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Coupled-channels treatment of deformed proton emitters

Henning Esbensen and Cary N. Davids
Physics Division, Argonne National Laboratory, Argonne, Illinois 60439

~Received 30 June 2000; published 20 December 2000!

The structure of deformed proton emitters is studied in a coupled-channels treatment. The wave function of
a decaying state is determined as a standing wave, i.e., for an energy that is real. The decay rate is calculated
from a Green’s function method, treating the influence of the long-range Coulomb multipole interactions to
first order. The results are compared to predictions made in the adiabatic limit and to measurements. It is
shown that the decay of the131Eu(3/21) ground state to the ground state of130Sm is quite sensitive to
deformation in the spin-orbit force. It is found that the ground state decay of141Ho(7/22) is poorly described
in the coupled-channels approach. This is ascribed to Coriolis mixing, which is too strong in the absence of
pairing effects.
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I. INTRODUCTION

Information about the structure of deformed nuclei b
yond the proton drip line has recently been obtained fr
measurements of the decay rate and the energy of the em
protons. One example is the ground state decay of131Eu to
the ground state@1,2# and to an excited state@2# of 130Sm.
Another example is the decay of141Ho, both from the
ground state@1# and from an isomeric state@3#, to the ground
state in 140Dy. The daughter nuclei are expected to fall in
region of large quadrupole deformations@4#.

The measurements were analyzed in a particle-ro
model, with an unbound proton interacting with an axia
symmetric, quadrupole deformed core, making use of sev
approximations@1,2#. Thus the wave functions of the deca
ing states were obtained by diagonalizing a deformed Ha
tonian in a spherical single-particle basis. Moreover, this w
done in the adiabatic limit, where the excitation energies
the rotor are set to zero. However, the effect of rotatio
excitations of the daughter nucleus in the final state was
cluded by using the Green’s function method of Bugrov a
Kadmensky@5#.

Since the decay rate is extremely sensitive to the ene
of the emitted proton, it is useful to study the wave functi
of a decaying state in a more consistent way. This can
done in the coupled-channels approach, where one can
clude non-zero core excitation energies. Moreover, the w
function of a decaying state is automatically generated
solving a set of coupled radial differential equations. Su
studies have already been performed, both in the adiab
limit @6–9#, and also in the nonadiabatic case@10#. These
calculations employed complex energies and the coup
equations were solved out to large distances, outside
range of the couplings. Such calculations are very time c
suming, partly because the decay rate~related to the imagi-
nary part of the complex energy! is extremely small, and
partly because the range of the Coulomb quadrupole inte
tion is large.

A much faster method, which is employed in this work,
to solve the coupled equations for real energies. The de
ing state is therefore a standing wave, and the decay ra
0556-2813/2000/63~1!/014315~13!/$15.00 63 0143
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extracted by employing the Green’s function method@5#. It
has been shown@11# that the decay rate obtained from th
method, in principle, is in exact agreement with the ‘‘direc
method@7#, which employs complex energies and extra
the decay rate from the asymptotic amplitudes of the out
ing Coulomb waves. We show that the Green’s functi
method can be used quite reliably to calculate the influe
of the long-ranged Coulomb multipole interactions, so th
the coupled equations need only to be solved out to 10
fm.

For a given total spinI of the decaying state, the include
channels are labeled by (l jR), where (l j ) specifies the
single-particle orbits andR is the angular momentum of th
core, i.e., daughter nucleus. This formulation is made in
laboratory frame, and we refer to it as theR representation
because the Hamiltonian of the rotor is diagonal in this r
resentation. This feature makes it easy to impose the cor
asymptotic form of the radial wave functions at large d
tances.

An alternative representation is to use single-particle
bits in the body-fixed frame of the rotor. They are specifi
by quantum numbers (l jK ), whereK is the projection of the
spin on the symmetry axis of the rotor. We refer to this as
K representation. It has the advantage that the interac
between the proton and the rotor is diagonal inK. This fea-
ture simplifies calculations in the adiabatic limit. In the non
diabatic case, however, the Hamiltonian of the rotor is
diagonal inK due to Coriolis mixing. This makes it difficul
to impose the correct asymptotic form of the radial wa
functions. We shall see that the two representations
equivalent.

The coupled-channels approach is discussed in the
section. In Sec. III it is shown that theR representation and
the K representation are related by a simple transformat
and the adiabatic limit is also discussed. In Sec. IV we d
cuss the significance of a deformed spin-orbit interact
compared to the monopole part of it. The numerical resu
we have obtained for131Eu and 141Ho, both in the coupled-
channels approach and in the adiabatic limit, are compare
measurements in Sec. V, and Sec. VI contains our con
sions.
©2000 The American Physical Society15-1



us
m
e
u

ix
m
te

th

it
o
c

le
is

th

c
io

on
-

ly-

es
tic
are

d
r
he
s-

r-
-

mb
tate
pi-
of

the
fely

be

ve
qua-

ve
d is
so-

ra-

our
ce,
s.
ed
u-
n’s
eal,
the
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II. COUPLED-CHANNELS APPROACH

We wish to determine the wave function of a nucle
consisting of a single proton interacting with an axially sy
metric, deformed core. We include, for simplicity, only th
ground state rotational band in the core nucleus and ass
that the spectrum is of the formER5(\2/2J0)R(R11),
whereR50,2,4, . . . .This problem is discussed in Append
5A of Ref. @12# as a coupled-channels scattering proble
Here we apply this formulation to determine bound sta
and narrow resonances.

The total wave function for a particular total spin (I ,M )
of the system has the form

C IM ~r ,v!5(
l jR

f l jR
I ~r !

r
u l ~ jR!IM &, ~1!

where

u l ~ jR!IM &5 (
mMR

^ jmRMRuIM &uRMR&u l jm& ~2!

is the channel-spin wave function, obtained by coupling
single-particle, spin-angular wave functionsu l jm& to the
wave functionuRMR& of the rotor.

The total Hamiltonian of the proton-core system,

H5T1V~r ,v!1Vls~r !1HR , ~3!

consists of the relative kinetic energyT, the Coulomb plus
nuclear interactionV(r ,v), which depends on the positionr
of the proton and the orientationv of the rotor, and the
Hamiltonian HR of the rotor. We also include a spin-orb
interaction but consider here, for simplicity, only the mon
pole part of it. The detailed parametrization of the intera
tions we have used is given in Appendix A, and the imp
mentation of the full deformed spin-orbit interaction
discussed in Sec. IV.

To proceed, we first make a multipole expansion of
Coulomb plus nuclear interaction

V~r ,v!5(
l

Vl~r !Pl@cos~u8!#,

whereu8 is the orientation angle of the nucleon with respe
to the symmetry axis of the rotor. Inserting the wave funct
~1! into the Schro¨dinger equation,HC IM 5EC IM , and pro-
jecting this equation with the channel-spin wave functi
u l ( jR)IM &, we obtain the following set of coupled differen
tial equations for the radial wave functions:

~hl j 1ER2E!f l jR
I ~r !52 (

l 8 j 8R8
(
lÞ0

^ l ~ jR!IM uPl@cos~u8!#

3u l 8~ j 8R8!IM &Vl~r !f l 8 j 8R8
I

~r !,

~4!

wherehl j includes the monopole pieces of the interaction
01431
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hl j 5
\2

2m S 2
d2

dr2
1

l ~ l 11!

r 2 D 1V0~r !1Vls~r !. ~5!

