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Inverse scattering method for transfer reactions
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We extend a modified Newton-Sabatier method for the solution of the fixed energy, coupled channels,
inverse scattering problem to deal with a set of cluster transfer reactions. The method is tested by using analytic
model potentials for the transfer reacti®tO(«,®Be)*?C. For low energy scattering we show that inclusion of
Smatrices for nonphysical, noninteger angular momenta are required to find stable solutions. The possibility of
application to actual experimental data is discussed.

PACS numbes): 24.10.Eq, 24.10.Ht, 25.70.Hi, 03.65.Nk

I. INTRODUCTION angular momentum and the basimonopolg inversion
theory need not be approximated.
In an earlier wor 1], the modified Newton-SabatiéNS) In this paper, we develop and use the modified NS

method[2] for the solution of the inverse scattering problem method for the solution of the ISP at fixed energy with
(ISP) [3,4] at fixed energyf5] was extended from the single coupled channels for the case of transfer reactions. Not all
channel (elastic scatteringtheory to the case of coupled such scattering can be so treated, however. For example,
channels. But this extended method, as it was developed, hdégep inelastic transfer reactions usually need to be described
two handicaps. First, the coupling potentials must not depenfly nonlocal interactions, whereas the modified NS method
on the angular momentum, i.e., the channel coupling interyields local potentials only. Even so, the method proposed in
action must not couple the intrinsic angular momenta to thdhis paper can be viewed as a localization procedure for such
orbital angular momentum. Only monopole transitions theriransfer potentials. _
may be described exactly with this method. However, an In Sec. Il the coupled Schdinger equations for the trans-
approximation scheme has been proposed recenﬂy to tremr reactions are Specified and the two Coupled channels are
dip0|e and quadrupo|e interactiofﬁ]_ Second, the method defined. In Sec. Ill the modified NS method is extended to
requires a complet& matrix as input data. In general that is the case of transfer reactions. The well known transformation
not obtainable from experiments as the projectile and targedf the Smatrix to reduce the ISP problem of charged particle
in the incoming channel always are in their respectivescattering to one of neutral particle scatteriiig] is applied
ground states. Consequently only one row of Shenatrix ~ for the case of transfer reactions in Sec. IV. The equations
can be obtained from experimenta| angu|ar differential cros§eeded for the solution of the ISP for transfer reactions with
sections; namely that describing excitation from the elastideutral particles are given in Sec. V. A first application of the
channel. The missing information, usually the larger part ofmethod to the™®O(«,°Be)*™C reaction is shown in Sec. VI,
the S matrix, would need to be added by using known sym-while in Sec. VII the possibility of improving the inversion
metries, physical reasoning, or outright bias. Neverthelesgrocess by using nonphysicamatrix elements is discussed.
test case analyses using specific model forms of couplinghis discussion follows the findings of a recent stydy
potentials showed that the upgradépproximate method ~ Wwith the modified NS method for the solution of the single
of coupled channels inversion could reproduce the knowrghannel elastic ISP at fixed energy. It was shown therein
input with high accuracy. The problem of defining the com-that, for low energy scattering when very few partial waves
plete S matrix solely from data and priori knowledge re-  contribute significantly to the scattering, additional and non-
mains for future study. physical S matrix elements are essential to get sensible re-
Herein we show that the coupled channel inversionsults. A summary of these studies and conclusions we may
method[1] can be extended also to deal with transfer reacdraw from this new work follow in Sec. VIII.
tions. Under certain circumstances the comptieatrix for
that may be given by experiment. Transfer reactions, in
which one or more nucleons are transferred between the scat-
tering partners, can be described in terms of the coupled
channel formalism as two elastic channels coupled by two We consider two elastic scattering processk&,a)A
transfer reactions. In direct transfer reactions only a smalhnd B(b,b)B, coupled by the two transfer reactions,
part of the kinetic energy from the incoming channel is trans-A(a,b)B and B(b,a)A, so that the complete coupled scat-
ferred to the internal degrees of freedom of the fragments. lfering system and its scattering matrices can be represented
all fragments of that coupled system are in the ground statg, 3 2x 2 form of
the completeS matrix may be measured in the experiment.
Also, if one considers the transfer of a spinless fragment, for
example, the transfer of aa particle from an even mass A(a,a)A  A(a,b)B
nucleus, the interaction potential will be independent of the B(b,a)A B(b,b)B/"

