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Local and nonlocal equivalent potentials forp-1°C scattering
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A Newton-Sabatier fixed energy inversion scheme has been used to determine complex, energy dependent
local potentials that are phase equivalent to inherently nonfp¢4C ones and for a variety of energies to pion
threshold. Those energy dependent local potentials then have been recast in the form of nonlocal Frahn-
Lemmer interactions.

PACS numbd(s): 25.40.Cm, 24.10-i

I. INTRODUCTION (nonloca) potentials used recent[y8] to find very good pre-
dictions of p-*°C elastic scattering, have been used as input
Over the years, local nuclear optical potentials have beeto finding solutions of fixed energy quantum inverse scatter-
used predominantly as the interaction potentials between colng theory. In particular we have found the equivalent local
liding nuclei. Frequently, those local interactions were specipotentials by using a modified version of the Newton-
fied phenomenologically as Woods-SaxahiS) optical po-  Sabatier inversion scheme that has been proposed by Lun
tentials; the parameter values of which were determined byt al. [5]. This method allows extraction of both central and
variation to find best fits to nuclear elastic scattering dataspin-orbit interactions from the input phase shift values. It is
The geometries of those WS forms often were taken comnot the only fixed energy method that can do so. Hooshyar
mensurate with known attributes of nuclear densities and/of6] has used the Sabatier interpolation formulas in a finite
to be consistent with the character of Hartree fields for thelifference inversion method, and Huber and L¢&bhave
nuclei. Most importantly in many cases, quality fits to scat-investigated an approach to this problem based upon Dar-
tering data were obtained using these local potential formsyoux transformations. Likewise an approximate sché¢éje
with parameter values that varied smoothly with energy anthas been used with some succg8} to analyze neutron-
mass. In reality however, as the optical potentials can bealpha particle scattering data in particular. However, the
specified in many nucleon scattering theory as a folding okcheme we adopt is most facile, reducing the process of in-
pairwise nucleon-nucleorNN interactions with nuclear version to finding solution of a system of linear-algebraic
structure, they must be nonlocal. That is assured by the Paudiquations.
principle which implies that the scattering theory involves Fixed energy inverse scattering schemes are not the only
nucleon exchange amplitudes. ways to effect the transition from nonlocal potentials to
For nucleon-nucleusNA) elastic scattering, it is now equivalent local ones andce versaVarious other approxi-
possible to define nonlocal optical potentials in coordinatemations and analytic expressions exist However, all such
space and to use them without recourse to localization teclother methods rely upon the range of the nonlocality being
niques [1]. Solutions of the attendant integro-differential small in comparison to the size of most nuclei. If such is also
forms of the Schrdinger equations with those nonloddA  the case with regard to the de Broglie wavelength of the
potentials have given good to excellent fits to cross sectioprojectile, a semiclassical WKB approximation may be valid.
and analyzing power data for a wide range of target massadowever, Peierls and Vinh-Mall0] note that while the lo-
and for energies 40 to 800 MeM —3]. Those nonlocaNA  calization approximations should be well met within the me-
potentials are formed by folding effective, medium depen-dium of a large nucleus, corrections could be important in
dent, two-nucleonN) interactions with the one body den- the nuclear surface region and for light mass nuclei. In any
sity matrices(OBDME) of the target nucleus. Very good circumstance that the nonlocality range exceeds the charac-
results for light mass nuclei in particular have been obtainederistic length of the system, they note that the nonlocal po-
when those OBDME were specified from shell modet  tential cannot be approximated by their algorithm of local-
similar) calculations involving very large and complete shellization. A desirable feature of using inverse scattering theory
spaces. to define equivalent local potentials is that none of these
Nevertheless, for a multitude of uses, such as with appliapproximations are invoked. But such must be borne in mind
cation of multistep reaction theories and scattering into thevhen the reverse process, of defining a utilitarian nonlocal
continuum, it is useful to define a local form of optical po- form from the energy variation of a set of local potentials, is
tential for thep A scattering system. Note also that equivalentconsidered. In doing that reverse process, we chose a map-
local potentials can be used to account for the coupled champing used by Apagyet al.[11] for its simplicity and as the
nels effects in scatteringt], the resulting form related to that data sets we study exist at disparate energies in the range 65
found by localization of exchange amplitudes. There ardgo 250 MeV.
many ways in which a local potential can be specified and In this paper the salient features of the modified Newton-
considered equivalent to a nonlocal one. Some have beeBabatier fixed energy inversion scheme are discussed first.
reviewed recently1]. Herein we consider a form that is to be Then in Sec. lll, we present and discuss the results of this
phase equivalent. The phase shifts provided bygtf@ding  nonlocal to phase equivalent local potential scheme. The

