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Correlated scattering corrections to eikonal few-body models
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A basic assumption which underpins recent applications of eikonal few-body models to nuclear scattering
and nuclear reactions is that of the addition of the constituent scattering phases. We investigate the accuracy of
this assumption in the case of the elastic scatterinfHsf, treated as a five-constituenri{ 4n) system, from
a light target nucleus at energies of 10’s of MeV/nucleon. To do so we calculate Feshbach'’s correlated
scattering or overlapping potential contributions to the eikonal model phase shifts in this many-body case. We
find that even fo®He, with ten contributing pair-wise potential overlaps, these terms introduce corrections that
are small in comparison with available experimental precision and also compared to those phase additive
noneikonal corrections which arise from the use of an improved description of the phase shifts for each of the
constituent-target subsystems within the few-body model.

PACS numbdis): 24.10-i, 21.60.Gx, 25.10ts, 25.70.Bc

[. INTRODUCTION cently such models have been applied extensively at lower
energies, typically less than 100 MeV/nucleon, to study re-
Semiclassical treatments of scattering include the interferactions of two- and three-body halo nuclei such 'aBe,
ence and diffraction effects neglected in purely classical de-"Li, and “Be, effective thgee- and four-body problems, e.g.,
scriptions. In such approaches to high-energy scattering, paRRefs:[9-13, and also for’He, an effective six-body prob-
tial wave sums can be replaced by integrals over impa m_[14]. Imp_I|C|t in these appr_oa(_:hes is the use of th_e_adla-
parameters. These representations are connected formally tLC approxm:jatl(_)l;], that tge mmden(tj ene_rg;; IS s_ufﬂ_mently_
use of expansions of the Legendre polynomidiband by gh compared with ground state and typical excitation en

log of the van de Hulst extension of the Rayleigh-Gans scatfjo, js good at incident energies as low as 20 MeV/nucleon.
tering of light [2,3]. The eikonal approximation was first The projectile incident energies of most interest in this work,
applied to the wave function for particle scattering by Mo-40-100 MeV/nucleon, relevant to beams produced in frag-
liere[4] and by Fernbackt al.[5]. The best known and most mentation reactions, are somewhat higher. We are not yet in
successful application of this type was developed by Glaubes position to be able to quantify the corrections to the adia-
[6]. Subsequently, eikonal methods have been used extepatic approximation for théHe system studied here. Never-
sively in nuclear physics. theless, the eikonal methods provide essentially the only
The eikonal approximation is that the phase shift intro-practical method for quantitative investigations of effective
duced in the scattering can be calculated assuming the paiew-body systems and so an understanding of their accuracy
ticle trajectory is approximated to a straight line path throughon different energy and angular regions is of considerable
the field of the target at the appropriate impact parameter. importance. The present work is a contribution to such a
has been applied, typically, when the wavelength of the prostudy.
jectile is small compared to the size of the system and the At lower energies the basis of the few-body eikonal
projectile energy exceeds the potential strength responsiblaodel is as follows. For each impact paramebeof the
for the scattering. In general, the eikonal approximationcenter of mass of the projectile the few-body eikonal model
ceases to be valid at low energies or large scattering anglesalculation of the scattering amplitude involves the expecta-
since the assumption of a straight line trajectory is less aption value, over the projectile’s ground state few-body den-
plicable. Several analyses of the eikonal approximation, taity, of the product of the eikonal approximations to each
understand its range of validity and to extend its predictiveconstituent-targeS matrix. That is, it is assumed that the
power to lower energies and/or larger angles, have been dighase shift for the projectile-target system is the sum of the
cussed 7]. These methods involve obtaining improved de-(eikona) phase shifts due to each cluster interacting indepen-
scriptions of the scattering phase. Other approaches maintadently with the target. These interactions between the projec-
the eikonal phase shift but then attempt to include the effecttile constituents and the target are represented by complex
of deviations from the eikonal straight line trajectory usingoptical potentials with the real part of the potential describ-
an effective impact parameter, e.g., R&f]. The latter have ing refraction of the incident wave and the imaginary part the
been used in particular for approximate treatments of thabsorption of flux from each two-body elastic channel. Re-
Coulomb deflection in heavy-ion scattering. cently it was shown that if, instead of the eikonal phase
The application of eikonal methods to few-body projec-shifts, one uses the exact partial wave phase shifts continued
tiles was also first discussed by Glaulpét for the (three-  to a continuous angular momentum variable, called the exact
body) deuteron-nucleus system at high energy. More recontinued (EC) prescription, one improves the calculated
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cross sections at lower energies significand$—20. One (1) (= ")
should note that, even with this replacement, it is still as- fo (9):—|kJO bdbh(gb){Sy"(b)—1}, (1)
sumed that the total phase shift is the sum of the phase shifts

