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Inverse scattering method for transfer reactions
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We extend a modified Newton-Sabatier method for the solution of the fixed energy, coupled channels,
inverse scattering problem to deal with a set of cluster transfer reactions. The method is tested by using analytic
model potentials for the transfer reaction16O(a,8Be)12C. For low energy scattering we show that inclusion of
Smatrices for nonphysical, noninteger angular momenta are required to find stable solutions. The possibility of
application to actual experimental data is discussed.

PACS number~s!: 24.10.Eq, 24.10.Ht, 25.70.Hi, 03.65.Nk
m
e
d
, h
en
te
th
e
a
tre

is
rg
iv

os
st
o

m
es
lin

w
m

io
ac

i
sc
le

tw
a

ns
.

ta
nt
fo

s
th

S
ith
t all
ple,
ibed
od

d in
uch

-
are
to

tion
cle

ons
ith

he
,
n
.

le
ein
es
n-
re-
ay

s,
t-
nted
I. INTRODUCTION

In an earlier work@1#, the modified Newton-Sabatier~NS!
method@2# for the solution of the inverse scattering proble
~ISP! @3,4# at fixed energy@5# was extended from the singl
channel ~elastic scattering! theory to the case of couple
channels. But this extended method, as it was developed
two handicaps. First, the coupling potentials must not dep
on the angular momentum, i.e., the channel coupling in
action must not couple the intrinsic angular momenta to
orbital angular momentum. Only monopole transitions th
may be described exactly with this method. However,
approximation scheme has been proposed recently to
dipole and quadrupole interactions@6#. Second, the method
requires a completeS matrix as input data. In general that
not obtainable from experiments as the projectile and ta
in the incoming channel always are in their respect
ground states. Consequently only one row of theS matrix
can be obtained from experimental angular differential cr
sections; namely that describing excitation from the ela
channel. The missing information, usually the larger part
the S matrix, would need to be added by using known sy
metries, physical reasoning, or outright bias. Neverthel
test case analyses using specific model forms of coup
potentials showed that the upgraded~approximate! method
of coupled channels inversion could reproduce the kno
input with high accuracy. The problem of defining the co
plete S matrix solely from data anda priori knowledge re-
mains for future study.

Herein we show that the coupled channel invers
method@1# can be extended also to deal with transfer re
tions. Under certain circumstances the completeSmatrix for
that may be given by experiment. Transfer reactions,
which one or more nucleons are transferred between the
tering partners, can be described in terms of the coup
channel formalism as two elastic channels coupled by
transfer reactions. In direct transfer reactions only a sm
part of the kinetic energy from the incoming channel is tra
ferred to the internal degrees of freedom of the fragments
all fragments of that coupled system are in the ground s
the completeS matrix may be measured in the experime
Also, if one considers the transfer of a spinless fragment,
example, the transfer of ana particle from an even mas
nucleus, the interaction potential will be independent of
0556-2813/2000/62~6!/064610~8!/$15.00 62 0646
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angular momentum and the basic~monopole! inversion
theory need not be approximated.

In this paper, we develop and use the modified N
method for the solution of the ISP at fixed energy w
coupled channels for the case of transfer reactions. No
such scattering can be so treated, however. For exam
deep inelastic transfer reactions usually need to be descr
by nonlocal interactions, whereas the modified NS meth
yields local potentials only. Even so, the method propose
this paper can be viewed as a localization procedure for s
transfer potentials.

In Sec. II the coupled Schro¨dinger equations for the trans
fer reactions are specified and the two coupled channels
defined. In Sec. III the modified NS method is extended
the case of transfer reactions. The well known transforma
of theSmatrix to reduce the ISP problem of charged parti
scattering to one of neutral particle scattering@7,8# is applied
for the case of transfer reactions in Sec. IV. The equati
needed for the solution of the ISP for transfer reactions w
neutral particles are given in Sec. V. A first application of t
method to the16O(a,8Be)12C reaction is shown in Sec. VI
while in Sec. VII the possibility of improving the inversio
process by using nonphysicalSmatrix elements is discussed
This discussion follows the findings of a recent study@9#
with the modified NS method for the solution of the sing
channel elastic ISP at fixed energy. It was shown ther
that, for low energy scattering when very few partial wav
contribute significantly to the scattering, additional and no
physicalS matrix elements are essential to get sensible
sults. A summary of these studies and conclusions we m
draw from this new work follow in Sec. VIII.

