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Poincare-covariant parton cascade model for ultrarelativistic heavy-ion reactions
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We present a new cascade-type microscopic simulation of nucleus-nucleus collisions at RHIC energies. The
basic elements are partofeuarks and gluonsnoving in 8N-dimensional phase space according to Poincare
covariant dynamics. The parton-parton scattering cross sections used in the model are computed within per-
turbative QCD in the tree-level approximation. TR dependence of the structure functions is included by an
implementation of the DGLAP mechanism suitable for a cascade, so that the number of partons is not static,
but varies in space and time as the collision of two nuclei evolves. The resulting parton distributions are
presented, and meaningful comparisons with experimental data are discussed.

PACS numbsdis): 25.75-q, 24.10.Jv, 24.10.Lx, 24.8bp

[. INTRODUCTION The paper is organized as follows. In Sec. Il we present
Recent years have shown an increased interest in tH#ie details of our covariant formalism together with a de-
study of heavy ion reactions with projectiles and targetsscription of the basic cascade algorithm used. Section Il
ranging all the way up to uranium, and laboratory energiesleals with the construction of the initial state of the model,
up to 20\ GeV [1-3]. The RHIC collider at Brookhaven and Sec. IV describes the partonic scattering processes dur-
National Laboratory, dedicated to ultrarelativistic heavy ioning the nuclear reaction. In Sec. V we discuss the question of
reactions, became operational this year, and this heralds yéparton evolution” as implemented in our code. In Sec. VI
another new and exiting stage of experiments, with the proswe present some numerical results and compare them to ex-
pect of finally confirming the signatures of a phase transitiorPerimental data if available. Section VII contains a discus-

to the quark gluon plasma found at CER®. [4]). sion and our conclusions.
In a theoretical microscopic description of such reactions
it is imperative to take into account the quark and gluon Il. THE DYNAMICS OF OUR MODEL

degrees of freedom, even when one does not assume a phase_l_h No-| ion-Th by Curri al h
transition to occur, and various such microscopic models "€ No-Interaction-Theorem by Curred al. asserts that

have been studied. They are based either on a string pictuf@€ ©nly canonical Hamiltonian theory of particles which

[5,6], a baryonic picturd7,8], a combination of botlig], or IS Poincarecovariant is one in which all particles are free
a parton cascade modd0—12. In as far as these models [13]. One way to circumvent the consequences of this theo-

describe the motion of individual particles in phase space'€M IS to formulate the theory inN-dimensional phase

they are necessarillassicalmodels and thus suffer in vari- SP2Ce I.€., in terms of 4-vectors for the positions of the par-
ous degrees from the consequences of the No-Interactioficles as well as for their momenta:

Theorem[13], which severely restricts the possibility of en- - - .

suring the full Poincareovariance in such models. Indeed xi=(t,ri),  pi=(Ei,pj), 1=1,...N.

the models just mentioned exhibit their noncovariance by a

explicit dependence on the coordinate system in which th ) . X .
P P y invariant dynamical evolution parametsythe motion of the

simulated reactions are run. articles being determined by the set of Hamilton’s equa-
In contrast, we present a parton cascade model which iprons 9 Y |

formally strictly Poincarecovariant. This is not to say that
our model is free from the basic problem inherent in any d 9H
parton description to date: the very definition of the incom- —xX(s)={H,x}=— —, (2.13
ing nucleons in terms of their parton content depends on the ds Ipi
momentum scale used and thus seems to depend unavoidably
on the observer frame of reference in which the participant i Q) — _ ﬁ

i pi(s)={H.pi}=+ —-, (2.1b
nucleons are seen. We shall address this aspect of our model ds X
in detail below(cf. Sec. V.

3hese 4-vectors are taken to be functions oPaincare

where the Hamiltoniard as well as the interaction “quasi-
potential” V are Poincareinvariants
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The details of such a dynamical theory have been defwhich happens at a specific value 8, there will be a
scribed elsewhergl4]. Here we emphasize two important binary interaction between them. At that point $n their
features(a) the parametes governs the dynamical evolution momenta change discontinuously. What interaction takes
of the system and parametrizes the particle world lines, buplace and how the interaction-distan@ee., o) is deter-
has no further physical interpretatiofi) particles argclas- mined depends on the particular model.
sically) off shell, (p;)2# (m;)?, whenever they are within the The basic algorithm of the dynamics of our parton cas-
range of the quasipotential. cade is thus as follows.

With an appropriately chosen attractive forgepresent- (1) In an initialization procedure the colliding nuclei are
ing a stringlike interaction this framework allows a descrip- described in terms of a certain number of partons with initial
tion of hadrons as bound systems of classical partiCiesr- phase space coordinates. Sec. ).
tons”) [15]. (2) The partons propagate through phase space until the

In setting up a parton cascade, we use a drastically sinfirst two of them are about to intera@Git a givens).
plified Hamiltonian which is in the spirit of previous had-  (3) For that pair, the type of interaction is determin(eti
ronic cascade modeld6—18: we take the interactions of Sec. I\). Additional partons may be produced in the process
the model to be due only to binary scattering events at disécf. Sec. \j. Due to this interactior(all happening at the
crete points irs, with all particles moving along free-particle same instance irs), the interacting partons acquire new
world lines between such binary scatteringghe only way  4-momenta.
in which mean field effects enter the model is through the (4) All partons continue to propagate freely until the next
fact that particles can be off-shell, thus acquiring effectiveearliests for which another pair is up for an interaction.
massegcf. Secs. Il and IV below] (5) Steps(3) and (4) are iterated until all partons move

Between the discontinuous binary interactions, the worldaway from one another. The cascade then ends.
lines of all particles are given by the free Hamiltonian, lead- Since the world lines are parametrized by fPeincare
ing to the solutions invariant parametes, the ordering of binary interactioride-

termined by the sequence of parame®rs s, <Sy, - - . ) IS
pi(s)=const (2.28  independent of the observer frame of reference in which the
cascade is run, and the resulting space-time distributions dif-
o} fer only by a simple boost, as it must be in a manifestly
Xi(8)= (S~ Sp) +Xi(So), (22D covariant formalisn{in the development stage of tiepPc
' code — for debugging purposes and as a check on numerical
accuracy — we have indeed run the cascade in various
frames of reference, and have verified this independence
This is in sharp contrast to the violation of Poincare
covariance generally encountered in cascade models involv-
ing actions at a distandd.9].

