
PHYSICAL REVIEW C, VOLUME 62, 064903
Poincaré-covariant parton cascade model for ultrarelativistic heavy-ion reactions

V. Börchers,* J. Meyer,† S. Gieseke,‡ G. Martens,§ and C. C. Noack
Institut für Theoretische Physik, Universita¨t Bremen, D-28334 Bremen, Germany

~Received 3 June 2000; published 9 November 2000!

We present a new cascade-type microscopic simulation of nucleus-nucleus collisions at RHIC energies. The
basic elements are partons~quarks and gluons! moving in 8N-dimensional phase space according to Poincare´-
covariant dynamics. The parton-parton scattering cross sections used in the model are computed within per-
turbative QCD in the tree-level approximation. TheQ2 dependence of the structure functions is included by an
implementation of the DGLAP mechanism suitable for a cascade, so that the number of partons is not static,
but varies in space and time as the collision of two nuclei evolves. The resulting parton distributions are
presented, and meaningful comparisons with experimental data are discussed.

PACS number~s!: 25.75.2q, 24.10.Jv, 24.10.Lx, 24.85.1p
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I. INTRODUCTION

Recent years have shown an increased interest in
study of heavy ion reactions with projectiles and targ
ranging all the way up to uranium, and laboratory energ
up to 200A GeV @1–3#. The RHIC collider at Brookhaven
National Laboratory, dedicated to ultrarelativistic heavy i
reactions, became operational this year, and this heralds
another new and exiting stage of experiments, with the p
pect of finally confirming the signatures of a phase transit
to the quark gluon plasma found at CERN~cf. @4#!.

In a theoretical microscopic description of such reactio
it is imperative to take into account the quark and glu
degrees of freedom, even when one does not assume a p
transition to occur, and various such microscopic mod
have been studied. They are based either on a string pic
@5,6#, a baryonic picture@7,8#, a combination of both@9#, or
a parton cascade model@10–12#. In as far as these mode
describe the motion of individual particles in phase spa
they are necessarilyclassicalmodels and thus suffer in vari
ous degrees from the consequences of the No-Interac
Theorem@13#, which severely restricts the possibility of en
suring the full Poincare´ covariance in such models. Indee
the models just mentioned exhibit their noncovariance by
explicit dependence on the coordinate system in which
simulated reactions are run.

In contrast, we present a parton cascade model whic
formally strictly Poincare´ covariant. This is not to say tha
our model is free from the basic problem inherent in a
parton description to date: the very definition of the inco
ing nucleons in terms of their parton content depends on
momentum scale used and thus seems to depend unavoi
on the observer frame of reference in which the particip
nucleons are seen. We shall address this aspect of our m
in detail below~cf. Sec. V!.
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The paper is organized as follows. In Sec. II we pres
the details of our covariant formalism together with a d
scription of the basic cascade algorithm used. Section
deals with the construction of the initial state of the mod
and Sec. IV describes the partonic scattering processes
ing the nuclear reaction. In Sec. V we discuss the questio
‘‘parton evolution’’ as implemented in our code. In Sec. V
we present some numerical results and compare them to
perimental data if available. Section VII contains a discu
sion and our conclusions.

II. THE DYNAMICS OF OUR MODEL

The No-Interaction-Theorem by Currieet al. asserts that
the only canonical Hamiltonian theory ofN particles which
is Poincare´ covariant is one in which all particles are fre
@13#. One way to circumvent the consequences of this th
rem is to formulate the theory in 8N-dimensional phase
space, i.e., in terms of 4-vectors for the positions of the p
ticles as well as for their momenta:

xiª~ t i ,rW i !, piª~Ei ,pW i !, i 51, . . .N.

These 4-vectors are taken to be functions of aPoincaré-
invariant dynamical evolution parameters, the motion of the
particles being determined by the set of Hamilton’s eq
tions

d

ds
xi~s!5$H,xi%52

]H

]pi
, ~2.1a!

d

ds
pi~s!5$H,pi%51

]H

]xi
, ~2.1b!

where the HamiltonianH as well as the interaction ‘‘quasi
potential’’ V arePoincaré-invariants:

H5(
i 51

N mi
22pi

2

2mi
1V~r 1 , . . . ,r N ;p1 . . . ,pN!.

The solutions of Eqs.~2.1a! and ~2.1b! are N one-
dimensional manifolds in the 8N-dimensional phase space
viz. the particle world lines.
©2000 The American Physical Society03-1
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The details of such a dynamical theory have been
scribed elsewhere@14#. Here we emphasize two importan
features:~a! the parameters governs the dynamical evolutio
of the system and parametrizes the particle world lines,
has no further physical interpretation,~b! particles are~clas-
sically! off shell, (pi)

2Þ(mi)
2, whenever they are within the

range of the quasipotential.
With an appropriately chosen attractive force~represent-

ing a stringlike interaction!, this framework allows a descrip
tion of hadrons as bound systems of classical particles~‘‘par-
tons’’! @15#.

In setting up a parton cascade, we use a drastically s
plified Hamiltonian which is in the spirit of previous had
ronic cascade models@16–18#: we take the interactions o
the model to be due only to binary scattering events at
crete points ins, with all particles moving along free-particl
world lines between such binary scatterings.@The only way
in which mean field effects enter the model is through
fact that particles can be off-shell, thus acquiring effect
masses~cf. Secs. III and IV below!.#

Between the discontinuous binary interactions, the wo
lines of all particles are given by the free Hamiltonian, lea
ing to the solutions

pi~s!5const ~2.2a!

xi~s!5
pi

mi
~s2s0!1xi~s0!, ~2.2b!

wheres0 is the lasts at which particlei underwent an inter-
action @Eqs. ~2.2a! and ~2.2b! once again show explicitly
how s parametrizes the solutions#. Note that as a conse
quence of these world lines the 3-velocities are given by

drW i

dti
5

drW i

ds

ds

dti
5

pW i

mi

mi

Ei
,

as it should be.
For a givens, the square of thePoincaré-invariant 4-

distancedi j between particlesi and j is defined to be

di j
2
ª2S xm2

~xp!

p2
pmD S xm2

~xp!

p2
pmD ,

where x and p are the relative 4-distance and the to
4-momentum of particlesi and j:

x5xi2xj , p5pi1pj ,

This is, of course, just a Poincare´-invariant way to write the
3-distance in their center-of-momentum frame~i.e., their im-
pact parameter!: udi j u5uxW i2xW j u(c.m.s.) .

Whenever two particles approach each other to
4-distance within

di j ,As tot

p
~2.3!
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~which happens at a specific value ofs), there will be a
binary interaction between them. At that point ins, their
momenta change discontinuously. What interaction ta
place and how the interaction-distance~i.e., s tot) is deter-
mined depends on the particular model.

The basic algorithm of the dynamics of our parton ca
cade is thus as follows.

~1! In an initialization procedure the colliding nuclei ar
described in terms of a certain number of partons with ini
phase space coordinates~cf. Sec. III!.

