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Local and nonlocal equivalent potentials forp-12C scattering

A. Lovell and K. Amos
School of Physics, University of Melbourne, Victoria 3052, Australia

~Received 14 July 2000; published 15 November 2000!

A Newton-Sabatier fixed energy inversion scheme has been used to determine complex, energy dependent
local potentials that are phase equivalent to inherently nonlocalp-12C ones and for a variety of energies to pion
threshold. Those energy dependent local potentials then have been recast in the form of nonlocal Frahn-
Lemmer interactions.

PACS number~s!: 25.40.Cm, 24.10.2i
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I. INTRODUCTION

Over the years, local nuclear optical potentials have b
used predominantly as the interaction potentials between
liding nuclei. Frequently, those local interactions were spe
fied phenomenologically as Woods-Saxon~WS! optical po-
tentials; the parameter values of which were determined
variation to find best fits to nuclear elastic scattering da
The geometries of those WS forms often were taken co
mensurate with known attributes of nuclear densities an
to be consistent with the character of Hartree fields for
nuclei. Most importantly in many cases, quality fits to sc
tering data were obtained using these local potential for
with parameter values that varied smoothly with energy a
mass. In reality however, as the optical potentials can
specified in many nucleon scattering theory as a folding
pairwise nucleon-nucleonNN interactions with nuclear
structure, they must be nonlocal. That is assured by the P
principle which implies that the scattering theory involv
nucleon exchange amplitudes.

For nucleon-nucleus (NA) elastic scattering, it is now
possible to define nonlocal optical potentials in coordin
space and to use them without recourse to localization te
niques @1#. Solutions of the attendant integro-differenti
forms of the Schro¨dinger equations with those nonlocalNA
potentials have given good to excellent fits to cross sec
and analyzing power data for a wide range of target mas
and for energies 40 to 800 MeV@1–3#. Those nonlocalNA
potentials are formed by folding effective, medium depe
dent, two-nucleon (NN) interactions with the one body den
sity matrices~OBDME! of the target nucleus. Very goo
results for light mass nuclei in particular have been obtai
when those OBDME were specified from shell model~or
similar! calculations involving very large and complete sh
spaces.

Nevertheless, for a multitude of uses, such as with ap
cation of multistep reaction theories and scattering into
continuum, it is useful to define a local form of optical p
tential for thepA scattering system. Note also that equivale
local potentials can be used to account for the coupled ch
nels effects in scattering@4#, the resulting form related to tha
found by localization of exchange amplitudes. There
many ways in which a local potential can be specified a
considered equivalent to a nonlocal one. Some have b
reviewed recently@1#. Herein we consider a form that is to b
phase equivalent. The phase shifts provided by theg-folding
0556-2813/2000/62~6!/064614~10!/$15.00 62 0646
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~nonlocal! potentials used recently@3# to find very good pre-
dictions of p-12C elastic scattering, have been used as in
to finding solutions of fixed energy quantum inverse scat
ing theory. In particular we have found the equivalent loc
potentials by using a modified version of the Newto
Sabatier inversion scheme that has been proposed by
et al. @5#. This method allows extraction of both central an
spin-orbit interactions from the input phase shift values. I
not the only fixed energy method that can do so. Hoosh
@6# has used the Sabatier interpolation formulas in a fin
difference inversion method, and Huber and Leeb@7# have
investigated an approach to this problem based upon D
boux transformations. Likewise an approximate scheme@8#
has been used with some success@9# to analyze neutron-
alpha particle scattering data in particular. However,
scheme we adopt is most facile, reducing the process o
version to finding solution of a system of linear-algebra
equations.

Fixed energy inverse scattering schemes are not the
ways to effect the transition from nonlocal potentials
equivalent local ones andvice versa. Various other approxi-
mations and analytic expressions exist@1#. However, all such
other methods rely upon the range of the nonlocality be
small in comparison to the size of most nuclei. If such is a
the case with regard to the de Broglie wavelength of
projectile, a semiclassical WKB approximation may be val
However, Peierls and Vinh-Mau@10# note that while the lo-
calization approximations should be well met within the m
dium of a large nucleus, corrections could be important
the nuclear surface region and for light mass nuclei. In a
circumstance that the nonlocality range exceeds the cha
teristic length of the system, they note that the nonlocal
tential cannot be approximated by their algorithm of loc
ization. A desirable feature of using inverse scattering the
to define equivalent local potentials is that none of the
approximations are invoked. But such must be borne in m
when the reverse process, of defining a utilitarian nonlo
form from the energy variation of a set of local potentials,
considered. In doing that reverse process, we chose a m
ping used by Apagyiet al. @11# for its simplicity and as the
data sets we study exist at disparate energies in the rang
to 250 MeV.