wheresy is the lasts at which particlei underwent an inter-
action [Egs. (2.2 and (2.2b once again show explicitly
how s parametrizes the solutiohsNote that as a conse-
guence of these world lines the 3-velocities are given by

dr, dryds pm
an _dngs_pbim lll. THE INITIAL STATE
dti ds dtl m; Ei
In contrast to most analytical transport models of ultra-

as it should be. relativistic nucleus-nucleus collisions, we do not assume an
For a givens, the square of thé®oincareinvariant 4- equilibrium initial state. Rather, we start out by first describ-
distanced;; between particles and] is defined to be ing both colliding nuclei as ground state configuratigos
Sec. Il A), which are then boosted according to the kinemat-
(Xp) (Xp) ics of the particular reaction we want to simulate. In a second
dij2:=— w5 Py - p*], step of the initializatior(but before any collisions occuthe
p p individual nucleons are described in terms of a setctds-

) ) sical) “partons” (cf. Sec. Ill B.. The nucleus-nucleus colli-
where x and p are the relative 4-distance and the totalsjon is then modeled as a sequence of partonic interactions,

4-momentum of particlesandj: i.e., we do not allow any initial nucleon-nucleon collisions;
although some such initial hadronic interactions will cer-
X=X—Xj, P=pitp;, tainly occur, we believe them to be unimportant in the en-

. ergy range of interedRHIC energies
This is, of course, just a Poincairvariant way to write the

3-distance in their center-of-momentum frafne., their im-
pact parametgr |d;;| = |>zi_>zj|(c.m.s.)- . . L
Whenever two particles approach each other to a. The nucleons in each of the two nuclei are initially as-

A. Distribution of the nucleons

4-distance within signed random p(_)sit?ons_ and momenta. In the rest f_rame_ of
the nucleus, the distributions are spherically symmetric while
p the radial distributions are taken to be of Woods-Saxon form:
tot
di<\/— 2.3 _ "
1 a 23 w(r)~(el""RoAr4 1)=1 (positions,
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with Ry=1.07AY3 fm, Ar=0.5 fm, mechanism which turns out to weaken the dependence of our
final results onQ,? drastically.
w(p)~(eP~PRIAP+ 1)1 (momenta, As for the transverse momenpa; of the partons, we take

these to be distributed radially symmetric about the nucleon
with pF:(ﬁ/ro)s\/%—ﬂ-molg,lG GeVt, Ap=0.03 GeVt momentumP,, with a Gaussian distribution for their modu-
(for simplicity’s sake, we use identical distributions for pro- IUS:
tons and neutronsThe reason for using smeared-out distri- 2 o
butions both in positions and momenta in the nuclear w(p7)~e  (PDYE,

round-state configurations is that this accoutdsa certain .

gegreé& for the exgperimental density distributions; it has with a=0.3 GeVi (cf. .[22])' e
nothing to do with finite temperature. For the same reason, Because of the radial symmetry of tie; distribution,
we enforce a minimum spatial distance between any tworiP =0, so that for the partons in each nucleon we have
nucleons of 0.8 fm. The zerotttime) components of the
position 4-vectors of the nucleons are irrelevant at this point > pi~(0,0P,).
because they are set on the parton I€gél Sec. Il B). The i
nucleon energies are then fixed so that every nucleon is on i
mass shell:

pO=E%=Vp2+M? (i=1,...A),

and finally both nuclei are boosted to the desired frame of
reference(depending on the particular reaction simulated

t . . .
AS\S a consequence, this resolution into partons leaves the
nucleons on the mass shell

The final momentum component to be fixed is the energy
of each parton. As was pointed out in Sec. Il, in PCD the
B. Distribution of the partons energy of a particle is not determined by a mass-shell con-

In a next step, each nucleon is resolved into initial par_dition, but is an independent dynamic variable. This feature

tons. The longitudinal momentand flavord) of the gener-  Of the dynamics of our model allows, in a very natural way,
ated partons are chosen randomly with distributions correl® Use effective parton masséSvirtualities” ) to satisfy
sponding to the experimental proton/neutron structuréther constraints given by the physics of the initial state to be

functionsF,(x,Q?) in the form of the “GRV94LO” param- constructed. One such constraint is that initiglyefore the
etrization [20,21], until a total number of partondN is first interactions between partons from one of the colliding

reached so that in a given nucleon nuclei and partons from the othall partons should remain
essentially confined within their respective nucleons. With-
. out constraining their velocities explicitly in some way, the
~1 partons would spread out over the whole phase-space very
z quickly after initialization.
One possibility for a “confinement constraint” is to re-

is sqtisfied. o ) quire the parton longitudinal velocities to equal the velocity
Since the parton distribution functions peakxat0, we  f the resolved nucleon:

need to use a cutoff ix: X;=Xy,,, Which we choose in-
versely proportional to the nucleon moment&éy This cut- B, partonz | g nucleon (3.2
off is also in keeping with our focus on hard partons.

Note that we need to specify an initial resolution scaleSince the parton transverse momenta are small compared to
Q,? at which we evaluate the structure functions. The numthe longitudinal momenta, this guarantees that the partons of
ber of partons\ depends strongly on this scale, because th@ne nucleon move together for some time initially. We thus
structure functions are peaked at lovior high Q2. In con-  demand explicitly that
trast to the situation in, e.g., deep inelastic lepton-proton
scattering, in a heavy ion reaction there is no clear definition XiP, : P,
for this scale, and we do not knowatpriori. In the context B 5 ="
of the present section, viz. the construction of the initial \/(X‘PZ) TPTT ‘/PZ M
state, this initial re§olution sca(@q2 is, therefore, an gmpiri- where the effective mass of partois denoted by, , from
cal parameter which we determined from comparing to thg hich one obtains
mean scale of the primary hard parton scatteritfgs the
actual values used in the numerical computations, cf. Table wi2=x2M?—p; 2. (3.2
IV). In Sec. V, we shall, however, discuss a parton evolution '

~ 2
~M nucleon -

el

w3

0

The fact that the confined partons acquire effective masses in
this way fits well into the framework of PCD, where inter-

n this paper, the term “flavor” is used to denote either a quarkacting particles are off shell. There is, however, a technicality
of given flavor in the usual sense, or a gluon. involved in this method of modeling initial confinement:
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from Eq.(3.2) it can be seen directly that whenever the trans-the initial state: using the invariant distandg to determine
verse momentum of a parton is sufficiently large? be-  binary interactions guarantees that the desired effects for
comes negative, i.e., the parton becomes superluminal. iwhich DLC was proposed are correctly and automatically
order to avoid such particles, we reject transverse momentacluded in our code.
that lead tg3>1. This means that our transverse momentum
distribution is no longer an exact Gaussian, but somewhat IV. PARTON SCATTERING
narrower.

