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General features of quantum chaos and its relevance to nuclear physics
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Some general features of the eigenenergies and the eigenwave functions of a chaotic quantum system are
investigated by level dynamics in connection with nuclear physics. It is shown that the chaotic property of the
eigensolutions is due to a large number of avoided level crossings. The critical strength of the perturbation for
onset of quantum chaos is that the average value of the matrix elements of the perturbation equals the average
level spacing of the unperturbed Hamiltoniéin the so-called strong mixing limit in nuclear physic3his
kind of critical perturbation makes each level experience 4-5 avoided level crossings, and produces a spread-
ing width of 16—32 on average. The extreme sensitivity of eigenenergies and eigenwave functions to a small
change of the perturbation also originates from the avoided level crossings. The analytical expressions for a
measured sensitivity are derived. More general expressions for the probability distriGurtistnength func-
tion) and the spreading width of a perturbed state over a regular basis are obtained, which generalize the
previous results: the strength function is still in the form of a Lorentzian function but with a spreading width
consisting of the regular level contributi¢tine width being given by the so-called picket-fence mpdad the
avoided-level crossing contributigwidth from level fluctuations The relation between two chaotic bases is
peculiar and the corresponding strength function shows a remarkable discontinuity, which is new and due to
the statistical independence of different chaotic bases. The decay properties of nuclear ergodic collective states
are discussed and explained in terms of the above results. Extensive results of computer simulations are
presented to verify the level dynamical predictions.
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[. INTRODUCTION dynamics for autonomous systems. Recently, by virtue of
level dynamics we foundl13] that the local fluctuation in
As is well known, nuclear many-body systems show bothevel distribution of a quantum system is generated by a
regular and chaotic behaviofs]. The low lying single par- large number of avoided level crossings, and that the role
ticle states and collective states with well defined good quanPlayed by avoided level crossings in generating chaoticity in
tum numbers are the regular aspect of nuclear motion, whiltevel dynamics is similar to the role played by short range
the statistical properties of the level spectra of complex nucollisions in causing thermalization in many-body dynamics.
clei [2] and the chaotic dynamics in heavy-ion collisigd$ ~ AS will be seen soon, regular or chaotic level spectrum have
are the exhibition of nuclear chaotic behavior. Since nuclefheir own manifestation in level dynamical equations. Quan-
are typical of quantum systems, one would consider théum chaotic level spectrum is intimately related to a large
nuclear statistical behavior as a manifestation of quanturumber of avoided level crossings. Transition from quantum
chaos[the commonly accepted definition of quantum chaog®gular motion to chaotic motion occurs only after many
is that it is a quantum manifestation of classically chaoticavoided level crossings set in.
systems whose quantum eigen states have the statistics of In this paper we shall study some general features of
GOE (Gaussian orthogonal ensemb[d]]. Because nuclei duantum chaotic systems by means of level dynamics and
are conservative quantum systems, both their regular angPmputer experiments. In Sec. Il, the condition for onset of
chaotic behaviors should be understood in terms of determirfiuantum chaos and the critical strength of perturbation are
istic dynamics_ The dynamica' theories for nuclear regu|a|d|scussed and eSUmated. Section Il Stud|es the SenSItIVIty of
motions have been well establishgg6], while the dynami-  En and;, to a small change of perturbation, and the expres-
cal theory for nuclear chaotic motion is still lacking. The sions for measures of sensitivity are derived from level dy-
most popular theoretical description of nuclear statistican@mics. In Sec. IV, some generic features of chaotic basis are
properties is based on random matrix theory introduced bynvestigated from both computer experiments and level dy-
Wigner[7,8]. However, only after the link between random hamical analysis. Characteristics of the strength function of
matrix theory and deterministic dynamics has been estatthaotic bases and decay property of nuclear ergodic collec-
lished can the random matrix theory as a nuclear statisticdive states are discussed and explained in Sec. V. Section VI

theory acquire more physical meaning. is a summary of this paper.
To expose this link, it is found that the level dynamics
proposed by Dyson, Pechukas, and Yukd@all is very II. CONDITION FOR ONSET OF QUANTUM CHAOS