An expression for the matrix elements of the Legendre po
nomials is given in Sec. III A.

A. Determination of resonances

The wave function of a proton resonance is sometim
calculated by using complex energies. The asympto
boundary conditions, which determine the resonance,
outgoing Coulomb waves in all channels@7#, i.e.,

f l jR
I ~r !5Nl jR

I @Gl~kRr !1 iF l~kRr !#, for r→`. ~6!

Here \kR5A2muE2ERu is the momentum of the emitte
proton, andFl(kRr ) and Gl(kRr ) are regular and irregula
Coulomb wave functions, respectively. By calculating t
outgoing flux of protons, one arrives at the following expre
sion for the partial decay widths@7#:

G IR5(
l j

G l jR
I , where G l jR

I 5
\2kR

m
uNl jR

I u2. ~7!

The widthsG IR are extremely small in the cases of inte
est, typically of the order of 10220 MeV, whereas the reso
nance energyEres is of the order of 1 MeV. The small width
arises from the height and the thickness of the Coulo
barrier. Consequently, the wave function of a resonance s
falls off dramatically as it passes through the barrier, ty
cally by 10 orders of magnitude as illustrated in Fig. 1
Ref. @13#. It is very difficult to calculate the wave function
accurately out to large distances, outside the range of
couplings, where the matching to Coulomb waves can sa
be made. It requires that the energy of the resonance
determined with extremely high precision.

Alternative approaches to overcome this problem ha
been suggested. One example is to express the coupled e
tions in terms of the logarithmic derivative of the radial wa
functions@6#. This method may have some advantages an
apparently more stable. Another possibility is to use the
lutions one obtains in an interval 0,r ,r m and match them
at r 5r m to the solutions one obtains by an inward integ
tion, from the asymptotic region tor m . We shall not pursue
this possibility here.

We have chosen a much simpler approach. We match
solutions to Coulomb waves at a relatively small distan
r m'15 fm, which is outside the range of nuclear coupling
In this first stage we ignore the effect of the long-rang
Coulomb couplings. We will include this effect in the calc
lation of the decay rate using the distorted wave Gree
function method. Moreover, we adopt energies that are r
so our solutions are standing waves and we replace
boundary conditions~6! by

f l jR
I ~r !5Nl jR

I Gl~kRr !, at r 5r m , ~8a!
5-2
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COUPLED-CHANNELS TREATMENT OF DEFORMED . . . PHYSICAL REVIEW C63 014315
when E.ER . If E,ER , the radial wave functions ar
matched to the asymptotic form of bound state Coulo
wave functions, i.e., the Whittaker functions

f l jR
I ~r !5Nl jR

I Wh,l 11/2~2kRr !, at r 5r m , ~8b!

where h5ZDe2/(\2kR /m). The numerical procedure w
have used to determine the energy and the wave functio
a resonance is discussed in detail in Appendix B.

This procedure needs some justification. First of all, it
not unreasonable to use a real energy and to determine
wave function of a narrow resonance as a standing wa
The boundary condition~8a! implies that the nuclear phas
shift of the scattering state is 90°, which is a common d
nition of a narrow resonance. A simple way to extract t
decay properties of a standing wave is to apply the outgo
distorted wave Green’s function method, which we now d
cuss.

B. Green’s function method

Once a resonance solutionC IM
(res) has been determined, it

decay properties can be determined by applying the disto
wave Green’s function method associated with outgo
Coulomb waves@11,14#

C IM
(1)~r ,v!5E dr 8 dv8GCoul

(1) ~r ,v;r 8,v8!FV~r 8,v8!

1Vls~r 8!2
ZDe2

r 8
GC IM

(res)~r 8,v8!. ~9!

The Green’s function acts on the product of the resona
solution and the total interaction minus the point Coulom
interaction with the daughter nucleus, which determines
distorted Coulomb waves. This method is based on the e
Gell-Mann-Goldberger transformation@15#, and it has previ-
ously been applied in studies of the proton anda decay of
heavy nuclei@1,2,5#.

The asymptotic form of the outgoing waves one obtains
the adiabatic limit is given in Eq.~8! of Ref. @11#. We can
easily generalize that expression to the nonadiabatic
simply by inserting the correct momenta of the outgoi
protons in the different channels, namely,\kR

5A2m(Eres2ER). Thus forr→` we obtain

C IM
(1)~r ,v!5(

l jR
Nl jR

DW 1

r
@Gl~kRr !1 iF l~kRr !#u~ l jR !IM &,

~10!

where

Nl jR
DW52

2m

\2kR
E

0

r int
dr rF l~kRr !^ l ~ jR!IM uV~r ,v!1Vls~r !

2
ZDe2

r
uC IM

(res)~r ,v!&. ~11!
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The bracket denotes a matrix element with respect to
orientation of the proton and the deformed daughter nucle
and also with respect to the spin of the proton. The rad
integration is performed separately. Below we discuss
choice of the upper limitr int .

The numerical calculation of Eq.~11! is fairly simple
once a multipole expansion of the interaction has been
formed,

V~r ,v!1Vls~r !2
ZDe2

r
5(

l
Ṽl~r !Pl@cos~u8!#.

The multipole terms~for lÞ0) are identical to those consid
ered in the coupled equations~4! but the monopole term
includes also the monopole spin-orbit interaction minus
point-Coulomb interaction. Inserting this expansion, and a
the expression~1! for the resonance wave function, into E
~11! we obtain

Nl jR
DW52

2m

\2kR
(
l

(
l 8 j 8R8

^~ l jR !IM uPlu~ l 8 j 8R8!IM &

3E
0

r int
dr Fl~kRr !Ṽl~r !f l 8 j 8R8

I
~r !. ~12!

The outgoing waves in Eq.~10! are exactly of the form
~6!. The amplitudesNl jR

DW will therefore determine the partia
decay widths according to Eq.~7!. We have previously dem
onstrated@11# that the amplitudesNl jR

DW are identical to the
amplitudesNl jR

I defined in Eq.~8a!. This is the result we
obtain when we chooser int5r m as the upper integration
limit. The proof was made in the adiabatic limit but it ca
easily be generalized to the nonadiabatic, coupled-chan
case.

If we extrapolate the resonance wave function beyondr m
according to Eq.~8a! and extend the radial integration in Eq
~12! to r int@r m , then the distorted wave method will als
include the influence of the long-ranged Coulomb couplin
to first order. The convergence of this method is illustrated
Fig. 1 for the ground-state to ground-state decay of131Eu, as
function of the matching radiusr m . The parameters of the
calculations are given in Sec. V, and the results illustrate
convergence of the coupled-channels results shown in T
I of that section. The dashed curve is the result we obt
when we chooser int5r m . This result is identical, within the
numerical accuracy, to the result of the direct method~shown
by open circles!, where we insert the amplitudesNl jR

I from
Eq. ~8a! into Eq. ~7!. The solid curve is the result of th
distorted wave method obtained by extending the integra
out to r int5100 fm. It is seen to converge at a much smal
value of r m . We find that it is sufficient to chooser m
515 fm andr int5100 fm, which are the values we will em
ploy in the following.