Finally, the spatial coordinates of the partons are chosen AS detailed in Sec. II, the cascade algorithm needs two
randomly with a spherical distributiceentered at the spatial 'MPUtS from binary scatterindi) a parton total cross section

coordinate of the nuclegraccording to oot Which determines whether a given pair of partons will
come within an(invarian) interaction distance given by Eq.
w(r)~e ar (2.3, and (ii) a differential cross sectiondg/d6)(ab

—cd), which determines the details of an actual binary scat-
with a=4.33 fm 1, in accordance with nuclear form factor tering.
data[23]. These spherical distributions are then Lorentz- In the present section we describe how we obtain and use
contracted along the beam axis, and the zeroth componentisese cross sections, i.e., we discuss+@2) scattering only.

of the 4-vectorg# are set to zero. As mentioned above, our model allows for the creation of
additional partons during a (22) scattering. The mecha-
C. Distributed Lorentz contraction (DLC)? nism for these (2-n) interactions will be discussed in Sec.

It has been proposed in the literatyr@4,11] to use a
“distributed Lorentz contractiofDLC)” for the partons in
order to enlarge the longitudinal extension of a nucleus and
thus to enhance the chances for scatterings in a cascade Our notation is as follows. We use the Mandelstam vari-
model. The physical picture behind such an idea can be debles
scribed roughly as follows. While the longitudinal extension 5 ) ,
of the valence quarksn a fast-moving nucleon does indeed S:=(P1+P2)°  t:=(P1—Pa)%,  U=(P1—P4)7,
look Lorentz contracted to a stationary observer in the usuavlv
way:

A. Notation (kinematics)

here the incoming particles apg ,p,, the outgoing ones
P3,P4, @s usual. The momentum transfeis kinematically
2R, restricted to the intervat ,<t<t,, where the subscripts
(AZ),~—, (0,7r) denote the corresponding scattering angle in the c.m.s.
Y Whereas for equal-mass particles we have the familiar rela-

. 2 .
the same isiot true for the sea-quarks and gluon®Rather, 0N —[s—(2m)“]<t=0, for four different masses one has

the longitudinal extension of sea-quarks and gluons should

. o 1
always be at least of the order 6f1 fm; in a qualitative way to/tw:—{mlz— m22+ m32— m42}2— 4_'5{)\(S’m12’m22)

one argues that due to the uncertainty principle 4s
(A2)gs~—=—5, . .
p, XxP with the usual abbreviation
so that for smallex one has a larger longitudinal extension. \(a,b,c):=+a’+b%+c’—2ab—2ac—2bc.

The practical argument usually given for using a DLC in
a parton cascade model at ultrarelativistic energies is that The c.m.s. scattering angteis given by
without it the extreme Lorentz contraction of the colliding
nuclei vv_ould simply_n_ot provid_e enough time for th_e_ir par- E(l_cosg)zsinﬁ:
tons to interact sufficiently. With DLC, the probability for 2 2
multiple scatterings, in particular, increases, thus enhancing s )
the possibility of obtaining high temperatures and densities. " S€¢- Il we have set the initialized partons off-shell:
This, however, is an argument that makes sense only i = /i~ # M, wherem; denotes the current mass and
one looks at the physics from a given observer frame. Whildh€ éfféctive mass of partanThis procedure was used there
it is true that nuclei become pancakes whenlegk at them to mod(_al .the |n|t|al_cpn_f|nement of qugrks in the nucleons of
from a reference frame with high relative velocity, the num-the colliding nuclei; it is out of place in the context of per-
ber of scatterings shouldot depend on the reference frame furbative QCD which we will be discussing here. In calcu-
at all. lating the Mandelstam variables for a particular£2) in-
Thus, both of the above arguments for a DLC are extratéraction, we therefore reset the two incoming partons to be
neous to a formally covariant formulation, and in our covari-ONn-shell by adjusting the zeroth component of their momenta

ant parton cascade we do not need such a prescription ®&cording to

enlarge the number of scatteringsf. Sec. VI. Indeed we =
have not employedany DLC-like prescription in producing (P1)°:= Vi 2+mi21

to—t
tO_tﬂ'.
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and use the current masses for the outgoing partons as well This cutoff procedure will be discussed in further detail
[cf. however, Sec. IV [ below.
In some cases, in order to render the integrated cross sec-
tions finite, it will be necessary to impose a ¢pit-0 on the
kinematic limits of the momentum transfgri.e., we restrict B. Matrix elements
ttot,<t<ty—t., so that the integrated cross section for a

particular process will be The relevant (2-2) matrix elements within perturbative

to-tedo QCD in the tree-level approximatiofcf. e.g.[25-31 are
(T(S)=f T (4.1 given below. They take into account nonvanishing parton
tn masses throughoitf. [32,33)). The results can be expressed
(in the case of identical particles, a similar cutoff needs to bdY four functionsGy, .. .Gz of the Mandelstam variables
applied atd= ). (and the masse®f the scattering particles:

|
9 ut su ts
Go(s,t,u)= > 3—?—?—? ,

Gy(s,t,u;mm’)= <§>§{[s—(m2+ m'2) 2 +t[(m*+m'2—u)?+2(m>+m’?)]},

2\ 4
Gy(s,t,u;m)= —< - 2—7>m(s—2m2)(s—6m2),

3 >4(m2—t)(m2—u) +<i>2(m2—u)(m2—t)—4m2(m2+t) +< 1 >2(m2—t)(m2—u)—4m2(m2+ u)

Gs(s,t,u;m)=<E 2 12 (t—m?)2 12 (u—m?)?

< 1 > —4[2m?(s—2m?)+ (m?—t)(m?—u)] . <i> A[t(s+t)—m?*] +<3> 4[u(s+u)—m*]

- 96 (m?—t)(m?—u) 32/ s(m?-t) 32/ s(m?-u)

In the above expressions, the numerical factors given irend we first need to compute the values of the integrated
brackets are due to the various color averages. partial cross sections; at the given c.m.s. energyfor all

All relevant parton matrix elementM?| (with the  possible channels, e.gr(uu—uu),o(uu—dd), ... o(uu
strong coupling constant,=g*/4w factored outcan be ex-  _,gq) in the case of aiu pair in the initial state. If the
pressed in terms of these functions. Processes with differebndition (2.3) determines that a binary scattering is indeed
incoming and outgoing particles, but the same topology oto take place, the specific process to actually occur is deter-
the Feynman diagrams are related to one another by crosfined randomly, with weights given by the relative sizes of
ing, i.e. in our case by the interchange of the appropriatghe o, . We then similiarily choose the momentum trangfer
Mandelstam variables in the functio® . The resulting re- (and thus the c.m.s. scattering angleby sampling the ap-
lations between the matrix elements and the functi®nare  propriate differential cross sectials/dt (the c.m.s. azimuth
given in Table I. angle ¢ is, of course, chosen with an isotropic distribujion

In all of the above considerations, we have dropped in-
elastic (2—2) processes. Since all processes with partons of
different flavor in the initial and final state have a typical

The matrix elements listed in Table | determine the dif-s-channel behavior at high energies, the contribution from
ferential cross section for a particular process in the standardhe inelastic cross sections is insignificant.