In this paper the salient features of the modified Newto
Sabatier fixed energy inversion scheme are discussed
Then in Sec. III, we present and discuss the results of
nonlocal to phase equivalent local potential scheme. T
©2000 The American Physical Society14-1
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method to recast nonlocal forms from energy variation
local potentials is then defined in Sec. IV, and results
mapping the local optical potentials back to nonlocal int
action forms of Frahn-Lemmer type@12# are given then in
Sec. V. Conclusions are drawn in Sec. VI.

II. THE MODIFIED NEWTON-SABATIER FIXED
ENERGY INVERSION SCHEME

The modified Newton-Sabatier method@5# permits extrac-
tion from a set of scattering phase shifts, not only of a cen
local interaction between two colliding quantum objects b
also a spin-orbit term. The approach relies on analogue
the Regge-Newton equations for interactions involving
spin-orbit component of the potential, namely the Saba
transformation equations@13#. In this method, the nonlinea
Sabatier interpolation formulas essentially are converted
a finite set of linear-algebraic equations which are ea
solved.

With most inverse scattering theories, the assumed e
tion of motion is the homogeneous Schro¨dinger equation, the
radial terms of which we consider in the form

F d2

dr2
1

2mE

\2
2

l ~ l 11!

r 2
2

2m

\2
V~r !GRl ,s, j~r !50. ~1!

V(r ) is the hadronic interaction potential which we assu
is a sum of central and spin-orbit terms, viz.

V~r !5@Vc~r !1Vso~r !l•s#, ~2!

wheres 5 2s. With charged particle scattering,Vc(r ) also
includes the Coulomb potential.

Since the energy is fixed it is convenient to recast Eq.~1!
into a dimensionless form, using the following notation:

r5kr, k25
2mE

\2 , Uc~r!5
Vc~r !

E
, and Uso5

Vso

E
.

~3!

The dimensionless, decoupled, reduced radial Schro¨dinger
equations subsequently are

F d2

dr2
112Uc~r!1sUso~r!72slUso~r!2

l22 1
4

r2 Gxl
6~r!

50, ~4!

wherel(5 l 1 1
2 ) is the angular momentum variable.

As two unknowns,Vc(r ) and Vso(r ), are sought, only
two of the (2s11) possible equations in Eq.~4! are re-
quired. It is convenient to choose the cases for whichj 5 l
6s associated with which are two sets of phase shifts
noted byd l

1 andd l
2 , respectively. This method can be us

with particles of any spin. ForNA scattering, the nucleon
intrinsic spin of course is12 , but we must presume that th
spin of the nucleus is not an influential factor in scatterin
i.e., we equate all such scattering to that from a spin z
target so that the quantum number isj 5 l 6 1

2 . This is pre-
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cisely the case though forp-12C scattering that we investi
gate herein. The superscripts ‘‘6 ’’ now designate the rel-
evant two values ofj.

The Sabatier interpolation formulas relate the regular
lutions of Eq.~4!, xl

6(r), to the set$cl(r )%, which are so-
lutions of the Schro¨dinger equations for a reference potenti
U0(r ), that are regular at the origin. The link is

xl
6~r!5F6~r!cl~r!

1 (
mPV

2m

p
Wlm~r!@bmxm

6~r!2am
6xm

7~r!#, ~5!

where

Wlm~r!5
cm~r!cl8~r!2cl~r!cm8 ~r!

l22m2
~6!

is the Wronskian. The set of scalar functions,F6, in Eq. ~5!
are defined by

F6~r!5expF6E
0

r

tSUs~ t !dtG
5

2

pr
a0x0~r!c0~r!1

2

pr (
mPS

@am
6xm

7~r!

1bmxm
6~r!#cm~r! ~7!

and obey the following property:

F1~r!F2~r!51. ~8!

Solution of these equations relies on a complete kno
edge of all the phase shifts,dl

6 , wherel[ l 10.5 now in-
cludes not only the set of corresponding to the physical se
integer l but also all half-integer values. As such, th
summations span the set of angular mome

V:$ 1
2 ,1,32 ,2,52 ,3, . . .%. Naturally, analysis of scattering dat

can provide only the physical set of phase shifts, i.e., th
corresponding to integerl. Interpolation of the~physical!
data set is then required to define the required set for in
sion. Of course if instead one wishes to map against a
fined nonlocal potential, then the phase shifts at the interv
ing values forl can be evaluated.