II. THE SCHRÖ DINGER EQUATION AND THE
DEFINITION OF THE CHANNELS

We consider two elastic scattering processes,A(a,a)A
and B(b,b)B, coupled by the two transfer reaction
A(a,b)B and B(b,a)A, so that the complete coupled sca
tering system and its scattering matrices can be represe
in a 232 form of

S A~a,a!A A~a,b!B

B~b,a!A B~b,b!B
D . ~1!
©2000 The American Physical Society10-1
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The mass and charge numbers of projectile and targe
channela we denote byAp

a , At
a , Zp

a , andZt
a , respectively.

We limit consideration to the case of transfer reactions
which all fragments are in their ground states which all ha
zero intrinsic spin (Ja50). Then the orbital angular mo
menta of relative motionl a is equal to the total angular mo
mentum,I (5 l a ^ Ja). In some applications we include non
physical~noninteger! angular momentum partial waves.

With the supposition that the potential matrix is of loc
form, the Schro¨dinger equations for the coupled channe
problem are

(
b51

2

Dab
V ~r !Rbn

I ~r !5I ~ I 11!Ran
I ~r !, ~2!

where the differential operators are

Dab
V ~r !5r 2

\2

2ma
H F \2

2ma

d2

dr2
1E2«aGdab2Vab~r !J ,

~3!

in which ma is the channel dependent reduced mass,

ma5
Ap

aAt
a

Ap
a1At

a
mu .

mu is the atomic mass unit. As we do not allow angu
momentum coupling, the potential matrixVab(r ) does not
depend onI. Also we suppose that the excitation energy«a
is 0 MeV in the first ~incident ground state! channel (a
51), and equal to theQ-value of the transfer reaction in th
second channel (a52). The radial wave functions of rela
tive motion areRan

I (r ) where the indexn(51,2) identifies
the two degenerate but linearly independent solutions in e
channel. The presumption is that, beyondRint , the forms of
the scattering wave functions are known from measurem
The ISP then can be stated thus:Given the asymptotic wav
functions, Ran

I (r .Rint), find the potential matrix, Vab(r )
for r ,Rint.

III. THE MODIFIED NEWTON-SABATIER METHOD

To solve this ISP problem, it is useful to introduce a sy
metric reference potential matrix,Vab

0 (r )5Vba
0 (r ), for

which Ran
0I (r ) are the reference solutions of the referen

Schrödinger equation

(
b51

2

Dab
V0 ~r !Rbn

0I ~r !5I ~ I 11!Ran
0I ~r !, ~4!

with the reference differential operator

Dab
V0 ~r !5r 2

2ma

\2 H F \2

2ma

d2

dr2
1E2«aGdab2Vab

0 ~r !J .

~5!
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In terms of these solutions, which are assumed known on
whole real axis, 0<r<`, the wave functions of the sough
potential matrix can be written

Ran
I ~r !5Ran

0I ~r !2 (
b51

2 E
0

r

Kab
VV0~r ,r 8!Rbn

0I ~r 8!
1

r 82
dr8.

~6!

This ansatz is an extension of the Povzner-Levitan repre
tation @5# for the description of wave functions for couple
channels@1#. It has been shown@10# that functions defined
by Eq. ~6! fulfill the Schrödinger equations, Eq.~2!, if the
integral kernel matrix$KVV0% satisfies the partial differentia
equations

(
b51

2

Dab
V ~r !Kbg

VV0~r ,r 8!5 (
b51

2

Dgb
V0 ~r 8!Kab

VV0~r ,r 8!, ~7!

with the boundary conditions

Kab
VV0~r 50,r 8!5Kab

VV0~r ,r 850!50. ~8!

The potential matrix then is determined@10# by the integral
kernel matrix

Vab~r !5Vab
0 ~r !2

2

r

\2

2ma

d

dr
FKab

VV0~r ,r !

r
G . ~9!

