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The structure of deformed proton emitters is studied in a coupled-channels treatment. The wave function of
a decaying state is determined as a standing wave, i.e., for an energy that is real. The decay rate is calculated
from a Green’s function method, treating the influence of the long-range Coulomb multipole interactions to
first order. The results are compared to predictions made in the adiabatic limit and to measurements. It is
shown that the decay of th&Eu(3/2") ground state to the ground state 5PSm is quite sensitive to
deformation in the spin-orbit force. It is found that the ground state deca§Hdb(7/2) is poorly described
in the coupled-channels approach. This is ascribed to Coriolis mixing, which is too strong in the absence of
pairing effects.
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[. INTRODUCTION extracted by employing the Green’s function methid It
has been showfl1] that the decay rate obtained from this

Information about the structure of deformed nuclei be-method, in principle, is in exact agreement with the “direct”
yond the proton drip line has recently been obtained fronmethod[7], which employs complex energies and extracts
measurements of the decay rate and the energy of the emittéide decay rate from the asymptotic amplitudes of the outgo-
protons. One example is the ground state decay’#u to  ing Coulomb waves. We show that the Green’s function
the ground stat¢l1,2] and to an excited staf®] of *%Sm.  method can be used quite reliably to calculate the influence
Another example is the decay of*'Ho, both from the of the long-ranged Coulomb multipole interactions, so that
ground stat¢1] and from an isomeric staf&], to the ground the coupled equations need only to be solved out to 10-20
state in*®Dy. The daughter nuclei are expected to fall in afm.
region of large quadrupole deformatiof?y. For a given total spith of the decaying state, the included

The measurements were analyzed in a particle-rotochannels are labeled byljR), where (j) specifies the
model, with an unbound proton interacting with an axially single-particle orbits an® is the angular momentum of the
symmetric, quadrupole deformed core, making use of severalore, i.e., daughter nucleus. This formulation is made in the
approximationg1,2]. Thus the wave functions of the decay- laboratory frame, and we refer to it as tRerepresentation
ing states were obtained by diagonalizing a deformed Hamilbecause the Hamiltonian of the rotor is diagonal in this rep-
tonian in a spherical single-particle basis. Moreover, this wasesentation. This feature makes it easy to impose the correct
done in the adiabatic limit, where the excitation energies ofasymptotic form of the radial wave functions at large dis-
the rotor are set to zero. However, the effect of rotationatances.
excitations of the daughter nucleus in the final state was in- An alternative representation is to use single-particle or-
cluded by using the Green’s function method of Bugrov andbits in the body-fixed frame of the rotor. They are specified
Kadmensky5]. by quantum numberdK), whereK is the projection of the

Since the decay rate is extremely sensitive to the energgpin on the symmetry axis of the rotor. We refer to this as the
of the emitted proton, it is useful to study the wave functionK representation. It has the advantage that the interaction
of a decaying state in a more consistent way. This can bbetween the proton and the rotor is diagonaKinThis fea-
done in the coupled-channels approach, where one can itdre simplifies calculations in the adiabatic limit. In the nona-
clude non-zero core excitation energies. Moreover, the wavdiabatic case, however, the Hamiltonian of the rotor is not
function of a decaying state is automatically generated byliagonal inK due to Coriolis mixing. This makes it difficult
solving a set of coupled radial differential equations. Suchto impose the correct asymptotic form of the radial wave
studies have already been performed, both in the adiabatfenctions. We shall see that the two representations are
limit [6—9], and also in the nonadiabatic cas)]. These equivalent.
calculations employed complex energies and the coupled The coupled-channels approach is discussed in the next
equations were solved out to large distances, outside theection. In Sec. Il it is shown that tHe representation and
range of the couplings. Such calculations are very time conthe K representation are related by a simple transformation,
suming, partly because the decay ratdated to the imagi- and the adiabatic limit is also discussed. In Sec. IV we dis-
nary part of the complex enerpys extremely small, and cuss the significance of a deformed spin-orbit interaction
partly because the range of the Coulomb quadrupole interacompared to the monopole part of it. The numerical results
tion is large. we have obtained fol*'Eu and**™Ho, both in the coupled-

A much faster method, which is employed in this work, is channels approach and in the adiabatic limit, are compared to
to solve the coupled equations for real energies. The decayneasurements in Sec. V, and Sec. VI contains our conclu-
ing state is therefore a standing wave, and the decay rate sons.
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Il. COUPLED-CHANNELS APPROACH 52 d2 I(1+1)
+

dr? r?

+Vo(r)+Vig(r). (9

We wish to determine the wave function of a nucleus h'i_ﬂ
consisting of a single proton interacting with an axially sym-
metric, deformed core. We include, for simplicity, only the _ _
ground state rotational band in the core nucleus and assurd¥! €xpression for the matrix elements of the Legendre poly-
that the spectrum is of the formEg=(A%/2]g)R(R+1), homialsis given in Sec. IllA.
whereR=0,2,4 ... .This problem is discussed in Appendix
5A of Ref.[12] as a coupled-channels scattering problem. A. Determination of resonances
Here we apply this formulation to determine bound states
and narrow resonances.

The total wave function for a particular total spih 1)
of the system has the form

The wave function of a proton resonance is sometimes
calculated by using complex energies. The asymptotic
boundary conditions, which determine the resonance, are
outgoing Coulomb waves in all channélg, i.e.,

biir(r) Blir(N)=NIg[Gi(Ker ) +iF (kgr)], for r—o. (6)
r

Viu(r,o)=>, II(GR)IM), (1)

IR
Here fikg=\2u|E—Eg| is the momentum of the emitted
proton, andF,(kgr) and G,(kgr) are regular and irregular
Coulomb wave functions, respectively. By calculating the

[I(GR)IM)Y= 2 (jmRMg/IM)|RMg)|Ijm) (2)  outgoing flux of protons, one arrives at the following expres-

mMMg sion for the partial decay widtHS]:

where

is the channel-spin wave function, obtained by coupling the 7

single-particle, spin-angular wave functiofigm) to the Cir=> I'ln, wherel|=—0"

wave function|RMg) of the rotor. T . M
The total Hamiltonian of the proton-core system,

Nl (@)

The widthsI'|g are extremely small in the cases of inter-
H=T+V(r,0)+Vs(r)+Hg, (3)  est, typically of the order of 10?° MeV, whereas the reso-