0556-2813/2000/68)/06461410)/$15.00 62 064614-1 ©2000 The American Physical Society



A. LOVELL AND K. AMOS

PHYSICAL REVIEW C 62 064614

method to recast nonlocal forms from energy variation ofcisely the case though fq-'°C scattering that we investi-
local potentials is then defined in Sec. IV, and results ofgate herein. The superscriptst now designate the rel-

mapping the local optical potentials back to nonlocal inter-
action forms of Frahn-Lemmer tydd 2] are given then in
Sec. V. Conclusions are drawn in Sec. VI.

Il. THE MODIFIED NEWTON-SABATIER FIXED
ENERGY INVERSION SCHEME

The modified Newton-Sabatier meth(d&] permits extrac-

evant two values of.

The Sabatier interpolation formulas relate the regular so-
lutions of Eq.(4), x, (p), to the sef{ ¢, (r)}, which are so-
lutions of the Schrdinger equations for a reference potential,
Ug(r), that are regular at the origin. The link is

Xf(p)ZFi(p)%(p)

tion from a set of scattering phase shifts, not only of a central

local interaction between two colliding quantum objects but

also a spin-orbit term. The approach relies on analogues of

the Regge-Newton equations for interactions involving the
spin-orbit component of the potential, namely the SabatielVhere

+E

Ww(p)[bﬂxﬂ(p) a, x.(p)], (5

transformation equatior4.3]. In this method, the nonlinear

Sabatier interpolation formulas essentially are converted into
a finite set of linear-algebraic equations which are easily

solved.

With most inverse scattering theories, the assumed equa-
tion of motion is the homogeneous Schimger equation, the
radial terms of which we consider in the form

d2
ar

2nE
ﬁZ

I(1+1) 2u
I’Z ﬁ V(I') R|S](r) 0. (1)

V(r) is the hadronic interaction potential which we assume

is a sum of central and spin-orbit terms, viz.

V(r)=[V¢(r)+Vgo(nl- o], (2
whereo = 2s. With charged particle scatteriny.(r) also
includes the Coulomb potential.

Since the energy is fixed it is convenient to recast @y.
into a dimensionless form, using the following notation:

V(r)
E

VSO
? .
)

The dimensionless, decoupled, reduced radial Sthger
equations subsequently are

2uE

2:
k _ﬁz_’ and

p:kr’ C(p): Uso:

2

-
> [Xx (p)

1

d2 1

c(p)+3SUso(p) F2SNUgo(p) —

0, (4)

where\ (=14 %) is the angular momentum variable.

As two unknowns,V (r) and Vg(r), are sought, only
two of the (&+1) possible equations in Ed4) are re-
quired. It is convenient to choose the cases for whjiet
+s associated with which are two sets of phase shifts de
noted bys," and 8 , respectively. This method can be used
with particles of any spin. FONA scattering, the nucleon
intrinsic spin of course ig, but we must presume that the
spin of the nucleus is not an influential factor in scattering,

i.e., we equate all such scattering to that from a spin zero

target so that the quantum numberjis|=+3. This is pre-

u(p) P (p)— i (p) ¥, (p)
)\Z_MZ

Wy u(p)= (6

iS the Wronskian. The set of scalar functioRs;, in Eq. (5)
are defined by

. P
F(p)=exp{ifotSUS(t)dt}

2
=—aoxo<p>¢o(p>+— E [a, x,(p)

+0,x5 (P)1¥,(p) )
and obey the following property:
F*(p)F (p)=1. 8

Solution of these equations relies on a complete knowl-
edge of all the phase shift$, , wherex=1+0.5 now in-
cludes not only the set of corresponding to the physical set of
integer | but also all half-integer values. As such, the
summations span the set of angular momenta
0:{3,13,22,3,...}. Naturally, analysis of scattering data
can provide only the physical set of phase shifts, i.e., those
corresponding to integel. Interpolation of the(physica)
data set is then required to define the required set for inver-
sion. Of course if instead one wishes to map against a de-
fined nonlocal potential, then the phase shifts at the interven-
ing values for\ can be evaluated.