III. THE K REPRESENTATION

The particle-rotor model is usually formulated in theK
representation, whereK is the projection of the total spinI on
the symmetry axis of the rotor. This representation is parti
5-3
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HENNING ESBENSEN AND CARY N. DAVIDS PHYSICAL REVIEW C63 014315
larly convenient in the adiabatic limit and it also provides
useful way to interpret the results of a coupled-channels
culation in terms of Coriolis mixing. TheK representation
can be derived by expressing the single-particle state
u l jm&5(KDmK

j (v)u l jK &0, in terms of the statesu l jK &0 in
the body-fixed frame of the rotor. Inserting this express
into Eq. ~2!, together with the wave functions for th
ground state rotational band of the rotor,^vuRMR&
5A(2R11)/8p2DMR0

R (v), one can derive the following ex

pression:

u l ~ jR!IM &5 (
K.0

AJR
IK u l jK ,IM &, ~13!

where

FIG. 1. Calculated ground-state–to–ground-state proton de
width for 131Eu. The results are shown as functions of the match
radius r m used in the coupled-channels calculations. The o
circles are the results obtained from the direct method discusse
the text. The dashed curve is the result of the distorted w
method, Eq.~12!, for r int5r m . The solid curve is the distorted wav
result obtained by extending the radial integration out tor int

5100 fm.
01431
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u l jK ,IM &5A2I 11

16p2
@DMK

I ~v!u l jK &0

1~21! j 2IDM2K
I ~v!u l j 2K&0], ~14!

and

AjR
IK5A2R11

2I 11
^ jKR0uIK &A11~21!R. ~15!

The derivation makes use of the sum rule, Eq.~1A-43! of
Ref. @16#. It has here been assumed thatR is even, as it is for
the ground state rotational band of a quadrupole deform
nucleus. This feature has been built into the amplitudes~15!
so that they vanish whenR is odd. It is also noted that the
sum in Eq.~13! is restricted to positive values ofK because
of a degeneracy with respect to the sign ofK. Negative val-
ues of K do appear in in Eq.~14!, namely, in the second
term, which is the time-reversed form of the first term.

Inserting Eq.~13! into Eq. ~1!, we can now express th
total wave function in terms of the new basis~14!:

C IM ~r ,v!5(
l j

(
K.0

f l j
IK~r !

r
u l jK ,IM &, ~16!

where the radial wave functions are

f l j
IK~r !5(

R
AjR

IKf l jR
I ~r !. ~17!

It can be shown that the amplitudes~15! form an orthonor-
mal transformation between theK and theR representation,
i.e.,

(
K.0

AjR
IKAjR8

IK
5dR,R8 , (

R
AjR

IKAjR
IK 85dK,K8 . ~18!

This property makes it easy to translate the results obta
in one representation into the other. Thus we can invert
~17! and obtain

f l jR
I ~r !5 (

K.0
AjR

IKf l j
IK~r !. ~19!
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TABLE I. Proton decay widths~in units of 10220 MeV) of the 131Eu(3/21) ground state decay to the 01,
21, and 41 states of130Sm, and the branching ratio to the 21 state. The widths have been calculated in t
adiabatic limit ~adiab.! and in the coupled-channels approach~coup. chan.!, both supplemented with the
distorted wave Green’s function technique as explained in the text. The wave number of the distorted
was generated from the 21 excitation energy given in the second column. The energy of the resonance
adjusted to 950.5 keV, consistent with the measured proton energy of 93267 keV @2# corrected for recoil
and electronic screening effects. The experimental results are given in the last line.

Method E21 ~keV! G0 G2 G4 G2 /G tot

Adiab. 0 2.88 80.3 12.9
Adiab. 122 2.88 0.929 2.1231028 0.244
Coup. chan. 122 2.66 0.907 2.4631028 0.255

Experiment@2# 122 1.716 0.24 0.546 0.13 0.246 0.05
5-4
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COUPLED-CHANNELS TREATMENT OF DEFORMED . . . PHYSICAL REVIEW C63 014315
A. Coupled equations in theK representation

The matrix elements of the Legendre polynomials are p
ticularly simple in theK representation, Eq.~14!. The inte-
gration over the orientationv of the core is trivial because i
only involves the orthogonalD functions. The single-particle
matrix elements are evaluated in the body-fixed rest fram
the rotor. They are diagonal inK and have the explicit form
@see Eq.~3A-14! of Ref. @16##

^ l jK uPl@cos~u8!#u l 8 j 8K&0

5~21!l^ j 8Kl0u jK &^ j 1
2 l0u j 8 1

2 &, ~20!

whenl 81l2 l is even, and zero whenl 81l2 l is odd. Thus
when thel ’s are even numbers, which is the case for
quadrupole deformed core, we see that the even and the
parity single-particle states are completely decoupled.

Let us also express the couplings in theR representation
that appear in Eq.~4!, in terms of the single-particle matri
elements~20!. Thus, if we insert the expression~13! for the
spin-angular wave functions in theR representation, we ob
tain

^ l ~ jR!IM uPl@cos~u8!#u l 8~ j 8R8!IM &

5 (
K.0

AjR
IK^ l jK uPl@cos~u8!#u l 8 j 8K&0Aj 8R8

IK .

~21!

The coupled equations in theK representation can be ob
tained by multiplying Eq.~4! by AjR

IK , and next summing
over R. In this procedure, we can make use of Eq.~17!, and
the sum rules~18! when dealing with the coupling matri
elements~21!. The only problem is caused by the rotation
energyER of the core. However, this term can be dealt w
by inserting the expression~19! for the radial wave func-
tions. Thus we obtain

@hl j 2E#f l j
IK1 (

K8.0

WKK8
j I f l j

IK 8

52(
l 8 j 8

(
l.0

^ l jK uPlu l 8 j 8K&0Vl~r !f l 8 j 8
IK , ~22!

where

WKK8
j I

5(
R

AjR
IKERAjR

IK 8 . ~23!

The coupling matrix ~23! has diagonal as well as off
diagonal terms, which are independent of the radial coo
nater. The off-diagonal terms cause some difficulties wh
imposing the asymptotic behavior of the radial wave fun
tions, f l j

IK(r ), for r→`, in contrast to the simple form Eq
~8! in the R representation.

One can derive explicit expressions for the rotational c
plings if one assumes a constant moment of inertia, i.e.,ER
5(\2/2J0)R(R11). The diagonal part of the coupling i
then ~see Eqs.~4A-9!,~4A-10! of Ref. @12#!
01431
r-

of

dd

l

i-
n
-

-

WKK
jI 5

\2

2J0
@ I ~ I 11!1 j ~ j 11!22K2

1dK,1/2~21! I 1 j~ I 11/2!~ j 11/2!#. ~24!

The off-diagonal coupling is caused by the Coriolis for
which acts between neighboringK values,K85K61. For a
constant moment of inertia one obtains~see Ref.@17#!

WK,K11
j I 5WK11,K

jI

52
\2

2J0
A~ I 2K !~ I 1K11!~ j 2K !~ j 1K11!.

~25!