~2! The partons propagate through phase space until
first two of them are about to interact~at a givens).

~3! For that pair, the type of interaction is determined~cf.
Sec. IV!. Additional partons may be produced in the proce
~cf. Sec. V!. Due to this interaction~all happening at the
same instance ins), the interacting partons acquire ne
4-momenta.

~4! All partons continue to propagate freely until the ne
earliests for which another pair is up for an interaction.

~5! Steps~3! and ~4! are iterated until all partons mov
away from one another. The cascade then ends.

Since the world lines are parametrized by thePoincaré-
invariant parameters, the ordering of binary interactions~de-
termined by the sequence of parameterssi j ,skl,smn . . . ) is
independent of the observer frame of reference in which
cascade is run, and the resulting space-time distributions
fer only by a simple boost, as it must be in a manifes
covariant formalism@in the development stage of thePCPC

code — for debugging purposes and as a check on nume
accuracy — we have indeed run the cascade in vari
frames of reference, and have verified this independen#.
This is in sharp contrast to the violation of Poincar´-
covariance generally encountered in cascade models inv
ing actions at a distance@19#.

III. THE INITIAL STATE

In contrast to most analytical transport models of ult
relativistic nucleus-nucleus collisions, we do not assume
equilibrium initial state. Rather, we start out by first descr
ing both colliding nuclei as ground state configurations~cf.
Sec. III A!, which are then boosted according to the kinem
ics of the particular reaction we want to simulate. In a seco
step of the initialization~but before any collisions occur! the
individual nucleons are described in terms of a set of~clas-
sical! ‘‘partons’’ ~cf. Sec. III B!. The nucleus-nucleus colli
sion is then modeled as a sequence of partonic interacti
i.e., we do not allow any initial nucleon-nucleon collision
although some such initial hadronic interactions will ce
tainly occur, we believe them to be unimportant in the e
ergy range of interest~RHIC energies!.

A. Distribution of the nucleons

The nucleons in each of the two nuclei are initially a
signed random positions and momenta. In the rest fram
the nucleus, the distributions are spherically symmetric wh
the radial distributions are taken to be of Woods-Saxon fo

w~r !;~e(r 2R0)/Dr11!21 ~positions!,
3-2
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POINCARÉ-COVARIANT PARTON CASCADE MODEL FOR . . . PHYSICAL REVIEW C 62 064903
with R051.07A1/3 fm, Dr 50.5 fm,

w~p!;~e(p2pF)/Dp11!21 ~momenta! ,

with pF5(\/r 0)A3 9
4 p'0.316 GeV/c, Dp50.03 GeV/c

~for simplicity’s sake, we use identical distributions for pr
tons and neutrons!. The reason for using smeared-out dist
butions both in positions and momenta in the nucl
ground-state configurations is that this accounts~to a certain
degree! for the experimental density distributions; it ha
nothing to do with finite temperature. For the same reas
we enforce a minimum spatial distance between any
nucleons of 0.8 fm. The zeroth~time! components of the
position 4-vectors of the nucleons are irrelevant at this po
because they are set on the parton level~cf. Sec. III B!. The
nucleon energies are then fixed so that every nucleon is o
mass shell:

p0
i5E0

i5ApW i
21MN

2, ~ i 51, . . . ,A!,

and finally both nuclei are boosted to the desired frame
reference~depending on the particular reaction simulated!.

B. Distribution of the partons

In a next step, each nucleon is resolved into initial p
tons. The longitudinal momenta~and flavors1! of the gener-
ated partons are chosen randomly with distributions co
sponding to the experimental proton/neutron struct
functionsF2(x,Q2) in the form of the ‘‘GRV94LO’’ param-
etrization @20,21#, until a total number of partonsN is
reached so that in a given nucleon

(
i

N

xiª(
i

N
pzi

Pz
'1

is satisfied.
Since the parton distribution functions peak atx50, we

need to use a cutoff inx: xi>xmin , which we choose in-
versely proportional to the nucleon momentumPz . This cut-
off is also in keeping with our focus on hard partons.

Note that we need to specify an initial resolution sc
Q0

2 at which we evaluate the structure functions. The nu
ber of partonsN depends strongly on this scale, because
structure functions are peaked at lowx for high Q2. In con-
trast to the situation in, e.g., deep inelastic lepton-pro
scattering, in a heavy ion reaction there is no clear definit
for this scale, and we do not know ita priori. In the context
of the present section, viz. the construction of the init
state, this initial resolution scaleQ0

2 is, therefore, an empiri-
cal parameter which we determined from comparing to
mean scale of the primary hard parton scatterings~for the
actual values used in the numerical computations, cf. Ta
IV !. In Sec. V, we shall, however, discuss a parton evolut

1In this paper, the term ‘‘flavor’’ is used to denote either a qua
of given flavor in the usual sense, or a gluon.
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mechanism which turns out to weaken the dependence of
final results onQ0

2 drastically.
As for the transverse momentapTi of the partons, we take

these to be distributed radially symmetric about the nucle
momentumPz , with a Gaussian distribution for their modu
lus:

w~p T!;e2(p T)2/(2a2),

with a50.3 GeV/c ~cf. @22#!.
Because of the radial symmetry of thep T distribution,

( i p Ti'0, so that for the partons in each nucleon we hav

(
i

pW i'~0,0,Pz!.

As a consequence, this resolution into partons leaves
nucleons on the mass shell:

S (
i 51

N

pi
mD S (

i 51

N

pimD'Mnucleon
2.

The final momentum component to be fixed is the ene
of each parton. As was pointed out in Sec. II, in PCD t
energy of a particle is not determined by a mass-shell c
dition, but is an independent dynamic variable. This feat
of the dynamics of our model allows, in a very natural wa
to use effective parton masses~‘‘virtualities’’ ! to satisfy
other constraints given by the physics of the initial state to
constructed. One such constraint is that initially~before the
first interactions between partons from one of the collidi
nuclei and partons from the other! all partons should remain
essentially confined within their respective nucleons. Wi
out constraining their velocities explicitly in some way, th
partons would spread out over the whole phase-space
quickly after initialization.

One possibility for a ‘‘confinement constraint’’ is to re
quire the parton longitudinal velocities to equal the veloc
of the resolved nucleon:

bz
parton5ubW nucleonu. ~3.1!

Since the parton transverse momenta are small compare
the longitudinal momenta, this guarantees that the parton
one nucleon move together for some time initially. We th
demand explicitly that

bz
parton5

xi Pz

A~xi Pz!
21p Ti

21m i
2
5
! Pz

APz
21M2

,

where the effective mass of partoni is denoted bym i , from
which one obtains

m i
25xi

2M22pTi

2 . ~3.2!