Equations(5) and (7) contain a set of unknown coeffi-
cientsa, . Equation(7) also includes functiong,(p) and
Wo(p) which are solutions of the relevant Sctimger equa-
tions forl=—3. In addition there are the weighbg which
are defined 14] by

YN 3 i) y(A+ 5 +in)
[y(A+ 2)]
cosimn)
—sinh( 7 7)

integer \,

half-integer \. ©
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The set of equations, Egb) and(7), constitute a matrix Then, as Chadan and Sabafig4] have shown, the inversion
problem to specify the unknown coefficiens, , and the potentials are obtained from identities
functions,F=, when select large radial valugg are chosen
so that 2 dIn(F=(p))

U =+—————— with F* F~ =1,
. sdP) p dp (p)F (p)
v
E(“E

¢ (p)=sin p

+0r77|n(2m)}, 1 1 d
Ud(p)=Uq(p) +5Usdp) — . $[G+(p)F_(p)

Xx (pi)=cy sin

1
Pi—z(h_g)JFé;_ﬂ'n(ZPi)} 1
+G (p)F (p)]+ Z[pUso(p)]Z, (14
F=(p))=h" (consy, (10

.+ " here
whereo, are the Coulomb phase shifts arid are additional

unknown constants to be determined. Taking @omoreg 2 B
distinct radial values, @i=p1,p2, ...=po), and with Gt(p)=ﬁ— > umlagx(p)=bux, (p)1.(p).
Xx (p)=cy T, (p), Egs.(5) and(7) can be recast as Puet

lﬂx(Pi):Cfo(Pi)

(15

Inherent with inversion potentials from all Newton-
- . Sabatier methods is a pole at the origin. That pole arises
+ E WM(P. [T, (p)A,—b,T,(p)C,]. from thes-wave contributions in the summatiofs5] but it
pes usually influences only small radii properties of the results.
(11 In most cases studied, the effects of the pole are not evident
) ) ) _beyond 0.5 fm typically.
They form a set of linear equations in the unknown coeffi-  The Coulomb field poses a problem with inverse scatter-
cients which have been grouped as ing theory applications. The scattering phase shifts with a
s 4 T, T Coulomb potential incorporated increase wlittHowever, a
Av=aycrh™ and Cy=cyh™. (120 ransformation of phase shifts allows that problem to be al-
layed[16]. At and beyond a radius,, the nuclear component
in the total potential can be ignored. Sa gtthe Schrdinger
otential is given by .(ro) =27E/py. The method is to take
hat value for a new potential at all larger radii, and hence
that new potential is

The setS’ is limited to A 54 SO that the matrix is finite and

we can find a solution by using singular value decomposition

(SVD); a useful approach since the matrix may tend to b

ill-conditioned. By so doing we presume that from a charac-

teristic radius,pg=Kkry, the interaction is solely Coulombic

(or zero for incident neutroms and that for all A ~ {V(r), F<ro=polk
(

>AmadPo), Oy —oy—0.  With  the  coefficients =
V(ro), r=ry.

a,, and c, defined o~ are specified in terms of them
multiplication of Eq.(5) by F*(p) and upon rearrangement,
gives a set of (8X,axt 1) linear equations,

(16)

For this potential, the internal solutions are then to be
matched to Bessel functior{gero reference potential solu-

2u tions). Subtracting the long ranged constant potentidir ;)
[FH ()P () =F (px(p) = 2 —Wyu(p) from the overall one,
ne’
+ +ioy_atET - - V(r)—=V(rg), r<rg,
X[b,F* (p)xs () =3, F (P, (p)], V(r>—vc(ro>=[oc (T o g
] r>r0!
_F+ - _ 2 Z_MW
hip)=F"(p)x\ (p) < aul(P) gives a new potential which when used in the Sdimger
e equation gives rise to a new but essentially equivalent set of
X[b,F (p)x,.(p)—a,F (p)x,.(p)], phase shifts. By matching the logarithmic derivatives @t
with the external, zero potential solutions, one finds the re-
[1=(F*(p))*1¢o(p) lation
_ 2 —\E+ + d ~ ~
= 2 Woulp) bt AR (i) 4y IN[COSB,Hy(Bpo) +sin3,1,(Bpo)]
—(b,+a,)F (p)x,(p)], (13 d _
:a|n[0055ﬂr/f}\(ﬂpo)+sm o\O\(Bpo)]s
that can be solved for the (8%,,,+1) values of
F*(p)x, (p) and F*(p) at each value op<p, desired. (19
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whereH, andl, are the regular and irregular zero poten- 10 ‘ - r ‘ ‘ 10
tial solutions, respectively, andB=y1—V(pg)/E¢m.