useful. Ina recent_booﬂ42], I-_|az_ike has give_n_ a_careful pro_of AND ESTIMATE OF CRITICAL PERTURBATION
that random matrix theory is just an equilibrium statistical

mechanics of level dynamical systems and that Dyson Since chaotic level distribution is generated by a large
Brownian motion model is a rigorous consequence of levehumber of avoided level crossings, the condition for onset of
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guantum chaos is just that for full occurrence of avoided TABLE I. Some numerical results of quantum chaos.
level crossings. The transition from quantum regular motiort

to chaotic motion can be illustrated by the following Hamil- ret. D ANV AV r
tonian[13,14: D
~ ~ ~ A n R [13] 1 1 1 25
H(N) =Ho+AV=Hg+avaa+ e, D 4 1 1.15 1.15 20
~ ) . [15] 2 keV 2 keV 1 40
whereH, with good quantum numbers and dynamical sym-r1¢] 10 keV 15 keV 15 30

metry describes regular motion with Poissonian energy spec-=

trum, whileV with GOE energy spectrum and destroying the
dynamical symmetry mixes states with different quantum

> . 4\3 (Voff)2ydia
numbers and causes transition to chaos. The dlagqnal and  (E\=E,+nD+ 4, )\Vdia+T—2 . ®
off-diagonal parts ofV are defined with respect to the, D
representation. The level dynamical equations|[ a6}
dE If the leveln and the leveh+ An cross each other, from Eq.
d—)\n=Vnn, (20  (8), one has
ann Vanmn Vdia 4)\3 (VOff)ZVdia
—:2 y 3 — _—
dx m(z#:n) E,—En © An=2/A D 3 D3 ' ©
anm_ CImVIn (4) . o o o
d» &h En—E AssumeVda=Voff=v_|f \=D/2V, each level has experi-
A A encedAn=2(%+%)=1.3 avoided crossings. This is just the
where Vam={n(\)|V|m(\)) and H(N\)[n(N))  beginning of avoided level crossings and one cannot expect a

=En(M)[n(N)). Cym is the expansion coefficient of the fy|| chaotic level spectum. Aa=D/V, each level on aver-
eigenstat¢n())) defined byin(A))=2nCnm/mM(0)), where  age hasAn=2(1+4)=4.7 avoided level crossings. Since
|m(0)) is the eigenstate dfi,. Let the average level spacing each avoided level crossing will mix at least two levels,
of H, be D. Averaging the energy levels 6f,+\V%?2 one  An=4.7 avoided level crossings will produce a level mixing
has width of I'=2%"=25.4. In this case, one would expect a full
chaotic distribution of the levels. The computer experiments
(Epy= E0+nD+)\5an‘a, (5) confirm the above analy"sis, as shown in Table I.

In Ref. [17], Weidenmller and Guhr have noticed from
where Vdia=|(vdia)| |f the sign §,=* distributes ran- nuclear statistical theory that asV=D, a quatum system
domly, the condition for the occurrence of level crossings iswill have GOE level statistics. From level dynamics, one can
get more information on and new insight into this problem:
the critical strength of the dynamical symmetry breaking per-

turbation for onset of quantum chaosN¥ =D, which cor-
responds to a full occurrence of avoided level crossings. In
this case, each level on average has experienced 4-5 avoided
) ) ot level crossings and the mixing width of the levels is about
to result in level crossings. Ag”" " turns on, the level cross- 5535 ¢ js the enormous avoided level crossings that result
ings become avoided. Meanwhile, the interaction will genery, the local fluctuations of the levels and make the level
ate an induced “velocity” which can be estimated from Eqs. yistripution chaotic.

(2) and(3) as follows:

. D
(Ens1)—(Epy=D—2\V42=0, >\=2Vdia. (6)