The fact that the confined partons acquire effective masse
this way fits well into the framework of PCD, where inte
acting particles are off shell. There is, however, a technica
involved in this method of modeling initial confinemen
3-3



ns

l.
en
um
h

se
l

r
tz
e

an
ca
d

on
d
u

u

n.
in
th
g
r-
r
cin
es
ly
hi

m
e

tra
ri
n

for
lly

two
n
ill
.

at-

use

of
-
c.

ri-

.s.
ela-
s

ll:

re
of
r-
u-

be
nta

BÖRCHERS, MEYER, GIESEKE, MARTENS, AND NOACK PHYSICAL REVIEW C62 064903
from Eq.~3.2! it can be seen directly that whenever the tra
verse momentum of a parton is sufficiently large,m i

2 be-
comes negative, i.e., the parton becomes superlumina
order to avoid such particles, we reject transverse mom
that lead tob.1. This means that our transverse moment
distribution is no longer an exact Gaussian, but somew
narrower.

Finally, the spatial coordinates of the partons are cho
randomly with a spherical distribution~centered at the spatia
coordinate of the nucleon! according to

w~r !;e2ar

with a54.33 fm21, in accordance with nuclear form facto
data @23#. These spherical distributions are then Loren
contracted along the beam axis, and the zeroth compon
of the 4-vectorsr m are set to zero.

C. Distributed Lorentz contraction „DLC …?

It has been proposed in the literature@24,11# to use a
‘‘distributed Lorentz contraction~DLC!’’ for the partons in
order to enlarge the longitudinal extension of a nucleus
thus to enhance the chances for scatterings in a cas
model. The physical picture behind such an idea can be
scribed roughly as follows. While the longitudinal extensi
of the valence quarksin a fast-moving nucleon does indee
look Lorentz contracted to a stationary observer in the us
way:

~Dz!v'
2R0

g
,

the same isnot true for the sea-quarks and gluons. Rather,
the longitudinal extension of sea-quarks and gluons sho
always be at least of the order of;1 fm; in a qualitative way
one argues that due to the uncertainty principle

~Dz!g,s'
1

pz
5

1

xP
,

so that for smallerx one has a larger longitudinal extensio
The practical argument usually given for using a DLC

a parton cascade model at ultrarelativistic energies is
without it the extreme Lorentz contraction of the collidin
nuclei would simply not provide enough time for their pa
tons to interact sufficiently. With DLC, the probability fo
multiple scatterings, in particular, increases, thus enhan
the possibility of obtaining high temperatures and densiti

This, however, is an argument that makes sense on
one looks at the physics from a given observer frame. W
it is true that nuclei become pancakes when welook at them
from a reference frame with high relative velocity, the nu
ber of scatterings shouldnot depend on the reference fram
at all.

Thus, both of the above arguments for a DLC are ex
neous to a formally covariant formulation, and in our cova
ant parton cascade we do not need such a prescriptio
enlarge the number of scatterings@cf. Sec. VI#. Indeed we
havenot employedany DLC-like prescription in producing
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the initial state: using the invariant distancedi j to determine
binary interactions guarantees that the desired effects
which DLC was proposed are correctly and automatica
included in our code.

IV. PARTON SCATTERING

As detailed in Sec. II, the cascade algorithm needs
inputs from binary scattering:~i! a parton total cross sectio
s tot , which determines whether a given pair of partons w
come within an~invariant! interaction distance given by Eq
~2.3!, and ~ii ! a differential cross section (ds/du)(ab
→cd), which determines the details of an actual binary sc
tering.

In the present section we describe how we obtain and
these cross sections, i.e., we discuss (2→2) scattering only.
As mentioned above, our model allows for the creation
additional partons during a (2→2) scattering. The mecha
nism for these (2→n) interactions will be discussed in Se
V.

A. Notation „kinematics…

Our notation is as follows. We use the Mandelstam va
ables

sª~p11p2!2, tª~p12p3!2, uª~p12p4!2,

where the incoming particles arep1 ,p2, the outgoing ones
p3 ,p4, as usual. The momentum transfert is kinematically
restricted to the intervaltp<t<t0, where the subscripts
(0,p) denote the corresponding scattering angle in the c.m
Whereas for equal-mass particles we have the familiar r
tion 2@s2(2m)2#<t<0, for four different masses one ha

t0 /tp5
1

4s
$m1

22m2
21m3

22m4
2%22

1

4s
$l~s,m1

2 ,m2
2!

7l~s,m3
2 ,m4

2!%2,

with the usual abbreviation

l~a,b,c!ªAa21b21c222ab22ac22bc.

The c.m.s. scattering angleu is given by

1

2
~12cosu!5sin2

u

2
5

t02t

t02tp
.

In Sec. III we have set the initialized partons off-she
pi

25m i
2Þmi

2 , wheremi denotes the current mass andm i

the effective mass of partoni. This procedure was used the
to model the initial confinement of quarks in the nucleons
the colliding nuclei; it is out of place in the context of pe
turbative QCD which we will be discussing here. In calc
lating the Mandelstam variables for a particular (2→2) in-
teraction, we therefore reset the two incoming partons to
on-shell by adjusting the zeroth component of their mome
according to

~pi !
0
ªApW i

21mi
2,
3-4



w

s

r a

b

ail

e

ton
d

s
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and use the current masses for the outgoing partons as
@cf. however, Sec. IV D#.

In some cases, in order to render the integrated cross
tions finite, it will be necessary to impose a cuttc.0 on the
kinematic limits of the momentum transfert, i.e., we restrict
t to tp<t<t02tc , so that the integrated cross section fo
particular process will be

s~s!5E
tp

t02tcds

dt
dt ~4.1!

~in the case of identical particles, a similar cutoff needs to
applied atu5p).
re
o

o
ia

if
a

E
hi

06490
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This cutoff procedure will be discussed in further det
below.

B. Matrix elements

The relevant (2→2) matrix elements within perturbativ
QCD in the tree-level approximation~cf. e.g. @25–31# are
given below. They take into account nonvanishing par
masses throughout~cf. @32,33#!. The results can be expresse
by four functionsG0 , . . .G3 of the Mandelstam variable
~and the masses! of the scattering particles:
G0~s,t,u!5 K 9

2L S 32
ut

s2
2

su

t2
2

ts

u2D ,

G1~s,t,u;m,m8!5 K 2

9L 2

t2
$@s2~m21m82!#21t@~m21m822u!212~m21m82!#%,

G2~s,t,u;m!52 K 2
2

27L 4

tu
~s22m2!~s26m2!,

G3~s,t,u;m!5 K 3

16L 4~m22t !~m22u!

s2
1 K 1

12L 2~m22u!~m22t !24m2~m21t !

~ t2m2!2
1 K 1

12L 2~m22t !~m22u!24m2~m21u!

~u2m2!2

1 K 2
1

96L 24@2m2~s22m2!1~m22t !~m22u!#

~m22t !~m22u!
1 K 3

32L 4@ t~s1t !2m4#

s~m22t !
1 K 3

32L 4@u~s1u!2m4#

s~m22u!
.

ted

ed
ter-
of
r

in-
s of
al
om

fur-

i-
rd
c-
-

In the above expressions, the numerical factors given
brackets are due to the various color averages.