) ) L nance energ¥,.sis of the order of 1 MeV. The small width
consists of the relative kinetic energy the Coulomb plus  4ises from the height and the thickness of the Coulomb
nuclear interactiorV(r, »), which depends on the position  parrier. Consequently, the wave function of a resonance state
of the proton and the orientation of the rotor, and the 515 off dramatically as it passes through the barrier, typi-
HamiltonianHp of the rotor. We also include a spin-orbit ca)ly by 10 orders of magnitude as illustrated in Fig. 1 of
interaction but consider here, for simplicity, only the mono-Ref [13]. It is very difficult to calculate the wave function
pole part of it. The detailed parametrization of the interac-4ccyrately out to large distances, outside the range of the
tions we have used is given in Appendix A, and the imple-cqyplings, where the matching to Coulomb waves can safely
mentation of the full deformed spin-orbit interaction is pe made. It requires that the energy of the resonance be

discussed in Sec. IV. _ , determined with extremely high precision.
To proceed, we first make a multipole expansion of the  Ajternative approaches to overcome this problem have
Coulomb plus nuclear interaction been suggested. One example is to express the coupled equa-
tions in terms of the logarithmic derivative of the radial wave
_ / functions[6]. This method may have some advantages and is
V(r,w)= V,\(r)Py[cog6')], L
(r.e) ; AP eog 67)] apparently more stable. Another possibility is to use the so-

lutions one obtains in an intervakOr <r,, and match them
whered'’ is the orientation angle of the nucleon with respectat r =r, to the solutions one obtains by an inward integra-
to the symmetry axis of the rotor. Inserting the wave functiontion, from the asymptotic region tq,,. We shall not pursue
(1) into the Schrdinger equationHW,y,=EW¥,y,, and pro- this possibility here.
jecting this equation with the channel-spin wave function We have chosen a much simpler approach. We match our
[I(jR)IM), we obtain the following set of coupled differen- solutions to Coulomb waves at a relatively small distance,
tial equations for the radial wave functions: r»=~15 fm, which is outside the range of nuclear couplings.
In this first stage we ignore the effect of the long-ranged
| ) , Coulomb couplings. We will include this effect in the calcu-
(hij+Er=E)dyjr(r) =~ 2 go (IGR)IM[Py[cod6)]  jation of the decay rate using the distorted wave Green's
VIR function method. Moreover, we adopt energies that are real,
><||’(j’R’)IM)Vx(r)cﬁf,j,R,(r), so our solutions are standing waves and we replace the
@ boundary condition$6) by

whereh;; includes the monopole pieces of the interaction Bir(N=NjgGi(kgr), atr=rp, (8a)
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when E>Eg. If E<Eg, the radial wave functions are The bracket denotes a matrix element with respect to the
matched to the asymptotic form of bound state Coulomborientation of the proton and the deformed daughter nucleus,
wave functions, i.e., the Whittaker functions and also with respect to the spin of the proton. The radial
integration is performed separately. Below we discuss the
d’lljR(r):NIIjRWn,I+l/2(2er)v atr=r, (8h) choice of the upper limit;,;.
The numerical calculation of Eql1) is fairly simple

where 7=Zpe?/(2kg/x). The numerical procedure we ©ONCe @ multipole expansion of the interaction has been per-
have used to determine the energy and the wave function ¢Prmed,

a resonance is discussed in detail in Appendix B. 7 &2
This procedure needs some justification. First of all, it is V(r,w)+Vs(r)— D => V,(r)P,[cog 6')].
not unreasonable to use a real energy and to determine the r A

wave function of a narrow resonance as a standing wavel.h itinol for A=0 identical to th id
The boundary conditioii8a) implies that the nuclear phase e multipole termsfor .) are identical to those consid-
ered in the coupled equatiorid) but the monopole term

shift of the scattering state is 90°, which is a common defi- . o : .
nition of a narrow resonance. A simple way to extract the'nc_IUOIeS also the mon(_)pole spm_-orblt_ Interaction minus the
decay properties of a standing wave is to apply the outgoin oint-Coulomb interaction. Inserting this expansion, and also

distorted wave Green’s function method, which we now dis1€ €xpressioitl) for the resonance wave function, into Eq.
cuss (11) we obtain

2u
B. Green’s function method Nﬁ"é": -

s> 2 ((HR)IM[P,[(I']'R)IM)
i . . ﬁ kR A |rerr

Once a resonance solutidh{®> has been determined, its
decay properties can be determined by applying the distorted
wave Green’s function method associated with outgoing

Coulomb wave$11,14

><forimdrF|(er)\~/A(r)¢:,j,R,(r). (12

The outgoing waves in Eq10) are exactly of the form
(6). The amplitudeNPy’ will therefore determine the partial
decay widths according to E¢7). We have previously dem-
onstrated 11] that the amplitudesj%’ are identical to the
amplitudesN| ; defined in Eq.(8a). This is the result we
1‘1’%5)“' ®'). (9 obtain when we choose,=r,, as the u i i
J int=Im pper Integration
limit. The proof was made in the adiabatic limit but it can
easily be generalized to the nonadiabatic, coupled-channels

V(r', o)

xlffmr,w):f dr' de’GE)(rwir,0")

Zp€?
TVis(r')— —;

The Green’s function acts on the product of the resonanc
solution and the total interaction minus the point Coulomb
interaction with the daughter nucleus, which determines th%c
distorted Coulomb waves. This method is based on the exa
Gell-Mann-Goldberger transformati¢t5], and it has previ-
ously been applied in studies of the proton andlecay of
heavy nuclei1,2,5.

If we extrapolate the resonance wave function beygpd
cording to Eq(8a) and extend the radial integration in Eq.
f}'LZ) to ri,>rm, then the distorted wave method will also
include the influence of the long-ranged Coulomb couplings
to first order. The convergence of this method is illustrated in

. . .. Fig. 1 for the ground-state to ground-state decay’¥#u, as
The asymptotic form of the outgoing waves one obtains i 9 grou grou y e

. ST . function of the matching radius,,. The parameters of the
the _adlabatlc I|_m|t IS given in E.C('S) of Ref. [11]. We can  calculations are given in Sec. V, and the results illustrate the

. - X . S’c%nvergence of the coupled-channels results shown in Table
simply by.|nsert|ng the correct momenta of the OUtgoINg, of that section. The dashed curve is the result we obtain
protons__in _the _ different channelg, namelyfikg when we choose;=r,. This result is identical, within the
= V24(Eres— Eg). Thus forr —co we obtain numerical accuracy, to the result of the direct mettsitbwn

1 by open circles where we insert the amplitudeR from
(+) _ DW= ; ; Eqg. (8a) into Eq. (7). The solid curve is the result of the
Yiw' (1, @) IjER Nijr 7 [Cilkar) +iF (ke JI(1TR)IM), distorted wave method obtained by extending the integration
(10 out tor;,,=100 fm. It is seen to converge at a much smaller
value of r,,. We find that it is sufficient to chooseg,,
where =15 fm andr;,= 100 fm, which are the values we will em-
ploy in the following.

ow_ _ _2H
iR ﬁsz

Tin
J'O ldr rF|(er)(I(jR)IM |V(r,w)+V|s(r) Ill. THE K REPRESENTATION

5 The particle-rotor model is usually formulated in tKe
Zpe |‘P(res)(r ®)) (11) representation, wheig is the projection of the total spinon
r AT the symmetry axis of the rotor. This representation is particu-
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2.9 [T T | T T T | T T T | T T T I T T
- . 1K, IM)= [DMK(w )[1K o
28— 0T . +<—1>"-'DLA7K<w>|IJ ~K)l, (14
—_— - \Q\ -
2 \\\\ -
] r ~a_ ] and
8 27— T O]
2 [ ] Ak=\ 3171 (JKRO|IK)\/1+( DR (15
[ = .
26 [ f— ] The derivation makes use of the sum rule, EpA-43) of
- 7 Ref.[16]. It has here been assumed tRat even, as it is for
[ ] the ground state rotational band of a quadrupole deformed
N T e nucleus. This feature has been built into the amplitudés
2'55 10 15 20 25 39 SO that they vanish wheR is odd. It is also noted that the
F (M) sum in Eq.(13) is restricted to positive values &f because

of a degeneracy with respect to the signkofNegative val-

FIG. 1. Calculated ground-state—to—ground-state proton decayes of K do appear in in Eq(14), namely, in the second
width for *3Eu. The results are shown as functions of the matchingerm, which is the time-reversed form of the first term.
radius r, used in the coupled-channels calculations. The open |nserting Eq.(13) into Eq. (1), we can now express the
circles are the results obtained from the direct method discussed iytal wave function in terms of the new bagis)):
the text. The dashed curve is the result of the distorted wave
method, Eq(12), for ri,=r,. The solid curve is the distorted wave
result obtained by extending the radial integration outrig Vin(r,m)= 2 2 || K,IM), (16)
=100 fm.

