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General features of quantum chaos and its relevance to nuclear physics
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Some general features of the eigenenergies and the eigenwave functions of a chaotic quantum system are
investigated by level dynamics in connection with nuclear physics. It is shown that the chaotic property of the
eigensolutions is due to a large number of avoided level crossings. The critical strength of the perturbation for
onset of quantum chaos is that the average value of the matrix elements of the perturbation equals the average
level spacing of the unperturbed Hamiltonian~in the so-called strong mixing limit in nuclear physics!. This
kind of critical perturbation makes each level experience 4–5 avoided level crossings, and produces a spread-
ing width of 16–32 on average. The extreme sensitivity of eigenenergies and eigenwave functions to a small
change of the perturbation also originates from the avoided level crossings. The analytical expressions for a
measured sensitivity are derived. More general expressions for the probability distribution~or strength func-
tion! and the spreading width of a perturbed state over a regular basis are obtained, which generalize the
previous results: the strength function is still in the form of a Lorentzian function but with a spreading width
consisting of the regular level contribution~the width being given by the so-called picket-fence model! and the
avoided-level crossing contribution~width from level fluctuations!. The relation between two chaotic bases is
peculiar and the corresponding strength function shows a remarkable discontinuity, which is new and due to
the statistical independence of different chaotic bases. The decay properties of nuclear ergodic collective states
are discussed and explained in terms of the above results. Extensive results of computer simulations are
presented to verify the level dynamical predictions.

DOI: 10.1103/PhysRevC.63.014309 PACS number~s!: 21.60.2n, 03.65.2w, 24.60.Ky
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I. INTRODUCTION

As is well known, nuclear many-body systems show b
regular and chaotic behaviors@1#. The low lying single par-
ticle states and collective states with well defined good qu
tum numbers are the regular aspect of nuclear motion, w
the statistical properties of the level spectra of complex
clei @2# and the chaotic dynamics in heavy-ion collisions@3#
are the exhibition of nuclear chaotic behavior. Since nuc
are typical of quantum systems, one would consider
nuclear statistical behavior as a manifestation of quan
chaos†the commonly accepted definition of quantum cha
is that it is a quantum manifestation of classically chao
systems whose quantum eigen states have the statisti
GOE ~Gaussian orthogonal ensemble! @4#‡. Because nucle
are conservative quantum systems, both their regular
chaotic behaviors should be understood in terms of determ
istic dynamics. The dynamical theories for nuclear regu
motions have been well established@5,6#, while the dynami-
cal theory for nuclear chaotic motion is still lacking. Th
most popular theoretical description of nuclear statisti
properties is based on random matrix theory introduced
Wigner @7,8#. However, only after the link between rando
matrix theory and deterministic dynamics has been es
lished can the random matrix theory as a nuclear statis
theory acquire more physical meaning.

To expose this link, it is found that the level dynami
proposed by Dyson, Pechukas, and Yukawa@9–11# is very
useful. In a recent book@12#, Haake has given a careful proo
that random matrix theory is just an equilibrium statistic
mechanics of level dynamical systems and that Dy
Brownian motion model is a rigorous consequence of le
0556-2813/2000/63~1!/014309~10!/$15.00 63 0143
h

n-
le
-

i
e
m
s
c

of

nd
n-
r

l
y

b-
al

l
n
l

dynamics for autonomous systems. Recently, by virtue
level dynamics we found@13# that the local fluctuation in
level distribution of a quantum system is generated by
large number of avoided level crossings, and that the r
played by avoided level crossings in generating chaoticity
level dynamics is similar to the role played by short ran
collisions in causing thermalization in many-body dynami
As will be seen soon, regular or chaotic level spectrum h
their own manifestation in level dynamical equations. Qua
tum chaotic level spectrum is intimately related to a lar
number of avoided level crossings. Transition from quant
regular motion to chaotic motion occurs only after ma
avoided level crossings set in.