HereV2 playing a role of initial “velocity,” is very crucial

(AE >_2J*dt Jtldt (vorf)2 . (verf)2 lll. SENSITIVITY OF E, AND &, TO A SMALL CHANGE
"o o (BN —(Bn-1) (B~ (Bnid)] OF PERTURBATION
L Consider a small change of the perturbation,
A t —
=2f dt1J L A G i —
0 0 D+V Ia2t2 D-V Ia2t2 ~ A~ ~
S(NV)=S\V+\8V, (10)
4)\3 (VOff)ZVdia
3 o " | i
D and look at the response of eigenenerdigsand eigenwave
. A functions ¢,,. From the integral solutions of the level dy-
whereV°f=|(v°f)|. From Eqgs.(5) and(7), we have namical Eqs(2) and(4), one has
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A ty N omVint ViamoéV C(A,80)
SE,(N)=22 dt1J dty| — 20
m#n J O 0 E.—En - — — ————T—— . —
Vanmn
—(8E,— 6E;)————| + AV, n(0) 0.8 .
n m (En—Em)2 t nn
2 x=0.1
AV V 0.6 4
+286\ >, [ l m“} dt, (11)
m#n JO En_Emt
0.4 4
A VIn5CIm+5VInCIm
5Cnm()\)_% fo E.—E 0.2 =05
I A=10
VInCIm 0.0 . 1=2,0.2.5,
- ———5(6E,—JE)) | dt 0.00 001 002 003 004 005 006 &
(En—E))? t
FIG. 1. Sensitivity of the correlation of wave functions
CimV C(\,8)\) as a function ofd\.
oY | '“} , a O
I#n En_EI N N
2 1 2
where Fa(EN, M= 2 [Ex(A+ M) ~Eq(M)]
=S[E,\](8N)? 1
NVom()=2 [(8CoiCrnyr + i SCrmi ) Vi (0) SV 13
: as the measures of sensitivity of eigenenergies, and define
+CpCrp(1(0)| 8V[17(0)) ;. (13 the functionS[ #,\]

Equations (11)—(13) are iterative integral equations for dic(N) [dipe(N) V2,
SE,(N) and 6C,,()N). If there is no avoided level crossing, Sn]= dn dn “gc (E,—E )2' (16)
the integrands of Eq$11) and(12) are well-behaved func- no-e

tions and the mapping fromM(AV) to SE,(\) and 5C,,(\) and the correlation of wave functions
is smooth. Consequentl,, andC,,,, are not sensitive to a

small change of XV), since the summation will result in C(A’&):K%()‘)WC()‘”L5)‘)>|2:1_S[¢')‘](5)‘)2’1
cancellation and smooth out any large variation. On the con- 17
trary, whenh reaches its critical value, there occur manyto be the measures of sensitivity of eigenwave functions.
avoided level crossings which make the energy denominatorgere i is a chosen eigenstateve usually chosey, at the
almost zero and consequently make the E@4) and(12)  mjddle of eigenspectrum to minimize the boundary effect
quasisingular at the strong avoided level crossing points. Igjye to finite dimension of the Hilbert spacén our numeri-
this case, a small variation of perturbation could be amplifietta| calculation, an ensemble average has been taken for the
to a large scale and generate large local fluctuations i@ensitivity measureS[ E,\] andS[ ¢\ ]. Equationg14) and
eigenenergies and eigenwave functions. Thus the summatiqig) clearly show that the avoided level crossings play a
procedure cannot smear out the large local fluctuations sincguycial role in the sensitivity measures of the eigenenergies
other terms are relatively too small. As a resdlE, and  and eigenwave functions: in the regular region Xaf no
oCnm are very sensitive to a small change of perturbatiorgyoided level crossing has developed, no quasisingularity ap-
and will fluctuate violently. Thus the sensitivity of a quan- pears in Eqs(14) and(16), and bothS[E,\] andS[ ¢, ] are
tum chaotic system to a small change of perturbation stemgys small. As\ increases, more and more avoided level
from .the_ avoided level crossings, and the resqlted quaSiSir}:rossings have developed, aBE,\] and S ¢,\ ] increase
gularity in Egs.(11) and(12) provides a mechanism of non- rapidly due to the large contribution from the quasisingular-
linear amphﬁcqtlon of the small varlanon of perturbatlon.' ity of the inverse of the nearly zero energy denominators at
To study this problem quantatively, we need expressionghe avoided level crossing points. In the chaotic regioi of
for the measures of sensitivity of energies and wave funcihe avoided level crossings have fully developed, and both
tions. From Eqgs.2) and (4), we can derive the function SE,\] andS[ #,\] will reach their maxima. Figures 1 and 2
SEN] plot the correlation of wave functions and the variance of
energies as functions af\ at different values ol , which

N
SEN]= 1 (dEn Zmi D Vam (14 Indicate that as<0.5, eigenwave functions and eigenener-
' N 7=1 | dA N iZn (E,~Eqp)?’ gies are not sensitive to the small change of perturbation,
while as\ reaches its critical valuk.(=2), both quantities
and the variance of energies are sensitive t@\. Figures 3 and 4 pld§ ¢,\] andS E,\ ]
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FIG. 2. Sensitivity of the variance of eigenenergi€$\,5\) as
a function of S\.

as functions o, which show a rapid rise of the curvesias
increases from the critical value.