An integral kernel matrix that solves Eq.~7! with the con-
straint of Eq.~8! can be expanded in the radial wave fun
tions Ran

I (r ) andRan
0I (r ), with spectral coefficientscnn8

I , as

Kab
VV0~r ,r 8!5(

I 50

`

(
n,n851

2

cnn8
I Ran

I ~r !Rbn8
0I

~r 8!, ~10!

where the sum over the total angular momentumI might
include nonphysical~noninteger! values. Introducing this
kernel matrix into Eq.~6! leads to the fundamental equation
for the solution of the inverse scattering problem,

Ran
I ~r !5Ran

0I ~r !2 (
I 850

`

(
n9,n851

2

Ran9
I 8 ~r !cn9n8

I 8 Ln8n
I 8I

~r !,

~11!

where the matrix$L II 8% is completely determined by th
known reference solutions,

Ln8n
I 8I

~r !5 (
b51

2 E
0

r

Rbn8
0I 8 ~r 8!Rbn

0I ~r 8!
1

r 82
dr8. ~12!

The ISP then is solved by repeated use of Eq.~11!. In a first
step, the known asymptotic behavior of the wave functio
Ran

I (r .Rint), as determined by theS matrix, is used to cal-

culate the unknown spectral coefficientscn9n8
I 8 . Once these

are known, Eq.~11! is used again to calculate the wave fun
tions Ran

I (r i) at discrete radiir i in the region of nuclear
interaction 0,r i,Rint . With those known wave functions
0-2
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INVERSE SCATTERING METHOD FOR TRANSFER REACTIONS PHYSICAL REVIEW C62 064610
and spectral coefficients, the integral kernel matrix can
calculated from Eq.~10! and the potential matrix thereafte
by use of Eq.~9!.

IV. TRANSFORMATION OF THE S MATRIX TO AN
ASYMPTOTIC CONSTANT POTENTIAL

For analysis of charged particle scattering, the natu
choice for the reference potential is the Coulomb poten
@11#; the reference solutions of Eq.~4! then being Coulomb
functions. Asymptotically the difference between the ref
ence potential and the sought potential@defined by Eq.~9!#
then will tend to zero. However this choice involves a ref
ence potential that has a singularity at the origin. It he
then to make a transformation of theSmatrix which reduces
the case of charged particle scattering to one equivalen
neutral particle scattering@8#; a method that can be applie
in the case of transfer reactions.

We consider theS matrix $SC%, which belongs to the po
tential matrix

Vab
C ~r !5H Vab~r !: r ,r C

Zp
aZt

ae2

r
dab : r>r C ,

~13!

where the radiusr C>Rint lies outside the region of nuclea
interactions. The asymptotic solutions from solving Eq.~2!
with this potential, can be written in terms of incoming a
outgoing Coulomb waves,

Tan
I ~kar !5

i

2
eisa

I Akn

ka
@HI* ~kar !dan2San

IC HI~kar !#,

r .Rint , ~14!

whereHI(r )5GI(r )1 iF I(r ) with GI andFI being the Cou-
lomb functions that are irregular and regular at the ori
respectively,sa

I are the channel Coulomb phases, and

ka5A2ma

\2
~E2«a!, ~15!

are the channel wave numbers. The asterisk (* ) in Eq. ~14!
denotes complex conjugation.

For large angular momentaI, the S matrix tends to the
unit matrix,

San
I →dan ~ I→`!, ~16!

for which the wave function defined by Eq.~14! then tends
to the regular Coulomb function at a rate determined by
wave numberka . The largerka the more partial waves con
tribute significantly~for the chosen numerical precision! to
the scattering. Note that aska depends on the reduced ma
as well as on the channel energy, the wave numbers in e
channel can be quite different.

The idea of the transformation is to replace the poten
matrix $VC(r )% for radii larger thanr C by the constant po-
06461
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tential matrix $VC(r C)%. The value of this constant matri
corresponds to the values of Eq.~13! at the radiusr C ,

Vab
B ~r !5H Vab

C ~r !5Vab~r ! r ,r C

Vab
C ~r C!5@Zp

aZt
ae2#/r Cdab r>r C .

~17!

