First observation of excited states in the neutron deficient nuclei ¹⁶⁴Os and ¹⁶⁶Os

S. L. King,¹ R. D. Page,¹ J. Simpson,² A. Keenan,^{1,*} N. Amzal,¹ A. J. Chewter,^{1,†} J. F. C. Cocks,³ D. M. Cullen,^{1,†}

O. Dorvaux,³ P. T. Greenlees,^{1,*} K. Helariutta,³ P. Jones,³ D. T. Joss,^{1,‡} R. Julin,³ S. Juutinen,³ H. Kankaanpää,³ H. Kettunen,³

P. Kuusiniemi,³ M. Leino,³ R. C. Lemmon,² M. Muikku,³ P. Nieminen,³ A. Savelius,³ S. L. Shepherd,¹ M. B. Smith,⁴

M. J. Taylor,¹ and J. Uusitalo³

¹Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom

²CLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom

³Department of Physics, University of Jyväskylä, P.O. Box 35, SF-40351, Finland

⁴Department of Physics, University of Paisley, United Kingdom

(Received 3 May 2000; published 6 November 2000)

Excited states have been observed for the first time in the neutron deficient nuclei ¹⁶⁶Os and ¹⁶⁴Os. The nuclei were produced using the reactions ¹⁰⁶Cd(⁶³Cu, p2n)¹⁶⁶Os, ¹¹²Sn(⁵⁸Ni, 2p2n)¹⁶⁶Os, and ¹⁰⁶Cd(⁶⁰Ni, 2n)¹⁶⁴Os at beam energies of 292, 286, and 257 MeV, respectively. The γ rays emitted by ¹⁶⁶Os and ¹⁶⁴Os were identified by correlating the associated recoil evaporation residues with their subsequent characteristic α decays. The deduced level schemes indicate that ¹⁶⁶Os and ¹⁶⁴Os continue the trend of decreasing deformation moving away from the N=104 midshell. The level energy systematics of the low-spin states are presented.

PACS number(s): 23.20.Lv, 23.90.+w, 25.70.Hi, 27.70.+q

PACS number(s):

The γ -ray spectroscopy of osmium and platinum isotopes reveals a rich underlying nuclear structure. For the platinum isotopes the structure varies with decreasing neutron number from oblate to triaxial ground states, through shape coexistence near the neutron midshell ($N \approx 104$) and then to triaxial and near-spherical ground states [1,2]. For the osmium isotopes a similar pattern is observed, with coexisting shapes appearing at $N \leq 96$ [3]. The lightest even-even osmium isotopes with published level schemes are 170,172 Os [4,5]. Their yrast positive parity states can be understood as arising from the coexistence of three different structures: a lowdeformation band, which is yrast at low spin, a more strongly deformed prolate structure, and a band based upon a $\nu(i_{13/2})^2$ excitation. The energy of the deformed band head is higher in nuclei further from the neutron midshell so that the influence of the deformed band on the energies of the lowdeformation, low-spin states diminishes rapidly. In addition, the systematics for lighter isotones indicate that this lowdeformation band becomes less deformed as the N=82 shell closure is approached. In our previous studies of the platinum isotopes $^{168,170-172}$ Pt [1,2] the trend of increasing excitation energy of the low-lying states with decreasing neutron number has been established. It is therefore of interest to investigate if this trend is also followed by the osmium isotopes. Studying these very neutron deficient nuclei using conventional techniques is extremely difficult because of the small production cross sections. In order to identify prompt

 γ -ray transitions in ^{164,166}Os the nuclei were tagged by their characteristic α decays [6].

The nuclides ^{164,166}Os were studied in three separate experiments performed at the Accelerator Laboratory of the University of Jyväskylä. Excited states in ¹⁶⁶Os were populated by the reactions ¹⁰⁶Cd(⁶³Cu, p2n)¹⁶⁶Os and ¹¹²Sn(⁵⁸Ni, 2p2n)¹⁶⁶Os, while ¹⁶⁴Os was produced in the reaction ¹⁰⁶Cd(⁶⁰Ni, 2n)¹⁶⁴Os. The beam energies were 292, 286, and 257 MeV, respectively, and the average beam intensities produced by the JYFL K130 cyclotron were 0.8 pnA for ⁶³Cu, 4.8 pnA for ⁵⁸Ni, and 2.3 pnA for ⁶⁰Ni. The self-supporting ¹¹²Sn target had a thickness of 400 μ g cm⁻² and 93% isotopic enrichment, while the ¹⁰⁶Cd target thickness was 550 μ g cm⁻² and the isotopic enrichment was 80%.