Now consider the time dependent case that\ (t), is a
function of time. The time-dependent Schinger equation,

IY(t)

I—— =HO¥(), (18

can be rewritten in the adiabatic eigenrepresentatidt(of,

H(O[n( (1)) =E,(\())In(A (1)), (19)

W(1)=2 Dany(De™ O\ (D)), (20)

t N J
¢n<t>=f0<n<x<r>) A i+ n(x(r>>>dr.

(21)

Sty )

(5101 S . S . B ]
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FIG. 3. Sensitivity measure of eigenfunctid®gy,\) as a func-
tion of A.
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FIG. 4. Sensitivity measure of eigenenergi&,\) as a func-
tion of \.

From Eq.(18), one obtains the equation of motion for the
expansion coe1‘ficier1])nno of the time-dependent wave func-

tion,
dDpy, Vv
N nm
dt =M 2 B (D)= En( D)

X exr[i (d’n(t) - d)m(t))]DmnO-

(22

From the similar structure of Eq$22) and (4), one would
claim that the avoided level crossings will play a similar role
in generating local fluctuations and chaoticity in the time
dependent case. It is likely that the time-dependent behavior
of a quantum system is determined by the level spectrum
structure of the adiabatic eigenstates of the Hamiltonian, and
the chaotic spectrum of the adiabatic levels will induce a
chaotic time-dependent behavior. This observation has been
confirmed in our recent workl8].

IV. GENERIC FEATURES OF CHAOQOTIC BASIS

The level dynamical Eq42)—(4) are very useful for ex-
ploring the relation between two different adiabatic eigen-
bases of a quantum system with tH¢\) of Eq. (1) at A
and \,. Consider two casesi) H(\,) describes a regular
motion, while H(\,) can be regular or chaotidii) Both
H(\,) andH(\,) are chaotic.

Case (i) For simplicity, assume.;=0 and\,=\. We
proceed to establish the relation between the two bases. To
this end, Egs(2)—(4) should be solved in a different way.
Let

HO)INN))=Eq(M)[n(N)), (23
Ho=[n(0))=Ex(0)|n(0)), (24)

and
|n(x>>=Nn<x>§ Anm(N)[mM(0)), (25)
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where the normalization factor is

1 2
@=§ |Anml2. (26)
n

From Egs.(1),(23-25, one obtains

(En(\) = En(0))(M(0)[n(X))=(m(0)|AV|n(N\)), o

(M(0)[AVIn(N))

Anm=(m(O)INOV) Ny == 35— E 0

(28)

Let  A,=1, namely, (m(0)AV|n(\))=(En(N\)

—En(0))N, or (n(0)|n(\))=N,, we obtain
[(m(0)[AV[n(M))I?
(En()\)_Em(O))z

1 < [{IONVIna)) 2

Nz 70 (Ex(N)—Ep(0))?

|Anm|2:

D o
27 (Eq(N) —En(0)2+(I'f )2

(29

where the regular part of the widthy,,,, and the fluctuation

part of the widthILm, are defined, respectively, as follows:

T} = 27(m(0)|\V[n(\))|%/D, (30)

(En()\) - Em(o))2

N2(Eq(N) —E|(0))?
(31)

<er>2=x2§n [(1(0)|V[n()))|2

Since|A,m(\,E(0))| is a smooth function oE,,(0) which

PHYSICAL REVIEW C 63 014309

T(\)

2
)= 2n (E(\)—E)?2+T(\)?’
(33

an:<|Anm(7\yE)|

where

) =(Uht P =7 =202 0T TSAT.
(34)
Here
\/2

r_ 22_77 | 2\ 2V
P =225 ((m(0) Y ())2) ~2mh

D (395

and

v 2
(Ff)2%A2<|<m(0)|V|n(K)>| ><
[(n(0)[n(\))[?