Il. THE SCHRO DINGER EQUATION AND THE
DEFINITION OF THE CHANNELS
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The mass and charge numbers of projectile and target im terms of these solutions, which are assumed known on the
channela we denote byA7, Af', Z, andZ{", respectively. ~whole real axis, &r=<w, the wave functions of the sought
We limit consideration to the case of transfer reactions inpotential matrix can be written
which all fragments are in their ground states which all have
zero intrinsic spin J,=0). Then the orbital angular mo- KV
menta of relativrt)a m%;ioma) is equal to the total anggular mo- Rlan(r) ROIH(r E f O(r r )R n(f )ﬁ r
mentum,l (=1,®J,). In some applications we include non- (6)
physical(noninteger angular momentum partial waves.

With the supposition that the potential matrix is of local This ansatz is an extension of the Povzner-Levitan represen-
form, the Schrdinger equations for the coupled channelstation[5] for the description of wave functions for coupled

problem are channeld1]. It has been showfl0] that functions defined
by Eq. (6) fulfill the Schradinger equations, Eq2), if the
2 integral kernel matriXK VVo! satisfies the partial differential
2, DR =101+ DR, (1), (@  equations
2 2
where the differential operators are E Dxﬁ(r)K;;’o(r,r’F E D\y/ r )KVV"(r r’), (7)
=1 B=1
hZ h2 d2 . N
va(r)=r _{ 5 EJFE Ea|Sap—Vap(N) {, with the boundary conditions
Iu'a Mo dr
&) Ko p2(r=0r")=K o(r,r'=0)=0, ®
in which u, is the channel dependent reduced mass, The potential matrix then is determingtiO] by the integral
kernel matrix
ACAY
o= m,. U oy (2 A d K p2(rr) .
Ap T AL wp(l)= “B(r)_FZ,u,am r 9

m, is the atomic mass unit. As we do not allow angular on integral kernel matrix that solves E€7) with the con-
momentum coupling, the potential matfix,;(r) does not  siraint of Eq.(8) can be expanded in the radial wave func-

depend orl. Also we suppose that the excitation eneegy  tionsR' (r) andR.(r). with spectral coefficients' as
is 0 MeV in the first(incident ground stajechannel ¢ anl") an(1): P nn’’
=1), and equal to th&-value of the transfer reaction in the

second channela(=2). The radial wave functions of rela- VVO (rr')= Z 2 Cnn/ 'an(r)R‘;L/(r'), (10)

tive motion areR! «n(r) where the index(=1,2) identifies =0nn'=
the two degenerate but linearly independent solutions in each
channel. The presumption is that, beydrg; , the forms of
the scattering wave functions are known from measuremen
The ISP then can be stated th@&ven the asymptotic wave
functions, an(r>Rim), find the potential matrix, Ys(r)

for r <Rip.

where the sum over the total angular momentumight
include nonphysical(noninteger values. Introducing this

lernel matrix into Eq(6) leads to the fundamental equations
for the solution of the inverse scattering problem,

o 2
| ol |’ 1’ 171
Rin(N=Ran(1) = 2 X Ryp() G Lpn(r),
lll. THE MODIFIED NEWTON-SABATIER METHOD F=onini=1 (11)

To solve this ISP problem, it is useful to introduce a sym- . _
metric reference potential mamxvaﬁ(r) Vo (1), for where the matrix{L" } is completely determined by the

which R% (r) are the reference solutions of the referencekNOWn reference solutions,

Schralinger equation 2
L =3 [ R ORI () dr. (12
2 LU~ T pott 2 m
> DA(NRY(N)=1(1+1)R(r), (4)
1

