK82kbn

* ~b!fJ8K82ka8n8~a8!xJ8K2kan8
* ~a!G

3~21!kb1kb8211 j a81 j b1L1I 9
~2L11!

~2J811!
H j a8 j a L

j b8 j b I 9J ~ j a2kaj b8kb8uI 9kb82ka!~ j a82ka8 j bkbuI 9kb2ka8!

3~ I 9kb82kaJK2kb8uJ8K2ka!~ I 9kb2ka8JK82kbuJ8K82ka8!. ~5.41!

Superficially, the change compared to Eq.~3.10! is that instead of a fixed value ofK, we have a double sum overK andK8.
The same expression holds for a finite number of interactingK bands provided the sums are restricted correspondingly.

Finally, we consider the calculation of the interaction term by the method of Sec. IV, needed to obtain the crankin
Here, in place of Eqs.~4.8!–~4.10!, we utilize the forms

S VJMn~xMIn!

UJMn~xMIn!
D 5E dRDMM8

(J)* ~R!S xJM8n~Rx,s!

fJM8n~Rx,s!
DA2I 11

8p2
FMIn

(I ) ~R!, ~5.42!

xJMn~Rx,s!5^JMnuĉ~Rx!u0̂s&, ~5.43!

fJMn~Rx,s!5^JMnuĉ†~Rx!u0̂s&. ~5.44!

Once the full completeness relation~5.16! is utilized instead of the restricted completeness relation~4.12!, the calculation
mimics the one carried out in Sec. IV. In terms of the amplitudesxJtn andfJtn , the result is

(
Jtt8nn8

1

2J11 H 1

2
F~xx8x9x-!xJtn8~x9!xJt8n8

* ~x-!xJt8n~x8!xJtn* ~x!

1G~xx8x9x-!xJtn8~x9!fJt8n8
* ~x-!fJt8n~x8!xJtn* ~x!2

1

2
F~x-x8x9x!fJtn8~x!fJt8n8

* ~x8!fJt8n~x-!fJtn* ~x9!J . ~5.45!
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The cranking limit of this expression is indistinguishab
from the corresponding terms of Eq.~4.24! just as was the
case for the single-particle terms~5.40!. Thus theform of the
cranking variational principle for the triaxial case is indisti
guishable from that for the axial case and need not be wri
again. It is understood, however, that we are dealing with
three-dimensional cranking, and that the single-particle w
functions have suitably modified symmetry.

VI. SUMMARY AND DISCUSSION

We have studied the microscopic foundations of
particle-rotor model and of the cranking model for both ax
and triaxial nuclei. The microscopic model was chosen i
form in which the interaction is given at the outset as a s
of multipole and pairing forces. We carried out the stu
from the point of view of the Kerman-Klein method bas
on the equations of motion for single fermion operators, a
this choice of interaction has the advantage that thec-number
01431
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equations of motion for the CFP are formally exact. The
equations of motion and an associated variational princi
worked out in Sec. II, form the basis for the remainin
considerations.3

As the first application, we derived in Sec. III a se

3In the earliest papers on the KK approach@4,5#, a more general
shell-model interaction was used in the derivation ofc-number
equations. An essential part of the derivation involved the introd
tion of the physical arguments needed to separate this interac
into multipole and pairing contributions. As a consequence of
limitations of this procedure, the equations of motion found from
are not exact. Nevertheless, the final equations are formally equ
lent to those utilized in this paper. The explanation for this conc
dance is that in the approach in this paper, the ‘‘error’’ involved
the separation has already been built into the starting Hamilton
as a further compromise, widely accepted, in the definition of
microscopic theory.
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consistent particle-rotor model for axially symmetric nucl
The derivation was carried out using basic ideas develo
in Ref. @15#, where, starting from a semimicroscopic versi
of the theory, we derived the standard non-self-consis
version of the particle-rotor model. The present discuss
complements the previous one in the sense that it starts
a microscopic theory and carries the reasoning up to the e
of the semimicroscopic form.