(=V1-27lpg for a Coulomb potential The new phase
shifts are then given by
- H —H D
5 arcta ’( \(Bpo) ~H,(Bpo) x)' 19
I\(Bpo) =1\ (Bpo)Dy

V(™ (MeV)

where ik 12
cosé, ¥l (po) +SiN 8, L1 (po) 3 \
. A Po AoxlPo Al S
Dy(po) =i - e B}- (20 2 P
CoSd)\ ¥, (po) +iN 6,4y (po) )

8.

_I
!
I
Thus inversion is made of these new phase shifts with a zer® !
|

4l 1

reference potential to obtaiﬁ(p) from which and on ac- 0 2 4 6 o
counting for the energy shift, the actual potential fetr is r (fm)
e ) p FIG. 1. Inversion potentials fromp-1?C scattering analyses por-
V(r)=E[BU(r+1-p°], r= KB (21 traying (a) the central real(b) the central imaginary(c) the spin-

orbit real, and(d) the spin-orbit imaginary components. The sepa-
rate energy results are identified in the text.
Ill. RESULTS AND DISCUSSION
Using medium modified effectivélN interactions be- which dominates the inversion potential values at the origin.
oRut, as noted previousljL5], that pole influence is minimal

tween a projectile proton and each and every bound nucle
in 1%C, microscopic nonlocal complex and spin dependenpeyond about 9'5 fm_. Also at e_ach energy, _the effect .Of the
ole when the inversion potential was used in calculation of

optical potentials have been generated for a range of enep . : L )
gies, 40 to 800 MeV in fadt3]. The resulting cross sections scattering observaples was S”?a” if not negligible. Of pri-
and,analyzing powers so predicted are in good agreeme ary interest then is the behavior of the inversion potentials
with the observed data. Those calculations were made usirg°™ approfmmatﬁly 1 g_“ and our comments pertain to the
the programbwBAgs [17]. Therein, at eaclifixed) energy, olpelr:t_les 1rorrr]1 that Ira lus out, £ th | il
the appropriate effectivéIN interaction is folded with the n Fig. 1, the real components of the central potentials
OBDME of the target. FortC those OBDME were gener- found by inversion are shown in pan@). At 65 MeV this
ated from complete (8 2)% o space shell model wave func- component varies glmost linearly between 1 and 4 fm N
tions [2]. That program also solves the integro-differential radlus pefore tapering to zero, and then rather slowly. With
form of Schralinger equations, and thereby we obtained setlncreasing energy some structure develops in the central real

of phase shifts ofnonloca) optical potentials to use as input potenual for radii I<r<4 fm eventually , at 250 MeV, be-
to the inversion procedure. coming a shoulder shaped well. While values of the real

central potential in that region &r<4 fm) decrease in
strength to form the shoulder shape, the longer range prop-
erty increases in effect with energy.

The inversion potentials obtained using tigefolding There is a different trend in the imaginary components of
model phase shift sets specified for proton scattering fronthe central inversion potentials as is evident in segnilent
12C with energies 65, 100, 160, 200, and 250 MeV are disof Fig. 1. At all energies the long ranged character of the
played in Fig. 1 by the solid, dashed, long dashed, dotted;entral imaginary interactions 3.5 fm) is the same and
and dot-dashed curves, respectively. Results have been foutite component rapidly vanishes with large contrasting
for 135 MeV protons as well and they are intermediary tomarkedly with the properties of the associated central real
those shown. In segmenta) and(b) the real and imaginary terms. With increasing energy the central absorption also in-
parts of the central potentials are displayed while segmentsreases markedly in the body of the nucleus<fx3.5 fm
(c) and(d), respectively, contain the real and imaginary com-in this cas¢ with a noticeable structure in the 65 MeV po-
ponents of the spin-orbit potentials. The central potential valtential result. That absorptive character however is almost
ues progressively becoming less refractive and more absorfinear at 250 MeV.
tive with increasing energy. The spin-orbit potentials have The real and imaginary components of the spin-orbit po-
more variation in their structure with energy although theretentials found by inversion are shown in segmentsand(d)
is a general shape for the real and imaginary components.of Fig. 1. They are relatively weak, the imaginary parts es-