- The ISP then is solved by repeated use of @4). In a first
step, the known asymptotic behavior of the wave functions

with the reference differential operator R! (r>Rin,), as determined by th® matrix, is used to cal-

culate the unknown spectral coeﬁiciemﬂé,n,. Once these
( )=r 2“&{ are known, Eq(11) is used again to calculate the wave func-

tions R, (r;) at discrete radiir; in the region of nuclear
(5  interaction O<r;<R;,.. With those known wave functions
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and spectral coefficients, the integral kernel matrix can be [ 4
calculated from Eq(10) and the potential matrix thereafter N , Vi) T B o
by use of Eq.(9). = / \'_\\\ // o] —Z
S e T 1%

> e L | 4 -

IV. TRANSFORMATION OF THE S MATRIX TO AN 27 // T \/ b _1?,

ASYMPTOTIC CONSTANT POTENTIAL g [ T 112

For analysis of charged particle scattering, the natural
choice for the reference potential is the Coulomb potential
[11]; the reference solutions of E(4) then being Coulomb £ -2
functions. Asymptotically the difference between the refer- »° /

ence potential and the sought potenfidéfined by Eq.(9)] I !
then will tend to zero. However this choice involves a refer- <~~~ + ¢+ 9%
ence potential that has a singularity at the origin. It helps 0 2 4 6 8 10 0 2 4 6 8 10 12
then to make a transformation of tBamatrix which reduces Radius (fm)

the case of charged particle scattering to one equivalent to
neutral particle scatterin8]; a method that can be applied
in the case of transfer reactions.

We consider théd matrix {S°}, which belongs to the po-
tential matrix

FIG. 1. Schematic representation of the potential matrix
{VE(r)} (full curve) and{VE(r)} (dotted curvg The two vertical
lines show the cutoff radius,c. The real and imaginary part are
shown in the left and right columns, respectively. The upper half of
the figure depicts the diagonal elemafy,, while the lower half
shows the transfer coupling potentid),; .

Vap(r): r<rc
VEu(r)= ZSZ?ezé =y (13)  tential matrix{VC(rc)}. The value of this constant matrix
r apr 1 TC corresponds to the values of Ed.3) at the radiug ¢,

where the radius =R, lies outside the region of nuclear VS (r)=Vp(r) r<rec

\ ! C int 1€ - ’ B . B B

interactions. The asymptotic solutions from solving E). Vap(N=1,c _yagan? 17)
. . . . ) ) . Vapre) =[Z,Z{e]Ircog r=rc.

with this potential, can be written in terms of incoming and

outgoing Coulomb waves, Schematically we show by the solid curves in Fig. 1, the

i K expected forms of the potential matrMSB(r) and the
T (Kor)= ek \E[HT(kar)5an—SLCnH|(kaf)]' change to the input potentials is depicted therein by the dot-
2 Kq ted curves. As the charge numbers are channel dependent,
(14) {V€(rc)} has different values in each channel. The
asymptotic wave function obtained on solving Ef) with

whereH, (r)=Gy(r) +iF (1) with G, andF; being the Cou- [N® potential given in Eq(17, is written in the form of
lomb functions that are irregular and regular at the origin'"c°™Ming and outgoing spherical Hankel functions as
respectively,a'a are the channel Coulomb phases, and

r'>Rint,

1 -
Rin(Kar) = 5ir Vekalhy (KEr) 80— Sihy” (KED)],
2q

Ka= 72 (E~2a), (15) (18)

wherek® are new channel wave numbers,
are the channel wave numbers. The asterigkiq Eq. (14)

denotes complex conjugation. 2 azan?
, B Ma B B pLt
For large angular momenta the S matrix tends to the k.= > (Eq—e4), E,=E- — (19
unit matrix, h c
S 8., (1-), (16  From the giverS matrix {S°}, the newS matrix {S?} can be

calculated by fitting the wave function given by Ed44)

for which the wave function defined by E6L4) then tends 2and its derivative, to the wave function of EQ8) and its

to the regular Coulomb function at a rate determined by th&lerivative, i.e.,

wave numbek, . The largerk, the more partial waves con- ) %

tribute significantly(for the chosen numerical precisioto i [Knro Ic !