In this paper we shall study some general features
quantum chaotic systems by means of level dynamics
computer experiments. In Sec. II, the condition for onset
quantum chaos and the critical strength of perturbation
discussed and estimated. Section III studies the sensitivit
En andcn to a small change of perturbation, and the expr
sions for measures of sensitivity are derived from level d
namics. In Sec. IV, some generic features of chaotic basis
investigated from both computer experiments and level
namical analysis. Characteristics of the strength function
chaotic bases and decay property of nuclear ergodic co
tive states are discussed and explained in Sec. V. Sectio
is a summary of this paper.

II. CONDITION FOR ONSET OF QUANTUM CHAOS
AND ESTIMATE OF CRITICAL PERTURBATION

Since chaotic level distribution is generated by a lar
number of avoided level crossings, the condition for onse
©2000 The American Physical Society09-1
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quantum chaos is just that for full occurrence of avoid
level crossings. The transition from quantum regular mot
to chaotic motion can be illustrated by the following Ham
tonian @13,14#:

Ĥ~l!5Ĥ01lV̂5Ĥ01lV̂dia1lV̂o f f, ~1!

whereĤ0 with good quantum numbers and dynamical sy
metry describes regular motion with Poissonian energy sp
trum, whileV̂ with GOE energy spectrum and destroying t
dynamical symmetry mixes states with different quant
numbers and causes transition to chaos. The diagonal
off-diagonal parts ofV̂ are defined with respect to theĤ0
representation. The level dynamical equations are@13#

dEn

dl
5Vnn , ~2!

dVnn

dl
52 (

m(Þn)

VnmVmn

En2Em
, ~3!

dCnm

dl
5 (

l (Þn)

ClmVln

En2El
, ~4!

where Vnm5^n(l)uV̂um(l)& and Ĥ(l)un(l)&
5En(l)un(l)&. Cnm is the expansion coefficient of th
eigenstateun(l)& defined byun(l)&5(mCnmum(0)&, where
um(0)& is the eigenstate ofĤ0. Let the average level spacin
of Ĥ0 be D. Averaging the energy levels ofĤ01lV̂dia, one
has

^En&5E01nD1ldnV̄dia, ~5!

where V̄dia5u^V̂dia&u. If the sign dn56 distributes ran-
domly, the condition for the occurrence of level crossings

^En11&2^En&5D22lV̄dia50, l5
D

2V̄dia
. ~6!

HereV̄dia playing a role of initial ‘‘velocity,’’ is very crucial
to result in level crossings. AsV̂o f f turns on, the level cross
ings become avoided. Meanwhile, the interaction will gen
ate an induced ‘‘velocity’’ which can be estimated from Eq
~2! and ~3! as follows:

^DEn&52E
0

l

dt1E
0

t1
dt2F ~V̄o f f!2

^En&2^En21&
1

~V̄o f f!2

^En&2^En11&
G

t2

52E
0

l

dt1E
0

t1
dt2~V̄o f f!2F 1

D1V̄dia2t2

2
1

D2V̄dia2t2
G

'
4l3

3

~V̄o f f!2V̄dia

D2
, ~7!

whereV̄o f f5u^V̂o f f&u. From Eqs.~5! and ~7!, we have
01430
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^En&5E01nD1dnFlV̄dia1
4l3

3

~V̄o f f!2V̄dia

D2 G . ~8!

If the leveln and the leveln1Dn cross each other, from Eq
~8!, one has

Dn52Fl
V̄dia

D
1

4l3

3

~V̄o f f!2V̄dia

D3 G . ~9!

AssumeV̄dia5V̄o f f5V̄. If l5D/2V̄, each level has experi

encedDn52( 1
6 1 1

2 )51.3 avoided crossings. This is just th
beginning of avoided level crossings and one cannot expe
full chaotic level spectum. Asl5D/V̄, each level on aver-
age hasDn52(11 4

3 )54.7 avoided level crossings. Sinc
each avoided level crossing will mix at least two leve
Dn54.7 avoided level crossings will produce a level mixin
width of G524.7525.4. In this case, one would expect a fu
chaotic distribution of the levels. The computer experime
confirm the above analysis, as shown in Table I.