We began this work with the prejudice that, as appose
previous treatments, a natural path to the cranking mo
involved passing through the particle-rotor model. Thou
we were ultimately able to confirm this prejudice, the vers
of the particle-rotor model derived in Sec. III, though a us
ful one for applications@15#, does not appear to be useful
the further transition to cranking. For this purpose we m
be able to expand all contributions in powers of (^ j &/J), the
ratio of a characteristic single-particle angular momentum
the collective angular momentum. We have not discove
such an expansion for the interaction forms derived in t
first treatment. Therefore in Sec. IV we start anew, utilizi
an approach already described briefly for two-dimensio
rotations in an early publication@50#. Rather than pushing
through to a formally exact result, we stop the calculation
the leading order of the small parameter, and thus obtain
approximate version of the particle-rotor model that still co
serves angular momentum, but is only a step away from
cranking limit. This further step violates angular momentu
conservation by the way in which an angular velocity is
troduced to replace the collective angular momentum.
Sec. V the considerations of both previous sections are g
eralized to the triaxial case.

Several special features of our treatment should be h
lighted. For the axial case, as soon as the neighboring e
nuclei are represented by bands with nonvanishingK values,
we have tilted cranking in its simplest form.A fortiori, in the
triaxial case we derive the possibility of full three
dimensional cranking. Within our mode of analysis, the
statements may be taken to have the status of theorems
01431
.
d

nt
n
m
ge

to
el
h
n
-

t

o
d
s

l

t
an
-
e

-
n
n-

h-
en

e
n-

other feature of our derivations of cranking models is th
number conservation is maintained.

Nevertheless, in the light of recent developments ass
ated with tilted cranking@42–46#, possible limitations on our
work have to be addressed. Superficially, our results appl
one quasiparticle spectra of odd nuclei, whereas the cur
focus of interest is on at least two quasiparticle spectra
even nuclei, and even more on multiquasiparticle states
principle, however, these examples are covered by our c
siderations. Thus the two quasiparticle case is readily deri
from the formalism developed in the Appendix. The multip
quasiparticle case is covered if one replaces the refere
ground states of the even nuclei by suitably chosen b
heads of two quasiparticle bands. Details of such calculati
are best addressed within the framework of specific appl
tions.

APPENDIX: FURTHER FORMAL DEVELOPMENT
OF THE THEORY

The theory developed in Sec. II was sufficient for t
purposes of the remainder of the body of this work, a stu
of the strong-coupling limit. However, for the formulation o
useful algorithms applicable to obtaining solutions of t
fully microscopic theory, it is also convenient to have a fo
mulation in terms of a generalized density matrix.

To begin the extended development, it is helpful to intr
duce a more concise representation of the equations of
tion ~2.12! and ~2.13! for the CFP by defining the vector

C i~an!5S Vi~an!

Ui~an!
D . ~A1!

The equations of motion can then be written

EiC i~an!5H~an,bn8!C i~bn8!, ~A2!

whereH(an,bn8) is the Hermitian matrix
H~an,bn8!5S ~ea82En̄
* !dnn8dab1Ḡ~an,bn8! D~an,bn8!

D* ~bn8,an! ~2ea92En* !dnn8dab1G~an,bn8!
D , ~A3!
rix
and the potentials are defined as

Ḡ~an,gn8!5Fagdb@Vi* ~bn8!Vi~dn!#

5FagdbR11~dn,bn8!, ~A4!

G~an,gn8!5F d̄b̄āḡ@Ui* ~bn8!Ui~dn!#

5F d̄b̄āḡ tr
1

2
~12t3!R22~dn,bn8!, ~A5!
D~an,gn8!5Gaḡbd̄@Ui* ~dn8!Vi~bn!#

5Gaḡbd̄R12~bn,dn8!. ~A6!

Here we have utilized a generalized density mat
R(an,bn8), defined as

R~an,bn8!5C i~an!C i* ~bn8!5S R11 R12

R21 R22
D , ~A7!

satisfying the idempotent condition
6-14
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R 25VR. ~A8!