[{1(0)[VIn(n))?
(Fn (Eq(N) —E(0))?

=NV g\ ])

_F’D 2

=5 K(SLgAD), (36)
(mOIVInA)P\ o, TD
< [(n(0)[n(\))[? >~"V “ome D

Equationg33) and(34) are general expressions for the prob-
ability distribution (or strength functionand the spreading
width of a perturbed state over the regular basis, which are
derived from level dynamics under quite general assumption:
no quasisingularity appears in E@8). It was derived before
under the picket-fence model approximatidr®] where the
spreading width consists of only’. The second term in Eq.
(34), T'f, coming from level fluctuations respect to the picket-
fence (equal-distance level distribution; is therefore ne-
glected in the picket-fence model approximation. It is worth

has a regular spectrum without large fluctuations, we camoting that the fluctuation widtR' is related to the sensitiv-

take an average df\,.,|2 over the energ¥(0),

1[D\2T'im Em(0)
<|Anm|2>Em(0):§<_) fd( 5 )

™ Tom

f
an

X(En<x>—Em(0>)Z+<FLm>2

r
an

X (Em(0)—E)2+(T},)?

_ Tim D (Tl T
27t T (En(N)—E)?+ (T, +T! )2

(32

ity measure of wave functiongS #,\]), which becomes
larger and larger as the system undertakes the transition to
chaos. Of course, in the regular region, b¢8iE,\]) and

(S ,\]) are smallI'f is thus small. However, as the tran-
sition to chaos occurs, the fluctuation width must be taken
into account carefully, since it becomes more and more im-
portant as more and more avoided level crossings set in. It is
interesting to note tha" is a function ofA?, while T'" be-
comes linear i\ as(S ¢,\]) becomes constant. Figure 5
plots the computer result df as a function of\. It is seen
that asA<2 ( in the regular region of our model (\)
follows a parabolic curve very well, while in the region of

N =3-5(this is chaotic region in our model'(\) is nearly

a straight line with a slope of 37.5. From Fig. 3, we noticed
that in this region (§ #,\]) is almost constant and

V\/(S[zp,)\])~40. Thus the computer experiment confirms
the expression§33) and (34).

Taking the ensemble average and considering the normaliza- The expressior{36) for the fluctuation widthl'" can be

tion, we obtain

also obtained from a statistical treatment of the level dynami-
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T T T 1 Ll T T ¥ ¥ T dan

120 : Z RoiPim - (43)
] dt  (Z

100
Reciprocity[20] implies R,,;=R;, and probability conserva-

80 - tion, which leads to

ro)

dan

1 I#n

60

nI(PIm_an)- (44)

40
For a very large Hilbert space?,,,, and R, are approxi-
. mately translationally invariant so th&,,,=P(n—m), Ry,
=R(n—1)=R(I-n)=R,,, and

20

Pim=P(I=m)=P((n—m)—(n-1))

JP(n—m
FIG. 5. Spreading widtii'(\) as a function ofx. =P(n—m)— ﬁ(n—l)
cal equation4) as the system is in the chaotic region. In the 1 #?P(n—m)
following, our treatment is similar to that used in REZ0]. to —D24.... (45)
From Eq.(4), the difference oC,, is 2 g(n—m)
t+2t/ V;,.Cim From Egs.(44) and (45), one obtains
AC, =2, f ( ) dt’ (38)
i7n Jt En—E/, dP(n—m)
T:f R(n=DH[P(I=m)—P(n—m)]d(n—1)
and the difference of probability is
2
P —
Aan(t):<(Cnm(t)+ACnm)2_Cnm(t)2> ZDALH;), (46)
Jd(n—m)
:<(Acnm)2+2ACnanm>- (39

. . where the diffusion coefficient is defined as
In the chaotic region, we assume(C,nAC,m