Schematically we show by the solid curves in Fig. 1, t
expected forms of the potential matrixVab

C (r ) and the
change to the input potentials is depicted therein by the d
ted curves. As the charge numbers are channel depen
$VC(r C)% has different values in each channel. T
asymptotic wave function obtained on solving Eq.~2! with
the potential given in Eq.~17!, is written in the form of
incoming and outgoing spherical Hankel functions as

Ran
I ~ka

Br !5
1

2
ir Akn

Bka
B@hI

2~ka
Br !dan2San

IB hI
1~ka

Br !#,

~18!

whereka
B are new channel wave numbers,

ka
B5A2ma

\2
~Ea

B2«a!, Ea
B5E2

Zp
aZt

ae2

r C
. ~19!

From the givenSmatrix $SC%, the newSmatrix $SB% can be
calculated by fitting the wave function given by Eqs.~14!
and its derivative, to the wave function of Eq.~18! and its
derivative, i.e.,

(
n851

2

eisa
I Akn8

ka
@HI* ~kar C!dan82San8

IC HI~kar C!#Dn8n
I

5Akn
Bka

Br C@hI
2~ka

Br C!dan2San
IB hI

1~ka
Br C!# ~20!

and

FIG. 1. Schematic representation of the potential ma
$VC(r )% ~full curve! and $VB(r )% ~dotted curve!. The two vertical
lines show the cutoff radius,r C . The real and imaginary part ar
shown in the left and right columns, respectively. The upper hal
the figure depicts the diagonal elementVaa , while the lower half
shows the transfer coupling potentialVab .
0-3
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(
n851

2

eisa
I Akn8

ka

d

dr
U

r 5r C

@HI* ~kar !dan82San8
IC HI~kar !#Dn8n

I

5Akn
Bka

B d

drU
r 5r C

$r @hI
2~ka

Br !dan2San
IB hI

1~ka
Br !#%. ~21!

For every total angular momentumI, these form an eigh
equation set for the determination of the four coefficien
Dnn8

I , and the four newS matrix elements,San
IB .

The new S matrix $SIB%, together with the new wave
numberska

B and the new channel dependent center of m
energiesEa

B , now serve as input for the ISP with neutr
particles. As the asymptotic constant potential energy w
added to the channel energy, the resulting inversion pote
then must be shifted by that value.

Note that this transformation scheme is not restricted
just the Coulomb interaction. Rather it is valid for all form
of asymptotic potential matrices with known asymptotic s
lutions.

V. SOLUTION OF THE ISP FOR NEUTRAL
PARTICLE SCATTERING

For neutral particle scattering, the optimal choice for t
reference potential isVab

0 (r )50 @1,2#. The solutions of the
reference Schro¨dinger equations, Eq.~4!, then are the spheri
cal Riccati-Bessel functions,

Ran
0I ~r !5Tan

0I ~r !ªkar j I~kar !dan , ~22!

and the asymptotic solutions of Eq.~2! are determined by the
given ~or transformed! S matrix,

Tan
I ~r>Rint!5

i

2
r Aknka@hI

2~kar !dan2San
I hI

1~kar !#.

~23!

The wave functionsRan
I (r ) in channela can then be speci

fied as a superposition of these degenerate solutions, i.e

Ran
I ~r !5 (

n851

2

Ann8
I Tan8

I
~r !. ~24!

Introducing the wave functions of Eqs.~22! and~24! into Eq.
~11! gives the coupled set of equations,

(
n851

2 S Tan8
I

~r !An8n
I

1 (
I 850

I max

Tan8
I 8 ~r !bn8n

I 8 Ln
I 8I~r !D 5Tan

0I ~r !,

~25!

with the new matrices

Ln
II 8~r !5kn

2E
0

r

j I~knr 8! j I 8~knr 8!dr8 ~26!

and
06461
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I

5 (
n951

2

Ann9
I cn9n8

I . ~27!

To get a finite set of equations, the sum over the angu
momentumI is limited to I max. The effect of this limitation
has been discussed in detail in earlier works@9,12#. Then Eq.
~25! is used twice. First, Eq.~25! is solved outside of the
interaction region at two Newton radii,r 1 ,r 2.Rint . Assum-
ing the angular momentum step size isDI , this gives
83(I max11)/DI equations from which calculation of th
unknown coefficient matrices$A% and $b% is feasible. Once
these matrices are known, Eq.~25! is solved at discrete equi
distant radii 0,r i,Rint . For each radiusr i and each chan-
nel a there are 23(I max11)/DI equations for the calcula
tion of the solutionsTan

I (r i).
Then the integral kernel matrix can be obtained from E

~10! as

Kab
VV0~r ,r 8!5(

I 50

I max

(
n51

2

bnb
I Tan

I ~r !kbr j I~kbr !, ~28!

with which, subsequently, the potential matrix is obtained
using Eq.~9!.