where the radial wave functions are
larly convenient in the adiabatic limit and it also provides a
useful way to interpret the results of a coupled-channels cal- 2
culation in terms of Coriolis mixing. Th& representation (r)
can be derived by expressing the single-particle states as
[1jm)y=32,D! «(w)|ljK)o, in terms of the stateHjK), in It can be shown that the amplitudék5) form an orthonor-
the body- f|xed frame of the rotor. Inserting this expressionmal transformation between th€ and theR representation,
into Eq. (2), together with the wave functions for the i.e.,
ground state rotational band of the rotofw|RMg)
= \/(2.R+ 1)/8772D5R0(w), one can derive the following ex- E AIKAle(U Sy . ; A}EA}E' =Seyr. (19
pression:

AjRBlir(r). (17)

This property makes it easy to translate the results obtained

) Ko in one representation into the other. Thus we can invert Eq.
IGRIM)= 2, AGHIK,IM), (13 (17) and obtain

¢|'J-R<r>=go ARSI (1). (19)

where

TABLE I. Proton decay widthsin units of 1072° MeV) of the *¥'Eu(3/2") ground state decay to the'Q
2", and 4" states of*3%Sm, and the branching ratio to thé Ztate. The widths have been calculated in the
adiabatic limit (adiab) and in the coupled-channels approdcoup. charn, both supplemented with the
distorted wave Green’s function technique as explained in the text. The wave number of the distorted waves
was generated from the"2excitation energy given in the second column. The energy of the resonance was
adjusted to 950.5 keV, consistent with the measured proton energy af ®&2V [2] corrected for recoil
and electronic screening effects. The experimental results are given in the last line.

Method E2+ (keV) FO FZ F4 FZ/FIOI
Adiab. 0 2.88 80.3 12.9

Adiab. 122 2.88 0.929 2.2210°8 0.244
Coup. chan. 122 2.66 0.907 224608 0.255
Experiment{ 2] 122 1.71= 0.24 0.54*= 0.13 0.24= 0.05
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A. Coupled equations in theK representation #2

i i 2
The matrix elements of the Legendre polynomials are par- W]KK_Z_JO[I (I+D+(+1)=2K

ticularly simple in theK representation, Eq14). The inte- - )

gration over the orientatiom of the core is trivial because it ok~ I(I+12(j+12)]. (29
only involves the orthogond functions. The single-particle
matrix elements are evaluated in the body-fixed rest frame
the rotor. They are diagonal i and have the explicit form

[see Eq.(3A-14) of Ref.[16]]
(1jK[P\[cog 0")][I"]"K)o
2

A
=(=DNj'KNO[jK)(j3NO0[j'3), (20 =—2—JO\/(I—K)(I FK+1)(j—K)(j+K+1).

O‘Fhe off-diagonal coupling is caused by the Coriolis force
which acts between neighboritgvalues,K'=K+1. For a
constant moment of inertia one obtaifsee Ref[17])

il il
Wik k+1=Wik 1k

whenl’+X\—1 is even, and zero whdii+ X —1 is odd. Thus (25)
when the\’s are even numbers, which is the case for a

quadrupole deformed core, we see that the even and the oddiese are the couplings that effectively enter into the
parity single-particle states are completely decoupled. coupled-channels calculations performed in EBveepresen-

Let us also express the couplings in fReepresentation tation. We note that rotational spectra are usually analyzed in
that appear in Eq(4), in terms of the single-particle matrix the K representation, and that it is necessary to reduce the
elements(20). Thus, if we insert the expressigh3) for the  strength of the Coriolis coupling, in order to reproduce ob-
spin-angular wave functions in tHe representation, we ob- served spectra. The necessary reduction may be explained by

tain the pairing and two-body recoil effects discussed in Ref.
[18]. We shall not consider such effects here. Instead, we
(I(JR)IM|P,[cog 6")]|I"(j'R")IM) perform our calculations in the representation as described
in Sec. Il. Discrepancies with measurements may then indi-
:KZO A}E(UKlP)\[Cos( o)1l ’j’K)oA}'fR, _ cate the need for improvements.
(21 B. Adiabatic limit

The K representation is very convenient in the adiabatic
. o e . limit, where the rotational energy of the core is set to zero
tained by multiplying Eq.(4) by Ajz, and next summing  4nq the coupled equatiorig2) become diagonal ifk. The
overR. In this procedure, we can make use of Eti), and  ymper of coupled channels is therefore much smaller for
the sum ruleg(18) when dealing with the coupling matrix |arge values ofK. It is identical to the number of single-

elements21). The only problem is caused by the rotational haiicie orbits that one includes, with the restriction that
energyEp of the core. However, this term can be dealt with > The adiabatic limit provides useful guidance for locat-
by inserting the expressiofL9) for the radial wave func- jng the band heads of the different rotational bands one ob-
tions. Thus we obtain tains in the coupled-channels approach.
As mentioned earlier, one can repair some of the short-
[hy— E]¢ij+ 2 W{(lK'(ﬁIIJK, comings of the adiabatic approximation when calculating the
K'>0 partial decay widths to excited states of the daughter nucleus
by using the distorted wave Green’s function method. Thus,
=—2 > (K|P|I']'K)oVy(r)¢ysr,  (22)  if we have obtained the radial wave functiogs),, for a
177 A=0 given K in the adiabatic limit, we can construct the associ-

ated radial wave functions in the representatiorgz&:,j,R,

=Az #17;,, according to Eq(19). Inserting these wave

i , functions into Eq.(12), and also the expressid@l) for the

WLK':ER: A}EERA}E : (23 matrix elements of the Legendre polynomials, one can use
the second sum rule in E@18) to perform the summation

The coupling matrix(23) has diagonal as well as off- overR’. The final expression is
diagonal terms, which are independent of the radial coordi-
nater. The off-diagonal terms cause some difficulties when
imposing the asymptotic behavior of the radial wave func-
tions, ¢|(r), for r—c2, in contrast to the simple form Eq.
(8) in the R representation. Fint ~ IK

One can deprive explicit expressions for the rotational cou- X fo drF|(er)Vx(r)¢|,j,(r). (26)
plings if one assumes a constant moment of inertia, Eg.,
=(h%/2Jp)R(R+1). The diagonal part of the coupling is This expression is consistent with E@.7) in Ref.[11] for
then(see Eqs(4A-9),(4A-10) of Ref.[12]) the ground-state—to—ground-state decay. The decay rate to

The coupled equations in thérepresentation can be ob-

where

21 ,
AR 20 (1K [Py[17j7K)

DW
Nijr =~ 52
kR NN
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an excited state of the daughter nucleus, however, is consic 1
erably reduced when the correct asymptotic momenilkmg 0.8
is employed in the radial matrix element of E&6). This is

illustrated in Table | of Sec. V. 0.6

IV. DEFORMED SPIN-ORBIT INTERACTION 5 04

We have so far considered only the monopole part of the im
spin-orbit interaction. Using this approximation, we have not ~
been able to reproduce recent calculations of the ground sta
decay of ®*¥Eu by Maglione and Ferreif®]. They included 0.2
all multipole components and performed their calculations in
the adiabatic limit. We therefore decided to go beyond the

monopole approximation.
The deformed spin-orbit interaction is often written as
[19]

Vis(r,0)=4Vs([VE(r,0)]xp)-s, (27)

whered is the angle betweenand the symmetry axis of the
axially symmetric rotor, and(r,#) is the deformed Fermi
function used in Appendix A. This form was applied by

01 Il Il 1 1
4

Vgg (MeV fm?)