In Ref. @17#, Weidenmu¨ller and Guhr have noticed from
nuclear statistical theory that aslV̄5D, a quatum system
will have GOE level statistics. From level dynamics, one c
get more information on and new insight into this proble
the critical strength of the dynamical symmetry breaking p
turbation for onset of quantum chaos islV̄5D, which cor-
responds to a full occurrence of avoided level crossings
this case, each level on average has experienced 4–5 avo
level crossings and the mixing width of the levels is abo
25–32. It is the enormous avoided level crossings that re
in the local fluctuations of the levels and make the le
distribution chaotic.

III. SENSITIVITY OF En AND cn TO A SMALL CHANGE
OF PERTURBATION

Consider a small change of the perturbation,

d~lV̂!5dlV̂1ldV̂, ~10!

and look at the response of eigenenergiesEn and eigenwave
functions cn . From the integral solutions of the level dy
namical Eqs.~2! and ~4!, one has

TABLE I. Some numerical results of quantum chaos.

Ref. D l V̄ lV̄

D
G

@13# 1 1 1 25
@14# 1 1.15 1.15 20
@15# 2 keV 2 keV 1 40
@16# 10 keV 15 keV 1.5 30
9-2
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dEn~l!52 (
mÞn

E
0

l

dt1E
0

t1
dt2FdVnmVmn1VnmdVmn

En2Em

2~dEn2dEm!
VnmVmn

~En2Em!2G
t2

1dlVnn~0!

12dl (
mÞn

E
0

lFVnmVmn

En2Em
G

t

dt, ~11!

dCnm~l!5(
lÞn

E
0

lFVlndClm1dVlnClm

En2El

2
VlnClm

~En2El !
2
~dEn2dEl !G

t

dt

1dl(
lÞn

FClmVln

En2El
G

l

, ~12!

where

dVnm~ t !5(
l l 8

@~dCnlCml81CnldCml8!Vll 8~0!

1CnlCml8^ l ~0!udV̂u l 8~0!&# t . ~13!

Equations ~11!–~13! are iterative integral equations fo
dEn(l) anddCnm(l). If there is no avoided level crossing
the integrands of Eqs.~11! and ~12! are well-behaved func
tions and the mapping fromd(lV̂) to dEn(l) anddCnm(l)
is smooth. Consequently,En andCnm are not sensitive to a
small change of (lV̂), since the summation will result in
cancellation and smooth out any large variation. On the c
trary, whenl reaches its critical value, there occur ma
avoided level crossings which make the energy denomina
almost zero and consequently make the Eqs.~11! and ~12!
quasisingular at the strong avoided level crossing points
this case, a small variation of perturbation could be amplifi
to a large scale and generate large local fluctuations
eigenenergies and eigenwave functions. Thus the summa
procedure cannot smear out the large local fluctuations s
other terms are relatively too small. As a result,dEn and
dCnm are very sensitive to a small change of perturbat
and will fluctuate violently. Thus the sensitivity of a qua
tum chaotic system to a small change of perturbation st
from the avoided level crossings, and the resulted quas
gularity in Eqs.~11! and~12! provides a mechanism of non
linear amplification of the small variation of perturbation.

To study this problem quantatively, we need expressi
for the measures of sensitivity of energies and wave fu
tions. From Eqs.~2! and ~4!, we can derive the function
S@E,l#,

S@E,l#5
1

N (
n51

N S dEn

dl D 2

'
4

N (
mÞn

Vnm
4

~En2Em!2
, ~14!

and the variance of energies
01430
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d2s~E,l,dl!5
1

N (
n51

N

@En~l1dl!2En~l!#2

5S@E,l#~dl!2, ~15!

as the measures of sensitivity of eigenenergies, and de
the functionS@c,l#

S@c,l#5K dcc~l!

dl Udcc~l!

dl L '(
nÞc

Vcn
2

~En2Ec!
2

, ~16!