In the experiments to study ¹⁶⁶Os, prompt γ rays were detected using the escape-suppressed Ge detectors of the JU-ROSPHERE spectrometer located at the target position. JU-ROSPHERE is a composite array of Eurogam I Ge detectors [7] and TESSA Ge detectors [8]. In the ⁵⁸Ni experiment there were five Eurogam detectors at 157.6° and nine at 133.6°, with five TESSA detectors at 79° and five at 101° with respect to the beam direction. In the ⁶³Cu experiment, there were seven Eurogam detectors and three TESSA detectors were positioned inside three Eurogam suppression shields at 133.6°. The detectors at the other angles were the same as for the ⁵⁸Ni experiment. The total photopeak efficiency at 1.3 MeV was measured to be $\approx 1.5\%$ for the ⁵⁸Ni experiment and $\approx 1.4\%$ for the ⁶³Cu experiment.

For the ⁶⁰Ni reaction the prompt γ rays were detected using the SARI array of four unsuppressed segmented clover Ge detectors placed at 45 ° to the beam line. These detectors comprise four Ge crystals placed within a single cryostat [9]. The total photopeak efficiency of SARI was measured to be $\approx 3.6\%$ at 1.3 MeV.

^{*}Present address: Department of Physics, University of Jyväskylä, P.O. Box 35, SF-40351, Finland.

[†]Present address: Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom.

[‡]Present address: School of Sciences, Staffordshire University, Stoke-on-Trent ST4 2DE, United Kingdom.

FIG. 1. Energy spectra of α particles observed in the (a) 112 Sn(58 Ni,2p2n) 166 Os, (b) 106 Cd(63 Cu,p2n) 166 Os, and (c) 106 Cd(60 Ni,2n) 164 Os reactions. For (a) there was no beam pulsing, for (b), the beam pulsing was 3 ms on and 7 ms off, and (c) 2 ms on and 4 ms off. The beam pulsing was used to obtain clean α -particle energy spectra, such as those shown in (b) and (c), which are for the beam off periods only.

In all three experiments the recoiling evaporation residues entered the gas-filled separator RITU [10] and were implanted into a 16 strip, 80 mm×35 mm Si detector covering approximately 70% of the recoil distribution at the focal plane. The energies, positions, and times of recoil nuclei and α decays were recorded, as were the energies of γ rays detected in delayed coincidence with the implantation of a recoil ion in the Si strip detector. The position sensitivity of the strip detector and the time stamp information enabled the subsequent characteristic α decays to be correlated with the implanted recoils. The γ rays associated with these correlated recoils can then be identified as being emitted by specific nuclides.

The half-lives of ¹⁶⁴Os and ¹⁶⁶Os have been measured previously to be 21 ± 1 and 220 ± 7 ms, respectively [11]. In the ¹⁶⁶Os analysis, γ rays were selected when the associated recoil and 5.98 MeV ¹⁶⁶Os α particle were position correlated within a time window of 500 ms and 440 ms for the ⁶³Cu and ⁵⁸Ni reactions, respectively. In the ¹⁶⁴Os analysis, the corresponding maximum time interval between the recoils and 6.32 MeV ¹⁶⁴Os α particles was 60 ms. The α -particle energy spectra for each of the reactions are shown in Fig. 1. The α -decay tagged γ -ray spectra for ¹⁶⁶Os and ¹⁶⁴Os are shown in Fig. 2. Osmium x rays are visible in all

FIG. 2. Energy spectra of γ rays emitted from recoils correlated with characteristic ¹⁶⁴Os or ¹⁶⁶Os α decays for (a) the ¹¹²Sn(⁵⁸Ni,2p2n)¹⁶⁶Os, (b) the ¹⁰⁶Cd(⁶³Cu,p2n)¹⁶⁶Os, and (c) the ¹⁰⁶Cd(⁶⁰Ni,2n)¹⁶⁴Os reactions. Peaks assigned to ^{164,166}Os are labeled according to their energies in keV.

three spectra. The appearance of the same γ -ray lines in the spectra from the different reactions producing ¹⁶⁶Os supports their assignment to this nucleus. In addition, the transitions in ¹⁶⁶Os have been reported independently [12]. The production cross section for ¹⁶⁶Os was estimated to be 500 and 300 μ b for the ⁶³Cu and ⁵⁸Ni induced reactions, respectively, and for ¹⁶⁴Os was estimated to be 20 μ b.