FIG. 2. Branching ratio for thé*Eu ground state decay to the
first 2% excited state of3%Sm, calculated in the adiabatic limit as a
function of the spin-orbit strength. The two sets of calculations
were based on the monopol& £0) and the full deformed spin-

Sherif[19] to analyze proton scattering data but his expres—orbit interaction(all \'s), respectively. The solid curves represent

sions are not so easy to use in our case. We have therefore
Appendix C[Egs.(C3),(C83—(C8b)], derived the following
expression:

1df, f, d
V|s(f,0)—4Vso; (F WPU'S— T[I'S’P”]a

f, dP, r-s 08
"~ r2dcog6) r ) (28

where we have used the multipole expansit(r,6)
=3, f\(r)P,[cos(@)]. The spin-angular matrix elements of
this interaction are given in EqQ8C9)—(C11) in the intrinsic

rﬁ]sults with the orientation-dependent diffuseness,(E§), while

the dashed curves ignore this dependence. The open circle is the
adiabatic § =0) result of Ref[10], and the diamond is th@ll \'s)

result of Ref[9]. The horizontal dashed lines represent the experi-
mental error bandi2].

full deformed spin-orbit interaction produces a smaller
branching ratio and fits the measurement &k,
~10 MeV fn?. This value is close to the spin-orbit strength
of the “universal” interaction that was employed in RE3].
The result obtained there is shown by the diamond, and it is
consistent with oufall \’s) calculation.

The total proton decay width we obtain is shown in Fig. 3.
The two horizontal dashed lines are again the error band of

system of the rotor, and one can directly include these couthe measuremeri2]. The decay width obtained in ReR],
plings in the adiabatic limit. One can also transform the cou-

plings into theR representation, according to E@1), and
include them in the coupled equatiof.
To illustrate the significance of including the full de-

10 T T T T I T T T T I T T T T T T T T
8- -

formed spin-orbit interaction we show in Fig. 2 the branch-
ing ratioI", /T, for the ¥Eu(3/2") ground state decay to
the 2" excited state of the daughter nucleus. The calculations
were performed in the adiabatic limit using the parametriza- §
tion discussed in Appendix A, and the results are shown as —
functions of the spin-orbit strength. The solid curves are the
results we obtain with the monopola. €0) and the full
deformed spin-orbit interactiofall \'s). Both calculations
employed the orientation-dependent diffuseness defined ir
Eqg. (A6). The dashed curves were obtained by ignoringihe
dependence of the diffuseness. This correction has evidentl

MeV)

0

-
(2

a very small effect in this case. The two horizontal dashed
lines show the error band of the measurenjéht
The monopole spin-orbit force reproduces the measure-

Vgo (MeV fm?2)

ment at a strength of about 6 MeV #mThe open circle is
the adiabatic result of Ref10], which employed the Chep-
urnov parameters and included only the monopole part of th
spin-orbit force. It is consistent with ouh&0) result. The

FIG. 3. Calculated total proton decay width fo#Eu. The sym-
bols are the same as in Fig. 2, except the open circle which is the
€oupled-channels result of R¢10] obtained with a monopole spin-
orbit force.
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in our approach of supplementing the structure calculation

10 T T T T T T T T T T T T 1 T T T
! with the distorted wave Green’s function method.

o* .

V. APPLICATIONS TO DEFORMED PROTON EMITTERS

In this section we apply the coupled-channels approach,
and also the adiabatic limit, to study the proton decay of
By and ***Ho. We include all single-particle orbits with
ot <7, and all the necessary states of the ground state rota-
tional band of the daughter nucleus. We also include all mul-
"""""""""""""""""" Z tipole components of the Coulomb, nuclear, and the full de-

T formed spin-orbit interactions, i.e., up 10=14 forl,,,=7,
and we employ the angle-dependent diffuseness defined in
B 7 Eq. (A6).
cooav b by by There are several adjustable parameters in our particle-
4 6 8 10 12 rotor model. We have chosen the radius parameter
Vgg (MeV fm?) =1.25 fm and diffusenesa=0.65 fm for the nuclear and
] spin-orbit interactions, as discussed in Appendix A. The pa-
131|'5: IG. 4. Calculated widths for the ground state prcfnlté)og decay ofameters of the charge distribution of the core are also kept
u to the 0 ground state and 2 excited state of*'Sm as  fiyaq withr,=1.22 fm andac=0.56 fm. Guided by the re-
functions of the spin-orbit strength. The calculations employed they s \ve obtained in the previous section we choose the
:Zlérgzgtn:ﬁg ;f;)g}?r;b;t';teeﬁgtr'%;ﬁge horizontal dashed IIneSstr(:.:ngthvso= 10 MeV fn? of the deformec_j spin-prbit inter-
action. The depth of the nuclear potential, typically of the
order of 50 to 55 MeV, is adjusted so that the measured
shown by the diamond, is slightly larger than our regalt  energy of the decaying state is reproduced.
\’s). This is mainly caused by a slightly larger radius of the  Previous analyses have focused on the sensitivity to the
nuclear potential, increasing, from 1.25 to 1.275 fm, quadrupole deformation paramejgs but we adopt the pre-
whereas the branching ratio is insensitive to this variationdicted value[4] of 8,=0.33 for *°%Sm. For 1*®Dy we use
The open circle is the result of the coupled-channels calcug,=0.267 and include also the predictgd= —0.05. The
lations performed in Refl10]. It is smaller than our adia- rotational spectrum of the daughter nuclel&=(%2/
batic calculation X=0). We have therefore performed a 2J,)R(R+1), is generated from the measuret xcitation
coupled-channels calculation, with the same interaction anénergy of 122 keV for'*°sSm[2], and an estimated value of
deformation as used in Ref10]. Thus we obtain a total 160 keV for Dy [22].
proton decay width of 2.0810"*° MeV and a 2° branching We have already applied the above parameters-¥tu
ratio of 0.40, in very good agreement with the decay width ofin Figs. 1-4. In Fig. 1 we illustrated the rapid convergence
1.98x10"%° MeV (based on the quoted 23 ms half-lifend  of the distorted wave Green’s function method as a function
branching ratio of 0.39 obtained in R¢L0]. of the matching radius. Based on that result, we shall always

The present work shows that the branching ratio for theyse the matching radius,=15 fm, and the upper limit;
decay of the'*Eu(3/2") ground state is a very sensitive =100 fm for the radial integration which determines the dis-
probe of the spin-orbit force. The reason is that the decay teorted wave amplitudes, Eq&l2) and (26).
the 0" ground state of**Sm originates from a very small  The calculated decay rate to the ground state of the
component of the ground state wave function, witll@  daughter nucleus is extremely sensitive to the energy and the
wave coupled to the O state of the core. The dominant angular momentum of the emitted proton. It is therefore
component is as;, wave coupled to the 2 state of the core. fairly easy, in most cases, to determine the spin of the de-
Thus, if we change the strength of the spin-orbit interactioncaying state. Previous analydés9,10 have shown that the
the relative weights of thely, and ds;, components will  ground state of*!Eu is a 3/2 state, and the ground state of
change. The resulting decay widths we obtain with the full'*iHo is a 7/2 state. Our analysis confirms this determina-
deformed spin-orbit interaction is illustrated in Fig. 4. It is tion, and we shall therefore not discuss other candidates.
seen that the decay width to thé Gtate is quite sensitive to
the spin-orbit strength, whereas thé decay width is essen-
tially independent of it.