All relevant parton matrix elementsuM 2u ~with the
strong coupling constantas5g2/4p factored out! can be ex-
pressed in terms of these functions. Processes with diffe
incoming and outgoing particles, but the same topology
the Feynman diagrams are related to one another by cr
ing, i.e. in our case by the interchange of the appropr
Mandelstam variables in the functionsGi . The resulting re-
lations between the matrix elements and the functionsGi are
given in Table I.

C. The scattering process

The matrix elements listed in Table I determine the d
ferential cross section for a particular process in the stand
way:

ds

dt
~ab→cd!5

ug2Mu2

64pupW 1u2s
'

pas
2

s2
uMu2.

From this we obtain the total cross section to be used in
~2.3! by integrating and summing over all channels. To t
in

nt
f

ss-
te

-
rd

q.
s

end we first need to compute the values of the integra
partial cross sectionss i at the given c.m.s. energys for all
possible channels, e.g.,s(uū→uū),s(uū→dd̄), . . . ,s(uū
→gg) in the case of auū pair in the initial state. If the
condition ~2.3! determines that a binary scattering is inde
to take place, the specific process to actually occur is de
mined randomly, with weights given by the relative sizes
the s i . We then similiarily choose the momentum transfet
~and thus the c.m.s. scattering angleu) by sampling the ap-
propriate differential cross sectionds/dt ~the c.m.s. azimuth
anglef is, of course, chosen with an isotropic distribution!.

In all of the above considerations, we have dropped
elastic (2→2) processes. Since all processes with parton
different flavor in the initial and final state have a typic
s-channel behavior at high energies, the contribution fr
the inelastic cross sections is insignificant.

Several points in the procedures described still need
ther clarification. We now discuss these in order.

t cutoff.Some of the scattering matrix elements~cf. Table
I! have the typical Rutherford singularity in the forward d
rection ~in the case of identical particles in the backwa
direction also!. In order to obtain finite integrated cross se
tions, we impose a kinematic cuttc on the momentum trans
fer t.
3-5
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To justify this procedure, let us consider for a moment
processes of soft radiation in the initial and final state. Th
processes are dominant around the divergences in ques
Including this soft radiation would render the poles finite
at least only logarithmically divergent, the divergences th
turn out to be a consequence of the perturbative approxi
tion. So if we want to remain consistent in considering on
‘‘hard’’ processes in the context of the present section,
should omit contributions from the vicinity of the poles a
together. The soft region will be ‘‘resummed’’ later, whe
we include an evolution scheme based on the DGLAP eq
tions ~cf. Sec. V!.

For the method of cutoff, we have an alternative cho
between two physically different possibilities. In the firsttc
is basically constant. In the secondtc is determined by the
c.m.s. energys of the particular interaction, correspondin
e.g., to a minimum scattering angle in the c.m.s. of the t
scattering particles. Although the latter option may se
more intuitive, the implicits dependence of the resultin
cutoff leads to singular behavior of the total cross secti
close to the kinematic threshold ins. The former option will
keep the cross sections smooth also in the region close to
threshold and is therefore preferable. In the numerical co
putations we have usedtc5Qmin

2 ~cf. below!.
as(Q

2) and Q2 cutoff. We employ renormalization
group-improved perturbation theory, e.g., we use a runn
coupling as5as(Q

2), thereby including some higher orde
perturbative effects in a qualitative way. The ‘‘scale’’Q2

may in general be a function of all of the Mandelstam va
ables for the particular process. The choice ofQ2 is not
obvious, since in a collision of many hadrons there is
external scale that determinesQ2, as is the case, e.g., in dee
inelastic scattering, and several possibilities have been
cussed in the literature@30,34#. For practical reasons, w
have simply usedQ25s2m1

22m2
2 in our model, thus ne-

glecting a possible~logarithmic! dependence ofas(Q
2) on

the momentum transfert.

TABLE I. Matrix elements~with the coupling constant factore
out! for the partonic processesab→cd. The numerical factors in
brackets are due to different color averages.

Process uM/g2u2

gg→gg G0(s,t,u)

gg→qq̄ G3(s,t,u;m)

qg→qg,

q̄g→q̄g ^ 8
3 &G3(t,s,u;m)

qq→qq, G1(s,t,u;m,m)1G1(s,u,t;m,m)

q̄q̄→q̄q̄ 1G2(s,t,u;m)

qq̄→qq̄ G1(u,s,t;m,m)1G1(u,t,s;m,m)

1G2(u,s,t;m)

qq̄→q8q̄8 G1(u,s,t;m,m8)

qq̄→gg ^ 64
9 &G3(s,t,u;m)

qq8→qq8,

qq̄8→qq̄8, G1(s,t,u;m,m8)

q̄q̄8→q̄q̄8
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A further point is that the whole picture of parton bina
scattering described and computed with perturbative Q
~‘‘hard scattering’’! implies, of course, a small value ofas .
Consequently, for such a description to be consistent,
value of Q2 should not fall below some given value. I
implementing this point in the cascade algorithm, we cut
the allowed range ofQ2, i.e., we do not allow partons to
scatter at all ifQ2,Qmin

2, using the method proposed i
@35#. ~For a detailed discussion of this issue cf.@36#. The
actual values ofQmin

2 used in the numerical computation
are given in Table IV.!

Both of these choices,Q25s2m1
22m2

2, and no scatter-
ing for Q2,Qmin

2, are to some degree arbitrary. Howeve
this arbitrariness is again mitigated by the parton evolut
mechanism described in Sec. V.

D. Virtualities

The cascade approach, which assumes its constituen
be moving freely between instantaneous scatterings, is
course, a very drastically simplified model of a system
strongly interacting particles. It is one of the virtues of t
PCD dynamics that it allows to model mean field effects
allowing particles to be off shell~‘‘virtual’’ ! in a natural
way. In the initialization of our cascade, we have used t
feature to model the confinement of quarks in the init
nucleons cf. Sec. III!.

We can make use of the same feature again to mo
some of the effects of the nuclear medium~the QGP?! on the
motion of partons during the nuclear reaction. As befo
instead of introducing mean-field effects via a PCD quasi
tential, we choose to introduce parton virtualities directly
every (2→2) interaction.

The specific implementation of such parton virtualities
of course, restricted by the requirement of 4-momentum c
servation, but there still are several possibilities@in all cases
studied, we have included parton virtualities by adjusting
zeroth components~energies! of the outgoing partons in
quite an analogous way in which we have set the ingo
partons on-shell before scattering, viz. we keep the spa
components of their momenta,pW 3 andpW 4, fixed at the values
determined in the scatteringusing on-shell~current! masses,
and then adjust (p3)0 and (p4)0 subject to energy conserva
tion (p3)01(p4)05(p1)01(p2)0#.

In detail we have investigated the following schemes
after a binary scattering event.