C. The scattering process

way: Several points in the procedures described still need fur-
ther clarification. We now discuss these in order.
do |g?M|? ’7Ta’§ X t cutoff. Some of the scattering matrix elemeft Table
g (@b—cd)= 5~ M~ I) have the typical Rutherford singularity in the forward di-
64mpyl®s s rection (in the case of identical particles in the backward

direction alsg. In order to obtain finite integrated cross sec-
From this we obtain the total cross section to be used in Ections, we impose a kinematic ctjt on the momentum trans-
(2.3 by integrating and summing over all channels. To thisfer t.

064903-5



BORCHERS, MEYER, GIESEKE, MARTENS, AND NOACK PHYSICAL REVIEW 62 064903

TABLE I. Matrix elements(with the coupling constant factored A further point is that the whole picture of parton binary
out) for the partonic processesb—cd. The numerical factors in  scattering described and computed with perturbative QCD
brackets are due to different color averages. (“hard scattering’) implies, of course, a small value of;.
Consequently, for such a description to be consistent, the

2|12
Process (Mig°] value of Q? should not fall below some given value. In
gg—gg Go(s,t,u) implementing this point in the cascade algorithm, we cut off
99—qq Gs(s,t,u;m) the allowed range of)?, i.e., we do not allow partons to
q9—qg, scatter at all ifQ?<Q,,2, using the method proposed in
e 8 . [35]. (For a detailed discussion of this issue [36]. The
qg—ag (3)Ga(t,s,u;m) > . ; )
49—qq Gy(s,t,usm,m) + Gy(s,u,t;m,m) actual values o~ used in the numerical computations
Bl B G (sit ul_m’) e are given in Table IV.
q9—a9 N Both of these choice®?=s—m,’—m,?, and no scatter-
qg—qq Gi(u,s,t;m,m)+Gy(u,t,s;m,m) . 2 5 .
_ ing for Q“<Q.,,°, are to some degree arbitrary. However,

_ +GZ(”'.S't’m/) this arbitrariness is again mitigated by the parton evolution
q9—q'q’ Gy(u,s,mm’) mechanism described in Sec. V.

ad—gg (%)Gs(s t,u;m)

aq'—aq’, S

q9' —qq’ Gy(s,t,u;m,m’) D. Virtualities

a9’ —qq’ The cascade approach, which assumes its constituents to

be moving freely between instantaneous scatterings, is, of
course, a very drastically simplified model of a system of

To justify this procedure, let us consider for a moment thestrongly interacting particles. It is one of the virtues of the
processes of soft radiation in the initial and final state. Thes®CD dynamics that it allows to model mean field effects by
processes are dominant around the divergences in questiallowing particles to be off shel(*virtual” ) in a natural
Including this soft radiation would render the poles finite orway. In the initialization of our cascade, we have used this
at least only logarithmically divergent, the divergences thudeature to model the confinement of quarks in the initial
turn out to be a consequence of the perturbative approximazucleons cf. Sec. IJl
tion. So if we want to remain consistent in considering only We can make use of the same feature again to model
“hard” processes in the context of the present section, wesome of the effects of the nuclear medidtime QGP?Pon the
should omit contributions from the vicinity of the poles al- motion of partons during the nuclear reaction. As before,
together. The soft region will be “resummed” later, when instead of introducing mean-field effects via a PCD quasipo-
we include an evolution scheme based on the DGLAP equaential, we choose to introduce parton virtualities directly in
tions (cf. Sec. V. every (2—2) interaction.

For the method of cutoff, we have an alternative choice The specific implementation of such parton virtualities is,
between two physically different possibilities. In the fitst  of course, restricted by the requirement of 4-momentum con-
is basically constant. In the secohdis determined by the servation, but there still are several possibilifizsall cases
c.m.s. energys of the particular interaction, corresponding, studied, we have included parton virtualities by adjusting the
e.g., to a minimum scattering angle in the c.m.s. of the twazeroth componentgenergieg of the outgoing partons in
scattering particles. Although the latter option may seerquite an analogous way in which we have set the ingoing
more intuitive, the implicits dependence of the resulting partons on-shell before scattering, viz. we keep the spatial
cutoff leads to singular behavior of the total cross sectiongomponents of their moment§3 andp,, fixed at the values
close to the kinematic threshold én The former option will determined in the scattering;ing on-shellcurren} masses,
keep the cross sections smooth also in the region close to thgd then adjustp(;)® and (p,)° subject to energy conserva-
threshold and is therefore preferable. In the numerical comion (p3)°+ (p,)°=(p1)°+ (p,)°].
putations we have usegd=Qpy’ (cf. below. In detail we have investigated the following schemes for

as(Q%) and @ cutoff. We employ renormalization after a binary scattering event.
group-improved perturbation theory, e.g., we use a running (1) One of the two outgoing partons is left in the state
coupling as= a4(Q?), thereby including some higher order determined by the scattering process, i.e., it remains on shell.
perturbative effects in a qualitative way. The “scal®”  The other outgoing parton attains an effective mass, which is
may in general be a function of all of the Mandelstam vari-uniquely determined by energy conservation in the procedure
ables for the particular process. The choice@f is not  described above. In deciding which parton to leave on shell,
obvious, since in a collision of many hadrons there is howye can either choose at rand(@m‘]biaged Choi()eor we can
external scale that determin@3, as is the case, e.g., in deep select the parton with the larger tranverse momentum. A
inelastic scattering, and several possibilities have been digualitative argument for the latter would be that the parton
cussed in the literaturg30,34. For practical reasons, we with the larger tranverse momentum leaves the dense zone of
have simply usetﬂgZ:s—mlz—mz2 in our model, thus ne- the nuclear medium sooner and is thus less subject to the
glecting a possiblélogarithmio dependence ofrs(Q?) on  effects of the mediuntwhich is just what is being modeled
the momentum transfer by the virtualities.
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(2) The effective masses of both outgoing partons are ob-
tained byadding the same amounf virtuality to their cur-
rent masses, subject to energy conservation. The virtualities
are again determined uniquely.
(3) The effective masses are obtained rayltiplying by
the same factothe c.m.s. energies of both outgoing partons.
It should be noted that this scheme is not covariant, since it 4n =4
uses the c.m.s. in an essential way.
(4) We do not add any virtualities at all, i.e., the outgoing
partons are left on-shell.
Although the effects of the different schemes on, e.g., the
total number of scatterings suffered by a parton in the course
of a nuclear collision are not negligible, the first of these i i %
schemes has turned out to be the most viable one, and all Q5 Q:
numerical results given in Sec. VI were obtained with it. It ) ) . .
also seems to be the choice best motivated by a physical F_IG. 1. The branch_lng chain for a scatterlng_prqcess. The in-
argument. coming prepartora radiates secondary partons with increasing
Finally, we wish to point out that we haweot modified scaleQ? and thus is resolved into its substructure.
the leading-order parton cross sections bykafactor” (i.e., ) ) ) ) )
K=1 in PCPC throughout, whereas comparable models usi"@!l deal with this problem in part C of this section.
ally useK=2 to K=3). In the context of our somewhat During the interaction we fix the structure of the pre-