These are the couplings that effectively enter into
coupled-channels calculations performed in theR represen-
tation. We note that rotational spectra are usually analyze
the K representation, and that it is necessary to reduce
strength of the Coriolis coupling, in order to reproduce o
served spectra. The necessary reduction may be explaine
the pairing and two-body recoil effects discussed in R
@18#. We shall not consider such effects here. Instead,
perform our calculations in theR representation as describe
in Sec. II. Discrepancies with measurements may then in
cate the need for improvements.

B. Adiabatic limit

The K representation is very convenient in the adiaba
limit, where the rotational energy of the core is set to ze
and the coupled equations~22! become diagonal inK. The
number of coupled channels is therefore much smaller
large values ofK. It is identical to the number of single
particle orbits that one includes, with the restriction thaj
>K. The adiabatic limit provides useful guidance for loca
ing the band heads of the different rotational bands one
tains in the coupled-channels approach.

As mentioned earlier, one can repair some of the sh
comings of the adiabatic approximation when calculating
partial decay widths to excited states of the daughter nuc
by using the distorted wave Green’s function method. Th
if we have obtained the radial wave functionsf l 8 j 8

IK for a
given K in the adiabatic limit, we can construct the asso
ated radial wave functions in theR representationf l 8 j 8R8

I

5Aj 8R8
IK f l 8 j 8

IK , according to Eq.~19!. Inserting these wave
functions into Eq.~12!, and also the expression~21! for the
matrix elements of the Legendre polynomials, one can
the second sum rule in Eq.~18! to perform the summation
over R8. The final expression is

Nl jR
DW52

2m

\2kR

AjR
IK (

l l 8 j 8
^ l jK uPlu l 8 j 8K&

3E
0

r int
drFl~kRr !Ṽl~r !f l 8 j 8

IK
~r !. ~26!

This expression is consistent with Eq.~17! in Ref. @11# for
the ground-state–to–ground-state decay. The decay ra
5-5
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HENNING ESBENSEN AND CARY N. DAVIDS PHYSICAL REVIEW C63 014315
an excited state of the daughter nucleus, however, is con
erably reduced when the correct asymptotic momentum\kR
is employed in the radial matrix element of Eq.~26!. This is
illustrated in Table I of Sec. V.

IV. DEFORMED SPIN-ORBIT INTERACTION

We have so far considered only the monopole part of
spin-orbit interaction. Using this approximation, we have n
been able to reproduce recent calculations of the ground
decay of131Eu by Maglione and Ferreira@9#. They included
all multipole components and performed their calculations
the adiabatic limit. We therefore decided to go beyond
monopole approximation.

The deformed spin-orbit interaction is often written
@19#

Vls~r ,u!54Vso~@¹ f ~r ,u!#3p!•s, ~27!

whereu is the angle betweenr and the symmetry axis of th
axially symmetric rotor, andf (r ,u) is the deformed Ferm
function used in Appendix A. This form was applied b
Sherif @19# to analyze proton scattering data but his expr
sions are not so easy to use in our case. We have therefo
Appendix C@Eqs.~C3!,~C8a!–~C8b!#, derived the following
expression:

Vls~r ,u!54Vso(
l

S 1

r

d fl

dr
Pll•s2

f l

r
@ l•s,Pl#

d

dr

2
f l

r 2

dPl

d cos~u!

r•s

r
l zD , ~28!

where we have used the multipole expansionf (r ,u)
5(l f l(r )Pl@cos(u)#. The spin-angular matrix elements o
this interaction are given in Eqs.~C9!–~C11! in the intrinsic
system of the rotor, and one can directly include these c
plings in the adiabatic limit. One can also transform the c
plings into theR representation, according to Eq.~21!, and
include them in the coupled equations~4!.

To illustrate the significance of including the full de
formed spin-orbit interaction we show in Fig. 2 the branc
ing ratio G2 /G tot for the 131Eu(3/21) ground state decay to
the 21 excited state of the daughter nucleus. The calculati
were performed in the adiabatic limit using the parametri
tion discussed in Appendix A, and the results are shown
functions of the spin-orbit strength. The solid curves are
results we obtain with the monopole (l50) and the full
deformed spin-orbit interaction~all l ’s!. Both calculations
employed the orientation-dependent diffuseness define
Eq. ~A6!. The dashed curves were obtained by ignoring thu
dependence of the diffuseness. This correction has evide
a very small effect in this case. The two horizontal dash
lines show the error band of the measurement@2#.

The monopole spin-orbit force reproduces the meas
ment at a strength of about 6 MeV fm2. The open circle is
the adiabatic result of Ref.@10#, which employed the Chep
urnov parameters and included only the monopole part of
spin-orbit force. It is consistent with our (l50) result. The
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full deformed spin-orbit interaction produces a smal
branching ratio and fits the measurement atVso
'10 MeV fm2. This value is close to the spin-orbit streng
of the ‘‘universal’’ interaction that was employed in Ref.@9#.
The result obtained there is shown by the diamond, and
consistent with our~all l ’s! calculation.

The total proton decay width we obtain is shown in Fig.
The two horizontal dashed lines are again the error ban
the measurement@2#. The decay width obtained in Ref.@9#,

FIG. 2. Branching ratio for the131Eu ground state decay to th
first 21 excited state of130Sm, calculated in the adiabatic limit as
function of the spin-orbit strength. The two sets of calculatio
were based on the monopole (l50) and the full deformed spin-
orbit interaction~all l ’s!, respectively. The solid curves represe
results with the orientation-dependent diffuseness, Eq.~A6!, while
the dashed curves ignore this dependence. The open circle i
adiabatic (l50) result of Ref.@10#, and the diamond is the~all l ’s!
result of Ref.@9#. The horizontal dashed lines represent the exp
mental error band@2#.

FIG. 3. Calculated total proton decay width for131Eu. The sym-
bols are the same as in Fig. 2, except the open circle which is
coupled-channels result of Ref.@10# obtained with a monopole spin
orbit force.
5-6
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COUPLED-CHANNELS TREATMENT OF DEFORMED . . . PHYSICAL REVIEW C63 014315
shown by the diamond, is slightly larger than our result~all
l ’s!. This is mainly caused by a slightly larger radius of t
nuclear potential, increasingr 0 from 1.25 to 1.275 fm,
whereas the branching ratio is insensitive to this variati
The open circle is the result of the coupled-channels ca
lations performed in Ref.@10#. It is smaller than our adia
batic calculation (l50). We have therefore performed
coupled-channels calculation, with the same interaction
deformation as used in Ref.@10#. Thus we obtain a tota
proton decay width of 2.00310220 MeV and a 21 branching
ratio of 0.40, in very good agreement with the decay width
1.98310220 MeV ~based on the quoted 23 ms half-life! and
branching ratio of 0.39 obtained in Ref.@10#.

The present work shows that the branching ratio for
decay of the131Eu(3/21) ground state is a very sensitiv
probe of the spin-orbit force. The reason is that the deca
the 01 ground state of130Sm originates from a very sma
component of the ground state wave function, with ad3/2
wave coupled to the 01 state of the core. The dominan
component is ad5/2 wave coupled to the 21 state of the core.
Thus, if we change the strength of the spin-orbit interacti
the relative weights of thed3/2 and d5/2 components will
change. The resulting decay widths we obtain with the
deformed spin-orbit interaction is illustrated in Fig. 4. It
seen that the decay width to the 01 state is quite sensitive to
the spin-orbit strength, whereas the 21 decay width is essen
tially independent of it.