Clearly while these components of the inversion potenpecially so save for the result at 65 MeV. Overall these po-
tials vary smoothly with energy, the central terms especiallytentials are very similar; the real parts having a weak attrac-
their shape is not characteristic of traditional potentials, e.gtive well (about 2.5 MeV deep at~1.8 fm) with a shorter
a Woods-Saxon function and/or its derivative. That is so intanged repulsion. No serious import should be attached as
dependent of the inherent pole term in the inversion methoget to the specifics of the structures shown, other than that

A. The equivalent local potentials from inversion
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FIG. 2. The phase shifts in radiatreal parts on the left, imagi-
nary parts on the righbbtained using the inversion potentials given
in Fig. 1 compared with the values used as input to the inversion
procedure(filled dotg. The lines connecting the physical values
(integerl) identify the energies with the same scheme as used in
Fig. 1.

FIG. 3. The differential cross sectioft®p) and analyzing pow-

ers(bottom obtained from use of the inversion potentials of Fig. 1

compared with the values associated with the phase shifts used as

they are the result of using the particular input set of phaséput to the inversion procedure. The lines indicate the disparate

shifts. Possible adjustments to the basin effective inter- ~ energy values as specified in the text as do diverse symbols for the

actions in the original nonlocal potential generation could data.”

vary what we are to use as input phase shifts sufficiently to

alter the small magnitude details of the spin-orbit compo- A closer inspection of the results revealed thatgtveave

nents shown here. phase shifts are slightly different from the original input val-

ues in both the 65 MeV and the 100 MeV cases. This varia-

B. The phase shifts tion, however, is less than four percent. The fact that the

Two potentials mav be considered equivalent if the iVeph(:lse shifts correspondinglte O differ is not unusual since
P may . quiv €Y gV€e centrifugal barrier screens all other partial wave solutions
the same scattering phase shifts. In principle the inversio

potentials will be so. Nevertheless, the inversion potentialﬂ’Om any (smal) effect of the pole terms inherent in the

. . ) Wals,version ntials.
must be used to get “inversion” phase shifts for comparison ersion potentials

against the original values to check that they are indeed
equivalent. In Fig. 2 these sets are compared for all energies.
The real and imaginary parts of the phase shifts values are Although the excellent agreement between phase shift
shown in the left and right panels, respectively, while thosesets obtained from the locdinversion and from original
for j=140.5 and forj=1—0.5 are given in the top and nonlocal(full folding optical) potentials for thep-*°C scat-
bottom sections, respectively. The input phase shift valuetering at diverse energies is convincing, another way to dem-
are depicted by the filled circles while the results found fromonstrate this equivalence is to compare the associated observ-
the inversion potentials are indicated by the connecting linesables. By so doing any small variation in phase shifts that
The notation with energy is that used in Fig. 1. Clearly theremay exist can be emphasized. This is so as the cross section
is excellent agreement between the phase shifts found frompans several orders of magnitude and then small inaccura-
the local, inversion potentials and from tlgefolding non-  cies within the phase shifts could be very apparent at the
local ones. larger scattering angles particularly. The analyzing power
There is a relatively smooth and consistent change in thékewise should be sensitive to small differences in the phase
phase shift values as the energy increases. The real parts siift values since that observable is given by differences be-
the sets corresponding je=1+ 0.5 andj=1—0.5 both show tween scattering probabilities and is normalized by the dif-
a steady decrease in value with energy for small partiaferential cross-section values.
waves, while the associated imaginary parts show a steady The cross sections and analyzing powers at the set of
increase. The notable exception is the 65 MeV case foenergies chose(®5 to 250 MeV are given in Fig. 3. In the
which the imaginary parts differ from this pattern. In the casetop section of Fig. 3, the cross sections for each energy are
of the imaginary parts of the=1+ 0.5 phase shifts there is displayed. Once again the values of the the cross sections
an unusual structure in the 65 MeV data set for the valuesbtained from the full microscopitlN folding nonlocal po-
|<5. tentials are represented by the circles and squares and the

C. The cross sections and analyzing powers
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results obtained by using the inversion potentials are por-

trayed by the diverse lines. The coding of those lines for G(g)=
each energy is as used in Fig. 1. Circles and squares, filled (2
and open, have been used to display the “data” to differen- _ ) ) )
tiate the set for each energy. These cross section results de@2d retention of only the first two terms in the expansion,
onstrate that the inversion potentials are very good local