and the correlation of wave functions

C~l,dl!5u^cc~l!ucc~l1dl!&u2512S@c,l#~dl!2,
~17!

to be the measures of sensitivity of eigenwave functio
Here cc is a chosen eigenstate~we usually chosecc at the
middle of eigenspectrum to minimize the boundary effe
due to finite dimension of the Hilbert space!. In our numeri-
cal calculation, an ensemble average has been taken fo
sensitivity measuresS@E,l# andS@c,l#. Equations~14! and
~16! clearly show that the avoided level crossings play
crucial role in the sensitivity measures of the eigenenerg
and eigenwave functions: in the regular region ofl, no
avoided level crossing has developed, no quasisingularity
pears in Eqs.~14! and~16!, and bothS@E,l# andS@c,l# are
thus small. Asl increases, more and more avoided lev
crossings have developed, andS@E,l# andS@c,l# increase
rapidly due to the large contribution from the quasisingul
ity of the inverse of the nearly zero energy denominators
the avoided level crossing points. In the chaotic region ofl,
the avoided level crossings have fully developed, and b
S@E,l# andS@c,l# will reach their maxima. Figures 1 and
plot the correlation of wave functions and the variance
energies as functions ofdl at different values ofl, which
indicate that asl<0.5, eigenwave functions and eigenene
gies are not sensitive to the small change of perturbat
while asl reaches its critical valuelc(52), both quantities
are sensitive todl. Figures 3 and 4 plotS@c,l# andS@E,l#

FIG. 1. Sensitivity of the correlation of wave function
C(l,dl) as a function ofdl.
9-3
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as functions ofl, which show a rapid rise of the curves asl
increases from the critical value.

Now consider the time dependent case thatl5l(t), is a
function of time. The time-dependent Schro¨dinger equation,

i
]c~ t !

]t
5Ĥ~ t !c~ t !, ~18!

can be rewritten in the adiabatic eigenrepresentation ofĤ(t),

Ĥ~ t !un„l~ t !…&5En„l~ t !…un„l~ t !…&, ~19!

c~ t !5(
n

Dnn0
~ t !e2 ifn(t)un„l~ t !…&, ~20!

fn~ t !5E
0

t K n„l~t!…UĤ„l~t!…2 i
]

]t Un„l~t!…L dt.

~21!

FIG. 2. Sensitivity of the variance of eigenenergiess2(l,dl) as
a function ofdl.

FIG. 3. Sensitivity measure of eigenfunctionsS(c,l) as a func-
tion of l.
01430
From Eq. ~18!, one obtains the equation of motion for th
expansion coefficientDnn0

of the time-dependent wave func
tion,

dDnn0

dt
5l̇ (

mÞn

Vnm

En„l~ t !…2Em„l~ t !…

3exp@ i „fn~ t !2fm~ t !…#Dmn0
. ~22!

From the similar structure of Eqs.~22! and ~4!, one would
claim that the avoided level crossings will play a similar ro
in generating local fluctuations and chaoticity in the tim
dependent case. It is likely that the time-dependent beha
of a quantum system is determined by the level spectr
structure of the adiabatic eigenstates of the Hamiltonian,
the chaotic spectrum of the adiabatic levels will induce
chaotic time-dependent behavior. This observation has b
confirmed in our recent work@18#.

IV. GENERIC FEATURES OF CHAOTIC BASIS

The level dynamical Eqs.~2!–~4! are very useful for ex-
ploring the relation between two different adiabatic eige
bases of a quantum system with theĤ(l) of Eq. ~1! at l1

and l2. Consider two cases:~i! Ĥ(l1) describes a regula
motion, while Ĥ(l2) can be regular or chaotic.~ii ! Both
Ĥ(l1) and Ĥ(l2) are chaotic.

Case (i). For simplicity, assumel150 and l25l. We
proceed to establish the relation between the two bases
this end, Eqs.~2!–~4! should be solved in a different way
Let

Ĥ~l!un~l!&5En~l!un~l!&, ~23!