We conclude that it is important to use the full deform
spin-orbit interaction in an analysis of the131Eu(3/21) de-
cay. We are then able to reproduce the measured branc
ratio ~in the adiabatic limit! for the spin-orbit strengthVso
'10 MeV fm2, which is consistent with the values com
monly used in structure calculations of heavy nuclei@20,21#.
Moreover, we are able to reproduce the results of R
@9,10# with our numerical methods. This gives us confiden

FIG. 4. Calculated widths for the ground state proton decay
131Eu to the 01 ground state and 21 excited state of130Sm as
functions of the spin-orbit strength. The calculations employed
full deformed spin-orbit interaction. The horizontal dashed lin
represent the experimental error bands@2#.
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in our approach of supplementing the structure calculat
with the distorted wave Green’s function method.

V. APPLICATIONS TO DEFORMED PROTON EMITTERS

In this section we apply the coupled-channels approa
and also the adiabatic limit, to study the proton decay
131Eu and 141Ho. We include all single-particle orbits with
l<7, and all the necessary states of the ground state r
tional band of the daughter nucleus. We also include all m
tipole components of the Coulomb, nuclear, and the full
formed spin-orbit interactions, i.e., up tol514 for l max57,
and we employ the angle-dependent diffuseness define
Eq. ~A6!.

There are several adjustable parameters in our part
rotor model. We have chosen the radius parameterr 0
51.25 fm and diffusenessa50.65 fm for the nuclear and
spin-orbit interactions, as discussed in Appendix A. The
rameters of the charge distribution of the core are also k
fixed, with r 051.22 fm andaC50.56 fm. Guided by the re-
sults we obtained in the previous section we choose
strengthVso510 MeV fm2 of the deformed spin-orbit inter
action. The depth of the nuclear potential, typically of t
order of 50 to 55 MeV, is adjusted so that the measu
energy of the decaying state is reproduced.

Previous analyses have focused on the sensitivity to
quadrupole deformation parameterb2 but we adopt the pre-
dicted value@4# of b250.33 for 130Sm. For 140Dy we use
b250.267 and include also the predictedb4520.05. The
rotational spectrum of the daughter nucleusER5(\2/
2J0)R(R11), is generated from the measured 21 excitation
energy of 122 keV for130Sm @2#, and an estimated value o
160 keV for 140Dy @22#.

We have already applied the above parameters for131Eu
in Figs. 1–4. In Fig. 1 we illustrated the rapid convergen
of the distorted wave Green’s function method as a funct
of the matching radius. Based on that result, we shall alw
use the matching radiusr m515 fm, and the upper limitr int
5100 fm for the radial integration which determines the d
torted wave amplitudes, Eqs.~12! and ~26!.

The calculated decay rate to the ground state of
daughter nucleus is extremely sensitive to the energy and
angular momentum of the emitted proton. It is therefo
fairly easy, in most cases, to determine the spin of the
caying state. Previous analyses@2,9,10# have shown that the
ground state of131Eu is a 3/21 state, and the ground state o
141Ho is a 7/22 state. Our analysis confirms this determin
tion, and we shall therefore not discuss other candidates

A. Proton decay of 131Eu

The single-particle spectrum we obtain in the adiaba
limit for 131Eu is shown in Fig. 5 as function of the quadr
pole deformation parameterb2. The solid curves are the en
ergies of positive parity states, whereas the dashed curve
the energies of the negative-parity states. The depth of
deformed Woods-Saxon well,VN

(0)5252.784 MeV, was ad-
justed at the predicted deformation,b250.33, to produce a
3/21 ground state energy of 950.5 keV. This energy is co
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s
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HENNING ESBENSEN AND CARY N. DAVIDS PHYSICAL REVIEW C63 014315
sistent with the measured energy of the emitted protons@2#
when corrected for recoil and electronic screening effe
The 3/21 ground state is shown by the solid point. It orig
nates from theg7/2 state in the spherical limit, and it is ofte
referred to as the@422#3/21 Nilsson orbit. Counting the lev-
els from below it is seen that this state is indeed at the Fe
surface forZ563.

The spectrum shown in Fig. 5 is similar to that obtained
Ref. @9#. There are minor differences, due to the sligh
larger nuclear radius used there as mentioned in Sec.
where we compared the calculated branching ratio and t
decay width. The 3/21 ground state predicted in Ref.@10#,
based on a monopole spin-orbit force, was the@411#3/21

Nilsson orbit, which originates from thed5/2 state in the
spherical limit. This is a minor detail, which is related to t
ordering of thed5/2 and theg7/2 levels in the spherical limit.
Thus the calculated decay widths shown in Fig. 3 are as
ciated with the@411#3/21 Nilsson orbit at small values o
Vso , and with the@422#3/21 orbit at large values ofVso .

The decay rates we obtain in the adiabatic limit and in
coupled-channels approach, both supplemented with
Green’s function method to estimate the influence of
long-ranged Coulomb multipole couplings@see Eqs.~12! and
~26!#, are shown in Table I. The first line gives the part
decay widths we obtain when we set the excitation ener
of the final states of the daughter nucleus equal to zero in
Green’s function method. The second line shows the res
we obtain when we use the correct final state energies.
resulting decay widths to the 21 and 41 states are reduce
considerably compared to the first line, but they agree q
well with the results we obtain in the coupled-channels
proach, which are shown in the third line. Moreover, t
predicted branching ratio for the 21 final state is in very
good agreement with the coupled-channels result and
the measurement. The calculated decay widths are la

FIG. 5. Single-particle energy spectrum obtained in the ad
batic limit for 131Eu as a function of the quadrupole deformati
b2. The depth of the deformed Woods-Saxon well was adjuste
produce a 3/21 ground state energy of 950.5 keV atb250.33,
which is indicated by the filled circle.
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than the measured values, indicating a spectroscopic fa
of the order of 0.6.

It is remarkable that the Green’s function method is a
to repair the shortcomings of the adiabatic approximat
and reproduce the coupled-channels results so well. We s
see that this feature is true only when Coriolis mixing
weak, as it is for low spin states. Thus theK53/2 component
makes up 99.8% of the ground state wave function in
coupled-channels calculation.

The coupled-channels approach makes it possible to
culate the rotational spectrum build on the131Eu(3/21)
ground state. The results are shown in Table II. The mom
of inertia extracted from the calculated spectrum is alm
identical to the moment of inertia of the daughter nucle
The decay widths to the 41 state~and also to higher spin
states! are small and can be ignored. The proton decay p
tern is qualitatively the same as predicted by the monop
spin-orbit force in Ref.@10#. The main difference is in the
decay width of the ground state; it is 80% larger in o
calculation, which employs the full deformed spin-orb
interaction.

B. Proton decay of 141Ho

From the single-particle spectrum shown in Fig. 5 o
would expect that the ground state spin of141Ho, with
Z567, is 7/22 since the predicted quadrupole deformation
the daughter isb250.267. This is indeed the result we ob
tain when we carry out the detailed calculation, in agreem
with the findings of previous analyses@1,7,10#. From these
systematics we expect the ground state spin ofATb, with Z
565 andA'135, to be 5/21 since the predicted quadrupo
deformation of the associated Gd isotopes@4# is b2'0.3.