Equations~5! and ~7! contain a set of unknown coeffi
cientsal

6 . Equation~7! also includes functionsx0(r) and
c0(r) which are solutions of the relevant Schro¨dinger equa-
tions for l 52 1

2 . In addition there are the weightsbl which
are defined@14# by

bl5
g~l1 1

2 2 ih!g~l1 1
2 1 ih!

@g~l1 1
2 !#2

3H cosh~ph! integer l,

2sinh~ph! half-integer l.
~9!
4-2
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The set of equations, Eqs.~5! and~7!, constitute a matrix
problem to specify the unknown coefficients,al

6 , and the
functions,F6, when select large radial valuesr i are chosen
so that

cl
6~r i !5sinFr i2

1

2 S l2
p

2 D1sl2h ln~2r i !G ,
xl

6~r i !5cl
6 sinFr i2

1

2 S l2
p

2 D1dl
62h ln~2r i !G ,

F6~r i !5h6 ~const!, ~10!

wheresl are the Coulomb phase shifts andcl
6 are additional

unknown constants to be determined. Taking two~or more!
distinct radial values, (r i5r1 ,r2 , . . .>r0), and with
xl

6(r)[cl
6Tl

6(r), Eqs.~5! and ~7! can be recast as

cl~r i !5Cl
6Tl

6~r i !

1 (
mPS8

2m

p
Wlm~r i !@Tm

7~r i !Am
62bmTm

6~r i !Cm
6#.

~11!

They form a set of linear equations in the unknown coe
cients which have been grouped as

Al
65al

6cl
7h7 and Cl

65cl
6h7. ~12!

The setS8 is limited to lmax so that the matrix is finite and
we can find a solution by using singular value decomposit
~SVD!; a useful approach since the matrix may tend to
ill-conditioned. By so doing we presume that from a char
teristic radius,r05kr0, the interaction is solely Coulombi
~or zero for incident neutrons! and that for all l
.lmax(r0), dl

62sl→0. With the coefficients
al

6 , and cl
6 defined (h6 are specified in terms of them!,

multiplication of Eq.~5! by F1(r) and upon rearrangemen
gives a set of (8*lmax11) linear equations,

@F1~r!#2cl~r!5F1~r!xl
1~r!2 (

mPV8

2m

p
Wlm~r!

3@bmF1~r!xm
1~r!2am

1F1~r!xm
2~r!#,

cl~r!5F1~r!xl
2~r!2 (

mPV8

2m

p
Wlm~r!

3@bmF1~r!xm
2~r!2am

2F1~r!xm
1~r!#,

@12„F1~r!…2#c0~r!

5 (
mPV8

2m

p
W0m~r!@~bm1am

2!F1~r!xm
1~r!

2~bm1am
1!F1~r!xm

2~r!#, ~13!

that can be solved for the (8*lmax11) values of
F1(r)xl

6(r) and F1(r) at each value ofr<r0 desired.
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Then, as Chadan and Sabatier@14# have shown, the inversion
potentials are obtained from identities

Uso~r!56
2

r

d ln„F6~r!…

dr
with F1~r!F2~r!51,

Uc~r!5U0~r!1
1

2
Uso~r!2

1

r

d

dr
@G1~r!F2~r!

1G2~r!F1~r!#1
1

4
@rUso~r!#2, ~14!

where

G6~r!5
2

pr (
mPV

m@am
6xm

7~r!2bmxm
6~r!#cm~r!.

~15!

Inherent with inversion potentials from all Newton
Sabatier methods is a pole at the origin. That pole ari
from thes-wave contributions in the summations@15# but it
usually influences only small radii properties of the resu
In most cases studied, the effects of the pole are not evid
beyond 0.5 fm typically.

The Coulomb field poses a problem with inverse scat
ing theory applications. The scattering phase shifts with
Coulomb potential incorporated increase withl. However, a
transformation of phase shifts allows that problem to be
layed@16#. At and beyond a radiusr 0, the nuclear componen
in the total potential can be ignored. So atr 0 the Schro¨dinger
potential is given byVc(r 0)52hE/r0. The method is to take
that value for a new potential at all larger radii, and hen
that new potential is

Ṽ~r !5H V~r !, r ,r 05r0 /k

Vc~r 0!, r>r 0 .
~16!