~1! One of the two outgoing partons is left in the sta
determined by the scattering process, i.e., it remains on s
The other outgoing parton attains an effective mass, whic
uniquely determined by energy conservation in the proced
described above. In deciding which parton to leave on sh
we can either choose at random~unbiased choice!, or we can
select the parton with the larger tranverse momentum
qualitative argument for the latter would be that the par
with the larger tranverse momentum leaves the dense zon
the nuclear medium sooner and is thus less subject to
effects of the medium~which is just what is being modele
by the virtualities!.
3-6
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POINCARÉ-COVARIANT PARTON CASCADE MODEL FOR . . . PHYSICAL REVIEW C 62 064903
~2! The effective masses of both outgoing partons are
tained byadding the same amountof virtuality to their cur-
rent masses, subject to energy conservation. The virtual
are again determined uniquely.

~3! The effective masses are obtained bymultiplying by
the same factorthe c.m.s. energies of both outgoing parto
It should be noted that this scheme is not covariant, sinc
uses the c.m.s. in an essential way.

~4! We do not add any virtualities at all, i.e., the outgoi
partons are left on-shell.

Although the effects of the different schemes on, e.g.,
total number of scatterings suffered by a parton in the cou
of a nuclear collision are not negligible, the first of the
schemes has turned out to be the most viable one, an
numerical results given in Sec. VI were obtained with it.
also seems to be the choice best motivated by a phys
argument.

Finally, we wish to point out that we havenot modified
the leading-order parton cross sections by a ‘‘K-factor’’ ~i.e.,
K51 in PCPC throughout, whereas comparable models u
ally use K52 to K53). In the context of our somewha
different approach to higher-order corrections as describe
this and the following section~Sec. V!, the reasons for intro-
ducing aK-factor do not seem clear~for a recent discussion
of theK-factor and its relevance in parton cascades, cf.@37#!.

Also, in order to keep our model as transparent as p
sible, we retain the PQCD-based differential cross sectio
as described in this section also for lower momentum tra
fer, where they are surely softened by medium correcti
and other nonperturbative effects. Therefore, the cutoff
rameterQmin

2 should be considered as a model parame
and not as a part of a serious PQCD approach.

We close this section by summarizing all the options
troduced in the implementation of the partonic scattering:
method of cutting off the poles of the differential cross se
tions ~including the choice of cutoff parameterstc); the
choice of the argumentQ2 in the running coupling constan
as(Q

2); the introduction of a minimal scaleQmin
2 below

which any ‘‘hard’’ interaction will be excluded; and th
method of assigning new virtualities to the particles afte
binary collision.

V. PARTON EVOLUTION

As was mentioned before, we also allow for (2→n) pro-
cesses in our model. In the present section we describe
emission of soft parton radiation before a ‘‘hard’’ parto
scattering takes place.

Let us recall~cf. Sec. III! that our cascade starts with a
initial ensemble of partons which are resolved at a rat
small scaleQ0

2. We now interpret these initial partons a
‘‘ pre-partons,’’ to be resolved further in a
(2→2) –scattering process, with a scaleQh

2.Q0
2, by means

of the DGLAP parton evolution.
In order to employ this mechanism for soft parton rad

tion, we would need do know the longitudinal momentu
fraction of the parton to be radiated, i.e., the scaleQh

2 ,
whereas at this point of our algorithm we know only t
momentum fractionx5pa /P of the whole prepartona. We
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shall deal with this problem in part C of this section.
During the interaction we fix the structure of the pr

parton, i.e., we first determine the number of soft parto
radiated~cf. part B of this section!, and then fix their prop-
erties , viz. ~i! the flavors they carry,~ii ! their ~off-shell!
4-momenta and, as our model is a space-time descrip
also ~iii ! their 4-positions~cf. part C!.

A. The model for soft partons

We follow the parton evolution by constructing a chain
successive branchings for each colliding prepartona, as de-
picted in Fig. 1. To this end, we make use of theSudakov
form factor @38#, which is essentially an integration of th
DGLAP evolution equations@39–42#:

S~xb ,Qh
2 ;Q2!

5expF2E
Q2

Qh
2dQ82

Q82

as~Q82!

2p (
a,c

Wa,bc~Q82!G , ~5.1!

with

Wa,bc~Q82!ªE
xb

1 dz

z

f a~xb /z,Q82!

f b~xb ,Q82!
Pa→bc~z!, ~5.2!

where Pa→bc(z) are the Altarelli-Parisi splitting functions
@42# @cf. Table II#, and thef a(x,Q2) are the nucleon structur
functions for partons with flavora ~we use the parametriza
tion @20#!.

Qh
2 is the scale of the hard scattering. In general this c

be a function of all the kinematical invariants of the (
→2) scattering; for simplicity we choose it in line with th
corresponding choice in Sec. IV, viz.

Qh
25~pa1pa8!

22ma
22ma8

2
5s2ma

22ma8
2 , ~5.3!

where pa and pa8 are the 4-momenta of the two incomin
pre-partonsa anda8, respectively.

FIG. 1. The branching chain for a scattering process. The
coming prepartona radiates secondary partonsci with increasing
scaleQ2 and thus is resolved into its substructure.
3-7
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As suggested by Fig. 1, the Sudakov form factor descri
a summation of all the soft parton modes which we are
cluding in the description of hard scattering~cf. Sec. IV!.
More precisely, it is a summation of all diagrams similar
Fig. 1, with the summation including a sum over the num
of vertices. In our algorithm, in any specific interaction w
determine a definite number of vertices, and thus genera
definite number of soft partons with explicit flavors and m
menta, as will be explained presently.

B. The branching chain

To construct the branching chain, we use a ‘‘backwa
evolution’’ algorithm @43,44# to follow the parton from the
resolution scaleQh

2 back to the initial resolutionQ0
2. This

algorithm was extended to multiple parton interactions
@10,11#.

The Sudakov form factor is interpreted as the probabi
that a parton that is resolved at a scaleQh

2 will be the same
all the way down to scaleQ2,Qh

2 . In other words, we
choose a valueQ2,Qh

2 according to the probability distri
bution given by Eq.~5.1!, and interpret it as the scale whe
the previous branching in the chain occurs. At this scale
assign flavors and momenta to the parton and its secon
parton~see Table III!. We continue to find the next scale fo
a further branching. The algorithm terminates when the sc
reaches the initial valueQ0

2.
In principle a successive resolution by single branchin

should produce a branchingtree ~branching of partonsc as
well, cf. Fig. 1!. For simplicity we restrict ourselves t
branchingchains, as illustrated in Fig. 1. Thus, our ‘‘back
ward evolution’’ algorithm proceeds explicitly in four step
~1! determine the scaleQi

2,Qh
2 at which a branching of

partonai 11 into partonsci andai occurs,~2! assign flavors
to partonsci and ai 11, ~3! assign the other properties~mo-
menta, virtualities, and positions! to partonsbi and ci , and
~4! replaceQh

2 with Qi
2 , and iterate steps~1!–~3! until

Qi
2<Q0

2. The number of successively obtained valuesQi
2

then gives us the number of branchings and therefore
number of generated secondary~soft! partonsci .