generated by each constituent cluster with the target. It igyherek is the projectile incident wave number in the center

implicit therefore that each two-body scattering takes placef mass frame, ang= 2k sin(¢/2) is the momentum transfer.

and is calculated without regard to the positions of the otherhe composite nature of the projectile is contained within

constituents. S{"(b), which is the eikonal approximation to the projectile-
This approximation, which underpins recent applicationstarget elasticS matrix expressed as a function of impact pa-

may not be accurate particularly when the number of conrameterb,

stituents in the projectile increases and especially if these are

localized in a small spatial volume. The target may then be )i — ) () ; )

under the influence of two cluster interactions simulta- So"(b)=(o |1:[1 So(by)l¢o”)- 2

neously. This adds correlation terms in the total phase shift J

function that depend nonlinearly on the pairwise clusterHere, each{)(b) eX|:[|X (bj)] is the eikonalS matrix de-

target interactions. Feshbach discusses and derives, for tI@@nbmg the interaction between clusjand the target at its

many nucleon case, these overlapping potential contributiongwn impact parametds; . The bra-ket notation in this equa-

to the total phase shift within the semiclassical approximation implies integration over the projectile’s internal coordi-

tion[21-23. nates. The eikoné matrices are related to the eikonal phase
The motivation for this paper is to assess the importancehift functions X{(b;), and hence to the two-body interac-

of these corrections to the eikonal model. We consfttée  tions V; with the target, through

scattering from*?C. An earlier eikonal model analysis of this

system, at 60 MeV/nucleofil4], was in reasonable agree- : Mot

ment with available quasielastic scattering data. P o( j)___pf dzVj(\bi+2%),

system has been chosen here, not due to these data, but be-

cause in®He the larger number of clustetfive) involved  here ot is the projectile-target reduced mass. The treat-
occupy a relatively smaller volume than is usual for haloment of Coulomb interactions within thé; is discussed in
nuclei, and thus those effects generated through the overlagetail in Ref.[20] and leads to an analogous expression for
ping potentials should be emphasized for this system. Outhe scattering amplitude
use of the harmonic oscillator based cluster orbital shell
model approximatiofCOSMA) for the 8He wave function n+1), oy . f b) (N
[24], with Gaussian rather than realistic single nucleon as-?((’ )(0)_fp‘( 6)=ik | bdbkh(gbye' % ){ '(b)- 1h
ymptotics, also confines the valence nucleons to smaller radii 4)
and will thus also tend to increase the importance of the
overlapping potential contributions. We expect therefore thatvhere SO”) is now the eikonal elastiS& matrix, including
the calculations presented will provide an upper bound orCoulomb interactions, antl is the point charge Coulomb
the likely importance of such terms and an indication of thescattering amplitude. In the calculations presented here we
need for their treatment in other cases. They are expected tib not include Coulomb breakup and so the Coulomb inter-
be significantly smaller for more weakly bound and moreaction is assumed to act on tifele center of mass. In this
extended one- and two-neutron halo nuclei. case the Coulomb modified projectile-target elaStimatrix