For this potential, the internal solutions are then to
matched to Bessel functions~zero reference potential solu
tions!. Subtracting the long ranged constant potentialVc(r 0)
from the overall one,

Ṽ~r !2Vc~r 0!5H Vc~r !2Vc~r 0!, r ,r 0 ,

0, r .r 0 ,
~17!

gives a new potential which when used in the Schro¨dinger
equation gives rise to a new but essentially equivalent se
phase shifts. By matching the logarithmic derivatives atr 0
with the external, zero potential solutions, one finds the
lation

d

dr
ln@cosd̃lHl~br0!1sind̃lI l~br0!#

5
d

dr
ln@cosdlcl~br0!1sindlzl~br0!#,

~18!
4-3
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A. LOVELL AND K. AMOS PHYSICAL REVIEW C 62 064614
whereHl and I l are the regular and irregular zero pote
tial solutions, respectively, andb5A12V(r0)/Ec.m.

(5A122h/r0 for a Coulomb potential!. The new phase
shifts are then given by

d̃l52arctanS Hl8~br0!2Hl~br0!Dl

I l8~br0!2I l~br0!Dl
D , ~19!

where

Dl~r0!5 i Fcosdlcl8~r0!1sindlzl8~r0!

cosdlcl~r0!1sindlzl~r0!
bG . ~20!

Thus inversion is made of these new phase shifts with a z
reference potential to obtainŨ(r) from which and on ac-
counting for the energy shift, the actual potential forr ,r 0 is

V~r !5E@b2Ũ~r !112b2#, r 5
r

kb
. ~21!

III. RESULTS AND DISCUSSION

Using medium modified effectiveNN interactions be-
tween a projectile proton and each and every bound nuc
in 12C, microscopic nonlocal complex and spin depend
optical potentials have been generated for a range of e
gies, 40 to 800 MeV in fact@3#. The resulting cross section
and analyzing powers so predicted are in good agreem
with the observed data. Those calculations were made u
the programDWBA98 @17#. Therein, at each~fixed! energy,
the appropriate effectiveNN interaction is folded with the
OBDME of the target. For12C those OBDME were gener
ated from complete (012)\v space shell model wave func
tions @2#. That program also solves the integro-different
form of Schrödinger equations, and thereby we obtained s
of phase shifts of~nonlocal! optical potentials to use as inpu
to the inversion procedure.

A. The equivalent local potentials from inversion

The inversion potentials obtained using theg-folding
model phase shift sets specified for proton scattering fr
12C with energies 65, 100, 160, 200, and 250 MeV are d
played in Fig. 1 by the solid, dashed, long dashed, dot
and dot-dashed curves, respectively. Results have been f
for 135 MeV protons as well and they are intermediary
those shown. In segments~a! and~b! the real and imaginary
parts of the central potentials are displayed while segm
~c! and~d!, respectively, contain the real and imaginary co
ponents of the spin-orbit potentials. The central potential v
ues progressively becoming less refractive and more abs
tive with increasing energy. The spin-orbit potentials ha
more variation in their structure with energy although the
is a general shape for the real and imaginary componen

Clearly while these components of the inversion pot
tials vary smoothly with energy, the central terms especia
their shape is not characteristic of traditional potentials, e
a Woods-Saxon function and/or its derivative. That is so
dependent of the inherent pole term in the inversion met
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which dominates the inversion potential values at the orig
But, as noted previously@15#, that pole influence is minima
beyond about 0.5 fm. Also at each energy, the effect of
pole when the inversion potential was used in calculation
scattering observables was small if not negligible. Of p
mary interest then is the behavior of the inversion potent
from approximately 1 fm and our comments pertain to t
properties from that radius out.

In Fig. 1, the real components of the central potenti
found by inversion are shown in panel~a!. At 65 MeV this
component varies almost linearly between 1 and 4 fm
radius before tapering to zero, and then rather slowly. W
increasing energy some structure develops in the central
potential for radii 1,r ,4 fm eventually, at 250 MeV, be
coming a shoulder shaped well. While values of the r
central potential in that region (1,r ,4 fm! decrease in
strength to form the shoulder shape, the longer range p
erty increases in effect with energy.

There is a different trend in the imaginary components
the central inversion potentials as is evident in segment~b!
of Fig. 1. At all energies the long ranged character of
central imaginary interactions (r .3.5 fm! is the same and
the component rapidly vanishes with larger, contrasting
markedly with the properties of the associated central r
terms. With increasing energy the central absorption also
creases markedly in the body of the nucleus (1,r ,3.5 fm
in this case! with a noticeable structure in the 65 MeV po
tential result. That absorptive character however is alm
linear at 250 MeV.