Ĥ05un~0!&5E0~0!un~0!&, ~24!

and

un~l!&5Nn~l!(
m

Anm~l!um~0!&, ~25!

FIG. 4. Sensitivity measure of eigenenergiesS(E,l) as a func-
tion of l.
9-4
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where the normalization factor is

1

Nn
2

5(
m

uAnmu2. ~26!

From Eqs.~1!,~23–25!, one obtains

„En~l!2Em~0!…^m~0!un~l!&5^m~0!ulV̂un~l!&,
~27!

Anm5^m~0!un~l!&/Nn5
^m~0!ulV̂un~l!&

Nn„En~l!2Em~0!…
. ~28!

Let Ann51, namely, ^m(0)ulV̂un(l)&5„En(l)
2Em(0)…Nn or ^n(0)un(l)&5Nn , we obtain

uAnmu25

u^m~0!ulV̂un~l!&u2

„En~l!2Em~0!…2

11
1

Nn
2 (

lÞn

u^ l ~0!ulV̂un~l!&u2

„En~l!2Em~0!…2

5
D

2p

Gnm
r

„En~l!2Em~0!…21~Gnm
f !2

, ~29!

where the regular part of the width,Gnm
r , and the fluctuation

part of the width,Gnm
f , are defined, respectively, as follow

Gnm
r 52pu^m~0!ulV̂un~l!&u2/D, ~30!

~Gnm
f !25l2(

lÞn
u^ l ~0!uV̂un~l!&u2

„En~l!2Em~0!…2

Nn
2
„En~l!2El~0!…2

.

~31!

SinceuAnm„l,Em(0)…u is a smooth function ofEm(0) which
has a regular spectrum without large fluctuations, we
take an average ofuAnmu2 over the energyEm(0),

^uAnmu2&Em(0)5
1

2 S D

p D 2 Gnm
r

Gnm
f E dS Em~0!

D D
3

Gnm
f

„En~l!2Em~0!…21~Gnm
f !2

3
Gnm

r

„Em~0!2E…21~Gnm
r !2

5
Gnm

r

2pGnm
f

D

p
•

~Gnm
r 1Gnm

f !

„En~l!2E…21~Gnm
r 1Gnm

f !2
.

~32!

Taking the ensemble average and considering the norma
tion, we obtain
01430
n

a-

Pnm5^uAnm~l,E!u2&5
D

2p

G~l!

„En~l!2E…21G~l!2
,

~33!

where

G~l!5^Gnm
r 1Gnm

f &5G r1G f'2pl2
V̄2

D
1klV̄A^S@c,l#&.

~34!

Here

G r5l2
2p

D
^u^m~0!uV̂un~l!&u2&'2pl2

V̄2

D
, ~35!

and

~G f !2'l2K u^m~0!uV̂un~l!&u2

u^n~0!un~l!&u2 L K (
lÞn

u^ l ~0!uV̂un~l!&u2

„En~l!2El~0!…2
L

'l2V̄2k2^S@c,l#&

5
G rD

2p
k2^S@c,l#&, ~36!

K u^m~0!uV̂un~l!&u2

u^n~0!un~l!&u2
L 'k2V̄2'

G rD

2pl2
k2. ~37!