The decay widths we obtain for the 7/22 ground state are
shown in the first part of Table III. The decay rate to t
ground state of140Dy that we obtain in the adiabatic limit is
almost a factor of 5 larger than the result of the couple
channels approach. While the adiabatic result seems rea
able in comparison to the measurement, with a spectrosc
factor of 0.66, the coupled-channels result is unrealis
yielding a spectroscopic factor of 3.2. Moreover, the bran
ing ratio to the 21 state, predicted by the coupled-channe
calculation, is much higher than the upper limit of 1% set
experiments@23#. These discrepancies lead us to believe t
the coupled-channels approach is unreliable in this case

The large discrepancy between the adiabatic and
coupled-channels result is caused by strong Coriolis mix

TABLE II. Resonance energies and proton decay widths~in
units of 10220 MeV) for the ground state rotational band of131Eu,
calculated in the coupled-channels approach. Also shown is
calculated branching ratio to the 21 state, and the half-life.

I p EI ~keV! G0 G2 G4 G2 /G tot t1/2 (ms)

3/21 950.5 2.66 0.907 2.4631028 0.255 12800
5/21 1052.2 625.0 4.24 9.1731025 0.0067 72.5
7/21 1194.5 10.3 1366.0 0.0825 0.9925 33.0
9/21 1377.7 5.51 91840.0 28.5 0.9996 0.5

-
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COUPLED-CHANNELS TREATMENT OF DEFORMED . . . PHYSICAL REVIEW C63 014315
in the latter. In fact, only 80% of the 7/22 ground state wave
function belongs to theK57/2 band. In a more realistic ca
culation, which would include pairing effects, Coriolis mix
ing would be quenched. We therefore suspect that the a
batic limit gives a more realistic estimate. We note that
coupled-channels calculation of Ref.@10#, based on a mono
pole spin-orbit force, also predicted a small width of 2
310220 MeV.

The decay rates we obtain for the 1/21 isomeric state in
141Ho are given in the second part of Table III. Here t
adiabatic limit and the coupled-channels approach give
most the same results, as we would expect for a low-s
state. They are about a factor of 3 larger than the meas
ment, indicating a spectroscopic factor of about 0.3. T
coupled-channels results of Kruppaet al. @10#, and also the
adiabatic results of Ref.@8#, are quite similar to our results
The low spectroscopic factor may indicate that the shap
the core for the 1/21 state is different from the shape of th
daughter nucleus, resulting in a poor overlap.

In Table IV we show the calculated rotational band bu
on the 1/21 state. We see that the preferred proton de
branch changes from the 01 to the 21 final state at spin
5/21. We also see a strong signature splitting of the ro
tional band, so that the 1/21 and 3/21 states, and also th
5/21 and 7/21 states, are almost degenerate.

TABLE III. Proton decay widths~in units of 10220 MeV),
branching ratio to the 21 state, and the total proton decay half-li
of the 7/22 ground state at 1.190 MeV, and the 1/21 isomeric state
at 1.256 MeV in 141Ho. The results obtained in the adiabat
~adiab.! and the coupled-channels approach~coup. chan.! are com-
pared to measurements. The adopted 21 excitation energy of140Dy
is 160 keV.

Method I p G0 G2 G2 /G tot t1/2

Adiab. 7/22 16.5 0.45 0.027 2.7 ms
Coup. chan. 7/22 3.38 0.27 0.079 12.5 ms
Experiment@1,23# 7/22 10.961.0 ,0.01 4.260.4 ms

Adiab. 1/21 21700 330 0.015 2.1ms
Coup. chan. 1/21 22530 317 0.014 2.0ms
Experiment@3# 1/21 570062140 863 ms
Experiment@23# 1/21 702061080 , 0.01 6.561 ms

TABLE IV. Calculated energies and proton decay widths~in
units of 10215 MeV) of the rotational states build on the 1/21 iso-
mer in 141Ho. Also shown is the branching ratio to the 21 final state
and the half-life. The 21 excitation energy of140Dy was set to 160
keV.

I p EI ~keV! G0 G2 G2 /G tot t1/2 (ms)

1/21 1256.0 0.225 0.0032 0.014 2.0
3/21 1268.6 0.102 0.0054 0.050 4.2
5/21 1512.1 2.65 2.57 0.492 0.087
7/21 1542.3 0.0057 1.60 0.996 0.284
9/21 1990.0 0.06 354.0 1.000 0.0013
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There are a number of uncertainties in our calculations
particular, the 21 excitation energy in the daughter nucle
140Dy is not known. This quantity strongly affects the pr
dicted branching ratio of the proton decay. We show in F
6 the predicted 21 branching ratio for the two proton
emitting states in141Ho, calculated in the adiabatic limit a
functions of the 21 excitation energy in140Dy. The experi-
mental upper limit for this quantity is 1% in both cases@23#.
This suggests that the postulated value of 160 keV may
too low.

VI. CONCLUSIONS

We have investigated the proton decay of heavy,
formed nuclei in a coupled-channels description. We fi
that theR representation, which is formulated in the labor
tory frame, is particularly convenient when imposing t
asymptotic form of resonance wave functions. TheK repre-
sentation, which is commonly used in structure calculatio
makes use of single-particle states that are expressed in
body-fixed frame of the rotor. This representation is less c
venient because the Coriolis interaction is nondiagonal. It
however, very attractive in the adiabatic limit, where the C
riolis force vanishes and the Hamiltonian becomes diago
in the K quantum number, resulting in a reduction in th
number of coupled channels to be considered.

We find that it is sufficient to employ real energy eige
values in the coupled equations, instead of dealing with co
plex energies with an imaginary component that is related
an extremely small decay width. The decay width can
extracted from the distorted wave Green’s function te
nique. Moreover, it is sufficient to solve the coupled equ
tions out to about 15 fm because the Green’s function te
nique can be used to calculate quite reliably the influence

FIG. 6. Branching ratios for the proton decay of the 7/22 and
1/21 states in141Ho to the first 21 excited state in140Dy, calculated
in the adiabatic limit as functions of the~unknown! excitation en-
ergy of the 21 final state.
5-9
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HENNING ESBENSEN AND CARY N. DAVIDS PHYSICAL REVIEW C63 014315
the long-ranged Coulomb multipole fields. These two simp
fications reduce the necessary computing time considera

The Green’s function technique can also be applied
calculate the decay rate in the adiabatic limit, because
can implement the correct asymptotic momentum in the
torted Coulomb waves of the Green’s function. This is i
portant when one considers the decay to an excited sta
the daughter nucleus. When the spin of the decaying sta
low, so that Coriolis mixing is weak, we find that the part
decay widths obtained in this way are in good agreem
with a nonadiabatic, coupled-channels calculation. We ill
trated this point for the decay of the131Eu(3/21) ground
state and the 1/21 isomeric state in141Ho.

The decay width of the141Ho(7/22) ground state, on the
other hand, is a factor of 3 smaller in the full couple
channels approach than in the adiabatic limit. This discr
ancy is caused by Coriolis mixing, which is particular
strong for a high-spin state. The effect of pairing could p
sibly play an important role and lead to a reduction of t
Coriolis mixing. Since we have not considered this effe
explicitly, we expect that the adiabatic approximatio
supplemented with the distorted wave Green’s method, g
a more realistic estimate of the decay width, in particular
a state with high spin.