The real and imaginary components of the spin-orbit p
tentials found by inversion are shown in segments~c! and~d!
of Fig. 1. They are relatively weak, the imaginary parts e
pecially so save for the result at 65 MeV. Overall these p
tentials are very similar; the real parts having a weak attr
tive well ~about 2.5 MeV deep atr;1.8 fm! with a shorter
ranged repulsion. No serious import should be attached
yet to the specifics of the structures shown, other than

FIG. 1. Inversion potentials fromp-12C scattering analyses por
traying ~a! the central real,~b! the central imaginary,~c! the spin-
orbit real, and~d! the spin-orbit imaginary components. The sep
rate energy results are identified in the text.
4-4
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LOCAL AND NONLOCAL EQUIVALENT POTENTIALS . . . PHYSICAL REVIEW C 62 064614
they are the result of using the particular input set of ph
shifts. Possible adjustments to the basicNN effective inter-
actions in the original nonlocal potential generation co
vary what we are to use as input phase shifts sufficiently
alter the small magnitude details of the spin-orbit comp
nents shown here.

B. The phase shifts

Two potentials may be considered equivalent if they g
the same scattering phase shifts. In principle the invers
potentials will be so. Nevertheless, the inversion potent
must be used to get ‘‘inversion’’ phase shifts for comparis
against the original values to check that they are ind
equivalent. In Fig. 2 these sets are compared for all energ
The real and imaginary parts of the phase shifts values
shown in the left and right panels, respectively, while tho
for j 5 l 10.5 and for j 5 l 20.5 are given in the top and
bottom sections, respectively. The input phase shift val
are depicted by the filled circles while the results found fro
the inversion potentials are indicated by the connecting lin
The notation with energy is that used in Fig. 1. Clearly th
is excellent agreement between the phase shifts found f
the local, inversion potentials and from theg-folding non-
local ones.

There is a relatively smooth and consistent change in
phase shift values as the energy increases. The real pa
the sets corresponding toj 5 l 10.5 andj 5 l 20.5 both show
a steady decrease in value with energy for small par
waves, while the associated imaginary parts show a ste
increase. The notable exception is the 65 MeV case
which the imaginary parts differ from this pattern. In the ca
of the imaginary parts of thej 5 l 10.5 phase shifts there i
an unusual structure in the 65 MeV data set for the val
l ,5.

FIG. 2. The phase shifts in radians~real parts on the left, imagi-
nary parts on the right! obtained using the inversion potentials give
in Fig. 1 compared with the values used as input to the invers
procedure~filled dots!. The lines connecting the physical value
~integer l ) identify the energies with the same scheme as use
Fig. 1.
06461
e

o
-

e
n

ls
n
d
s.
re
e

s

s.
e
m

e
of

l
dy
r

e

s

A closer inspection of the results revealed that thes-wave
phase shifts are slightly different from the original input va
ues in both the 65 MeV and the 100 MeV cases. This va
tion, however, is less than four percent. The fact that
phase shifts corresponding tol 50 differ is not unusual since
the centrifugal barrier screens all other partial wave soluti
from any ~small! effect of the pole terms inherent in th
inversion potentials.

C. The cross sections and analyzing powers

Although the excellent agreement between phase s
sets obtained from the local~inversion! and from original
nonlocal~full folding optical! potentials for thep-12C scat-
tering at diverse energies is convincing, another way to de
onstrate this equivalence is to compare the associated ob
ables. By so doing any small variation in phase shifts t
may exist can be emphasized. This is so as the cross se
spans several orders of magnitude and then small inacc
cies within the phase shifts could be very apparent at
larger scattering angles particularly. The analyzing pow
likewise should be sensitive to small differences in the ph
shift values since that observable is given by differences
tween scattering probabilities and is normalized by the d
ferential cross-section values.