Equations~33! and~34! are general expressions for the pro
ability distribution ~or strength function! and the spreading
width of a perturbed state over the regular basis, which
derived from level dynamics under quite general assumpt
no quasisingularity appears in Eq.~28!. It was derived before
under the picket-fence model approximation@19# where the
spreading width consists of onlyG r . The second term in Eq
~34!, G f , coming from level fluctuations respect to the picke
fence ~equal-distance! level distribution; is therefore ne
glected in the picket-fence model approximation. It is wo
noting that the fluctuation widthG f is related to the sensitiv
ity measure of wave functions,^S@c,l#&, which becomes
larger and larger as the system undertakes the transitio
chaos. Of course, in the regular region, both^S@E,l#& and
^S@c,l#& are small,G f is thus small. However, as the tran
sition to chaos occurs, the fluctuation width must be tak
into account carefully, since it becomes more and more
portant as more and more avoided level crossings set in.
interesting to note thatG r is a function ofl2, while G f be-
comes linear inl as ^S@c,l#& becomes constant. Figure
plots the computer result ofG as a function ofl. It is seen
that asl<2 ~ in the regular region of our model! G(l)
follows a parabolic curve very well, while in the region o
l53 –5 ~ this is chaotic region in our model!, G(l) is nearly
a straight line with a slope of 37.5. From Fig. 3, we notic
that in this region ^S@c,l#& is almost constant and
V̄A^S@c,l#&'40. Thus the computer experiment confirm
the expressions~33! and ~34!.

The expression~36! for the fluctuation widthG f can be
also obtained from a statistical treatment of the level dyna
9-5
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cal equation~4! as the system is in the chaotic region. In t
following, our treatment is similar to that used in Ref.@20#.
From Eq.~4!, the difference ofCnm is

DCnm5(
lÞn

E
t

t1DtS VlnClm

En2El
D

t8

dt8, ~38!

and the difference of probability is

DPnm~ t !5^„Cnm~ t !1DCnm…
22Cnm~ t !2&

5^~DCnm!212DCnmCnm&. ~39!

In the chaotic region, we assumê CnmDCnm&
5^Cnm&^DCnm&50. Hence

DPnm~ t !5^~DCnm!2&

5 (
l ,l 8Þn

E
t

t1Dt

dt1dt2K S VlmCln

En2El
D

t1

S Vl 8mCl 8n

En2El 8
D

t2

L
5(

lÞn
E

t

t1Dt

dt1dt2K Vln
2

~En2El !
2L

t1

^ClmClm& t2

3 f ~ t12t2!

5(
lÞn

Rnl~ t !Plm~ t !Dt, ~40!

where we have assumed

^Vln~ t1!Vl 8n~ t2!&5d l l 8^„Vln~ t1!…2& f ~ t12t2!, ~41!

with f (t12t2) to be a d(t12t2)-like function and* f (t1
2t2)dt25G/\5t. Thus

Rnl~ t !5E
t

t1DtK Vln
2

~En2El !
2L

t

f ~ t2t8!dt85tK Vln

~En2El !
2L

t

.

~42!

In the limit of Dt→dt, Eq. ~40! becomes

FIG. 5. Spreading widthG(l) as a function ofl.
01430
dPnm

dt
5(

lÞn
RnlPlm . ~43!

Reciprocity@20# implies Rnl5Rln and probability conserva
tion, which leads to

dPnm

dt
5(

lÞn
Rnl~Plm2Pnm!. ~44!

For a very large Hilbert space,Pnm and Rnl are approxi-
mately translationally invariant so thatPnm5P(n2m), Rnl
5R(n2 l )5R( l 2n)5Rln , and

Plm5P~ l 2m!5P„~n2m!2~n2 l !…

5P~n2m!2
]P~n2m!

]~n2m!
~n2 l !

1
1

2

]2P~n2m!

]~n2m!2
~n2 l !21•••. ~45!

From Eqs.~44! and ~45!, one obtains

dP~n2m!

dt
5E R~n2 l !@P~ l 2m!2P~n2m!#d~n2 l !

5Dl

]2P~n2m!

]~n2m!2
, ~46!

where the diffusion coefficient is defined as

Dl5
1

2E R~n2 l !~n2 l !2d~n2 l ! ~47!

5
1

2 (
lÞn

K Vln
2

~En2El !
2L ~n2 l !2 ~48!

'
1

2
^~n2 l !2&midvalue(

lÞn
K Vln

2

~En2El !
2L

~49!

'
1

2
^~n2 l !2&midvaluê S@c,l#&. ~50!