Flavor. The flavors of the partons at a particular point
a branching chain are determined by the relevant vertea
→bc. In the exponent of Eq.~5.1! there is a sum over al
possible vertices resulting in the final parton with flavorb.
This sum reflects the several branching channels and is

TABLE II. Altarelli-Parisi splitting functionsPa→bc(z) . From
@42#.
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stricted by flavor conservation: if, e.g., partonb is a quark,
the associated partona is either a quark of the same flavor o
a gluon. The flavor of partonc is then also fixed completely
by flavor conservation. The probability for each allowed ve
tex a→bc is given by the relative weight of the differen
terms in Eq.~5.2!.

For high momentum partons (x*0.01), the splitting is
dominated by soft gluon emission, and the sum in the ex
nent of Eq.~5.1! effectively reduces to a single term. For so
partons (x,0.01) on the other hand, quark-antiquark pr
duction and gluon emission are of the same order of ma
tude, and the quark-antiquark contributions to the sum c
not be neglected if one wants to describe the production
heavy quarks~such as charmed quarks! adequately. Our pro-
cedure guarantees that heavy partons are not generated b
their specific threshold scale~as given by the parametrizatio
of @20,21#!.

C. The properties of soft partons

In step~3! of the backward evolution algorithm, we nee
to assign~i! 4-momenta,~ii ! effective masses~virtualities!,
and~iii ! 4-positions to the newly created partons in a ver
a→bc. In what follows, we describe the details of the
assignments.

Longitudinal momentum fraction.In determining the lon-
gitudinal momentum fractionz5xb /xa ~longitudinal with re-
spect to the motion of partona), we again refer to the Suda
kov form factor @Eq. ~5.1!#. The integrand in Eq.~5.2!
represents the probability that a partona with momentum
fraction xa is resolved into a partonb with momentumxb
<xa /z. The momentum of partonc is then determined by
momentum conservation.

Whenever there is a gluon in the final state, the splitt
functions are singular atz50 and/orz51. While the singu-
larity at z50 is innocuous becausexb.0, we regularize the
infrared divergence atz51 ~soft gluon emission! by intro-
ducing a cutoffzmax, thus restricting the integration interva
in Eq. ~5.2! to 0,xb,z,zmax,1. We usezmax5xb /(xb
1xmin), which allows for gluons with momentum fractio
xc>xmin only ~for the value ofxmin , cf. Table IV!.

TABLE III. Flavor generation in the parton evolution. A parto
with flavor b may be radiated from a parton with flavora. The list
includes all possible QCD branchings.

Flavor b Flavor a

g g

u,ū,d,d̄,s,s̄ . . .

u(ū) u(ū)
g

d(d̄) d(d̄)
g

s( s̄) s( s̄)
g

A A
3-8
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Transverse momenta and virtualities.While the DGLAP
parton evolution equations and Eq.~5.1! refer only to longi-
tudinal momenta, in a nucleus-nucleus collision transve
momenta play an important role. It is therefore physica
reasonable to supply the generated partonsb,c with some
transverse momentumpW T .

The parton momenta thus are

pa5~Ap21ma
2; 0W T ,p!, ~5.4a!

pb5„A~zp!21p T
21mb

2; pW T ,zp…, ~5.4b!

pc5„A~12z!2p21p T
21mc

2; 2pW T ,~12z!p…,
~5.4c!

wherem i
25mi

22qi
2 , i 5(a,b,c), and the differenceqi

2

between the current massesmi
2 and effective masses are th

virtualities, as in Secs III and IV.
We now demand that the longitudinal velocities of t

generated partonsb and c are the same as that of partona,
i.e.,

bzb
5
!

bzc
5
!

ubW au,

and all particles have absolute velocities less than the sp
of light. This is analogous to our procedure in Sec. III. T
first constraint leads to

mb
2
ªz2ma

22p T
2,

mc
2
ª~12z!2ma

22p T
2.

Inserting these expressions for the effective masses in
~5.4a!–~5.4c! one finds that momentum is conserved in t
vertex in all four components, irrespective of the value
p T

2, so that we are indeed free to choose the transv
momentum randomly. The virtualities are thus fixed in
purely kinematic way. The second constraint,b,c, restricts
the value ofp T

2 to

p T
2<minH z2ma

2 ,

~12z!2ma
2 .

~5.5!

We thus choose apW T randomly, with a distribution that is
radially symmetric about the axis given bypW a , and homoge-
neous up to the maximum value given by Eq.~5.5!. As 0

TABLE IV. Values of various parameters used in the numeri
computations~the meaning of these parameters is explained in S
III and IV!.

p-p̄ S-S Pb-Pb Au-Au

As @A GeV# 200 615 900 1800 19.4 17.2 200

xmin 0.01 0.003 0.002 0.001 0.1 0.12 0.01
Q0

2 @GeV2# 5.3 9.8 11.7 16.6 1.6 1.3 5.3
Qmin

2 @GeV2# 1.73 2.36 2.60 3.14 0.92 0.89 1.73
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,z<1, the invariant masses of the generated partons are
ways lessthan that of the partonpa , so that the parton vir-
tualities increase along the branching chain from the prep
ton to the scattering parton. This is an essential feature
whole idea of parton evolution; it is interesting to note ho
naturally it is accommodated in the PCD dynamical a
proach.

4-positions.Finally, in accordance with the fact that th
parton evolution occurs at the same invariants parameter as
the (2→2) –scattering, the 4-positions of all generated p
tons are set to that of the preparton.

In summarizing, it is worthwhile to point out that only th
last parton~namedb05b in Fig. 1! scatters, whereas a
others leave the collision without further interaction. A
noted in the beginning of this section, before an interact
we know only the momentum and flavor of the preparto
not that of the parton that finally takes part in the (2→2)
scattering. The situation is complicated by the fact that i
the kinematics of the (2→2) scattering event which tells u
whether to start the parton evolution algorithm in the fi
place. But as the branchings are dominated by soft gluo
the longitudinal momenta of the preparton and the collid
parton are nearly the same, and so it seems justified to usxa
~instead ofxb) in determining the total cross section and th
the invariants parameter at which the interaction is to ta
place.

We close this section by summarizing the options int
duced in the implementation of the parton evolution: t
form in which Qh

2 depends on the kinematic variables@Eq.
~5.3!#; the restriction of the branching tree to a branchi
chain; the choice of cutoffzmax for regularizing the infrared
divergence in Eq.~5.2!; and the choice of probability distri
bution for the transverse momenta of the radiated parton

VI. NUMERICAL RESULTS

In this section we present numerical results ofPCPCruns
for various nuclear reactions at various energies. While
paper primarily aims at RHIC energies and heavy-ion re
tions, and indeed, the parton cascade approach itself is
pected to be suited for this regime in particular~and less so
for, say,p-p̄ reactions or heavy-ion physics at SPS energie!,
there are as yet no experimental data available from RH
In order to relate our results to experiment, we include so
of these other regimes as well.