- f G(p)e 'P<dp (24)
77)3 ,

equivalents. The cross section reproductions span 8 orders of < ~ ~ d -

magnitude and only for magnitudes less than4mb/sr are G(p)=G(p*)=G(K*)+(p*~ Kz)d(Kz) G(KA)+- .

small divergences evident. Such divergence is most evident (25)
with the 200 MeV and 250 MeV cases since those cross

sections decrease most rapidly. In a simple manner then a local equivalent potential to the

An even finer test of the agreement based upon obsenexchange term in Eq23) can be obtained by a Taylor series
ables between the local and nonlocal potentials are the resxpansion,

sults for the analyzing powers. As shown in the bottom sec-

tion of Fig. 3, reproduction of the analyzing power for each

energy is very good out to a center of mass scattering angle f U(r,r’;E)x Mk, rdr’
of 60°. Even then only the cases of 65 and 100 MeV have
any noticeable divergence between the local and nonlocal
potentials results. It is surmised that the small variations in
the values of low- phase shifts are the cause as such varia-
tions little effect predictions for the cross sections. We con- _ j . (1" =)yt | ()

jecture that this behavior is a result of the choice we have [ uir.ri;ele dr'jx*(kir), (26
made for the phase shift value at tlnphysical angular

~f U(r,r;E)e T =0V k,r)dr’

momentum,| = —0.5; a quantity required in the inversion Where a local wave number,
process.
k(r)=~v2u[E=V(r;E)], (27

IV. FRAHN-LEMMER FORMS FROM LOCAL ENERGY )
DEPENDENT POTENTIALS has replaced the gradient operator.
Frahn and Lemmdr2] assumed that the nonlocal kernels

The problem is to use local forms of complex potentialof the full Schralinger equation, Eq23), have a separable
Vieo(r;E)=V(r;E) which when used in the Schiimger  form (this is also known in the literature as the Perey-Buck

equation, prescription,
52 U(r,r;E)=F(R)v(p), (28)
5 V2p(k,r)+[E=V(r;E)](k,1)=0, (22)
2 where
give phase sh!fts equal to those found by solution of the R==(r+r"); p=r—r. (29)
nonlocal equations, 2
52 Furthermore, they assume thB{R)=F(R) with F(R) a
Z_VZX(+)(k,r)+EX(+)(k,r) slowly varying function abouR=r, and that
o
2
—f U(r,r';E) ™k, r)dr'=0, (23 v(p)=v(p)=(mz)3’2exp( —p—> (30
il 3y X ]l ] 0_2 ]

whereo is the nonlocality range. A Taylor expansion about

where that nonlocal form is of the Frahn-Lemmer typ&]. L
r' gives to second order

If the range of nonlocality irJ(r,r";E) is small, then to
evaluate the integral term in the general form, E2B), of

. (+) "~ (+)
the Schrdinger equation, it is not necessary to know the FR) (k) ~F(rx ' (k.r)

solution functiony(")(k,r) at all positions. One only needs 1 (d d

to know how x(*)(k,r) varies in a volume element charac- + —pz[—F(r)—+F(r)V2
terized by a small distancg about the pointr’. In that 67 |dr dr

volume elementy(*)(k,r) oscillates with a wave number 2

K(r) so that integration oves’ will select only those mo- 4 id—[rF(r)]]X(”(k N (31
mentum components of any kernel that are in the neighbor- 4r gr2 '

hood of K(r). This justifies expansion of the Fourier trans-
form of a kernelG(s) about the local wave number, and this gives
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fU(r,r’;E)X(”(k,r’)dr’

2

1d
~{voF(lf)ﬂL Va2 ﬁ[rF(r)]

1 d 1 (+)
+ 302 F(D) 300 00,

(32
wherev,, are the moments of the nonlocality,
4 *
- (2+n)
Un (Zn_l) 0 U(P)P dp (33)
Under this approximation, the nonlocal Sctiimger equation
reduces to
ﬁ2+12F V2+1 dF -E+F
2u " 2” (r) o —F(r ) (r)
1 d?
+o?— —[rF(N] x k=0, (34
r dr?

which maps to an equivalent local and energy dependent

form,

ﬁ2
[—EV%V(r,E)—E o(k,r)=0, (35

upon using a point transformation defined by

e(k,)=T()x (k). (36)
Multiplication of Eq. (34) by T(r) gives
h? Ju(r)] d [Jo(r)+E])__ B
T(r)(_ﬂvz_[xm}ﬁ{ Xiry || T (Detkn=0,
with the functions,
2 d2