The remainder of this discussion is devoted to the form
lation of the theory in terms of the matrixR. The first step is
to combine the equations of motion~A2! with their complex
conjugate equations so as to eliminate the eigenvaluesEi .
We thereby obtain the following equations for the gener
ized density matrixR:

05R~an,gn9!H~gn9,bn8!2H~an,gn9!R~gn9,bn8!,
~A9!

i.e., we find the vanishing of the commutator,@R,H#50.
We exhibit next an alternative derivation of Eq.~A9! uti-

lizing a variant of the variational principle~2.18!, ~2.19!, a
formulation that contains, as we shall see, more informa
than just Eq.~A9!. Consider the functional

D5G2Q~an,bn8!@R 2~bn8,an!2VR~bn8,an!#,
~A10!

where the ‘‘new’’ constraint with Lagrange multiplier matri
Q is for normalization in the density matrix form. Since

dG
dR~bn8,an!

5H~an,bn8!, ~A11!
r,

01431
-

l-

n

it follows that the variational condition applied to Eq.~A10!
yields the equation

H2QR2RQ1QV50. ~A12!

From this condition, Eq.~A9! is readily derived by forming
the appropriate commutator.

However, Eq.~A9! does not exhaust the content of E
~A12!. Starting from the latter, we can derive the pair

RH5RQR5HR, ~A13!

which implies that

H5QV. ~A14!

Substituting this result back into Eq.~A12!, we obtain

H2
1

V
$R,H%50. ~A15!

Equations~A9! and~A15! taken together provide a powerfu
approach to the construction of algorithms for the solution
the KK equations. Further discussion at this point would
severely premature.
95.

v.

hys.
@1# A. Bohr and B. R. Mottelson,Nuclear Structure~Benjamin,
New York, 1975!.

@2# P. Ring and P. Schuck,The Nuclear Many Body Problem
~Springer, Berlin, 1980!.

@3# A. Kerman and A. Klein, Phys. Lett.1, 185 ~1962!.
@4# A. Kerman and A. Klein, Phys. Rev.132, 1326~1963!.
@5# L. Celenza, A. Klein, and A. Kerman, Phys. Rev.140, B245

~1965!.
@6# A. Klein, in Advances in Particle and Nuclear Physics, Vol.

10, edited by D. Wilkinson~Pergamon, Oxford, 1983!, p. 39.
@7# A. Klein and N. R. Walet, inInternational Workshop on

Nuclear Structure Models, edited by R. Bengtsson, J. Draaye
and W. Nazarewicz~World Scientific, Singapore, 1992!, p.
229.

@8# S. T. Belyaev and V. Zelevinsky, Yad. Fiz.11, 741 ~1970!
@Sov. J. Nucl. Phys.11, 416 ~1970!#.

@9# S. T. Belyaev and V. Zelevinsky, Yad. Fiz.16, 1195 ~1972!
@Sov. J. Nucl. Phys.16, 657 ~1973!#.

@10# S. T. Belyaev and V. Zelevinsky, Yad. Fiz.17, 525 ~1973!
@Sov. J. Nucl. Phys.17, 269 ~1974!#.

@11# A. Klein, Phys. Rev. C30, 1680~1984!.
@12# P. Protopapas, A. Klein, and N. R. Walet, Phys. Rev. C50,

245 ~1994!.
@13# P. Protopapas, A. Klein, and N. R. Walet, Phys. Rev. C53,

1655 ~1996!.
@14# P. Protopapas, A. Klein, and N. R. Walet, Phys. Rev. C54,

638 ~1996!.
@15# P. Protopapas and A. Klein, Phys. Rev. C55, 699 ~1997!.
@16# P. Protopapas and A. Klein, Phys. Rev. C55, 1810~1997!.
@17# P. Protopapas and A. Klein, Phys. Rev. Lett.78, 4347~1997!.
@18# F. Dönau and S. Frauendorf, Phys. Lett.71B, 263 ~1977!.
@19# F. Dönau and U. Hagemann, Z. Phys. A293, 31 ~1979!.
@20# P. Protopapas, Ph. D. thesis, University of Pennsylvania, 19
@21# G. Do Dang, A. Klein, and N. R. Walet, Phys. Rep.335, 93