In all of these cases, we essentially present final par
rapidity and transverse momenta distributions. At this po
we want to point out once more thatPCPCis a model for the
dynamical evolution ofpartons; it does not deal at all with
the hadronization of these partons in the final~or at least late!
stages of this evolution. As the details of the physics of h
ronization in heavy ion reactions are as yet not fully und
stood~we can expect medium effects, in particular, to pl
an increasingly important role!, hadronization mechanisms i
parton cascade models for heavy ion reactions are at pre
phenomenological at best, and oftenad hoc. Nevertheless,
we also present some conclusions forhadron rapidity and
transverse momenta distributions, deduced from our pa
results with some very simple assumptions; but we want

l
s.
3-9
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reader to keep in mind the distinctly different character
these conclusions: they are not an intrinsic part of our mo

A. p-p̄ reactions

This section presents the results ofPCPC simulations of
p-p̄ reactions at various energies~parameter values, cf. Tabl

FIG. 2. Final pseudorapidity distributions~all partons! for a pp̄
reaction atAs5200, 630, 900, and 1800 GeV.
06490
f
l.

IV !. They were obtained from a total of 5000PCPCruns at
each energy. On the average, 50~at 200 GeV! to 170 ~at
1800 GeV! partons per event were generated by the co
only about a third of these have underwent a binary scat
ing or were generated with the DGLAP mechanism d
scribed in Sec. V~‘‘participating partons’’!. Only these par-
ticipating partons have been included in the pseudorapi
distributions~and, indeed, in all subsequent evaluations p
sented in this paper!.

The resulting pseudorapidity distributions of all partic
pating partons are given in Fig. 2. Note that the peaks at
beam rapidities donot represent trivial spectator partons, b
are probably essentially DGLAP gluons.

Figure 3 shows the pseudorapidity distributions of t
participating quarks only. Since the number of charged h
rons should be roughly proportional to the number of quar
we have included in Fig. 3 some experimental data for th
reactions, as given in@45,46#. Because the exact relation be
tween quarks and charged hadrons depends on a hadro
tion scheme, which is not part of our model, we have plot
the quark distributions in Fig. 3 with an arbitrary sca
~which, however, is the same for all four energies!.

More interesting is the distribution of transverse m
menta, as given in Fig. 4. Since symmetry arguments sug
that the distribution of baryon transverse momenta should
essentially the same as that of the partons, these results
be compared directly with experimental data. In Fig. 4
have included the results of@47,48#. Note that these plots
~both in the data and our simulations! involve a rapidity cut:
s

o-
e

FIG. 3. Final pseudorapidity distribution

~quarks only! for a p-p̄ reaction at As
5200, 630, 900, and 1800 GeV. The hist
grams are thePCPCresults. The data points are th
experimentaldNch /dh ~from @45# for 200 GeV,
900 GeV, and@46# for 630 GeV, 1800 GeV, re-
spectively!.
3-10
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only particles with uyu,1 are included. The compariso
shows that, apart from the dips in thePCPC results at the
lowestpT ~which are due to the neglect of soft partons int
actions!, the agreement for the transverse momenta is q
satisfactory; in fact, it improves with increasing energ
pointing again to the decreasing importance of soft par
interactions at higher energy.

B. S-S and Pb-Pb at the SPS

In this section we present the results ofPCPCsimulations
for S-S and Pb-Pb at the CERN SPS. The rapidity andpT
distributions we present were obtained from 2000PCPCruns
~S-S reactions! and 500 runs~Pb-Pb!. On the average, 340
and 2360 partons per event were generated by the cod
S-S and Pb-Pb reactions, respectively. Of these, 29%
53% were ‘‘participating partons.’’ Again, only the latter a
included in the distributions.

In Fig. 5 we show the final parton rapidity distribution
for S-S and Pb-Pb reactions. The contributions of the m
important flavors~gluons, quarks, antiquarks! are given sepa-
rately (q[u1d1s1c, q̄[ū1d̄1 s̄1 c̄).

Our simulation reproduces the typical plateau at mid
pidity nicely. Whereas the quarks and antiquarks show a
in this region, the gluon distribution is flat at midrapidity, fo
Pb-Pb it almost shows a small peak. This is due to the
that predominantly gluons are produced in binary part
parton scatterings. Note that the peaks at beam rapidity

FIG. 4. Distributions of final transverse momenta for ap-p̄ re-
action at As5200, 630, 900, and 1800 GeV. Note the rapid
cut: only particles withuyu,1 are included. The histograms are th
PCPCresults. The data points~including the fit lines through them!
are the experimentaldNch /dp T ~from @47,48#!.
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mainly gluons; as inp-p̄ they are probably DGLAP gluons
Figure 6 shows the rapidity distribution of the quanti

1
3 (Nq2Nq̄) for the two reactions. In a naive coalescen
model along the lines of@49# or the ALCOR model@50,51#
this quantity would be proportional to the net baryon nu
ber. We therefore compare the above rapidity distributio
with the data of@52# ~for the same reason as given above

the case ofp-p̄, the scale is in arbitrary units!. The agree-
ment is remarkable for both reactions, and~considering the
larger errors both in experiment and our calculation for S!
seems better for the larger system~Pb-Pb!.

Figure 7 presents the final rapidity distributions of an
strange quarks for the S-S reaction (As5239.7A GeV!.
Since the antistrange quarks hadronize predominantly toK1,
we can compare their rapidity distribution directly to th
experimental antikaon rapidity distribution, as given in@53#
~no data are available for Pb-Pb!. The agreement of ou
simulation and the data is quite good~apart from the peaks a
beam rapidity, for which we have as yet no convincing e
planation!.

In Fig. 8 finally, we show the transverse momentum d
tribution for both S-S and Pb-Pb reactions with the sa
energies as before. The spectra show — apart from the s
dip at low transverse momentum we had in thep-p̄ simula-
tions ~cf. Fig. 4! — the expected exponential behavior~cf.
e.g. @53#!.

FIG. 5. Final parton rapidity distributions for a S-S reactio
(As5239.7A GeV, top frame! and Pb-Pb (As5238.6A GeV,
bottom frame!. Shown are the separate contributions of gluons (g),

up and down quarks (q), and up and down antiquarks (q̄).
3-11
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Summarizing our comparison to the SPS S-S and Pb
data, we find that our model produces surprisingly realis
rapidity andpT spectra, surprising especially since the on
way in which we incorporate any soft QCD effects is via t
DGLAP mechanism.

FIG. 6. Final rapidity distributions of ‘‘net baryons’’~arbitrary
units! for a S-S reaction (As5239.7A GeV, top frame! and Pb-Pb
(As5238.6A GeV, bottom frame!. The histograms are results o
the PCPC simulation; the data point and their error bars are f
@52#.