When dealing with the decay from a small component
a resonance wave function, we find that it is necessar
consider the full deformed spin-orbit interaction, instead
just the monopole term. An example is the decay of
131Eu(3/21) ground state to the 01 ground state of130Sm.
The associated component of the ground state wave func
is small and its magnitude is very sensitive to the spin-o
interaction. The decay to the 21 state of130Sm, on the other
hand, involves a much larger fraction of the ground st
wave function and it is essentially insensitive to the sp
orbit force. Using a deformed spin-orbit interaction, with
strength that is commonly used in structure calculations,
are able to reproduce the measured branching ratio to the
states. Moreover, the measured proton decay width is a
60% of the calculated width.

The most needed improvement in the nonadiaba
coupled-channels approach is to consider the effect of p
ing, not only in terms of a spectroscopic factor, but mo
importantly, to implement the quenching of the Coriolis mi
ing that it may cause. It may also be necessary to go bey
the particle-rotor model and consider a nonperfect overla
the core and the daughter nucleus, in order to explain
measured decay width of the141Ho(1/21) isomeric state,
which is a factor of 3 smaller than our prediction.
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APPENDIX A: PARAMETRIZATION OF INTERACTIONS

The nuclear interaction between the valence proton
the deformed core nucleus is parametrized in terms of
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Fermi functionf (x)5@11exp(x)#21 as

VN~r ,u!5VN
(0)f S r 2R~u!

a D ,

where

R~u!5RNF11(
l

blYl0~u!G , ~A1!

and u is the angle betweenr and the symmetry axis of the
core. The radius is calculated as

RN5r 0S AD

C~b2! D
1/3

,

where

C~b2!5E dV

4p S 11(
l

blYl0~u! D 3

~A2!

is a volume preserving factor, andAD is the mass number o
the core. We have usedb250.33 for 131Eu, andb250.267
andb4520.05 for 141Ho, which are the predicted deforma
tions @4# of the daughter nuclei130Sm and 140Dy, respec-
tively.

We consider here, for simplicity, only the monopole com
ponent of the spin-orbit interaction. It is parametrized as

Vls~r !54Vso

1

r

d

dr
f 0~r !l•s, ~A3!

where f 0(r ) is the monopole term of the deformed Ferm
function that appears in Eq.~A1!. We discuss in Sec. IV how
to implement higher multipole components of a deform
spin-orbit interaction. The parameters to determine so far
r 0 , a, Vso , andVN

(0) .
For scattering states@24,25#, the empirical radius param

eterr 0 falls in the range from 1.17 to 1.25 fm, and the spi
orbit strength isVso'6 MeV fm2. In structure calculations
@20,21#, one usually uses larger radii, withr 0'1.24 to 1.275
fm, and a much stronger spin-orbit strength,Vso'9
210 MeV fm2. We have chosen the compromiser 0
51.25 fm and useda50.65 fm in all of our calculations.
The spin-orbit strength is discussed in Sec. IV, where
find thatVso510 MeV fm2 is the best choice. The depth o
the nuclear interactionVN

(0) is adjusted so that the measure
energy of a given state is reproduced.

The charge density of the core is parametrized in a sim
fashion

rD~r ,u!5N0 f S r 2RCF11(
l

blYl0~u!G
aC

D . ~A4!

The volume integral of this density is normalized to one. T
radius RC is defined according to Eq.~A2! with r 0
51.22 fm, and we chooseaC50.56 fm.

The Coulomb interaction of a proton with the core is
5-10
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COUPLED-CHANNELS TREATMENT OF DEFORMED . . . PHYSICAL REVIEW C63 014315
VC~r ,u!5E dr 8rD~r 8,u8!
ZDe2

ur2r 8u
.

Inserting into this expression the multipole expansionrD
5(lrl(r )Pl@cos(u)# of the density, and also the multipol
expansion of the point-Coulomb interaction, we obtain

VC~r ,u!5(
l

4pZDe2

2l11
Pl@cos~u!#E

o

`

dr8 r 82
r ,

l

r .
l11

rl~r 8!,

~A5!

wherer ,5min(r ,r 8) and r .5max(r ,r 8).
Let us point out that the parametrization of the deform

nuclear interaction~A1! assumes that the diffuseness is co
stant in the radial direction. The interactions discussed
Ref. @20#, which have been applied to deformed proton em
ters in Refs.@6–10#, are calculated as functions of the min
mum distance between the proton and the surface of the c
One can estimate the significance of this difference by
placing the distancer 2R(u) with its projection @r

2R(u)# r̂ •n̂ onto a unit vectorn̂, which is perpendicular to
surface of the core nucleus. If we choose the unit vectorn̂ at
the intersection ofr with the surface of the core we obta
r̂ •n̂5R(u)/AR2(u)1@dR(u)/du#2. Inserting the projected
distance into the expression for the nuclear interaction,
~A1!, we see that this correction is equivalent to using
angle-dependent diffuseness

aeff~u!5aA11S 1

R~u!

dR~u!

du D 2

. ~A6!

This expression is consistent with Eq.~4-188c! of Ref. @12#
to lowest order. We include this correction consistently~ex-
cept otherwise stated! in all the expressions that make use
the deformed Fermi function, i.e., the nuclear and the sp
orbit interactions, and also the charge density of the core

APPENDIX B: RESONANCE SOLUTIONS

Here we discuss how one can determine the resona
energy and wave function of a proton emitter. The coup
equations have the following general form:

~hn2E!un~r !52(
n8

Vnn8~r !un8~r !, ~B1!

where n5( l jR), hn5hl j 1ER , and Vnn8(r ) represents the
coupling matrix on the right side of Eq.~4!. Assume that the
total number of coupled equations isN. We can then gener
ateN different sets of solutions by choosingN different sets
of initial conditions atr 50. Let us denote these solutions b
fnn0

(r ), wheren refers to the channels andn0 refers to a
particular choice of initial conditions. All solutions must b
regular atr 50, i.e., fnn0

(r 50)50. A simple way to gen-

erate a particular set of solutions is for fixedn0 to require
that
01431
d
-
in
-

re.
-

q.
e

-

ce
d

unn0
~r !→dnn0

r l 11 for r→0, ~B2!

i.e., only the channeln5n0 has a nonzero wave functio
near the origin.

The coupled equations are solvedN times with the differ-
ent initial conditions~B2!. They are solved fromr 50 out to
a large distancer m , which is outside the range of the cou
plings. At r 5r m , the solutions can be matched to Coulom
wave functions

unn0
~r !5Ann0

Fl~kRr !1Bnn0
Gl~kRr !, ~B3a!

unn0
8 ~r !5Ann0

Fl8~kRr !1Bnn0
Gl8~kRr !. ~B3b!

Here the prime denotes a radial derivative, and\kR

5A2muE2ERu is the asymptotic momentum. WhenE
,ER , the Coulomb wave functions are replaced by tho
associated with bound state problems; see Eq.~8b!.

Using the WronskianFl8Gl2FlGl85kR we obtain

Ann0
5

1

kR
@Gl~kRr !unn0

8 ~r !2Gl8~kRr !unn0
~r !#, ~B4a!