~2000!.
@22# C. T. Li, A. Klein, and F. R. Krejs, Phys. Rev. D12, 2311

~1975!.
@23# C. T. Li and A. Klein, Fizika~Zagreb! 22, 67 ~1990!.
@24# C. T. Li, Chin. J. Phys.~Taipei! 32, 309 ~1994!.
@25# A. Klein, J. Math. Phys.19, 292 ~1978!.
@26# A. Klein and C. T. Li, J. Math. Phys.20, 572 ~1979!.
@27# W. R. Greenberg, A. Klein, I. Zlatev, and C. T. Li, Phys. Re

A 54, 1820~1996!.
@28# A. Klein and F. R. Krejs, Phys. Rev. D12, 3112~1975!.
@29# A. Klein and F. R. Krejs, Phys. Rev. D13, 3282~1976!.
@30# A. Klein and F. R. Krejs, Phys. Rev. D13, 3295~1976!.
@31# A. Klein, Phys. Rev. D14, 558 ~1976!.
@32# A. Klein and A. Weldon, Phys. Rev. D17, 1009~1978!.
@33# D. Cebula, A. Klein, and N. R. Walet, Phys. Rev. D47, 2113

~1993!.
@34# M. S. Sarker, Phys. Rev. C60, 064309~1999!.
@35# J. Meyer-ter-Vehn, Nucl. Phys.A249, 111 ~1975!; A249, 141

~1975!.
@36# S. E. Larsson, G. Leander, and I. Ragnarsson, Nucl. P

A307, 189 ~1978!.
@37# I. Ragnarsson and P. B. Semmes, Hyperfine Interact.43, 425

~1988!.
@38# G. Do Danget al., Nucl. Phys.A114, 481 ~1968!.
@39# D. R. Inglis, Phys. Rev.96, 1059~1954!; 103, 1786~1956!.
@40# D. J. Thouless and J. G. Valatin, Nucl. Phys.31, 211 ~1962!.
@41# R. Bengtsson and S. Frauendorf, Nucl. Phys.A314, 27 ~1979!.
6-15



s

s

ABRAHAM KLEIN PHYSICAL REVIEW C 63 014316
@42# S. Frauendorf~unpublished!.
@43# S. Fauendorf, Nucl. Phys.A557, 259c~1993!.
@44# S. Frauendorf and J. Meng, Z. Phys. A356, 263 ~1996!.
@45# S. Frauendorf and J. Meng, Nucl. Phys.A617, 131 ~1997!.
@46# S. Frauendorf, Z. Phys. A358, 163 ~1997!.
@47# P. Ring, R. Beck, and H. J. Mang, Z. Phys.231, 10 ~1970!.
@48# R. Beck, H. J. Mang, and P. Ring, Z. Phys.231, 26 ~1970!.
@49# A. Kamlah, Z. Phys.216, 52 ~1968!.
@50# R. Dreizler and A. Klein, Phys. Rev. Lett.15, 893 ~1965!.
@51# A. Klein and M. G. Vassanji, Nucl. Phys.A317, 116 ~1979!.
@52# A. Klein and M. G. Vassanji, Phys. Rev. Lett.42, 436 ~1978!.
@53# G. Do Danget al., Nucl. Phys.A114, 501 ~1968!.
@54# D. Janssen, Yad. Fiz.28, 935 ~1978! @Sov. J. Nucl. Phys.28,
01431
479 ~1978!#.
@55# M. Born and P. Jordan, Z. Phys.34, 858 ~1925!.
@56# R. Courant and D. Hilbert,Methods of Mathematical Physic

~Interscience, New York, 1965!, Vol. 1, p. 459.
@57# A. K. Theophilou, J. Phys. C12, 5419~1979!.
@58# E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A37,

2805 ~1988!; 37, 2809~1988!; 37, 2821~1988!.
@59# S. L. Adler, Nucl. Phys.B415, 195 ~1994!.
@60# D. M. Brink et al., J. Phys. G13, 629 ~1987!.
@61# E. R. Edmonds,Angular Momentum in Quantum Mechanic

~Princeton University Press, Princeton, NJ, 1960!.
@62# A. K. Kerman and N. Onishi, Nucl. Phys.A361, 179 ~1981!.
6-16