The energies and absolute intensities of the γ rays assigned to ¹⁶⁴Os are presented in Table I and those for ¹⁶⁶Os

TABLE I. Energies and relative intensities of γ rays identified in ¹⁶⁴Os, normalized to the 548 keV transition.

E_{γ} (keV)	Intensity (%)	Assignment
392.2(2)	64(4)	$(8^+) \rightarrow (6^+)$
548.0(2)	100(5)	$(2^+) \rightarrow (0^+)$
557.4(2)	56(2)	$(10^+) \rightarrow (8^+)$
658.3(2)	81(5)	$(4^+) \rightarrow (2^+)$
683.4(2)	67(4)	$(6^+) \rightarrow (4^+)$

TABLE II. Energies and relative intensities of γ rays identified in ¹⁶⁶Os obtained from the combined data for both reactions used in the present work. The intensities are given relative to the 431 keV transition.

E _γ (keV)	Intensity (%)	Assignment
367.3(3)	20(3)	
430.8(2)	100(6)	$(2^+) \rightarrow 0^+$
587.0(2)	70(5)	$(4^+) \rightarrow (2^+)$
625.1(3)	17(5)	$(8^+) \rightarrow (6^+)$
702.1(2)	47(4)	$(6^+) \rightarrow (4^+)$

in Table II. The statistics obtained in both cases were insufficient to allow a γ - γ coincidence or unambiguous angular distribution analysis. Based on the measured intensities and assuming all the γ rays correspond to stretched *E*2 transitions, we propose the tentative level schemes shown in Fig. 3. The absolute γ -ray intensities and the level scheme for ¹⁶⁶Os are based on the combined, and consistent, data from the two reactions.

The energy level systematics of even-even osmium isotopes shown in Fig. 4 indicate that ¹⁶⁴Os and ¹⁶⁶Os continue the trend of increasing excitation energy of the 2⁺ state with decreasing neutron number, implying a corresponding fall in deformation as the N=82 shell closure is approached. The energies of the 4⁺ and 6⁺ states also display the same trend.

Although the level schemes shown in Fig. 3 are tentative it is interesting to speculate on the nature of the assumed 8^+ states in ¹⁶⁴Os and ¹⁶⁶Os where a change in the energy level systematics occurs (see Fig. 4). In order to facilitate a wider comparison of the 8^+ states deduced for ^{164,166}Os with those of neighboring even-even nuclei, the energy level systemat-

FIG. 3. Tentative level schemes for ¹⁶⁴Os and ¹⁶⁶Os. The arrow widths are proportional to the measured intensities. Parentheses and dotted lines indicate tentative assignments.

FIG. 4. Energies of yrast positive parity states in osmium isotopes as a function of neutron number N. Data are taken from Refs. [13,14] and the present work.

ics are considered as a function of both neutron number and the factor $P = N_p N_n / (N_p + N_n)$, where N_p and N_n are the number of valence protons and neutrons counted from closed shells. The *P* parameter embodies the assumption that deformation arises from the proton-neutron interaction between valence nucleons and is very successful in the description of energy level systematics [15]. The energy systematics of 8⁺ states for a range of nuclei in this region are displayed in Fig. 5. It is particularly striking how the *P* scheme has coalesced the different trend lines for the separate isotopes and isotones into a narrow envelope in Fig. 5.