In Eq. ~49!, the midvalue theorem of definite integral ha
been used and Eq.~50! follows from Eq.~16!. The solution
of Eq. ~46! with the initial conditionP(n2m,t50)5d(n
2m) is

P„~n2m!,l…5
Ap

Gl
expF2S n2m

Gl
D 2G , ~51!

where the spreading width isGl5ADl•l. From the solution
~51!, we have ^(n2 l )2&midvalue5sn

2l and Gl

5(sn /A2)lA^S@c,l#& which is in agreement withG f /D in
Eq. ~34!. However, the computer experiment indicates th
even thoughĤ(l) is in chaotic region, only the central pa
9-6
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FIG. 6. Probability distribution
Pcn of a chaotic state over a regu
lar basis withl150.1, l252.0,
andc5101. The Hilbert subspace
is of 201 dimensions. The dat
~histogram! are fitted with a
Lorentzian function~solid curve!.
-
th
y
t o
u
e

i-
6

rgy
d
e
of
of P(n2m) (un2mu,Gl) follows the Gaussian distribu
tion, while the tail part of that does not. The reason is that
central part of the distribution is generated chaotically b
large number of avoided level crossings and the tail par
the distribution is contributed from the regular levels witho
avoided level crossings. Therefore, the statistical treatm
does not apply to the tail part ofP(n2m). Hence the overall
probability distribution should follow the Lorentzian distr
bution, Eq.~33!, predicted from level dynamics. Figures
and 7 confirm the above analysis.

Case (ii). Since bothEn(l1) and Em(l2) are of chaotic
01430
e
a
f

t
nt

spectrum with violent fluctuations, the procedure of ene
average used in case~i! is not appropriate. Thus the metho
employed in case~i! is not suitable to this case. To treat th
present problem properly, we should adapt the solution
Eq. ~4! to its special initial condition as follows:

Ccn~l1 ,l2!5Ccn~l1 ,l1!1(
lÞc

E
l1

l2
dtS ClnVlc

Ec2El
D

t

,

~52!

with the initial conditionCcn(l1 ,l1)5dcn . Hereuc(l1)& is
-

a

FIG. 7. Probability distribution
Pcn of a chaotic state over a regu
lar basis withl150.1, l253.0,
andc5101. The Hilbert subspace
is of 201 dimensions. The dat
~histogram! are fitted with a
Lorentzian function~solid curve!.
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FIG. 8. Probability distribution
Pcn of a chaotic state over anothe
chaotic basis withl151.5, l2

52.0, and c5101. The Hilbert
subspace is of 201 dimension
The data ~histogram! are fitted
with a Lorentzian function~solid
curve!.
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t: a
k-

ore
x-
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an eigenstate ofĤ(l1) properly chosen@we takeuc(l1)& to
be a state at the middle of the whole spectrum studie#,
which is expanded in term of the eigenbasis ofĤ(l2) with
the expansion coefficientCcn(l1 ,l2). Since bothĤ(l1) and
Ĥ(l2) are in chaotic region, we can apply statistical assum
tion to bothVln andCln . The probability distribution of the
stateuc(l1)& over the basisun(l2)& is

Pcn~l1 ,l2!5^uCcn~l1 ,l2!u2&

5dcn12dcn(
lÞc

E
l1

l2K S ClnVlc

Ec2El
D

t
L dt

1 (
l 1 ,l 2Þc

E
l1

l2
dt1dt2

3K S Cl 1nVl 1c

Ec2El 1
D

t1

S Cl 2nVl 2c

Ec2El 2
D

t2

L . ~53!

IteratingClc(t) in Pcn to second order inVlc , we obtain

Pcc512t(
lÞc

E
l1

l2
dtK Vlc

2

~Ec2El !
2L

t

512tE
l1

l2

^S@c,t#&dt,

~54!

and

Pc,nÞc5tE
l1

l2K Vnc
2

~Ec2En!2L
t

dt. ~55!