different approach to higher-order corrections as described iRa7on: i.e., we first determine the number of soft partons

this and the following sectiofSec. \}, the reasons for intro- radiated(ct. part B of this sectiop and then fix their prop-

ducing aK-factor do not seem cledfor a recent discussion ©rties . viz.(i) the flavors they carry(ii) their (off-shel)

of theK-factor and its relevance in parton cascadegaf)). ~ 4-Mmomenta and, as our model is a space-time description,
Also, in order to keep our model as transparent as pogd!SO(iii) their 4-positions(cf. part Q.

sible, we retain the PQCD-based differential cross sections,

as described in this section also for lower momentum trans- A. The model for soft partons

fer, where they are surely softened by medium corrections \ye follow the parton evolution by constructing a chain of

and other ntz)nperturbatwe eff(_—:tcts. Therefore, the cutoff Pas,ccessive branchings for each colliding prepagoas de-

rameterQ,,,~ should be considered as a model parametebicted in Fig. 1. To this end, we make use of tBedakov

and not as a part of a serious PQCD approach.  form factor[38], which is essentially an integration of the
We close this section by summarizing all the options in-pg AP evolution equationg39—43;
troduced in the implementation of the partonic scattering: the
method of cutting off the poles of the differential cross sec-S(x,,Q,?;Q?)
tions (including the choice of cutoff parametets); the
choice of the argumer®? in the running coupling constant %
=e

a4(Q?); the introduction of a minimal scal®,,> below

which any “hard” interaction will be excluded; and the
method of assigning new virtualities to the particles after a
binary collision. with

~ fthdi'z as(Q"?)

¢ o7 2n & W@ 6D

V. PARTON EVOLUTION

1dz f,(x,/2,Q"2
Wa,bc(Q,Z):f _ZLQ)Paﬁbc(z)r (5.2

As was mentioned before, we also allow for-62) pro- x5 2 fy(x5,Q"?)

cesses in our model. In the present section we describe the

emission of soft parton radiation before a “hard” parton Where P,_,(z) are the Altarelli-Parisi splitting functions

scattering takes place. [42] [cf. Table II], and thef ,(x,Q?) are the nucleon structure
Let us recall(cf. Sec. Il) that our cascade starts with an functions for partons with flavoa (we use the parametriza-

initial ensemble of partons which are resolved at a rathefion [20]).

small scaleQ,2. We now interpret these initial partons as ~ Qp’ is the scale of the hard scattering. In general this can

“pre-partons’” to be resolved further in a be a function of all the kinematical invariants of the (2

(2—2)—scattering process, with a sc@é> Q%, by means —2) scattering; for simplicity we choose it in line with the

of the DGLAP parton evolution. corresponding choice in Sec. IV, viz.
In order to employ this mechanism for soft parton radia- ) . .
tion, we would need do know the longitudinal momentum Qi=(patpa)?—mi—m,=s—m;-m;,, (5.3

fraction of the parton to be radiated, i.e., the sc@ig,
whereas at this point of our algorithm we know only the wherep, and p,, are the 4-momenta of the two incoming
momentum fractiork=p, /P of the whole prepartom. We  pre-partonsa anda’, respectively.
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TABLE II. Altarelli-Parisi splitting functionsP,_,,.(z) . From TABLE lIl. Flavor generation in the parton evolution. A parton
[42]. with flavor b may be radiated from a parton with flavar The list
includes all possible QCD branchings.

4 1+ (9498

31—z Flavorb Flavora

4 1+(1—z) 9849 g g

ERE Lddss

for 4 B u,u,d,df,s...

u(u) u(u)

. [1—z(1—2) 8§88 g

A1-2) _ d(d) d(d)

3[22+(1-2)] s _ 9

s(s) s(s)

As suggested by Fig. 1, the Sudakov form factor describes
a summation of all the soft parton modes which we are ex-
cluding in the description of hard scatteriiigf. Sec. V).
More precisely, it is a summation of all diagrams similar to . o .
Fig. 1, with the summation including a sum over the numbestricted by flavor conservation: if, e.g., partbris a quark,
of vertices. In our algorithm, in any specific interaction we the associated partaxis either a quark of the same flavor or
determine a definite number of vertices, and thus generate@&gluon. The flavor of partonis then also fixed completely
definite number of soft partons with explicit flavors and mo-by flavor conservation. The probability for each allowed ver-

g

menta, as will be explained presently. tex a—bc is given by the relative weight of the different
terms in Eq.(5.2).
B. The branching chain For high momentum partonsx£0.01), the splitting is

T truct the b hi hai “back dominated by soft gluon emission, and the sum in the expo-
evolﬁti((:)?lr’]’sarlu?)rith; [ A{glllil] Itnog fglls\llvn,tr\llé € :?teo : froﬁctr\:\é ardnent of Eq.(5.1) effectively reduces to a single term. For soft
9 ' P partons &<0.01) on the other hand, quark-antiquark pro-

resolytlon scal®y,” back to the |n.|t|al reSOIUt'(.)'QO ' T.h'S . duction and gluon emission are of the same order of magni-
algorithm was extended to multiple parton interactions in d d th k-anti K ibuti h
[10.11] tude, and the quark-antiquark contributions to the sum can-
i not be neglected if one wants to describe the production of
heavy quarkgsuch as charmed quajkasdequately. Our pro-

cedure guarantees that heavy partons are not generated below
choose a vaIuQ2<Qh2 according to the probability distri- their specific threshold scalas given by the parametrization