We conclude that it is important to use the full deformed The single-particle spectrum we obtain in the adiabatic
spin-orbit interaction in an analysis of tHéEu(3/2") de-  limit for *¥*Eu is shown in Fig. 5 as function of the quadru-
cay. We are then able to reproduce the measured branchimgple deformation parametg,. The solid curves are the en-
ratio (in the adiabatic limik for the spin-orbit strength/y, ergies of positive parity states, whereas the dashed curves are
~10 MeV fm?, which is consistent with the values com- the energies of the negative-parity states. The depth of the
monly used in structure calculations of heavy nufg€,21.  deformed Woods-Saxon weV{)= —52.784 MeV, was ad-
Moreover, we are able to reproduce the results of Refgusted at the predicted deformatiofi,=0.33, to produce a
[9,10] with our numerical methods. This gives us confidence3/2* ground state energy of 950.5 keV. This energy is con-

-20
T (107 MeV)

-

o

(5]
[T
N

+

]
xX

o

A. Proton decay of *'Eu
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L B B L R P T T TABLE II. Resonance energies and proton decay widihs
C / . . units of 10 2° MeV) for the ground state rotational band bfEu,
C e ] calculated in the coupled-channels approach. Also shown is the
3 r ’ =] calculated branching ratio to the" Zstate, and the half-life.
C S
2 - 1™ E (keV) Ty I, r, o/l ty (us)
% E 3/2" 9505 2.66 0.907 246108 0.255 12800
=3 - 5/2%  1052.2 625.0 4.24 9.¥10°° 0.0067 72.5
|_|J=< C 7/2° 11945 10.3 1366.0 0.0825 0.9925 33.0
ok 9/2" 1377.7 5.51 91840.0 28.5 0.9996 0.5
'1:— . than the measured values, indicating a spectroscopic factor
- 3 of the order of 0.6.
201 It is remarkable that the Green’s function method i I
A 0 o1 02 03 o4 t is remarkable that the Green'’s function method is able

to repair the shortcomings of the adiabatic approximation

and reproduce the coupled-channels results so well. We shall
FIG. 5. Single-particle energy spectrum obtained in the adia>€€ that ,th,'s feature '_S true only when Coriolis mixing is

batic limit for 3'Eu as a function of the quadrupole deformation weak, as itis for low spin states. Thus te=3/2 component

B,. The depth of the deformed Woods-Saxon well was adjusted tghakes up 99.8% of the ground state wave function in the

produce a 3/2 ground state energy of 950.5 keV #,=0.33, coupled-channels calculation. _ .
which is indicated by the filled circle. The coupled-channels approach makes it possible to cal-

culate the rotational spectrum build on tHe'Eu(3/2")

sistent with the measured energy of the emitted profaits gro_und_state. The results are shown in Table II. Thg moment
when corrected for recoil and electronic screening effectspf nertia extracted from th? cal_culated spectrum is almost
The 3/2 ground state is shown by the solid point. It origi- identical to the moment of inertia of the daughter nucleus.
nates from they, state in the spherical limit, and it is often
referred to as thg422]3/2" Nilsson orbit. Counting the lev-

els from below it is seen that this state is indeed at the Fer

The decay widths to the 4 state(and also to higher spin
state$ are small and can be ignored. The proton decay pat-
tern is qualitatively the same as predicted by the monopole
rTgpin—orbit force in Ref[10]. The main difference is in the
surface forZ=63. decay width of the ground state; it is 80% larger in our

The spectrum shown in Fig. 5 is similar to that obtained in lculati hich | he full def L
Ref. [9]. There are minor differences, due to the slightly-cna,:ecrl;?:ilgrr:’ which employs the full deformed spin-orbit

larger nuclear radius used there as mentioned in Sec. IV,
where we compared the calculated branching ratio and total
decay width. The 3/2 ground state predicted in RefL0],
based on a monopole spin-orbit force, was [A&1]3/2" From the single-particle spectrum shown in Fig. 5 one
Nilsson orbit, which originates from thds, state in the would expect that the ground state spin #fHo, with
spherical limit. This is a minor detail, which is related to the Z=67, is 7/2 since the predicted quadrupole deformation of
ordering of theds;, and thegy,, levels in the spherical limit. the daughter ig3,=0.267. This is indeed the result we ob-
Thus the calculated decay widths shown in Fig. 3 are assdain when we carry out the detailed calculation, in agreement
ciated with the[411]3/2" Nilsson orbit at small values of with the findings of previous analys¢$,7,10. From these
Vo, and with the[422]3/2* orbit at large values o¥/,. systematics we expect the ground state spid B, with Z

The decay rates we obtain in the adiabatic limit and in the= 65 andA~135, to be 5/2 since the predicted quadrupole
coupled-channels approach, both supplemented with thdeformation of the associated Gd isotopékis 8,~0.3.
Green’s function method to estimate the influence of the The decay widths we obtain for the 7/Zround state are
long-ranged Coulomb multipole couplinfsee Eqs(12) and  shown in the first part of Table Ill. The decay rate to the
(26)], are shown in Table I. The first line gives the partial ground state of*Dy that we obtain in the adiabatic limit is
decay widths we obtain when we set the excitation energiealmost a factor of 5 larger than the result of the coupled-
of the final states of the daughter nucleus equal to zero in thehannels approach. While the adiabatic result seems reason-
Green’s function method. The second line shows the resultable in comparison to the measurement, with a spectroscopic
we obtain when we use the correct final state energies. Thiactor of 0.66, the coupled-channels result is unrealistic,
resulting decay widths to the2and 4" states are reduced yielding a spectroscopic factor of 3.2. Moreover, the branch-
considerably compared to the first line, but they agree quiténg ratio to the 2 state, predicted by the coupled-channels
well with the results we obtain in the coupled-channels ap<alculation, is much higher than the upper limit of 1% set by
proach, which are shown in the third line. Moreover, theexperiment$23]. These discrepancies lead us to believe that
predicted branching ratio for the*2final state is in very the coupled-channels approach is unreliable in this case.
good agreement with the coupled-channels result and with The large discrepancy between the adiabatic and the
the measurement. The calculated decay widths are largeoupled-channels result is caused by strong Coriolis mixing