In the following, we discuss separately the magnitudes ofs
corrections arisingl) from the leading overlapping potential
terms, in the straight line trajectory limit arf@) from phase S (b) =S5 (b)exeli Xp,(b) —i Xy(b)], (5)
additive improvements to the cluster-target phase shifts due
to nonstraight line trajectory modifications. We note that forwheresg”) is the(nucleaj S matrix of Eq.(2) and the expo-
high energy &1 GeV) hadronic collisions a more unified nential factor accounts for the difference between the scat-
treatment of noneikonal and several other corrections watering phase of the actual Coulomb potential and that due to
made possible by use of aklperturbation expansion scheme point charge scattering.
by Wallace[25]. This expansion scheme is not readily appli-

cable for the lower energy potential model description of IIl. NONEIKONAL PHASE CORRECTIONS
interest here.

()

Methods offering a framework with which to make sys-
tematic corrections to the eikonal phase have proved useful.
Il. FEW-BODY EIKONAL MODEL Originally, the eikonal phase was replaced with the Wentzel-
Kramers-Brillouin (WKB) phase [26,27]. Subsequently
Assuming central two-body interactions, thef1)-body  Rosen and Yennif28] developed this approach, as did Wal-
eikonal elastic scattering amplitude for the scattering of dace[7,29-31. Very recently, it was shown that using di-
n-body projectile, with ground state wave functlaﬁf)”) rectly the exact partial wave phase shift, continued to a con-
from a target i§13] tinuous angular momentum variable, the exact continued
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and{x} denotes the set of theconstituents’ position vectors
relative to the projectile’s center of mass. These satisfy
2;m;x;=0 wherem; is the mass of constituentThe higher
order terms are included in the differential phase function
[23] and, for a®He nucleus modeled as an alpha core and
four neutrons, it can be written

d(R{x})=

1/2
kz—; uj(rj)} —k, ®)

wherej=a,n,, ... ,n, and theU; are the reduced potentials
Uj(r)=2,uptvj(r)/ﬁ2. Defining a differential phase function
for each constituent as

- . . B;(r)=[k*=U;(r)]"*k, 9
FIG. 1. Definition of the coordinate system used for the descrip-
tion of the effective six-bodyHe+target system. rearranging Eq(9) for U;, substituting in Eq(8), and using
the binomial expansion to second order in thethen gives

(EC) prescription[20], provides a very much simpler proce-
dure. Rather than develop and sum an expansion for the 1
phase shift, one solves dirzctly the radial S'dirl)nger equa- (D(R'{X}):; ¢(rp— 2K | %j (1) pm(rm)+- -+,
tion at the required impact parametdrs and therefore for ' (10)
noninteger angular momenka These\ are associated with
the physical angular momenta and b;, according to\ and hence the phase shift function is
=b;k=/"+1/2. Each componer@matrix S/(b;) is obtained

by matching, in the normal manner, the numerical solutions _ .
of the radial equation for the potential§ to the required b, )= =50 ,mdzzj“ ui(ry
asymptotic solutions, also analytically continued for real
[20]. 1 (=
These ECS matrices, which include noneikonal correc- e _dej’%j Uj(rpUnm(rm). (1)

tions to each cluster-target phase shift to all orders, can be
used in place of the in Egs. (2) and (5). The resulting  The first term of Eq(11) is precisely the usual eikonal ad-

calculation retains the structure of the few-body eikonalyiiion of phases representatidaa(b{x})zE-XQ)(b-). There
model, involving a product of each clust& matrix and ;.o of course additional terms, of order 2 and higher,

hence the assumption of addition of constituent phases. Tr‘ﬁhich involve the interactiotJ; of only a single constituent

|_nclu5|on O.f the Ieac_ilng order corre_:lated scattering correcJ-_ These are the noneikonal phase corrections, discussed in
tions are discussed in the next section.