The cross sections and analyzing powers at the se
energies chosen~65 to 250 MeV! are given in Fig. 3. In the
top section of Fig. 3, the cross sections for each energy
displayed. Once again the values of the the cross sect
obtained from the full microscopicNN folding nonlocal po-
tentials are represented by the circles and squares and

n

in FIG. 3. The differential cross sections~top! and analyzing pow-
ers~bottom! obtained from use of the inversion potentials of Fig.
compared with the values associated with the phase shifts use
input to the inversion procedure. The lines indicate the dispa
energy values as specified in the text as do diverse symbols fo
‘‘data.’’
4-5
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A. LOVELL AND K. AMOS PHYSICAL REVIEW C 62 064614
results obtained by using the inversion potentials are p
trayed by the diverse lines. The coding of those lines
each energy is as used in Fig. 1. Circles and squares, fi
and open, have been used to display the ‘‘data’’ to differ
tiate the set for each energy. These cross section results
onstrate that the inversion potentials are very good lo
equivalents. The cross section reproductions span 8 orde
magnitude and only for magnitudes less than 1022 mb/sr are
small divergences evident. Such divergence is most evid
with the 200 MeV and 250 MeV cases since those cr
sections decrease most rapidly.

An even finer test of the agreement based upon obs
ables between the local and nonlocal potentials are the
sults for the analyzing powers. As shown in the bottom s
tion of Fig. 3, reproduction of the analyzing power for ea
energy is very good out to a center of mass scattering a
of 60°. Even then only the cases of 65 and 100 MeV ha
any noticeable divergence between the local and nonl
potentials results. It is surmised that the small variations
the values of low-l phase shifts are the cause as such va
tions little effect predictions for the cross sections. We co
jecture that this behavior is a result of the choice we h
made for the phase shift value at the~unphysical! angular
momentum,l 520.5; a quantity required in the inversio
process.

IV. FRAHN-LEMMER FORMS FROM LOCAL ENERGY
DEPENDENT POTENTIALS

The problem is to use local forms of complex potent
VLEQ(r ;E)5V(r ;E) which when used in the Schro¨dinger
equation,

\2

2m
“

2f~k,r !1@E2V~r ;E!#f~k,r !50, ~22!

give phase shifts equal to those found by solution of
nonlocal equations,

\2

2m
“

2x (1)~k,r !1Ex (1)~k,r !

2E U~r ,r 8;E!x (1)~k,r 8!dr 850, ~23!

where that nonlocal form is of the Frahn-Lemmer type@12#.
If the range of nonlocality inU(r ,r 8;E) is small, then to

evaluate the integral term in the general form, Eq.~23!, of
the Schro¨dinger equation, it is not necessary to know t
solution functionx (1)(k,r ) at all positions. One only need
to know howx (1)(k,r ) varies in a volume element chara
terized by a small distances8 about the pointr 8. In that
volume element,x (1)(k,r ) oscillates with a wave numbe
K (r ) so that integration overs8 will select only those mo-
mentum components of any kernel that are in the neighb
hood ofK (r ). This justifies expansion of the Fourier tran
form of a kernelG(s) about the local wave number,
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G~s!5
1

~2p!3E G̃~p!e2 ip•sdp, ~24!

and retention of only the first two terms in the expansion

G̃~p!5G̃~p2!5G̃~K2!1~p22K2!
d

d~K2!
G̃~K2!1•••.

~25!

In a simple manner then a local equivalent potential to
exchange term in Eq.~23! can be obtained by a Taylor serie
expansion,

E U~r ,r 8;E!x (1)~k,r 8!dr 8

'E U~r ,r 8;E!ei (r82r )•“x (1)~k,r !dr 8

5F E U~r ,r 8;E!ei (r82r )•kdr 8Gx (1)~k,r !, ~26!

where a local wave number,

k~r !5A2m@E2V~r ;E!#, ~27!

has replaced the gradient operator.
Frahn and Lemmer@12# assumed that the nonlocal kerne

of the full Schrödinger equation, Eq.~23!, have a separable
form ~this is also known in the literature as the Perey-Bu
prescription!,

U~r ,r 8;E!→F~R! v~r!, ~28!

where

R5
1

2
~r1r 8!; r5r2r 8. ~29!

Furthermore, they assume thatF(R)5F(R) with F(R) a
slowly varying function aboutR5r , and that

v~r!5v~r!5~ps2!23/2expS 2
r2

s2D , ~30!

wheres is the nonlocality range. A Taylor expansion abo
r 8 gives to second order

F~R!x (1)~k,r 8!'F~r !x (1)~k,r !

1
1

6
r2H d

dr
F~r !

d

dr
1F~r !“2

1
1

4r

d2

dr2
@rF ~r !#J x (1)~k,r ! ~31!

and this gives
4-6
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E U~r ,r 8;E!x (1)~k,r 8!dr 8

'H v0F~r !1
1

8
v2

1

r

d2

dr2
@rF ~r !#

1
1

2
v2

d

dr
F~r !

d

dr
1

1

2
v2F~r !J x (1)~k,r !,

~32!

wherevn are the moments of the nonlocality,

vn5
4p

~2n21!
E

0

`

v~r!r (21n)dr. ~33!