Note that Eq.~25! cannot be solved independently fo
each channela51,2 in the first step as the set of equatio
then splits in two uncoupled subsets, one of which forms
homogeneous matrix equation with a nonzero determin
Consequently, the completeS matrix must be known.

VI. APPLICATION TO AN ANALYTIC
MODEL POTENTIAL

As a first test of the new inversion method, we consid
the coupled scattering system

S 16O~a,a!16O 16O~a,8Be!12C
12C~8Be,a!16O 12C~8Be,8Be!12CD ,

in which the two elastic channels16O(a,a)16O and
12C(8Be,8Be)12C are coupled by thea-transfer reactions
16O(a,8Be)12C and 12C(8Be,a)16O. We require all frag-
ments to be in their ground states and all to have zero s

For this test case the inputS matrix was generated from
analytic potentials~of Woods-Saxon form! for these reac-
tions. For the16O(a,a)16O scattering, fitted potential param
eters found by Wozniaket al. @13# were used. The secon
elastic channel12C(8Be,8Be)12C is not available experimen
tally as 8Be is not stable in its ground state, decaying in
two a particles. Instead, the fitted potential parameters
the reaction12C(9Be,9Be)12C given by Wozniaket al. @13#
were used as an approximation. For the endothermic tran
reaction 16O(a,8Be)12C ~with the Q value of27.162 MeV
@14#!, no fitted local optical potentials are available. How
ever, in Ref.@13# angular differential cross sections for di
ferent excitation states are shown. The cross section for
transfer reaction of interest, with all fragments in the grou
state, is only measured at 18 angles in the region from 17
75°. A phase shift analysis of that data at most could yiel
0-4
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maximum of fourS matrix elements (4I max13<Nexp; see
Ref. @15#!. Thus a ~purely real! Woods-Saxon form was
taken for the transfer channel potentials and the poten
parameters were obtained by a ‘‘chi-by-eye’’ fit of the cro
section@10#. Those parameter values were

Vz551 MeV, RV53.0 fm, aV
2153.0 fm. ~29!

For the reverse transfer reaction,12C(8Be,a)16O, we assume
the same interaction potential. The data from which th
potential parameters were defined were taken atEc.m.
552 MeV, but for our test study it suits better to consid
the scattering system at a higher energy ofEc.m.
5104 MeV. We have used the potential matrix defin
above, however, as it serves the purpose of testing the in
sion process and is of a realistic form for such reactions.
104 MeV sufficient partial waves significantly contribute
the scattering that the resulting inversion potential is qu
stable. The inputS matrix for the ISP was calculated b
numerical integration of the coupled Schro¨dinger equation,
Eq. ~2!, with a step width ofDr 50.01 fm. Transformation
to an asymptotic constant potential by means of the met
that was described in Sec. IV was carried through at a ra
r C of 10.0 fm.

The result of the inversion of thisS matrix is shown in
Fig. 2. The inversion potentials show the oscillating behav
typically found in many past applications of NS method
with those oscillations becoming larger close to the ori
because of the pole of Eq.~9! at r 50 @9#. The inversion
calculations were made using Newton radii of 10.1 and 1
fm to calculate of the spectral coefficients. WithI max550,
408 coupled equations had to be solved. The wave func
and the potential matrix were calculated with a step width
Dr 50.05 fm in the interval@0.05, 10.2 fm#. At each of

FIG. 2. Comparison of the inverted potential matrix~solid
curves! with the analytic input potential matrix~dashed curves! at
Ec.m.5104 MeV. The real and imaginary parts are shown in
left and right columns, respectively. The potential matrix eleme
for the reactions16O(a,a)16O, 16O(a,8Be)12C, 12C(8Be,a)16O,
and 12C(8Be,8Be)12C are shown row-wise from top to bottom.
06461
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these 204 radii, 23102 coupled equations were solved. A
the influence of the choice of the technical inversion para
eters has been discussed in detail in earlier works@9,12# we
do not cover that aspect again here.