Bnn0
5

1

kR
@Fl8~kRr !unn0

~r !2Fl~kRr !unn0
8 ~r !#. ~B4b!

A general set of solutions to the coupled equatio
fn(r ), can be expressed as

fn~r !5(
n0

an0
unn0

~r !. ~B5!

For a spherical proton emitter, where there is only one ch
nel, one can determine a resonance energy and wave fun
by requiring that the radial wave function is matched to t
irregular Coulomb wave functionGl(kr) outside the range
of the nuclear field. This is done by varying the energyE
until the A amplitude in Eqs.~B3a!–~B4! vanishes.

In the deformed case, we determine the resonance en
by requiring that the radial wave functionsf l jR(r ) match the
associated Coulomb wave functionsGl(kRr ) at r 5r m . In-
serting the asymptotic form Eq.~B3a! into Eq. ~B5!,

fn~r !5S (
n0

an0
Ann0DFl~kRr !1S (

n0

an0
Bnn0DGl~kRr !,

~B6!

we see that we can make the regular solutionFl(kRr ) disap-
pear if we can find a set of amplitudesan0

so that

(
n0

Ann0
an0

50. ~B7!

This is possible if the determinant of theN3N matrix Ann0

vanishes,

det$Ann0
%50. ~B8!
5-11
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This condition determines the resonance energy, and
solved by a numerical search.

Once a resonance solution has been determined, it is
malized

(
n
E

0

r norm
drufn~r !u251. ~B9!

The point is that the wave function of a proton resonan
falls off dramatically as it passes through the Coulomb b
rier, typically by 10 orders of magnitude@13#. A reasonable
choice isr norm5100 fm, which is close to the outer classic
turning point. After the solution has been normalized, o
can then extract the amplitudes

Nl jR5
f l jR~r !

Gl~kRr !
, at r 5r m , ~B10!

which determine the partial decay widths according to E
~7!.

APPENDIX C: DEFORMED SPIN-ORBIT INTERACTION

The deformed spin-orbit interaction is expressed in
so-called Thomas form@19#

Vls~r ,u8!54Vso~@¹ f ~r ,u!#3p!•s, ~C1!

where f (r ,u) is the deformed Fermi function used in E
~A1!. Note that we use the convention\51 so that the di-
mension ofVso is MeV fm2. Let us determine this interactio
in spherical coordinates in the intrinsic system, with thez
axis along the symmetry axis of the rotor. The necess
tools can be found in Chap. 9 of Ref.@26#. Thus the genera
expression for the gradient is

¹5 r̂
d

dr
1 û

1

r

d

du
1f̂

1

r sin~u!

d

df
, ~C2!

where r̂ , û, and f̂ are the unit vectors associated with t
spherical coordinates.

Inserting Eq.~C2! into Eq.~C1! we obtain two terms. The
first term is caused by the force in the radial direction

Vls
(1)~r ,u!54Vso

1

r

d f

dr
~r3p!•s

54Vso

1

r

d f

dr
l•s. ~C3!

This part of the interaction can easily be included in t
coupled equations.

The second part of the interaction, which is caused by
force in theu direction, is more complicated to deal with,

Vls
(2)~r ,u!54Vso

1

r

d f

du
~û3p!•s. ~C4!

The force in thef direction vanishes because of the assum
axial symmetry. Sherif demonstrated that the interact
01431
is

or-

e
r-

e

.

e

ry

e

d
n

~C4! plays an important role in reproducing the asymme
of inelastic proton scattering at forward angles@19#. To
evaluate this term we express the momentum operatop
52 i¹ in spherical coordinates as in Eq.~C2! and obtain

~ û3p!•s52 i ~ û3 r̂ !•s
d

dr
1

2 i

r sin~u!
~ û3f̂ !•s

d

df

5 i f̂•s
d

dr
1

1

r sin~u!
r̂ •sl z . ~C5!

Let us now introduce the multipole expansion

f ~r ,u!5(
l

f l~r !Pl@cos~u!#. ~C6!

The first part of Eq.~C5! leads to a term of the form

dPl

du
i f̂•s52

1

2

dPl

du
~eifs22e2 ifs1!

52
1

2
~@ l 1 ,Pl#s21@ l 2 ,Pl#s1!

52@ l•s,Pl#, ~C7!

where we have used the commutator relation@ l 6 ,Pl#
56e6 if(dPl /du). This term produces the interaction

Vls
(2a)~r ,u!524Vso(

l

f l

r
@ l•s,Pl#

d

dr
. ~C8a!

The second part of Eq.~C5! contains the helicity operato
r̂ •s and results in the interaction

Vls
(2b)~r ,u!524Vso(

l

f l~r !

r 2

dPl

d cos~u!
r̂ •sl z . ~C8b!

We note that the three components of the spin-orbit inter
tion Vls

(1) , Vls
(2a) , andVls

(2b) , are not separately Hermitian bu
their sum is.

Matrix elements. In practical calculations we need th
spin-angular matrix elements of the three interactions, E
~C3!,~C8a!,~C8b!, in the intrinsic system of the rotor. Fortu
nately, it turns out that the matrix elements are diagonal inK.
Let us introduce the abbreviated notation:N5 l jK of the
spin-angular states. Then Eq.~C3! produces the coupling

^N1uVls
(1)uN2&52Vso@ j 2~ j 211!2 l 2~ l 211!23/4#

3(
l

^N1uPluN2&
1

r

d fl

dr
, ~C9!

where the matrix element^N1uPluN2& is given in Eq.~20!.
The coupling which is generated by Eq.~C8a! is
5-12
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^N1uVls
(2a)uN2&52Vso~ j 2~ j 211!2 l 2~ l 211!2 j 1~ j 111!

1 l 1~ l 111!!(
l

^N1uPluN2&
f l

r S d

dr
2

1

r D .

~C10!

This coupling acts on the radial wave functionsf l j (r ). The
operatord/dr in Eq. ~C8a! has therefore been replaced b
(d/dr21/r ) in Eq. ~C10!.

To calculate matrix elements of Eq.~C8b! we insert inter-
mediate statesN85 l 8 j 8K8,

^N1uVls
(2b)uN2&524Vso(

l

f l

r 2 (
N8

^N1u
dPl

d cos~u!
r̂ •s

3uN8&^N8u l zuN2&. ~C11!

The matrix element ofl z is diagonal inK and l ~i.e., l 85 l 2
andK85K) but not in j,
t.

tt

tt

e,

01431
^N8u l zuN2&5 (
mlms

ml^ l 2ml
1
2 msu j 8K&^ l 2ml

1
2 msu j 2K&.

To calculate the first matrix element in Eq.~C11! we insert

dPl~z!

dz
5 (

l851

l21

~2l811!Pl8~z!,

where the sum is over odd values ofl8, assuming thatl is
even. The first matrix element in Eq.~C11! can now be cal-
culated in the helicity representation; see Eq.~3A-5! of Ref.
@16#. The final expression is

^N1u
dPl

dcos~u!
r̂ •suN8&5 (

l851

l21
2l811

2
^ j 8Kl80u j 1K&

3^ j 1
1
2 l80u j 8 1

2 &,

where the sum is over odd values ofl8, whereasl and l 1
1 l 2 are even numbers.
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