B. Proton decay of 1*Ho
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TABLE . Proton decay widths(in units of 10 2° MeV),

branching ratio to the 2 state, and the total proton decay half-life 01— ' I ! ' E
of the 7/2° ground state at 1.190 MeV, and the 1/Bomeric state - E
at 1.256 MeV in *Ho. The results obtained in the adiabatic C i
(adiab) and the coupled-channels approdcbup. chan.are com- - -
pared to measurements. The adoptédeXcitation energy of*Dy - -
is 160 keV. )
Method I Ty I, Tl tn Lﬁé

. ~ 0.0t —
Adiab. v 16.5 0.45 0.027 2.7 ms LN C ]
Coup. chan. 72 3.38 0.27 0.079 12.5 ms C ]
Experimen{1,23] 7/2~ 10.9+1.0 <0.01 4.2:0.4 ms - 7]
Adiab. 172t 21700 330 0.015 2.Ls - n
Coup. chan. 12 22530 317 0.014 2.0es | i
Experiment 3] 1/2* 5700+ 2140 8-3 us
Experiment{23] 1/2" 7020+1080 < 0.01 6.51us 0.001 . | . | . | 1 |

0.12 0.14 0.16 0.18 0.20

. E,+ (MeV)
in the latter. In fact, only 80% of the 7/2ground state wave

function belongs to th&=7/2 band. In a more realistic cal- FIG. 6. Branching ratios for the proton decay of the 7/&nd
culation, which would include pairing effects, Coriolis mix- 1/2" states in**Ho to the first 2° excited state it*®Dy, calculated

ing would be quenched. We therefore suspect that the adidn the adiabatic limit as functions of th@nknowr) excitation en-
batic limit gives a more realistic estimate. We note that theergy of the 2 final state.

coupled-channels calculation of R¢10], based on a mono-

pole spin-orbit force, also predicted a small width of 2.8 There are a number of uncertainties in our calculations. In
X 10 2% MeV. particular, the 2 excitation energy in the daughter nucleus

The decay rates we obtain for the 1/&Bomeric state in %Dy is not known. This quantity strongly affects the pre-
4o are given in the second part of Table Ill. Here thedicted branching ratio of the proton decay. We show in Fig.
adiabatic limit and the coupled-channels approach give alé the predicted 2 branching ratio for the two proton-
most the same results, as we would expect for a low-spimmitting states in**Ho, calculated in the adiabatic limit as
state. They are about a factor of 3 larger than the measurdunctions of the 2 excitation energy int*®Dy. The experi-
ment, indicating a spectroscopic factor of about 0.3. Themental upper limit for this quantity is 1% in both cages].
coupled-channels results of Kruppaal. [10], and also the This suggests that the postulated value of 160 keV may be
adiabatic results of Ref8], are quite similar to our results. too low.

The low spectroscopic factor may indicate that the shape of
the core for the 1/2 state is different from the shape of the VI. CONCLUSIONS
daughter nucleus, resulting in a poor overlap.

In Table IV we show the calculated rotational band build We have investigated the proton decay of heavy, de-
on the 1/2 state. We see that the preferred proton deca)tormed nuclei in a coupled-channels description. We find
branch changes from the*0Oto the 2 final state at spin that theR representation, which is formulated in the labora-
5/2*. We also see a strong signature splitting of the rotafory frame, is particularly convenient when imposing the

tional band, so that the 1f2and 3/2 states, and also the @symptotic form of resonance wave functions. Feepre-
5/2* and 7/2 states, are almost degenerate. sentation, which is commonly used in structure calculations,

makes use of single-particle states that are expressed in the
body-fixed frame of the rotor. This representation is less con-
venient because the Coriolis interaction is nondiagonal. It is,
however, very attractive in the adiabatic limit, where the Co-
riolis force vanishes and the Hamiltonian becomes diagonal
in the K quantum number, resulting in a reduction in the

TABLE IV. Calculated energies and proton decay widths
units of 10 1® MeV) of the rotational states build on the 1/2so-
mer in *Ho. Also shown is the branching ratio to thé #inal state
and the half-life. The 2 excitation energy of*Dy was set to 160

kev. number of coupled channels to be considered.
| E, (keV) Ty r, Tyl tys (uS) We find that it is sufficient to gmploy real energy 'eigen-
values in the coupled equations, instead of dealing with com-
1/2* 1256.0 0.225  0.0032 0.014 2.0 plex energies with an imaginary component that is related to
3/2* 1268.6 0.102 0.0054 0.050 4.2 an extremely small decay width. The decay width can be
5/2* 1512.1 2.65 2.57 0.492 0.087  extracted from the distorted wave Green'’s function tech-
712¢ 1542.3 0.0057 1.60 0.996 0.284  nigue. Moreover, it is sufficient to solve the coupled equa-
9/2t 1990.0 0.06 354.0 1.000 0.0013 tions out to about 15 fm because the Green’s function tech-

nique can be used to calculate quite reliably the influence of
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the long-ranged Coulomb multipole fields. These two simpli-Fermi functionf(x)=[1+exp(x)] * as
fications reduce the necessary computing time considerably.

The Green’s function technique can also be applied to 0 r—R(0)
calculate the decay rate in the adiabatic limit, because one VN(T, 0) =V T a
can implement the correct asymptotic momentum in the dis-
torted Coulomb waves of the Green'’s function. This is im-where
portant when one considers the decay to an excited state of
the daughter nucleus. When the spin of the decaying state is
low, so that Coriolis mixing is weak, we find that the partial
decay widths obtained in this way are in good agreement
with a nonadiabatic, coupled-channels calculation. We illusand 6 is the angle between and the symmetry axis of the
trated this point for the decay of th€Eu(3/2") ground core. The radius is calculated as
state and the 1/2isomeric state in**Ho. s

The decay width of thé*'Ho(7/2") ground state, on the Ap )
other hand, is a factor of 3 smaller in the full coupled- C(By))
channels approach than in the adiabatic limit. This discrep-
ancy is caused by Coriolis mixing, which is particularly where
Sibly play an mportant role and 1ead to 4 reduttion of the a0 v ;

Coriolis mixing. Since we have not considered this effect Cl82) f477 o ) Aol 0)) A2)

explicitly, we expect that the adiabatic approximation,

supplemented with the distorted wave Green’s method, givel$ a volume preserving factor, arg, is the mass number of

a more realistic estimate of the decay width, in particular forthe core. We have useg,=0.33 for **'Eu, andB,=0.267

a state with high spin. and3,= —0.05 for **Ho, which are the predicted deforma-
When dealing with the decay from a small component oftions [4] of the daughter nuclet**sm and Dy, respec-

a resonance wave function, we find that it is necessary tévely.

consider the full deformed spin-orbit interaction, instead of We consider here, for simplicity, only the monopole com-

just the monopole term. An example is the decay of thgponent of the spin-orbit interaction. It is parametrized as

131Ey(3/2") ground state to the 0 ground state of:3%Sm.