Under this approximation, the nonlocal Schro¨dinger equation
reduces to

H F2
\2

2m
1

1

4
s2F~r !G“21

1

4
s2

d

dr
F~r !

d

dr
2E1F~r !

1s2
1

r

d2

dr2
@rF ~r !#J x (1)~k,r !50, ~34!

which maps to an equivalent local and energy depend
form,

F2
\2

2m
“

21V~r ,E!2EGw~k,r !50, ~35!

upon using a point transformation defined by

w~k,r !5T~r !x (1)~k,r !. ~36!

Multiplication of Eq. ~34! by T(r ) gives

T~r !H 2
\2

2m
“

22FJ1~r !

X~r ! G d

dr FJ0~r !1E

X~r ! G J T21~r !w~k,r !50,

~37!

with the functions,

J0~r !5F~r !1
s2

16r

d2

dr2
@rF ~r !#,

J1~r !5
s2

4

d

dr
F~r !,

X~r !512
ms2

2\2
F~r !. ~38!

The first derivative term is eliminated by choosingT(r )
5AX(r ) as then Eq.~37! becomes

F2
\2

2m
“

21
Y~r !2E

X~r ! Gw~k,r !50, ~39!

so identifying
06461
nt

V~r ,E!5E1
Y~r !2E

X~r !
~40!

when

Y~r !5J0~r !2
1

r
J1~r !2

1

2

d

dr
J1~r !2

3

2

1

X~r !
J1

2~r !

5F~r !2
s2

8r

d

dr
F~r !2

s2

16r

d2

dr2
F~r !

2
3ms4

32\2

1

@12ms2/~2\2!#F~r !
F d

dr
F~r !G2

. ~41!

Following Apagyiet al. @11#, by considering local equiva
lent potentials at two energiesE1 andE2, it follows by using
Eq. ~40! that

Y~r !5
E2V~r ,E1!2E2V~r ,E2!

@V~r ,E1!2V~r ,E2!1E22E1#
, ~42!

and that

F~r !5
\2

m

2

s2

V~r ,E1!2V~r ,E2!

@V~r ,E1!2V~r ,E2!1E22E1#
. ~43!

Then from Eqs.~38!, one can findJ0(r ), J1(r ), andX(r ),
and so have a complete specification of the nonlocal inte
tion properties. To the extent that the energy depend
Frahn-Lemmer form describesp-12C scattering the functions
U(r ), F(r ), andY(r ) should not be energy dependent. A
will be seen, that is not completely the case with the syst
we have studied.

V. THE FRAHN-LEMMER POTENTIALS FOR p-12C

The central parts of the inversion potentials that we
specified starting with phase shift sets from theg folding
optical potential calculations ofp-12C scattering at 100, 135
160, and 200 MeV have been used in this study. With
nonlocality range,s, taken first as 0.7 and subsequently
1.0 fm, the pairs of inversion potentials with energies 1
and 135 MeV, with 135 and 160 MeV, and with 160 and 2
MeV, have been used to find the functionsU(r ), F(r ), and
Y(r ) that characterize the nonlocal Frahn-Lemmer form
the p-12C optical potential. Results found using those pa
are identified by the notation 100–135, 135–160, and 16
200, and are portrayed in the next three figures by the so
long dash, and short dash curves, respectively. The real
imaginary parts of the various functions are given in the
and bottom sections of these figures with the results fo
usings50.7 and 1.0 fm presented in the left and right si
panels, respectively.

The results for the local attributeU(r ) of the Frahn-
Lemmer representations for the nonlocal optical potential
given in Fig. 4. In general those components are similar
all three energy pairs, and more so for the 135–160
160–200 cases. The variations in these results are but a
4-7
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MeV in size. However there is a noticeable change in
degree of structure with marked oscillations in the resu
found with the smaller~0.7! nonlocality range. Still the re-
sults with both nonlocality range values do exhibit a resid
energy dependence, and such is presumed not to be the
with the Frahn-Lemmer prescription. The modulating fun
tions,F(r ), of the actual nonlocal term in the Frahn-Lemm
form are displayed in Fig. 5. The real parts of this functi
are quite similar in the 135–160 and 160–200 cases altho
the overall strength of the real part ofF(r ) decreases with
the energy as it does with increase in the nonlocality ran
The 100–135 results@for the real part ofF(r )] are larger
than the others and varies from those in structure. The im
nary parts ofF(r ) vary noticeably with the marked structur
of the 100–135 results diminishing with energy. But the s
change is not linear. Such energy dependence is also at

FIG. 4. The local components,U(r ) of Eq. ~23!, obtained with
nonlocality ranges,s, of 0.7 and 1.0 fm~left and right panels,
respectively! and as deduced from the 100–135 MeV~solid curves!,
the 135–160 MeV~long-dashed curves!, and the 160–200 MeV
~short dashed curves! pairs of ~local! inversion potentials.