To rate the quality of the inversion potential, ax2 test has
been performed with

~xab
V !25

1

N (
i 51

N UVab
inv~r i !2Vab

inp~r i !

1MeV
U2

, 1 fm <r i<Rint .

~30!

The summation has been taken fromr 51 fm to exclude any
significant effect of the pole atr 50. The total number of
points used in this example wasN5183. The potentialx2

values so found using the potentials shown in Fig. 2 are

~x11
V !250.03, ~x12

V !250.02,

~x21
V !250.04, and ~x22

V !250.01. ~31!

As the elastic potentials in the first and second channel di
significantly in magnitude, theS matrix elements in the firs
channel tend to unity (dan) faster in angular momentum tha
do those in the second channel. In the first channel, 40 pa
waves contribute within the chosen numerical accura
whereas in the second channel at least 50 partial waves
required to determine the potential.

In Fig. 3, we compare the analytic inputSmatrix with that
recalculated from the inversion potentials. The four chan
sets are shown as Argand diagrams with the input values~at
integerI ) depicted by the circles. The values calculated
ing the inversion potentials are portrayed by the crosses.
lines, dashed and solid, respectively, are simply to guide
eye. The overall reproduction is very good as may be m
sured by ax2 value for theS matrix,

s

FIG. 3. The Argand diagram of theS matrix found using the
inversion potential shown in Fig. 2. The analytic inputS matrix is
shown by circles connected by the dashed line while the inversioS
matrix is portrayed by the crosses connected by the solid line.
0-5
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xS
25

1

4I max
(
I 50

I max

(
a,n

2

uSan
Iinv2San

Iinpu2. ~32!

For theS matrices shown in Fig. 3,xS
252.031024, which

corresponds to an average error of less than 1%.

VII. INCLUSION OF NONPHYSICAL S MATRICES

We now consider the situation when relatively few part
waves contribute sensibly in the sums defining observab
as in the case of low energy scattering. In doing so we ch
new potential parameters to ensure that theSmatrix tends to
unity at approximately the same rate in both channels
offset any effects that might be caused by disparate sizS
matrices in the two channels. For this test, the param
values chosen are not relevant to the ensuing discussion
that all entries in the potential matrix have similar re
strengths, radii, and diffusivities characteristically of
MeV, 3 fm, and 0.5 fm, respectively. The two elastic cha
nels have imaginary components still and again they are
derivative Woods-Saxon form. These base potentials are
played in Fig. 4 by the dashed curves.

We have used this starting potential matrix at the ene
of Ec.m.520 MeV to calculate the inputS matrix for the
given transfer reaction. Within the numerical accuracy, j
20 partial waves now contribute sensibly to the scattering
both channels. The optimum results of the inversion of
associatedS matrices specified at integer angular mome
I 50,1, . . . ,19 andobtained by minimizingxS

2 under varia-
tion of the Newton radii, are shown by the solid curves
Fig. 4. The reproduction of the input potential is poor
evidenced by thex2 values for the different potential matri
elements which are

~x11
V !256.6, ~x12

V !253.3,

~x21
V !251.5, and ~x22

V !250.88, ~33!

FIG. 4. Comparison of the inverted~solid curves! with the ana-
lytic input potential matrix~dashed curves! at Ec.m.520 MeV; with
the inversion process involving only integer~physical! partial
waves. The notation is as given in Fig. 2.
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when compared with the values typically of order 1022

found for the 104 MeV study. In this case, to calculate t
spectral coefficients 160 coupled equations have to
solved. For the wave function, 40 coupled equations
solved at each radius and for each channel. Concomita
reproduction of theS matrix elements found by using thes
inversion potentials is not very good, with the accumula
S-matrix x2 value for all channels as specified in Eq.~32!
beingxS

254.2731023. The results are shown in Fig. 5 wit
the notation as used in Fig. 3.

Next we use the analytic potential to calculate theS ma-
trices at half-integer as well as at integer values of angu
momentum, thereby having a larger set of equations for
inversion process. The input data are doubled as is the n
ber of coupled equations that have to be solved. The inv
sion potential matrix obtained with this extended set
shown in Fig. 6, the notation being as used in Fig. 2. It

FIG. 5. Argand diagrams of theSmatrix found using the inver-
sion potential shown in Fig. 4. The notation is as used in Fig. 3

FIG. 6. Same as Fig. 4 but with the inversion process n
including S matrix values at half-integer angular momenta.
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evident that the reproduction of the input potential is sign
cantly improved upon the previous result. The potentialx2

values are

~x11
V !250.06, ~x12

V !250.03,

~x21
V !250.02, and ~x22

V !250.02. ~34!