_The associat_ed comp_onent_of the grounq state wave _functipn Vls(r):4VsoE ifo“)"& (A3)

is small and its magnitude is very sensitive to the spin-orbit rdr

interaction. The decay to the'2state of*°Sm, on the other _ _

hand, involves a much larger fraction of the ground stateVhere fo(r) is the monopole term of the deformed Fermi

wave function and it is essentially insensitive to the spin-function that appears in E¢A1). We discuss in Sec. IV how

orbit force. Using a deformed spin-orbit interaction, with ato implement higher multipole components of a deformed

strength that is commonly used in structure calculations, weépin-orbit interaction. The parameters to determine so far are

are able to reproduce the measured branching ratio to the twWo: & Vso. andV(.

states. Moreover, the measured proton decay width is about For scattering statg4,25, the empirical radius param-

60% of the calculated width. eterr falls in the range from 1.17 to 1.25 fm, and the spin-

The most needed improvement in the nonadiabaticrbit strength isVs,~6 MeV fm?. In structure calculations
coupled-channels approach is to consider the effect of paif20,21, one usually uses larger radii, with~1.24 to 1.275
ing, not only in terms of a spectroscopic factor, but morefm, and a much stronger spin-orbit strengti/s,~9
importantly, to implement the quenching of the Coriolis mix- —10 MeV fn. We have chosen the compromise,
ing that it may cause. It may also be necessary to go beyong 1.25 fm and use@=0.65 fm in all of our calculations.
the particle-rotor model and consider a nonperfect overlap ofhe spin-orbit strength is discussed in Sec. 1V, where we
the core and the daughter nucleus, in order to explain théind thatVs,=10 MeV fn? is the best choice. The depth of
measured decay width of th&Ho(1/2") isomeric state, the nuclear interactioh{’ is adjusted so that the measured

1+ g BrY ol 0)} (A1)

RN=r0

which is a factor of 3 smaller than our prediction. energy of a given state is reproduced.
The charge density of the core is parametrized in a similar
ACKNOWLEDGMENTS fashion
This work was sgppor.te.d.by the U.S. Department of En- r—Re 1+2 B,Yo( )
ergy, Nuclear Physics Division, under Contract No. W-31- X
109-ENG-38. po(r,0)=No f ac . (A

The volume integral of this density is normalized to one. The

radius Rc is defined according to Eq(A2) with rg
The nuclear interaction between the valence proton anek1.22 fm, and we choosa:=0.56 fm.

the deformed core nucleus is parametrized in terms of the The Coulomb interaction of a proton with the core is

APPENDIX A: PARAMETRIZATION OF INTERACTIONS
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Zp€? Unny(T)—= S r' 1 for 1—0, (B2)

Ve(r,0)= [ dr'potr,01) =25
r=r’] i.e., only the channeh=n, has a nonzero wave function
near the origin.

The coupled equations are solviddimes with the differ-
ent initial conditiongB2). They are solved from=0 out to
a large distance,,, which is outside the range of the cou-
N plings. Atr=r,, the solutions can be matched to Coulomb

wave functions

Inserting into this expression the multipole expansjgh
=2, p\(r)P,[cos(®)] of the density, and also the multipole
expansion of the point-Coulomb interaction, we obtain

471'ZD62
Vel =2 i1

P,[cog 0)]f:dr’ r?

r
r)\jlp)\(r ,)1
T () Unng(1) = Ann Fi(Ker )+ Bon Gi(ker),  (B3a)

wherer _=min(r,r’) andr-=max(,r’). Uﬁno(f):AnnoF((er)*‘BnnoG((er)- (B3b)
Let us point out that the parametrization of the deformed
nuclear interactioiAl) assumes that the diffuseness is con-Here the prime denotes a radial derivative, ahéq

stant in the radial direction. The interactions discussed in_ 2u[E—Eq| is the asymptotic momentum. WheE
Ref. [20], which have been applied to defor.med proton e_m.it—< Eg, the Coulomb wave functions are replaced by those
ters in Refs[6-10], are calculated as functions of the mini- 4<sociated with bound state problems; see(E.

mum d|stancg between the _proton and th(_a surface of the core. Using the WronskiarF G,— F,G| =kg we obtain

One can estimate the significance of this difference by re-

placing the distancer —R(#) with its projection [r 1

—R(6)]r-n onto a unit vecton, which is perpendicular to Ann,= k—R[Gl(ka)UénO(r)—G((ka)UnnO(f)], (B4a)
surface of the core nucleus. If we choose the unit veatat

the intersection of with the surface of the core we obtain 1

r-n=R(6)/JR?(6) +[dR(6)/d6#]?. Inserting the projected Bon,= k—R[F|(er)unnO(r)—F|(er)unnO(r)]. (B4b)
distance into the expression for the nuclear interaction, Eq.

(Al), we see that this correction is equivalent to using the A general set of solutions to the coupled equations,

angle-dependent diffuseness ¢n(r), can be expressed as
1 dR(6))\?
aeff(ﬁ):a\/l-i-(m W) . (AB) ¢n(r):n20 anounno(r)- (B5)

This expression is consistent with E@-1889 of Ref.[12]  For a spherical proton emitter, where there is only one chan-
to lowest order. We include this correction consisteifely- ~ Nel, one can determine a resonance energy and wave function
cept otherwise statedh all the expressions that make use of by requiring that the radial wave function is matched to the
the deformed Fermi function, i.e., the nuclear and the spinirregular Coulomb wave functio,(kr) outside the range
orbit interactions, and also the charge density of the core. of the nuclear field. This is done by varying the eneggy
until the A amplitude in Eqs(B3a)—(B4) vanishes.
In the deformed case, we determine the resonance energy
by requiring that the radial wave functiowg;r(r) match the
Here we discuss how one can determine the resonan@ssociated Coulomb wave functio@g(kgr) atr=r,,. In-
energy and wave function of a proton emitter. The coupledserting the asymptotic form E¢gB3a) into Eq. (B5),
equations have the following general form:

APPENDIX B: RESONANCE SOLUTIONS

¢n(r)=(2 anOAnnO)Fl(er)+ E anOBnnO>Gl(er),
(hn_E)un(r):_Z Vo (MNup/ (1), (Bl) o "o (B6)

we see that we can make the regular soluigfkgr) disap-

wheren=(IjR), hp=h;; + Eg, andVay(r) represents the pear if we can find a set of amplitudes, so that

coupling matrix on the right side of E¢¢). Assume that the
total number of coupled equationsNs We can then gener-
ateN different sets of solutions by choosimydifferent sets Z A, =0. (B7)
of initial conditions atr =0. Let us denote these solutions by no 0o

(bnno(r), wheren refers to the channels ang, refers to a o o . .
particular choice of initial conditions. All solutions must be 1his is possible if the determinant of thex N matrix Ann
regular atr =0, i.e., ¢y, (r=0)=0. A simple way to gen- vanishes,

erate a particular set of solutions is for fixag to require

that de{AnnO}: 0. (Bg)
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This condition determines the resonance energy, and it i€C4) plays an important role in reproducing the asymmetry

solved by a numerical search. of inelastic proton scattering at forward anglgk9]. To
Once a resonance solution has been determined, it is noevaluate this term we express the momentum openator
malized =—1iV in spherical coordinates as in E@?2) and obtain
"norm
3 [™arlaunl-1 B (hpy s —i(hx) st (i s
~ Jo (6Xp)-s=—i(6Xr) Sdr+rsin(0)(0><¢) quﬁ
The point is that the wave function of a proton resonance . d 1 .
falls off dramatically as it passes through the Coulomb bar- =i¢sqotr Sin ) r-ss. (CH

rier, typically by 10 orders of magnitudé.3]. A reasonable
choice isr o= 100 fm, which is close to the outer classical
turning point. After the solution has been normalized, one
can then extract the amplitudes