bution given by Eq(5.1), and interpret it as the scale where of [20.21).
the previous branching in the chain occurs. At this scale we
assign flavors and momenta to the parton and its secondary
parton(see Table Il). We continue to find the next scale for  |n step(3) of the backward evolution algorithm, we need
a further branching. The algorithm terminates when the scalg assign(i) 4-momenta,ii) effective massesvirtualities),
reaches the initial valu®,’. and (iii) 4-positions to the newly created partons in a vertex
In principle a successive resolution by single branchings—bc. In what follows, we describe the details of these
should produce a branchirtgee (branching of partons as assignments.
well, cf. Fig. 1). For simplicity we restrict ourselves to | ongjtudinal momentum fractiofn determining the lon-
branchingchains as illustrated in Fig. 1. Thus, our “back- gjtudinal momentum fractior=x, /x, (longitudinal with re-
ward evolution” algorithm proceeds explicitly in four steps: spect to the motion of partoa), we again refer to the Suda-
(1) determine the scal@;*<Q,’ at which a branching of kov form factor [Eq. (5.1)]. The integrand in Eq.(5.2)
partona;,; into partonsc; anda; occurs,(2) assign flavors  represents the probability that a partarwith momentum
to partonsc; anda; 1, (3) assign the other propertiéso-  fraction x, is resolved into a partob with momentumx,,
menta, virtualities, and positionso partonsb; andc;, and  <x_,/z. The momentum of parton is then determined by
(4) replaceQ,? with Q,%, and iterate step$l)—(3) unti  momentum conservation.

The Sudakov form factor is interpreted as the probability
that a parton that is resolved at a sc@l¢ will be the same
all the way down to scal@2<Qh2. In other words, we

C. The properties of soft partons

Qiszoz. The number of successively obtained vall(@?s Whenever there is a gluon in the final state, the splitting
then gives us the number of branchings and therefore thiinctions are singular a&=0 and/orz=1. While the singu-
number of generated seconddspft) partonsc; . larity at z=0 is innocuous becausg>0, we regularize the

Flavor. The flavors of the partons at a particular point of infrared divergence at=1 (soft gluon emissionby intro-
a branching chain are determined by the relevant vestex ducing a cutoffz,,,, thus restricting the integration interval
—bec. In the exponent of Eq(5.1) there is a sum over all in Eq. (5.2) to 0<x,<z<Z,x<1. We usez.=Xp/(Xp
possible vertices resulting in the final parton with flavor — +Xx,,,), which allows for gluons with momentum fraction
This sum reflects the several branching channels and is rew=xp,, only (for the value ofx,,, cf. Table IV).
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TABLE IV. Values of various parameters used in the numerical<z<1, the invariant masses of the generated partons are al-
computationgthe meaning of these parameters is explained in Secsyayslessthan that of the partop,, so that the parton vir-
llhand 1V). tualities increase along the branching chain from the prepar-

— ton to the scattering parton. This is an essential feature of

p-p S-S Pb-Pb Au-Au  \hole idea of parton evolution; it is interesting to note how

Vs [AGeV] 200 615 900 1800 19.4 17.2 200 naturally it is accommodated in the PCD dynamical ap-
proach.

Xmig GoV? %%l 0é0§3 21032 26021 1061 2;2 ggl 4-positions.Finally, in accordance with the fact that the
Qo 5 [GeV'] 5. : ) : : . : parton evolution occurs at the same invariapparameter as
Qmn” [GeV’] 173 236 260 314 092 089 173 the (2—2)—scattering, the 4-positions of all generated par-
tons are set to that of the preparton.

In summarizing, it is worthwhile to point out that only the
last parton(namedby=b in Fig. 1) scatters, whereas all
gthers leave the collision without further interaction. As
noted in the beginning of this section, before an interaction
we know only the momentum and flavor of the preparton,
not that of the parton that finally takes part in the—{2)
scattering. The situation is complicated by the fact that it is
the kinematics of the (2 2) scattering event which tells us

7. = whether to start the parton evolution algorithm in the first
Pa=(p*+ a7 Or.p), (5.43 place. But as the branchings are dominated by soft gluons,
the longitudinal momenta of the preparton and the colliding

Transverse momenta and virtualitiéd/hile the DGLAP
parton evolution equations and E&.1) refer only to longi-
tudinal momenta, in a nucleus-nucleus collision transvers
momenta play an important role. It is therefore physically
reasonable to supply the generated partoyts with some

transverse momentuimy .
The parton momenta thus are

Po=(V(ZP?+p+*+py’; Pr.2P), (54D  parton are nearly the same, and so it seems justified tause

~ (instead ofx,,) in determining the total cross section and thus

pc:(\/(1—2)2p2+ pT2+,uC2; —pr.,(1—2)p), the invariants parameter at which the interaction is to take
(5.40 place.

2 P i ) We close this section by summarizing the options intro-
where u"=m;*—q;", i=(a,b,c), and the differencej; duced in the implementation of the parton evolution: the
between the current masses” and effective masses are the form in which Q2 depends on the kinematic variablggq.
virtualities, as in Secs Ill and IV. (5.3)]; the restriction of the branching tree to a branching

We now demand that the longitudinal velocities of the chain; the choice of cutoff, . for regularizing the infrared
generated partoris andc are the same as that of partan  gjivergence in Eq(5.2); and the choice of probability distri-

i.e., bution for the transverse momenta of the radiated partons.

! !
ﬁzb:[gzc: |Ba|: VI. NUMERICAL RESULTS

. . In this section we present numerical resultseabcruns
and all particles have absolute velocities less than the spegg; \arious nuclear reactions at various energies. While this
qf light. Thls_ is analogous to our procedure in Sec. lIl. Thepaper primarily aims at RHIC energies and heavy-ion reac-
first constraint leads to tions, and indeed, the parton cascade approach itself is ex-
pected to be suited for this regime in particufand less so

for, say,p-Ereactions or heavy-ion physics at SPS enejgies
p2i=(1-2)2u,%2—p 2. there are as yet no experimental data available from RHIC.
¢ a T In order to relate our results to experiment, we include some

Inserting these expressions for the effective masses in Eq8f these other regimes as well. .
(5.48—(5.40 one finds that momentum is conserved in the N all of these cases, we essentially present final parton
vertex in all four components, irrespective of the value ofrapidity and transverse momenta dlstrlk_)utlons. At this point
p+2, so that we are indeed free to choose the transversé® want to point out once more thatpcis a model for the
momentum randomly. The virtualities are thus fixed in adynamical evolution opartons it does not deal at all with
purely kinematic way. The second constrajft: c, restricts the hadronization of these partons in the fifaalat least late

2 2
=2y =P,

the value ofp {2 to stages'of this evolut.ion. As the details of the physics of had-
ronization in heavy ion reactions are as yet not fully under-
22ua2, stood (we can expect medium effects, in particular, to play
pr>=<min 5 9 (5.5 an increasingly important rolehadronization mechanisms in
(1=2)%u,". parton cascade models for heavy ion reactions are at present