Despite this considerable improvement over the first test c
run, reproduction of theS matrix elements still does no
match the quality achieved with the 104 MeV example. T
results of the 20 MeV calculations are shown in Fig. 7 a
the agreement of the inversion result is rated by anS-matrix
xS

2 value of 7.9431024. Thus we included theSmatrix val-
ues at quarter integer partial waves as well, again doub
the input data set and the number of coupled equations t
solved. In fact, 672 coupled equations were used to de
the coefficient matrices and 168 for the wave functions. T
resulting inversion potential matrix is an improvement up
the previous ones as is evident from the comparison give
Fig. 8 and for which

~x11
V !250.02, ~x12

V !250.05,

~x21
V !250.01, and ~x22

V !250.02. ~35!

TheSmatrix elements are now reproduced with an accur
comparable to that found before with the 104 MeV exam
and which is shown in Fig. 9.

The results we have shown in this paper were all sensi
to the choice of the technical parameters,I max and the New-
ton radii r 1 ,r 2. The latter had to be specified to an accura
of 1022 fm to give an optimumxS

2 . All coupled equations
of the ISP were solved by means of a singular value dec
position method, in which the tolerance was taken as 10216.

FIG. 7. Argand diagrams of theSmatrix including values at the
half-integer angular momenta and found using the inversion po
tial shown in Fig. 6. The notation is as used in Fig. 3.
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VIII. SUMMARY AND CONCLUSIONS

We have specified an exact inversion method for the
lution of the inverse scattering problem for transfer reactio
In a first application we used anS matrix ascertained from
optical model potentials that are characteristic of scatter
from the system of interest, and at an energy for which
sufficiently large number of partial waves contribute. T
reproduction of the input potentials, and of the inputSmatrix
elements found using the inversion potentials, are very go
In a second application we studied the attributes of the
version potential in the case that only few partial waves c
tribute to the scattering. Restricting the inversion calculat
to use only the physical~integer partial wave! S matrix ele-
ments gave quite poor results. IncludingS matrices defined
at nonphysical~noninteger! angular momenta however, le
to quite good reproductions.

Thus, for the first time, direct application of a couple

n-

FIG. 8. Same as Fig. 6 but with the inversion now includingS
matrix values at quarter integer values of angular momenta.

FIG. 9. Argand diagrams of theS matrix now including values
at quarter integer angular momenta, found using the inversion
tential shown in Fig. 8. The notation is as used in Fig. 3.
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channel ISP at fixed energy to experimental scattering d
seems possible. But the step to define the input from ac
scattering data still involves major practical difficulties a
limitations. The current method has been designed for tra
fer reactions in which the interactions do not depend on
angular momentum, and all fragments are spinless. Ne
theless there are real examples that fulfill these conditions
for instance thea transfer reaction discussed in this pap
Next, one needs at least three angular differential cross
tions at appropriate energies. Note that the energy in
second channel isEc.m.2Q whereQ is theQ value of trans-
fer reaction. That data should be accurate and measure
sufficiently many angles and for two elastic, and one trans
channel as the fourth element of the inputS matrix can be
obtained by symmetry (S215S12). To assure that only the
case where all fragments remain in the ground state is
portant, the scattering energy may need to be kept reason
low. But then only few partial waves may contribute signi
cantly, and inclusion ofS matrix elements at nonphysica
angular momenta may be required. Considering the form
tt

-

g

s.
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the S matrices plotted in our figures, the question rema
open as to how these values are to be obtained from thS
matrices specified at physical angular momentum values
has been demonstrated@9# that the interpolation of theS
matrix with a rational form is not necessarily reliable. In fa
albeit the rational form might be a physically motivated i
terpolation, it did not give the correct progression of theS
matrix to be connected with the actual underlying intera
tion.
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