FIG. 5. As for Fig. 4, but for the nonlocal components,F(r ).
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with the Frahn-Lemmer requirement of an energy indep
dent nonlocal potential. The local elementsY(r ) for these
cases are shown in Fig. 6. They strongly reflect the prop
ties of the relevantF(r ) albeit that the structures are en
hanced.

In the next three figures the 100–135 and the 160–
inversion potential pairs are shown again but now to co
pare more directly the effects of different choices of the no
locality range,s. Results found withs50.7, 1.0, and 1.4 fm
now are displayed by the solid, long-dashed, and sh
dashed curves, respectively. Again the real and imagin
parts of the characteristic functionsU(r ), F(r ), and Y(r )
are given in the top and bottom sectors of the diagrams.
U(r ) components are displayed in Fig. 7. The real parts
both energy pairs are similar with a decrease in the struc
of the results being evident as the nonlocality range

FIG. 6. As for Fig. 4, but for the nonlocal components,Y(r ).

FIG. 7. The local termsU(r ) found using the 100–135 MeV
~left! and the 160–200 MeV~right! pairs of inversion potentials bu
for Frahn-Lemmer nonlocality ranges of 0.7, 1.0, and 1.4 fm. T
results are portrayed by the solid, long-dashed, and short-da
curves, respectively.
4-8
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creases. Indeed the results withs51.0 and 1.4 fm are very
similar. The imaginary parts ofU(r ) have the form of an
attractive well. Again the structure observed with the shor
range washes out whens is increased. Now also the 160
200 MeV result changes strength noticeably with increas
the nonlocality range. The results forF(r ) and Y(r ) are
given in Figs. 8 and 9, respectively. TheY(r ) variations
reflect those ofF(r ) as before. In these cases changing
nonlocality range has a dramatic effect, largely upon
magnitudes. In part though, that might be considered jus
off-set to the normalization which depends ons. But there
are also changes in the structures. The disparity between
100–135 and 160–200 results emphasizes again that the
a residual energy dependence one must consider if the s
fixed energy inversion potentials are recast as a Fra
Lemmer type of nonlocal interaction.

VI. CONCLUSIONS

The fixed energy inverse scattering method of Lunet al.
@5# has been used to specify local potentials from sets
phase shifts given by solutions of the Schro¨dinger equations
with nonlocal optical potentials for proton-12C elastic scat-

FIG. 8. As for Fig. 7, but for the nonlocal terms,F(r ).
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tering for a range of proton energies. Those~nonlocal poten-
tial! phase shift sets give very good fits to observed cr
section and analyzing power data@3#. So also then do the
local ~inversion! potentials as we have shown them to
both phase shift and observable equivalent~to the nonlocal
potential expectations! to a high degree. As a nonlocal t
local potential conversion scheme, the inverse scatte
theory method has proved to be very effective. Irrespec
of the pole term inherent in the inverse scattering the
method, the local inversion potentials do not resemble
simple functional forms, e.g., Woods-Saxon potentials, t
are commonly used in phenomenological~numerical inver-
sion! analyses of such scattering data.

We then considered a reverse mapping to see if and
the energy dependence of the inversion potentials might
flect a nonlocality of simpler functional kind, and of th
Frahn-Lemmer form in particular. The results are indicat
of a characteristic forms for the diverse components of t
simple nonlocal form of the interaction, but the detail
properties can vary significantly with the choice of the no
locality range, and there is an energy dependence residu
the Frahn-Lemmer functions. Thus we contend that the
ergy dependence of local potentials forp-12C scattering~and
by implication for other targets! whether those potentials ar
found by inversion or by phenomenology, is not solely
reflection of the true nonlocality in the interaction betwe
the nuclei. The nonlocality itself is also energy dependen

FIG. 9. As for Fig. 7, but for the nonlocal terms,Y(r ).
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