the scattering. Note that &s, depends on the reduced mass 2 e k_a[H' (Kare)dan = SenHi(Kal ) 1D/

as well as on the channel energy, the wave numbers in each

channel can be quite different. = VkokSrc[hy (KBre)8.,n—SBh, (KBro)] (20)
The idea of the transformation is to replace the potential

matrix {V<(r)} for radii larger tharr - by the constant po- and

n'=1
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2
oo [k 4
21 © N, dr

d

2
[HF (KaP) 8an = Si Hi(Ka1) 1Dy, by = 2 Anr Con (27
r n=

r=re

_ B Bt B To get a finite set of equations, the sum over the angular
{rlhy (Kar) dan=Senhy" (K1} (21D momentuml is limited to | . The effect of this limitation
=rc has been discussed in detail in earlier wdi%4.2]. Then Eq.

) (25) is used twice. First, Eq(25) is solved outside of the
For every total angular momentuin these form an eight jnteraction region at two Newton radiig ,r,>Ri . Assum-
ec|1uat|on set for the determination of the four coefﬁments,ing the angular momentum step size M, this gives
D, » and the four news matrix elementssS,5,. 8X (I maxt 1)/A1 equations from which calculation of the
The newS matrix {S'®}, together with the new wave unknown coefficient matrice§A} and{b} is feasible. Once
numberski and the new channel dependent center of masthese matrices are known, E@5) is solved at discrete equi-
energiesE®, now serve as input for the ISP with neutral distant radii 6<r;<R,;. For each radius; and each chan-
particles. As the asymptotic constant potential energy wasel a there are X (I ot 1)/Al equations for the calcula-
added to the channel energy, the resulting inversion potentigion of the solutionsT'an(ri).
then must be shifted by that value. Then the integral kernel matrix can be obtained from Eq.

Note that this transformation scheme is not restricted tq10) as

just the Coulomb interaction. Rather it is valid for all forms

of asymptotic potential matrices with known asymptotic so- WV ) 'max 2 _— _
lutions. K (rr )=|ZO ngl BrgTan(MKgrji(kgr), (28
V. SOLUTION OF THE ISP FOR NEUTRAL with which, subsequently, the potential matrix is obtained by
PARTICLE SCATTERING using Eq.(9).

For neutral particle scattering, the optimal choice for the Note that Eq.(25 cannot be solved independently for
reference potential ivgﬁ(r):o [1.2]. The solutions of the each channek=1,2 in the first step as the set of equations

¢ Schid . Edd). th h her then splits in two uncoupled subsets, one of which forms an
reference Schuinger equations, 44), then are the spheri- homogeneous matrix equation with a nonzero determinant.
cal Riccati-Bessel functions,

Consequently, the complefmatrix must be known.
RO (r)=T% (r):=k_rj,(k,r)s 22
an(1)=Tan(r)=KarJ1(Kal) Oan, 22 VI. APPLICATION TO AN ANALYTIC

and the asymptotic solutions of E@) are determined by the MODEL POTENTIAL

given (or transformeyl S matrix, As a first test of the new inversion method, we consider
. the coupled scattering system
| ! — | +
Tan(rBRint)=§r \/knka[h| (kar)ﬁan_sanm (kar)]. lﬁo(a'a)lGO 160(a,8Be)12C
(23 12C(8Be,@)%0  12C(%BefBe)l%C)’

The wave function®!,(r) in channela can then be speci- in which the two elastic channels®O(, )0 and
fied as a superposition of these degenerate solutions, i.e., 12c(8Be,8Be)’C are coupled by ther-transfer reactions
160(«,®Be)*?C and °C(®Be,a)'®0. We require all frag-

| (- ments to be in their ground states and all to have zero spin.
Ran(r)= 2 Annr T (1) (24 For this test case the inp@&matrix was generated from
n'=1 . .

analytic potentials(of Woods-Saxon formfor these reac-
Introducing the wave functions of Eq@2) and(24) into Eq.  tions. For the'®0(a, @) %0 scattering, fitted potential param-
(11) gives the coupled set of equations, eters found by Woznialet al. [13] were used. The second
elastic channel’C(8Be,2Be)'“C is not available experimen-