- ) o ~ phenomenological at best, and oftad hoc Nevertheless,
We thus choose @ 1 randomly, with a distribution that is e also present some conclusions faxdron rapidity and

radially symmetric about the axis given 5)4, and homoge- transverse momenta distributions, deduced from our parton
neous up to the maximum value given by EF.5. As 0  results with some very simple assumptions; but we want the
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5T IV). They were obtained from a total of 50@@Pcruns at
Z1ar each energy. On the average, &Q 200 GeV to 170 (at
r i 1800 GeV partons per event were generated by the code;
121 only about a third of these have underwent a binary scatter-
- / ing or were generated with the DGLAP mechanism de-
10 \Eﬂ?m ev g scribed in Sec. \(“participating partons’). Only these par-
i ticipating partons have been included in the pseudorapidity
sl 'E__\E=9°°G distributions(and, indeed, in all subsequent evaluations pre-
i ' sented in this papgr
ol The resulting pseudorapidity distributions of all partici-
- pating partons are given in Fig. 2. Note that the peaks at the
L beam rapidities doot represent trivial spectator partons, but
ar are probably essentially DGLAP gluons.
[ Figure 3 shows the pseudorapidity distributions of the
20 participating quarks only. Since the number of charged had-
:f i (52200 rons shOl_JId be rou_ghly proportional to the number of quarks,
R e TR Ll we have included in Fig. 3 some experimental data for these
-8 2 0 2 4 6 8 reactions, as given if5,46). Because the exact relation be-

tween quarks and charged hadrons depends on a hadroniza-
FIG. 2. Final pseudorapidity distributiortall partons for app  tion scheme, which is not part of our model, we have plotted
reaction aty/s=200, 630, 900, and 1800 GeV. the quark distributions in Fig. 3 with an arbitrary scale
(which, however, is the same for all four energies
reader to keep in mind the distinctly different character of More interesting is the distribution of transverse mo-
these conclusions: they are not an intrinsic part of our modelmenta, as given in Fig. 4. Since symmetry arguments suggest
that the distribution of baryon transverse momenta should be
essentially the same as that of the partons, these results can
be compared directly with experimental data. In Fig. 4 we
_This section presents the results mipC simulations of  have included the results ¢47,48. Note that these plots
p-p reactions at various energiggarameter values, cf. Table (both in the data and our simulatigriavolve a rapidity cut:

A. p-p reactions

\s=200 GeV (UAS5) 52900 GeV (UAS5)

FIG. 3. Final pseudorapidity distributions
(quarks only for a p-p reaction at s
=200, 630, 900, and 1800 GeV. The histo-
grams are thecpcresults. The data points are the
experimentadN,,/d» (from [45] for 200 GeV,
900 GeV, and46] for 630 GeV, 1800 GeV, re-
spectively.

5630 GeV (CDF)
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FIG. 4. Distributions of final transverse momenta fopﬂiTre-
action at/s=200, 630, 900, and 1800 GeV. Note the rapidity =~ FIG. 5. Final parton rapidity distributions for a S-S reaction
cut: only particles withy| <1 are included. The histograms are the (y/s=2x9.7A GeV, top framg and Pb-Pb {s=2x8.6A GeV,
pcpcresults. The data pointgncluding the fit lines through them  bottom framé. Shown are the separate contributions of gluag)s (
are the experimentalNc,/dp 1 (from [47,48). up and down quarksg), and up and down antiquarks);

only particles with|y|<1 are included. The comparison . =
shows that, apart from the dips in theepc results at the mamly gluons; as ip-p they are propably DGLAP gluon;.
lowestpt (which are due to the neglect of soft partons inter-, Figure 6 shows the rapldl_ty dlstr|but|on_ of the quantity
actions, the agreement for the transverse momenta is quité(Nq_qu for th? two reactions. In a naive coalescence
satisfactory; in fact, it improves with increasing energy, Model along the lines di9] or the ALCOR mode(50,51]

pointing again to the decreasing importance of soft partofiS quantity would be proportional to the net baryon num-

interactions at higher energy. ber. We therefore compare the above rapidity distributions
with the data of52] (for the same reason as given above in
B. S-S and Pb-Pb at the SPS the case ofp-p, the scale is in arbitrary unjtsThe agree-

ment is remarkable for both reactions, a@dnsidering the

for S-S and Pb-Pb at the CERN SPS. The rapidity pad larger errors both in experiment and our calculation for)S-S
distributions we present were obtained from 2G@®cruns seems better for the 'afgef SyStéﬁ.b'.Pb' o .
(S-S reactionsand 500 rungPb-Ph. On the average, 340 Figure 7 presents the final rap@ty distributions of anti-
and 2360 partons per event were generated by the code f§fange quarks for the S-S react|old§%2><9.7A GeV).
S-S and Pb-Pb reactions, respectively. Of these, 29% angince the antistrange quarks hadronize predominant/‘tp
53% were “participating partons.” Again, only the latter are We can compare their rapidity distribution directly to the
included in the distributions. experimental antikaon rapidity distribution, as given 53]

In Fig. 5 we show the final parton rapidity distributions (no data are available for Pb-PbThe agreement of our
for S-S and Pb-Pb reactions. The contributions of the mossimulation and the data is quite go@part from the peaks at
important flavorggluons, quarks, antiquarkare given sepa- beam rapidity, for which we have as yet no convincing ex-

rately (@=u+d+s+c, g=u+d+s+c). planation. .
Our simulation reproduces the typical plateau at midra- _In Fig. 8 finally, we show the transverse momentum dis-

pidity nicely. Whereas the quarks and antiquarks show a digfibution for both S-S and Pb-Pb reactions with the same

in this region, the gluon distribution is flat at midrapidity, for €nergies as before. The spectra show — apart from the same

Pb-Pb it almost shows a small peak. This is due to the faatlip at low transverse momentum we had in W@ simula-

that predominantly gluons are produced in binary partontions (cf. Fig. 4 — the expected exponential behavief.

parton scatterings. Note that the peaks at beam rapidity aeg.[53]).

In this section we present the resultsrafPc simulations
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FIG. 8. Distributions of final parton transverse momenta for S-S
(Vs=2%9.7A GeV) and Pb-Pb {/s=2x8.6A GeV). The solid
lines merely serve to show to what extent the distributions are ex-
ponential.
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C. Au-Au at RHIC

N
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We now present the results pEpPcsimulations for RHIC
physics: Au-Au reactions at>2100A GeV. We simulated
2 200 events. On the average, 9300 partons per event were
y generated, of which 72% were “participating partons.”
Again, only the latter are included in our distributions.