=({Chm{AC,m=0. Hence 1
{Com (A Corm D)\=§f R(n—1)(n—1)2d(n—1) (47)
Aan(t):<(Acnm)2>
2
2 t+At (V|mC|n) V|rmC|/n :% E < V >( _|)2 (48)
L7 %n En—E/, \ E,—E ; (E,—E))?
2
t+At V,2n 1 2 Vin
~={(n—| .
—;] dtldt2< (En— EI)2> <CImCIm>t2 2<(n ) >m|dualue|#n (E E )
! (49
Xf(tl_tz) 1
%E((n_l)2>midvalue<s[’r//a7\]>- (50)
=2 Ru(OPim(DAL, (40)
In Eq. (49), the midvalue theorem of definite integral has
where we have assumed been used and E@50) follows from Eg.(16). The solution
of Eq. (46) with the initial conditionP(n—m,t=0)=&(n
(Vin(t)Vin(t2)) = 8i{(Vin(t)f (11— tp), (4D —m)is
with f(t;—t,) to be aé(t;—t,)-like function and ff(t; N n—m)?2
—t,)dt,=T/A=r. Thus P((n=m),\)=F—exp = =] |, (52)

_(ra VE, ¢ Nt — Vin where the spreading width 15, = D, - A. From the solution
Ri()= =Y (t-t)dt'=7 _EnN2] (51), we have ((N—D)migae=0A and T,
(En—E1) (En—E) _J /midv n . :
t =(on/2)M (S ¢,\]) which is in agreement with' /D in

(42 Eq. (34). However, the computer experiment indicates that
In the limit of At—dt, Eq. (40) becomes even thougH()) is in chaotic region, only the central part
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p 107

e T T T T T T T T T T T T T T T T v T T
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2.0 FIG. 6. Probability distribution

| P., of a chaotic state over a regu-

lar basis withA;=0.1, A\,=2.0,

1.5 andc=101. The Hilbert subspace
is of 201 dimensions. The data
(histogram are fitted with a
Lorentzian function(solid curve.

1.0

0.5

6.0 -

T T & s s b ko do o the T ke T 280 n

of P(n—m) (Jn—m|<T,) follows the Gaussian distribu- spectrum with violent fluctuations, the procedure of energy
tion, while the tail part of that does not. The reason is that theaverage used in casg is not appropriate. Thus the method
central part of the distribution is generated chaotically by aemployed in casé) is not suitable to this case. To treat the
large number of avoided level crossings and the tail part opresent problem properly, we should adapt the solution of
the distribution is contributed from the regular levels without Eq. (4) to its special initial condition as follows:

avoided level crossings. Therefore, the statistical treatment

does not apply to the tail part f(n—m). Hence the overall _ 2 [ CinVie
probability distribution should follow the Lorentzian distri- Ccn(xl')‘Z)_Ccn(Mﬁ\l)*;C \ dt Ec~E/,’
bution, Eq.(33), predicted from level dynamics. Figures 6 (52)

and 7 confirm the above analysis.
Case (ii) Since bothE,(\1) andE,,(\,) are of chaotic  with the initial conditionC.,(\1,\1) = 8., Here|c(\y)) is

107

FIG. 7. Probability distribution
P., of a chaotic state over a regu-
lar basis withA;=0.1, A\,=3.0,
0.8 - andc=101. The Hilbert subspace
is of 201 dimensions. The data
(histogram are fitted with a
0.6+ Lorentzian function(solid curve.
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FIG. 8. Probability distribution
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an eigenstate dfi(\;) properly chosefiwe take|c(\)) to

200 n

describe the discontinuity of the distribution. Computer ex-

be a state at the middle of the whole spectrum Stl]dled perlments indeed show this kind of dlSCOﬂtanlty This fact

which is expanded in term of the eigenbasisHifx,) with
the expansion coefficiel@;,(\1,\5). Since botH:|()\1) and

leads us to the following observation of the chaotic basis:
different chaotic bases are statistically independent. The ob-
servation can be made more clearly as follows: if a chaotic

H(\>) are in chaotic region, we can apply statistical assumpstate is expanded in terms of regular basis, its expansion

tion to bothV,, andC,,. The probability distribution of the
state|c(\4)) over the basign(\,)) is