2 Imax ) tally as ®Be is not stable in its ground state, decaying into
E (T'Dm,(r)AL,nJr E TLn,(r)bL,nL'n/'(r)> =T2'n(r), two « particles. Instead, the fitted potential parameters for
n’=1 1’=0 the reaction*?C(°Be,’Be)'C given by Wozniaket al. [13]

(25  were used as an approximation. For the endothermic transfer
reaction %0(«,®Be)'C (with the Q value of —7.162 MeV

2

with the new matrices [14]), no fitted local optical potentials are available. How-
) ever, in Ref[13] angular differential cross sections for dif-
L'n' '(r)=kﬁf i1kt )iy (kordr? (26) ferent ex0|tat|_on sta_tes are sh.own. The cross _sectlon for the
0 transfer reaction of interest, with all fragments in the ground

state, is only measured at 18 angles in the region from 17 ° to
and 75°. A phase shift analysis of that data at most could yield a
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FIG. 2. Comparison of the inverted potential matiigolid FIG. 3. The Argand diagram of th& matrix found using the

curves with the analytic input potential matrifdashed curvésat  inversion potential shown in Fig. 2. The analytic inf&imatrix is
E.m=104 MeV. The real and imaginary parts are shown in theshown by circles connected by the dashed line while the inveion
left and right columns, respectively. The potential matrix elementgmatrix is portrayed by the crosses connected by the solid line.
for the reactions'®0(a, )0, %0(«,%Be)'*C, *C(®Be,w)0,
and *2C(®Be ®Be)'“C are shown row-wise from top to bottom. these 204 radii, X 102 coupled equations were solved. As
the influence of the choice of the technical inversion param-
maximum of fourS matrix elements (Knat+3<Nc,,; see eters has been discussed in detail in earlier wpsks2] we
Ref. [15]). Thus a(purely rea)] Woods-Saxon form was do not cover that aspect again here.
taken for the transfer channel potentials and the potential To rate the quality of the inversion potentialy4 test has
parameters were obtained by a “chi-by-eye” fit of the crossbeen performed with
section[10]. Those parameter values were
1 N VmU(r)_Vmp(r) 2
V,=51 MeV, R,=30 fm, a,'=30 fm. (29 (rup’= 2 R IVEvi } 1 fm <r<Rp.
(30)

For the reverse transfer reactioiC(®Be,«) %0, we assume

the same interaction potential. The data from which thesene summation has been taken from1 fm to exclude any
potential parameters were defined were takenEgh,  gignificant effect of the pole at=0. The total number of
=52 MeV, but for our test study it suits better to conS|derp0imS used in this example waé=183. The potential?

the scattering system at a higher energy Btm  values so found using the potentials shown in Fig. 2 are
=104 MeV. We have used the potential matrix defined

above, however, as it serves the purpose of testing the inver- Va2 V2

sion process and is of a realistic form for such reactions. At (x1)"=0.03, (x1,)°=0.02,

104 MeV sufficient partial waves significantly contribute to Vi Vi

the scattering that the resulting inversion potential is quite (x20°=0.04, and (xp)°=0.01. (39

stable. The inputS matrix for the ISP was calculated by

numerical integration of the coupled ScHimger equation, As the elastic potentials in the first and second channel differ

Eq. (2), with a step width ofAr=0.01 fm. Transformation significantly in magnitude, th& matrix elements in the first

to an asymptotic constant potential by means of the methodhannel tend to unity{,,,) faster in angular momentum than

that was described in Sec. IV was carried through at a radiudo those in the second channel. In the first channel, 40 partial

rc of 10.0 fm. waves contribute within the chosen numerical accuracy,
The result of the inversion of thiS matrix is shown in  whereas in the second channel at least 50 partial waves are

Fig. 2. The inversion potentials show the oscillating behaviorequired to determine the potential.