In contrast to the 2⁺, 4⁺, and 6⁺ states, it is clear that the 8⁺ states in ^{164,166}Os do not continue the trend of increasing energy approaching N=82 shown by their lighter isotones (see Fig. 5). Although the 8⁺ \rightarrow 6⁺ transition in ¹⁶⁶Os cannot be uniquely determined from the intensity measurements alone (see Table II) the alternative choice of the 367 keV γ ray as the 8⁺ \rightarrow 6⁺ transition would place the 8⁺ state at 2087 keV. This is below the 8⁺ states in both ¹⁶⁴Os and ¹⁶⁸Os, and represents an even more marked deviation from the systematics of the heavier even-even isotopes. The 8⁺

FIG. 5. Energies of 8⁺ states as function of neutron number N and the parameter $P = N_p N_n / (N_p + N_n)$ [15]. The data are taken from Refs. [13,14,16] and the present work.

states proposed here are compatible with the P systematics shown in Fig. 5.

The lowering of the 8⁺ states in ^{164,166}Os can be attributed to a $\nu(f_{7/2}h_{9/2})$ or $\nu(h_{9/2})^2$ 8⁺ excitation, which becomes increasingly energetically favorable as the N=82shell closure is approached [17]. The excitation energy of the 8⁺ state in ¹⁶⁴Os also deviates from the trend established by its lighter isotones, reflecting an increasing energy gain by interaction of the $h_{9/2}$ neutrons with the $h_{11/2}$ protons as the $\pi h_{11/2}$ subshell is filled. The excitation energy of the proposed 10⁺ state at 2839 keV in ¹⁶⁴Os is very close to the values deduced for its lighter isotones ¹⁶²W [16] and ¹⁶⁰Hf [18].

- [1] B. Cederwall et al., Phys. Lett. B 443, 69 (1998).
- [2] S. L. King et al., Phys. Lett. B 443, 82 (1998).
- [3] J. H. Hamilton, *Treatise on Heavy-Ion Science* (Plenum, New York), Vol. 8, Chap. 2.
- [4] G. D. Dracoulis, R. A. Bark, A. E. Stuchbery, A. P. Byrne, A. M. Baxter, and F. Riess, Nucl. Phys. A486, 414 (1988).
- [5] P. M. Davidson, G. D. Dracoulis, T. Kibédi, A. P. Byrne, S. S. Anderssen, A. M. Baxter, B. Fabricius, G. J. Lane, and A. E. Stuchbery, Nucl. Phys. A568, 90 (1994).
- [6] E. S. Paul et al., Phys. Rev. C 51, 78 (1995).
- [7] C. W. Beausang *et al.*, Nucl. Instrum. Methods Phys. Res. A 313, 37 (1992).
- [8] P. J. Nolan, D. W. Gifford, and P. J. Twin, Nucl. Instrum. Methods Phys. Res. A 236, 95 (1985).
- [9] S. L. Shepherd *et al.*, Nucl. Instrum. Methods Phys. Res. A 434, 373 (1999).

In summary, we have identified transitions in the extremely neutron deficient nuclei ^{164,166}Os for the first time. Tentative level schemes have been deduced that continue the trend of decreasing deformation as a function of decreasing neutron number as the N=82 shell closure is approached.

We would like to thank the staff at JYFL for providing the ⁶³Cu beam for the first time and their excellent technical support. Support for this work was provided by the Academy of Finland, the U.K. Engineering and Physical Sciences Research Council (EPSRC) and the Access to Large Scale Facility program under the TMR program of the EU. The Eurogam detectors were provided from the U.K./France EPSRC/IN2P3 Loan Pool.

- [10] M. Leino *et al.*, Nucl. Instrum. Methods Phys. Res. B **99**, 653 (1995).
- [11] R. D. Page, P. J. Woods, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, and A. C. Shotter, Phys. Rev. C 53, 660 (1996).
- [12] M. P. Carpenter and D. Seweryniak (private communication).
- [13] Table of Isotopes, edited by V. S. Shirley (Wiley, New York).
- [14] D.T. Joss et al., Nucl. Phys. A (submitted).
- [15] D. S. Brenner, R. F. Casten, W.-T. Chou, J.-Y. Zhang, K. Heyde, and N. V. Zamfir, Phys. Lett. B 293, 282 (1992).
- [16] G. D. Dracoulis, B. Fabricius, P. M. Davidson, A. O. Macchiavelli, J. Oliviera, J. Burde, F. Stephens, and M. A. Deleplanque, AECL Report No. 10613 (unpublished), Vol. 2, p. 94.
- [17] S. Hofmann et al., Z. Phys. A 333, 107 (1989).
- [18] M. Murzel et al., Nucl. Phys. A516, 189 (1990).