Jo(r)y=F(r)+ 57[#(01,

o? d
1(r)=Td—F(r)

po?
X(1)=1-"ZF(). (39)

The first derivative term is eliminated by choosifdgr)
= X(r) as then Eq(37) becomes

n?_, Y(r)-E

_ﬂ +W gD(k,r)ZO, (39)

so identifying

PHYSICAL REVIEW C 62 064614

Wr,E)ZH% (40)
when
Y(r)ZJO(r)_EJl(r)_——Jl(r) > ! 1(r)
r 2 dr 2 X(1)
a? d o2 d?
=R =g gt 16r gr2 SF(r)
3uc? 1 q ,
_32ﬁ2 [1— wo?(2h2)]F(r) aF(r) . (4D

Following Apagyiet al.[11], by considering local equiva-
lent potentials at two energi€s andE,, it follows by using
Eq. (40) that

E,V(r,Eq) —E,V(r,Ey)
[V(r,E))—V(r,E)) +E,—Eq]’

Y(r)= (42

and that

F —ﬁ_zi V(r,E)—V(r,Ep)
() e G VNE) V(I E) T E, Bl

(43

Then from Eqgs(38), one can findly(r), J;(r), andX(r),

and so have a complete specification of the nonlocal interac-
tion properties. To the extent that the energy dependent
Frahn-Lemmer form describgs!?C scattering the functions,
U(r), F(r), andY(r) should not be energy dependent. As
will be seen, that is not completely the case with the system
we have studied.

V. THE FRAHN-LEMMER POTENTIALS FOR p-*2C

The central parts of the inversion potentials that were
specified starting with phase shift sets from tpdolding
optical potential calculations gf-'C scattering at 100, 135,
160, and 200 MeV have been used in this study. With the
nonlocality rangeg, taken first as 0.7 and subsequently as
1.0 fm, the pairs of inversion potentials with energies 100
and 135 MeV, with 135 and 160 MeV, and with 160 and 200
MeV, have been used to find the functiods¢r), F(r), and
Y (r) that characterize the nonlocal Frahn-Lemmer form of
the p-2C optical potential. Results found using those pairs
are identified by the notation 100—-135, 135-160, and 160—
200, and are portrayed in the next three figures by the solid,
long dash, and short dash curves, respectively. The real and
imaginary parts of the various functions are given in the top
and bottom sections of these figures with the results found
usingo=0.7 and 1.0 fm presented in the left and right side
panels, respectively.

The results for the local attribut&J(r) of the Frahn-
Lemmer representations for the nonlocal optical potential are
given in Fig. 4. In general those components are similar for
all three energy pairs, and more so for the 135-160 and
160-200 cases. The variations in these results are but a few
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U,..(r) MeV)
Y,..(r) (MeV)

(1) (MeV)

g

i
T
|
|
|

Upg®) (MeV)
imag’

Y,

0 2 4 6 0 2 4 6
r (fm)

FIG. 4. The local componentsl(r) of Eq. (23), obtained with
nonlocality rangeso, of 0.7 and 1.0 fm(left and right panels,
respectively and as deduced from the 100—135 M@@lid curves, . ) )
the 135-160 MeV(long-dashed curvésand the 160-200 MeV with the Frahn-LemrT_]er requirement of an energy indepen-
(short dashed curvepairs of (local) inversion potentials. dent nonlocal potential. The local element¢r) for these

cases are shown in Fig. 6. They strongly reflect the proper-

o . . _ ties of the relevant(r) albeit that the structures are en-
MeV in size. However there is a noticeable change in th%anced

degree of structure with marked oscillations in the results "y o haxt three figures the 100-135 and the 160—200

found with the smallef0.7) nonlocality range. Still the re- gversion potential pairs are shown again but now to com-

FIG. 6. As for Fig. 4, but for the nonlocal componenyqr).