typically found in many past applications of NS methods, In Fig. 3, we compare the analytic inpBmatrix with that

with those oscillations becoming larger close to the originrecalculated from the inversion potentials. The four channel

because of the pole of Eq9) at r=0 [9]. The inversion sets are shown as Argand diagrams with the input valaes

calculations were made using Newton radii of 10.1 and 10.2ntegerl) depicted by the circles. The values calculated us-

fm to calculate of the spectral coefficients. With,,= 50, ing the inversion potentials are portrayed by the crosses. The

408 coupled equations had to be solved. The wave functiohines, dashed and solid, respectively, are simply to guide the

and the potential matrix were calculated with a step width ofeye. The overall reproduction is very good as may be mea-

Ar=0.05 fm in the interval[0.05, 10.2 fm). At each of sured by ay? value for theS matrix,
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FIG. 4. Comparison of the invertgdolid curve$ with the ana-

Iytic input potential matriXdashed curvesatE. ,,=20 MeV; with
the inversion process involving only integéphysica) partial
waves. The notation is as given in Fig. 2.
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Re(S,,) Re(S,)
-0.5 00 03 -0.1 0.0 0.1
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I I - AL\
S =
<) <)
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{04
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Re(S,)

FIG. 5. Argand diagrams of th® matrix found using the inver-
sion potential shown in Fig. 4. The notation is as used in Fig. 3.

when compared with the values typically of order %0
found for the 104 MeV study. In this case, to calculate the

(32) spectral coefficients 160 coupled equations have to be
solved. For the wave function, 40 coupled equations are
solved at each radius and for each channel. Concomitantly,
reproduction of theS matrix elements found by using these
inversion potentials is not very good, with the accumulated
S-matrix x? value for all channels as specified in E§2)
being)(§= 4.27x 10 3. The results are shown in Fig. 5 with

We now consider the situation when relatively few partialh® notation as used in Fig. 3.
waves contribute sensibly in the sums defining observables, N€Xt we use the analytic potential to calculate 8ima-
as in the case of low energy scattering. In doing so we choskices at half-integer as \_NeII as at integer values. of angular
new potential parameters to ensure that$meatrix tends to momentum, thereby having a larger set of equations for the
unity at approximately the same rate in both channels tdVersion process. Th_e input data are doubled as is the_ num-
offset any effects that might be caused by disparate Size P€' Of coupled equations that have to be solved. The inver-
matrices in the two channels. For this test, the parametet©" Potential matrix obtained with this extended set is
values chosen are not relevant to the ensuing discussion savgoWn in Fig. 6, the notation being as used in Fig. 2. It is
that all entries in the potential matrix have similar real
strengths, radii, and diffusivities characteristically of 10 lo
MeV, 3 fm, and 0.5 fm, respectively. The two elastic chan- _ o
nels have imaginary components still and again they are 0§= _
derivative Woods-Saxon form. These base potentials are dis
played in Fig. 4 by the dashed curves.

We have used this starting potential matrix at the energyg |
of Ecn=20 MeV to calculate the inpus matrix for the > _,
given transfer reaction. Within the numerical accuracy, just _s
20 partial waves now contribute sensibly to the scattering inA o
both channels. The optimum results of the inversion of thet, -5
associateds matrices specified at integer angular momenta” -1o :
1=0,1, ...,19 andbtained by minimizingxé under varia- -15
tion of the Newton radii, are shown by the solid curves in
Fig. 4. The reproduction of the input potential is poor as
evidenced by the? values for the different potential matrix
elements which are

(xY)?=6.6, (x1»)?=3.3,
(x¥p?=15, and (x¥)?=0.88, (33

2
2__ linv _ linp|2
XS_4| E |San San | .

max =0 a,n

For the S matrices shown in Fig. 3X§=2.O>< 10 #, which
corresponds to an average error of less than 1%.