As before, we first present the results for final rapidity
distributions: Figure 9 contains the parton rapidity distribu-
tions for all participating quarks, for gluons and for quarks
Mind antiquarks. As expected, the distributions are much more
sharply peaked than Fig. 5. Note in particular that the gluon
distribution (disregarding the peaks for the initial rapidities

Summarizing our comparison to the SPS S-S and Pb-Piz of almost perfect Gaussian shape, and, in contrast to the
data, we find that our model produces surprisingly realisticSPS case, the dip in the quark and antiquark distributions at
rapidity andpy spectra, surprising especially since the onlymid rapidity has all but disappeared. The ratio of gluons to
way in which we incorporate any soft QCD effects is via thequarks(at mid rapidity is about 7:1, so that the mid rapidity
DGLAP mechanism. region is a region of high energy density and essentially
baryon-free.

Although here we have no experimental data to compare
to, we are again interested in the quanF}t&Nq—Nqﬁ as a
measure of the “net baryons” and the antistrange quarks as

-
o

o

FIG. 6. Final rapidity distributions of “net baryons{arbitrary
units) for a S-S reaction(s=2x9.7A GeV, top fram¢ and Pb-Pb
(\s=2x8.6A GeV, bottom framg The histograms are results of
the PCPC simulation; the data point and their error bars are fro
[52].
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FIG. 7. Rapidity distributions(arbitrary unit$ of final anti- FIG. 9. Final parton rapidity distributions for Au-Au reactions at
strange quarks for a S-S reactiony@=2x9.7A GeV. The experi- RHIC. Shown are the total partons and the separate contributions of
mental data points are frof®3]. gluons @), quarks, and antiquarks.
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FIG. 11. Distributions of final parton transverse momenta for
FIG. 10. Final rapidity distributions of “net baryons{(left Au-Au reactions at RHIC.
frame and antistrange quarksight frame for Au-Au reactions at

RHIC. . . . . .
consistently defined, does not lend itself easily to a physical

interpretation. As a consequence, the naive idea of defining
: o __particle, energy and entropy densities in terms of averages at

(regardmg the beam rapidity peaks, cf. The correspondlngiven values of is not feasible, and indeed the problem of

remarks in Sec. VI B formulating consistently the Poincacevariant statistical

Finally, we present in Fig. .11 the distribution of.fmgl mechanics of a system daflassical particles remains un-
parton transverse momenta. It is seen that the contributions

of all flavors of quarks and antiquarks are at least an order O?OII\;etg(Cf' [54. that defeating th . tive f
magnitude smaller than those of the gluons. Note that the diﬁ1 tL_’S lsleemsd l‘fi we are t'e cea Irt]r? € verydmcendlve or
at the lowespr (again due to the neglect of soft interactipns eoretically modeling a reaction with a cascade code, viz.

. . “looking inside the reaction”during the “hot and dense
IS ma_rkedly less for the RHIC Au-Au reactions than fop stages” of the collision. This, however, it true. Quite to
(cf. Fig. 4). Apart from this dip, the distributions are nearly ; o L .
exponential. the. contrary:becauset is a Poincarecovariant modelpcpc

All these results verify the expectation which we have in contrast to noncovariant models — allows us to use the
theoretically: that at RHIC energies we expect hard partorﬁu!l phase.space information consistently to reconstruc.t the
scatterings to play a much more important role, and thaflicroscopic state of the system as “seen” from any given

therefore our model should be best suited for that energ@Pserver frame at any given physicabservey time. Such a
regime. reconstruction, of course, provides only a formal picture of

the mode] not of physical reality: it must be pointed out that
VII. DISCUSSION AND CONCLUSIONS not only i.s this information inaccessible to dir_ect opservation
in experiment, but the idea of actuallpoking simulta-

In this paper, we have presented a new parton cascadeouslyat the whole of a spatially extended systenoat
model which differs from other such models in that it treatspoint in (observer) timés necessarily inconsistent with rela-
not only the kinematics of the reaction, but all of the dynam-tivity, irrespective of the particular formalism used by the
ics in a strictly Poincareovariant manner. theorist.

In the light of the success of various other parton cascade This, theoretical, visualization of the intermediate stages
models(notably thevNi code,[10,11]) this may seem to be a of the reaction has in fact been quite useful to us in gaining
merely formal aspect. There are, however, several practicahsight, e.g. into the influence of the various parameters of
advantages in our covariant formulation: the algorittand  our model(cf. Secs. IlI-\}. Wary of misinterpretation, how-
the sequence of binary parton interactigns particulay  ever, we have refrained from presenting such visualizations
does not depend on the frame of reference in which the codi@ this paper. Rather, we have restricted the presentation of
is run; our model allows for a very natural treatment of par-numerical results in Sec. VI tfinal distributionswhich can
ton off-shell effects(“virtualities” ) which are includechd be compared to experimental data where such data are avail-
hocin other models; and there is no need to use mechanisnable (and the comparison is physically meaningful
such as a “distributed Lorentz contractiori¢f. Sec. Il O In our view, these comparisons show tlraPcsimulates
in order to enlarge the longitudinal extension of a nucleughe reactions reasonably well. In particular, we want to draw
before the collision. In fact, such a mechanism is inconsistenattention again to Figs. 4 and 6: Fig. 4 shows that the agree-
with our approach of insisting on strict Poincarevariance. ment improves for higher energies, and in Fig. 6 we see that

On the formal side, a fundamental problem with any cascpcdoes better for heavier systems. This is precisely what
cade approach remains also macpPC In Sec. Il, we have one would expect, and it strengthens our belief tgcwill
explained how, in circumventing the No-Interaction- be useful in the RHIC regime.

Theorem, we are led to employ a many-times formalism. The Another way to assess the usefulnes®ofcis to com-
invariant dynamical evolution parametsrof PCD, though pare its results with comparable theoretical models. Such a

a measure of the produced’. These are given in Fig. 10
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some of the artificialities described in Sec. Ill. This, how-
ever, is work that remains to be done.

In the present versiorpcPc contains no hadronization The pcpccode[in C* ] is obtainable from the OSCAR
scheme. As was pointed out befdof. Sec. V), we feel that  archive(http://rhic/phys.columbia.edu/osgar from the au-
in a heavy ion reaction a hadronization mechanism which ishors.
added in the final stagé.e., after the parton cascade has
come to its enflis somewhat artificial, and phenomenologi-
cal at best. What we envisage isiategrated hadron-parton
cascadein which partons are formed in binary scatterings of The research presented here would not have been possible
the initial nucleons, and hadrons are formé&hd “dis-  without the seminal input provided by its noncovariant fore-
solved” again continually while the reaction is going on. In runner, thevnl code by the late Klaus Geiger. We deeply
such a model, the initial state of the system would be confegret that our work can no longer be subjected to his pro-
structed quite naturally of nucleons only, thus removingductive criticism.

comparison of our results with those @il has been pre-
sented elsewhell&5].
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