sults with both nonlocality range values do exhibit a residual) .o 1ore directly the effects of different choices of the non-
energy dependence, and such is presumed not to be the ¢ 38ality rangeo. Results found withr=0.7, 1.0, and 1.4 fm
with the Frahn-Lemmer prescription. The modulating func—nOW are displayed by the solid Iong-dash;ed and short-
tions,F(r), of the actual nonlocal term in the Frahn-Lemmerdashed curves, respectively. Agzllin the real aﬁd imaginary
form are displayed in Fig. 5. The real parts of this function arts of the ch:’alracteristic functions(r), F(r), and Y (r)

are quite similar in the 135-160 and 160—200 cases althou e given in the top and bottom sectors: of thé diagrams. The

the overall strength of the real part Bf(r) decreases with U(r) components are displayed in Fig. 7. The real parts for

tThhe e;g(r)gylg; It do?ts W'ttr;] mcre?se T t;;:e nonlocalllty rang&oth energy pairs are similar with a decrease in the structure
e - resu Efor e real part (r)] are arger  of the results being evident as the nonlocality range in-
than the others and varies from those in structure. The imagi-

nary parts of=(r) vary noticeably with the marked structure
of the 100—135 results diminishing with energy. But the size
change is not linear. Such energy dependence is also at od¢~

>
[5]
2
>
(5]
2
a8
2
2
1
< )
Q
§ B 2 4 6 0 2 4 6
5%., r (fm)
. FIG. 7. The local termdJ(r) found using the 100-135 MeV
-1, 2 4 6 0 2 N 610 (left) and the 160—200 MeVkight) pairs of inversion potentials but
r (fm) for Frahn-Lemmer nonlocality ranges of 0.7, 1.0, and 1.4 fm. The
results are portrayed by the solid, long-dashed, and short-dashed
FIG. 5. As for Fig. 4, but for the nonlocal componerfgy). curves, respectively.
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20 ¢

=1

F, () MeV)
Y,..(r) (MeV)

2

- 2
% 10 9
2 ¢
B ol

hél 0 _10 1 L L L _10

g 0 2 4 6 0 2 4 6
= r (fm)

-10 -10
0 2 4 :(ﬁﬁ) 2 4 6 FIG. 9. As for Fig. 7, but for the nonlocal term(r).

tering for a range of proton energies. Th@aenlocal poten-
tial) phase shift sets give very good fits to observed cross

section and analyzing power ddtd]. So also then do the
creases. Indeed the results witt+1.0 and 1.4 fm are very local (inversion potentials as we have shown them to be

similar. The imaginary parts of/(r) have the form of an both phase shift and observable equival@atthe nonlocal
attractive well. Again the structure observed with the shortespotential expectationsto a high degree. As a nonlocal to
range washes out whan is increased. Now also the 160— local potential conversion scheme, the inverse scattering
200 MeV result changes strength noticeably with increase ofheory method has proved to be very effective. Irrespective
the nonlocality range. The results f6r(r) and Y(r) are of the pole term mherer)t in the inverse scattering theory
given in Figs. 8 and 9, respectively. Th&(r) variations method, the local inversion potentials do not resemble the
reflect those oF(r) as before. In these cases changing thesimPple functional forms, €.g., Woods-Saxon potentials, that
nonlocality range has a dramatic effect, largely upon thed™® commonly used in phenomenologi¢aimerical inver-
magnitudes. In part though, that might be considered just aﬁ'o\?\)/ a?r?lyses ofsuchdscattermg data. ing t i and h
off-set to the normalization which depends anBut there th ?] ren gonshderﬁ a rfet\;]ersiﬁvmfl?pr;ng tor?t(iael ! rﬁln ht ?W
are also changes in the structures. The disparity between t e energy dependence of the Inversion potentia’s mignt re

. d fect a nonlocality of simpler functional kind, and of the
100135 and 160-200 results emphasizes again that theregs,nn | emmer form in particular. The results are indicative
a residual energy dependence one must consider if the set gf 4 characteristic forms for the diverse components of that

fixed energy inversion ppten'ual; are recast as a I:r""h’%'imple nonlocal form of the interaction, but the detailed
Lemmer type of nonlocal interaction. properties can vary significantly with the choice of the non-
locality range, and there is an energy dependence residual in
VI. CONCLUSIONS the Frahn-Lemmer functions. Thus we contend t.hat the en-
ergy dependence of local potentials fof°C scatteringand
The fixed energy inverse scattering method of latral. by implication for other targejsvhether those potentials are
[5] has been used to specify local potentials from sets ofound by inversion or by phenomenology, is not solely a
phase shifts given by solutions of the Safirmer equations reflection of the true nonlocality in the interaction between
with nonlocal optical potentials for prototfC elastic scat- the nuclei. The nonlocality itself is also energy dependent.

FIG. 8. As for Fig. 7, but for the nonlocal terms(r).
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