FIG. 7. Rapidity distributions~arbitrary units! of final anti-
strange quarks for a S-S reaction atAs5239.7A GeV. The experi-
mental data points are from@53#.
06490
b
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C. Au-Au at RHIC

We now present the results ofPCPCsimulations for RHIC
physics: Au-Au reactions at 23100A GeV. We simulated
200 events. On the average, 9300 partons per event w
generated, of which 72% were ‘‘participating partons
Again, only the latter are included in our distributions.

As before, we first present the results for final rapid
distributions: Figure 9 contains the parton rapidity distrib
tions for all participating quarks, for gluons and for quar
and antiquarks. As expected, the distributions are much m
sharply peaked than Fig. 5. Note in particular that the glu
distribution ~disregarding the peaks for the initial rapiditie!
is of almost perfect Gaussian shape, and, in contrast to
SPS case, the dip in the quark and antiquark distribution
mid rapidity has all but disappeared. The ratio of gluons
quarks~at mid rapidity! is about 7:1, so that the mid rapidit
region is a region of high energy density and essentia
baryon-free.

Although here we have no experimental data to comp
to, we are again interested in the quantity1

3 (Nq2Nq̄) as a
measure of the ‘‘net baryons’’ and the antistrange quarks

m

FIG. 8. Distributions of final parton transverse momenta for S
(As5239.7A GeV! and Pb-Pb (As5238.6A GeV!. The solid
lines merely serve to show to what extent the distributions are
ponential.

FIG. 9. Final parton rapidity distributions for Au-Au reactions
RHIC. Shown are the total partons and the separate contribution
gluons (g), quarks, and antiquarks.
3-12
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a measure of the producedK1. These are given in Fig. 10
~regarding the beam rapidity peaks, cf. The correspond
remarks in Sec. VI B!.

Finally, we present in Fig. 11 the distribution of fin
parton transverse momenta. It is seen that the contribut
of all flavors of quarks and antiquarks are at least an orde
magnitude smaller than those of the gluons. Note that the
at the lowestpT ~again due to the neglect of soft interaction!

is markedly less for the RHIC Au-Au reactions than forp-p̄
~cf. Fig. 4!. Apart from this dip, the distributions are near
exponential.

All these results verify the expectation which we ha
theoretically: that at RHIC energies we expect hard par
scatterings to play a much more important role, and t
therefore our model should be best suited for that ene
regime.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a new parton casc
model which differs from other such models in that it trea
not only the kinematics of the reaction, but all of the dyna
ics in a strictly Poincare´-covariant manner.

In the light of the success of various other parton casc
models~notably theVNI code,@10,11#! this may seem to be a
merely formal aspect. There are, however, several prac
advantages in our covariant formulation: the algorithm~and
the sequence of binary parton interactions, in particular!
does not depend on the frame of reference in which the c
is run; our model allows for a very natural treatment of p
ton off-shell effects~‘‘virtualities’’ ! which are includedad
hoc in other models; and there is no need to use mechan
such as a ‘‘distributed Lorentz contraction’’~cf. Sec. III C!
in order to enlarge the longitudinal extension of a nucle
before the collision. In fact, such a mechanism is inconsis
with our approach of insisting on strict Poincare´ covariance.

On the formal side, a fundamental problem with any c
cade approach remains also inPCPC. In Sec. II, we have
explained how, in circumventing the No-Interactio
Theorem, we are led to employ a many-times formalism. T
invariant dynamical evolution parameters of PCD, though

FIG. 10. Final rapidity distributions of ‘‘net baryons’’~left
frame! and antistrange quarks~right frame! for Au-Au reactions at
RHIC.
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consistently defined, does not lend itself easily to a phys
interpretation. As a consequence, the naive idea of defin
particle, energy and entropy densities in terms of average
given values ofs is not feasible, and indeed the problem
formulating consistently the Poincare´-covariant statistical
mechanics of a system ofclassical particles remains un-
solved~cf. @54#!.

It thus seems that we are defeating the very incentive
theoretically modeling a reaction with a cascade code,
‘‘looking inside the reaction’’during the ‘‘hot and dense
stages’’ of the collision. This, however, isnot true. Quite to
the contrary:becauseit is a Poincare´-covariant model,PCPC

— in contrast to noncovariant models — allows us to use
full phase space information consistently to reconstruct
microscopic state of the system as ‘‘seen’’ from any giv
observer frame at any given physical~observer! time. Such a
reconstruction, of course, provides only a formal picture
themodel, not of physical reality: it must be pointed out th
not only is this information inaccessible to direct observat
in experiment, but the idea of actuallylooking simulta-
neouslyat the whole of a spatially extended system atone
point in (observer) timeis necessarily inconsistent with rela
tivity, irrespective of the particular formalism used by th
theorist.

This, theoretical, visualization of the intermediate stag
of the reaction has in fact been quite useful to us in gain
insight, e.g. into the influence of the various parameters
our model~cf. Secs. III–V!. Wary of misinterpretation, how-
ever, we have refrained from presenting such visualizati
in this paper. Rather, we have restricted the presentatio
numerical results in Sec. VI tofinal distributionswhich can
be compared to experimental data where such data are a
able ~and the comparison is physically meaningful!.

In our view, these comparisons show thatPCPCsimulates
the reactions reasonably well. In particular, we want to dr
attention again to Figs. 4 and 6: Fig. 4 shows that the ag
ment improves for higher energies, and in Fig. 6 we see
PCPCdoes better for heavier systems. This is precisely w
one would expect, and it strengthens our belief thatPCPCwill
be useful in the RHIC regime.

Another way to assess the usefulness ofPCPCis to com-
pare its results with comparable theoretical models. Suc

FIG. 11. Distributions of final parton transverse momenta
Au-Au reactions at RHIC.
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comparison of our results with those ofVNI has been pre-
sented elsewhere@55#.

In the present version,PCPC contains no hadronization
scheme. As was pointed out before~cf. Sec. VI!, we feel that
in a heavy ion reaction a hadronization mechanism whic
added in the final stage~i.e., after the parton cascade h
come to its end! is somewhat artificial, and phenomenolog
cal at best. What we envisage is anintegrated hadron-parton
cascade, in which partons are formed in binary scatterings
the initial nucleons, and hadrons are formed~and ‘‘dis-
solved’’ again! continually while the reaction is going on. I
such a model, the initial state of the system would be c
structed quite naturally of nucleons only, thus removi
ra

ra

ra

s

cs

06490
is
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some of the artificialities described in Sec. III. This, how
ever, is work that remains to be done.

The PCPCcode@in C11] is obtainable from the OSCAR
archive~http://rhic/phys.columbia.edu/oscar! or from the au-
thors.
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@50# T. Biró, P. Lévai, and J. Zima´nyi, Phys. Lett. B347, 6 ~1995!.
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