_ r(r) B
NIjR_W' at r=rp,, (B10)

Let us now introduce the multipole expansion

f(r,0)=; f(r)Py[cog 6)]. (C6)

which determine the partial decay widths according to Eq.The first part of Eq(CS) leads to a term of the form

@ dp 1dP
_)\|(}$S= — —_A(ei¢si_e7i¢s+)
APPENDIX C: DEFORMED SPIN-ORBIT INTERACTION do 2 de
The deformed spin-orbit interaction is expressed in the _ }
so-called Thomas forri19] N 2([I +.PAIs-+[1-.Pysy)
Vis(r,0")=4Vs([VI(r,0)]Xp)-s, (CY =—[l-sP,], (C7)

where f(r, ) is the deformed Ferm_i function used in Eq. where we have used the commutator relatin ,P,]
(Al). Note that we use the conventidr=1 so that the di- _ +e*19(dP, /d@). This term produces the interaction

mension oV, is MeV fm?. Let us determine this interaction
in spherical coordinates in the intrinsic system, with the ¢ d

i 1 N
axis along the symmetry axis of the rotor. The necessary Vfﬁa)(r,0)=—4vsoE 25 P+ (C83
tools can be found in Chap. 9 of R¢26]. Thus the general Y T dr
expression for the gradient is

The second part of EC5) contains the helicity operator

~d .1 “ 1 N
==+ 60— —+dp——>v r-sand results in the interaction
v rdr ar de ¢rsm(0) d¢’ (€2
wherer, 6, and ¢ are the unit vectors associated with the V) (r,6)=— 4V, w &}_gz_ (c8b
spherical coordinates. x r° dcog0)
Inserting Eq(C2) into Eq.(C1) we obtain two terms. The
first term is caused by the force in the radial direction We note that the three components of the spin-orbit interac-
tion V(Y V{ZY  andV{Z®, are not separately Hermitian but

Vl(sl)(r ) :4\/30} g(r Xp)-s their sum is. . .
rdr Matrix elements In practical calculations we need the
1 df spin-angular matrix elements of the three interactions, Egs.
=4V. - —]. c3 (C3),(C8a,(C8), in the intrinsic system of the rotor. Fortu-
so S. (C3 . : : :
rdr nately, it turns out that the matrix elements are diagon#l.in
Let us introduce the abbreviated notatidd=IjK of the

This part of the interaction can easily be included in thespin-angular states. Then E@3) produces the coupling

coupled equations.
The second part of the interaction, which is caused by the
force in the# direction, is more complicated to deal with,

(N3 [VIOIND) =2V Jjo(j o+ 1) —15(1,+1)—3/4]
1
1df . Z A
V|(52)(r,9)=4vsoFd—0(0Xp)~s. (C9 X; <N1|P}‘|N2> r dr’ (C9

The force in thep direction vanishes because of the assumedvhere the matrix elemerfN,|P,|N,) is given in Eq.(20).
axial symmetry. Sherif demonstrated that the interaction The coupling which is generated by E&83 is
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N[ VEDNLY =2V o(jo(j o+ 1) —o(lo+1)—j1(j;+1) _ _
< il s | 2l sz 22 n <N/||z|N2>:% ml<|2ml%ms|],K><|2mI%ms|]2K>'
|'s

N 1
+|1(|1+1))§Q <N1|P‘|N2>T(a_ rl To calculate the first matrix element in E@€11) we insert
(C10 dP,(z2) 2
= 2 (2N HDP(),

This coupling acts on the radial wave functiogg(r). The A =1
operatord/dr in Eq. (C83 has therefore been replaced by \yhere the sum is over odd values of, assuming thak is

(d/dr—1/) in Eq. (C10. _ , even. The first matrix element in E€C11) can now be cal-
To calculate matrix elements of EQC8b) we insertinter-  cyjated in the helicity representation; see BA-5) of Ref.,
mediate statel’=1"j'K’, [16]. The final expression is
dp, . dpP, . an 1
(2O)|N,) = — > Nyl ——=T-gN')= j"KN'0]j;K
<N1|V|S |N2> 4\/502 Z < l| dCOia) < l| dCOS(G) S| > )\21 <J |Jl >
><|N’><N’||z|Nz>- (C1) X(j1zM'0[j"3
The matrix element of, is diagonal inK andl (i.e.,|"=I,  where the sum is over odd values ©f, whereas\ andl,
andK’=K) but not inj, +1, are even numbers.
[1] C. N. Davidset al, Phys. Rev. Lett80, 1849(1998. [14] N. K. Glendenning,Direct Nuclear ReactiongAcademic,
[2] A. A. Sonzogniet al, Phys. Rev. Lett83, 1116(1999. New York, 1983.
[3] K. Rykaczewskiet al., Phys. Rev. G0, 011301R) (1999. [15] M. Gell-Mann and M. L. Goldberger, Phys. Re91, 398
[4] P. Mdler, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. (1953.
Data Nucl. Data Table§9, 185(1995. [16] A. Bohr and B. R. MottelsonNuclear Structure(Benjamin,
[5] V. P. Bugrov and S. G. Kadmensky, Sov. J. Nucl. PH&. New York, 1969, Vol. I.
967 (1989; Phys. At. Nucl59, 424(1996. [17] A. K. Kerman, Mat. Fys. Medd. K. Dan. Vidensk. Sels0
[6] L. S. Ferreira, E. Maglione, and R. J. Liotta, Phys. Rev. Lett. (1956.
78, 1640(1997). [18] A. Henriquez, T. Engeland, and J. Rekstad, Phys. Re27,C

[7] E. Maglione, L. S. Ferreira, and R. J. Liotta, Phys. Rev. Lett. 1302/(1983.

81, 538(1998. .
' . . ) [19] H. Sherif, Nucl. PhysA131, 532(1969.
[8] E. Maglione, L. S. Ferreira, and R. J. Liotta, Phys. Rebd: [20] S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, and T. Werner,

R589(1999.
i . Comput. Phys. Commum6, 739 (1987.
9] E. Maglione and L. S. Ferreira, Phys. Rev. 8%, 047307
(9] (20009 y [21] R. R. Chasman, Phys. Lett. 87, 219 (1987).

[10] A. T. Kruppa, B. Barmore, W. Nazarewicz, and T. Vertse, [22] v. Zamflr(p_rlvate_ communlcatlc_))n )
Phys. Rev. Lett84, 4549 (2000. [23] D. Seweryniak(private communication

[11] C. N. Davids and H. Esbensen, Phys. Rev.6C 054302 [24] F. D. Becchetti and G. W. Greenlees, Phys. RE82 1190

(2000. (1969.

[12] A. Bohr and B. R. MottelsonNuclear Structure(Benjamin,  [25] L. Rosen, J. G. Beery, and A. S. Goldhaber, Ann. Pfiysy.)
Reading, MA, 197§ Vol. II. 34, 96 (1965.

[13] S. Aberg, P. B. Semmes, and W. Nazarewicz, Phys. Ré6,C  [26] E. MerzbacherQuantum Mechani¢cs2nd ed. (Wiley, New
1762(1997; 58, 3011(1998. York, 1970.

014315-13