Pcn()\l1)\2):<|Ccn(}\1:)\2)|2>

A ChV
JZ ( In Ic) dt
Zc Ja, \\Ec—E//,

=0dcnt 25cnz

A2
+ > dt,dt,
I1.0p#Cc J g
CinVie\l [CiaVic
1 1 2
X (53
EC_EI1 ‘ EC_EI2 ¢
1

Iterating C\.(t) in P., to second order V., we obtain

Pec=1- 7'2

I#c

>—1 TJ' (S ,t])dt,
(54)

> < 2

d - -
A (E.—E )
and
(55

A2 Vﬁc
P =7'f — ) dt.
c,n#c A <(Ec_En)2 t

In the above derivation we have assumed
(Vie(t)Vire(t)) =81 (Vi(1)f(t—t') as in casdi). A pe-

coefficients are statistically independent; while as the chaotic
bases|n(\1)) are expanded in terms of the other chaotic
basegm(\,)), because of the statistical independence, only
the coherent componemi=n has a constructive contribu-
tion, the other components yield a weak destructive back-
ground. As a result, the probability distribution exhibits dis-
continuity: a sharp peak from the constructive contribution
and a weak statistical background from the destructive con-
tribution. In Figs. 8 and 9 we plot the probability distribution
of one chaotic state over another chaotic basis. Just as pre-
dicted from level dynamics, the curves consist of two part: a
strong S-function like peak and a weak statistical back-
ground.

V. DECAY OF NUCLEAR ERGODIC COLLECTIVE
STATES

For hot rotating nuclei, residual interactions become more
effective and will mix different rotational bands. As the ex-
citation energy above the yrast line is large enough, the
mixed collective states become very complicated and can be
chaotic. Bohr and Mottelson proposed the concept of “er-
godic collective states” to describe such kind of phenomena
[21]. Since then, the decay of such ergodic collective states
(especially high spin states of hot nugléias been studied
extensively by nuclear theorisf$6,22 and experimentalists

thaf23]. In contrast to the transition between two regular collec-

tive states where the strength function is sharply peaked, the

culiar feature of the probability distribution is its two expres- strength function for the transition between ergodic high spin

sions: Eq.(54) for P.. and Eq.(55) for the others, which

states are spreaded over a wide range. Experimentally, in the
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P, 107

2.4 T T v T T T T T T T T I_
2.2 .
2.0+ -
1.8+ -

] ] FIG. 9. Probability distribution
1.6 - P., of a chaotic state over another
1 ; chaotic basis withA;=2.5, \,

" ] =3.0, andc=101. The Hilbert
)2 i subspace is of 201 dimensions.
| The data (histogram are fitted
1.0 - with a Lorentzian function(solid
curve.

y-y coincidence measuremef®2,23, one found a weak On average experiences 4-5 avoided level crossings and the
peak embedding in the statistical background, which depict&vel mixing width is about 16—32.

the structure of the strength function. According to R22], (3) The mechanism of transition to quantum chaos is that,
the strength function for the transition between ergodic col-as the dynamical symmetry breaking perturbation reaches its
lective states is proportional t.,. Let us assume that in critical value, a large number of avoided level crossings have
developed, which result in strong mixing and violent fluctua-

Eaq. (1), H, describes all bands of regular collective states, .
a. (1 Ho 9 tions of the levels.

while the residual interactiol mixes collective bands and (4) The sensitivity of eigenenergies and eigenwave func-

prod.L(ches ergod:'c;;. coclJIIecélve tsta(;es. Ir; ttrr]us %ase, our r_nlc:_’de‘ﬂons to a small change of perturbation originates from the

??[g)v' ej(glg'mpd'l'f u% ersda7n 'ng .8 edp erjotr_nenaf. thq uasisingularity of the inverse of the energy denominator,
an and Figs. © an provide a description o e_l/(En—Em)z, caused by avoided level crossings.

transition from an ergodic collective state to regular collec (5) The property of the chaotic basis is that different cha-

tive states; while Eqs(54) and (55) and Figs. 8 and 9 de- otic bases or different components of one chaotic state are

scribe the transition between ergodic collective states. statistically independent. This statistical independence re-
sults in a discontinuity in the strength function for the tran-
VI. CONCLUSION AND DISCUSSION sition between two chaotic bases. This property may explain
The results obtained in this paper can be summarized a{ge peculiar dec_ay beha}wor of ergodic nuclear collective
follows. States observed in experiments.
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