In the above derivation we have assumed t
^Vlc(t)Vl 8c(t8)&5d l l 8 ^Vlc

2 (t)& f (t2t8) as in case~i!. A pe-
culiar feature of the probability distribution is its two expre
sions: Eq.~54! for Pcc and Eq.~55! for the others, which
01430
-

t

describe the discontinuity of the distribution. Computer e
periments indeed show this kind of discontinuity. This fa
leads us to the following observation of the chaotic bas
different chaotic bases are statistically independent. The
servation can be made more clearly as follows: if a chao
state is expanded in terms of regular basis, its expan
coefficients are statistically independent; while as the cha
basesun(l1)& are expanded in terms of the other chao
basesum(l2)&, because of the statistical independence, o
the coherent componentm5n has a constructive contribu
tion, the other components yield a weak destructive ba
ground. As a result, the probability distribution exhibits d
continuity: a sharp peak from the constructive contributi
and a weak statistical background from the destructive c
tribution. In Figs. 8 and 9 we plot the probability distributio
of one chaotic state over another chaotic basis. Just as
dicted from level dynamics, the curves consist of two par
strong d-function like peak and a weak statistical bac
ground.

V. DECAY OF NUCLEAR ERGODIC COLLECTIVE
STATES

For hot rotating nuclei, residual interactions become m
effective and will mix different rotational bands. As the e
citation energy above the yrast line is large enough,
mixed collective states become very complicated and can
chaotic. Bohr and Mottelson proposed the concept of ‘‘
godic collective states’’ to describe such kind of phenome
@21#. Since then, the decay of such ergodic collective sta
~especially high spin states of hot nuclei! has been studied
extensively by nuclear theorists@16,22# and experimentalists
@23#. In contrast to the transition between two regular colle
tive states where the strength function is sharply peaked,
strength function for the transition between ergodic high s
states are spreaded over a wide range. Experimentally, in
9-8
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FIG. 9. Probability distribution
Pcn of a chaotic state over anothe
chaotic basis withl152.5, l2

53.0, and c5101. The Hilbert
subspace is of 201 dimension
The data ~histogram! are fitted
with a Lorentzian function~solid
curve!.
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g-g coincidence measurement@22,23#, one found a weak
peak embedding in the statistical background, which dep
the structure of the strength function. According to Ref.@22#,
the strength function for the transition between ergodic c
lective states is proportional toPcn . Let us assume that in
Eq. ~1!, Ĥ0 describes all bands of regular collective stat
while the residual interactionV̂ mixes collective bands an
produces ergodic collective states. In this case, our mo
provides a simplified understanding of the phenomena: E
~33! and ~34! and Figs. 6 and 7 provide a description of t
transition from an ergodic collective state to regular colle
tive states; while Eqs.~54! and ~55! and Figs. 8 and 9 de
scribe the transition between ergodic collective states.

VI. CONCLUSION AND DISCUSSION

The results obtained in this paper can be summarize
follows.

~1! Level dynamics is very useful for studying the tran
tion from quantum regular motion to chaotic motion.

~2! The condition for onset of quantum chaos is that
strength of the dynamical symmetry breaking perturbat
appraoches its critical value—the average energy level s
ing of the regular unperturbed Hamiltonian~i.e., in the the
strong mixing limit in nuclear physics!, as a result, each leve
rt

.

01430
ts

l-

,

el
s.

-

as

e
n
c-

on average experiences 4–5 avoided level crossings and
level mixing width is about 16–32.

~3! The mechanism of transition to quantum chaos is th
as the dynamical symmetry breaking perturbation reache
critical value, a large number of avoided level crossings h
developed, which result in strong mixing and violent fluctu
tions of the levels.

~4! The sensitivity of eigenenergies and eigenwave fu
tions to a small change of perturbation originates from
quasisingularity of the inverse of the energy denomina
1/(En2Em)2, caused by avoided level crossings.

~5! The property of the chaotic basis is that different ch
otic bases or different components of one chaotic state
statistically independent. This statistical independence
sults in a discontinuity in the strength function for the tra
sition between two chaotic bases. This property may exp
the peculiar decay behavior of ergodic nuclear collect
states observed in experiments.
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