VII. INCLUSION OF NONPHYSICAL S MATRICES

10

0
-10

V)

Radius (fm)

FIG. 6. Same as Fig. 4 but with the inversion process now
including S matrix values at half-integer angular momenta.
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FIG. 7. Argand diagrams of th@matrix including values at the

Radius (fm)

FIG. 8. Same as Fig. 6 but with the inversion now includig

half-integer angular momenta and found using the inversion potenatrix values at quarter integer values of angular momenta.

tial shown in Fig. 6. The notation is as used in Fig. 3.

evident that the reproduction of the input potential is signifi-
cantly improved upon the previous result. The potential

values are

(x¥D?=0.06, (x}»)?=0.03,

(x¥)?=0.02, and (x¥,)2=0.02.

(34

VIIl. SUMMARY AND CONCLUSIONS

We have specified an exact inversion method for the so-
lution of the inverse scattering problem for transfer reactions.
In a first application we used & matrix ascertained from
optical model potentials that are characteristic of scattering
from the system of interest, and at an energy for which a
sufficiently large number of partial waves contribute. The
reproduction of the input potentials, and of the inSumatrix
elements found using the inversion potentials, are very good.
In a second application we studied the attributes of the in-

Despite this considerable improvement over the first test caseersion potential in the case that only few partial waves con-
run, reproduction of theS matrix elements still does not tribute to the scattering. Restricting the inversion calculation
match the quality achieved with the 104 MeV example. Theto use only the physicainteger partial waveS matrix ele-
results of the 20 MeV calculations are shown in Fig. 7 andments gave quite poor results. IncludiBgnatrices defined

the agreement of the inversion result is rated bySanatrix
x3 value of 7.94 10 . Thus we included th& matrix val-

at nonphysicalnoninteger angular momenta however, led
to quite good reproductions.

ues at quarter integer partial waves as well, again doubling Thus, for the first time, direct application of a coupled
the input data set and the number of coupled equations to be

solved. In fact, 672 coupled equations were used to define Re(S,) Re(S,,)
the coefficient matrices and 168 for the wave functions. The o1 - 0‘0 o o 0‘0 b
resulting inversion potential matrix is an improvement upon i ] T
the previous ones as is evident from the comparison givenir [ A e ! N
Fig. 8 and for which g f "y I 5
e o e e Y 4 00 €
S o1l L\j /A A I 3 :é S
(x¥)?=0.02, (xY»)?=0.05, R
02 — ‘ S 0.1
(x3)?=0.01, and (x3,)?=0.02. (35) S S e R
F N I y
The S matrix elements are now reproduced with an accuracyg oo \zr;«ih 44 e % o g
comparable to that found before with the 104 MeV example= Do «’}{ﬂw o T
and which is shown in Fig. 9. T
The results we have shown in this paper were all sensitive ol ! ! ‘ -04
to the choice of the technical parametdis,, and the New- 0.1 Re(;g ) 0.1 O'ORe(s )0,5 L0

ton radiir {,r,. The latter had to be specified to an accuracy
of 1072 fm to give an optimum)(%. All coupled equations

position method, in which the tolerance was taken as'40  tential shown in Fig. 8. The notation is as used in Fig. 3.

064610-7

¢ FIG. 9. Argand diagrams of th® matrix now including values
of the ISP were solved by means of a singular value decomat quarter integer angular momenta, found using the inversion po-
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channel ISP at fixed energy to experimental scattering datdne S matrices plotted in our figures, the question remains
seems possible. But the step to define the input from actualpen as to how these values are to be obtained fronSthe
scattering data still involves major practical difficulties and matrices specified at physical angular momentum values. It
limitations. The current method has been designed for transras been demonstratd@] that the interpolation of the

fer reactions in which the interactions do not depend on thenatrix with a rational form is not necessarily reliable. In fact,
angular momentum, and all fragments are spinless. Nevegjpeit the rational form might be a physically motivated in-
theless there are real examples that fulfill these conditions, a8rpolation, it did not give the correct progression of e

for instance thex transfer reaction discussed in this paper.matrix to be connected with the actual underlying interac-
Next, one needs at least three angular differential cross segpn.

tions at appropriate energies. Note that the energy in the
second channel iE. ,— Q whereQ is theQ value of trans-

fer _re_action. That data should be accurate and measured at ACKNOWLEDGMENTS
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