Sec. lll, and which will be calculated to all orders.
The remaining terms, which we denotg , are the lead-
IV. OVERLAPPING POTENTIAL CORRECTIONS ing Feshbach overlapping potential terms, i.e.,

In the semiclassical approximation of Feshbf2h—-23, 1 (=
the derivation of the scattering amplitude develops in a simi- Xe(b{x})=— —3f dz > Ui(rpUp(rp). (12
lar fashion to that of the eikonal approximation. The coordi- 8k>J = jm#
nate system used is shown in Fig. 1. An expression for the ) o o
scattering amplitude is developed which is similar to theClearly, in the case ofHe, this is a sum of ten pair-wise
few-body eikonal expression, except that higher order termfrms. There will be contributions ta from those spatial

in the expansion of the exponential argument are retainedonfigurations of the constituents in the projectile which, at a
Feshbach writes given impact parametds of its center of mass, can interact

simultaneously with the target. The overlapping-potential-
corrected projectile-target elast®&matrix is, finally,

fM*Y(9)=—ik wbdeo(qb)
] Jo S (b) = ( p{V|exri Xo(b, {x}) + Xe (b, {x}) ]| 4

X [{ 6" |expli b, {x))} ¢(")~ 11, (6) n |
=811 T Sh(by) { exeli (b, 0 1 467).

(13

where the phase functiof is

X(b,{x})= Jw dz®(R{x}) ) The same Coulomb phase is applied to tBisatrix as ap-
— pears in Eq(5).

064608-3



J. M. BROOKE AND J. A. TOSTEVIN PHYSICAL REVIEW G52 064608

1.0 T T T T
’/
7’
/4
//
0.8 A 8
/
/
/
/
!
06 A .
= ,’
0
3 /
- /
0.4 A -
//
FIG. 2. Definition of the vector coordinates and components of 3 H
a projectile constituerjtwith respect to the target and with respect A
to the projectile’s center-of-mass position. 02| YA 1
S
b
V. APPLICATION TO ®He+'C SCATTERING _,/"’
We apply the formalism above to the elastic scattering of 0.0 0 2 4 6 8 10
8He from 12C at 60 MeV/nucleon. The 12 dimensional spa- b (fm)
tial integral, over four independent internal coordinatgs
involved in the calculation of th€He compositeS matrix, FIG. 3. Modulus of the calculated eikoné@olid line), the EC

Eqg. (13), is calculated by use of random sampling integra-phasedlong-dashed ling and the eikonal plus overlapping poten-
tion. Use is also made of the harmonic oscillator-based cluglial corrections(short-dashed lineelasticS matrix, as a function of
ter orbital shell model approximaticitCOSMA) wave func-  impact parameter, fofHe+ 12C scattering at 60 MeV/nucleon.
tion for 8He[24]. The details of this integration are the same

as are presented in RefL4]. There, calculations are for the ke2

eikonal case, when Eq13) is evaluated assumingz=0.  Ag(b,{x})=— > E Wb, z))V(bm,zy)

Here the additional factor involving: must be included in 1.m#]
the integrand. The explicit form of this term is now clarified.

1/2 4 7\2
T Zi +vmZ,
— ex;{(% ;+7”ym m) . (18
A. Feshbach phase i Ym ) "
Writing €= ./ (%k?), Eq. (12) can be written _
B. Numerical results
ke? [ L .
_ The parameters of the Gaussian interactions are chosen to
Xe(b,{x ———f dz Vi(r)Vm(rm). (14 i . : .
F(b{x}) 2 ) = j%, i) Vi(Fm). (14) reproduce approximately the potentials used in the earlier

eikonal analysi{14]. The a+'°C potential isV§=—85.0
For simplicity, Gaussian neutron amdparticle target poten- MeV, W5=—28.0 MeV,a,=3.0 fm, and then+°C poten-

tials are used, i.e., tial is Vo= —37.4 MeV,Wy=—10.0 MeV,a,=3.1 fm.
. _ We first assess the nature of the Feshbach and EC phase
Vi(r)=(Vh+iwhexp — y;r?), (15)  corrections at the level of theHe elasticS matrix. These

are presented, a$(b)|, in Fig. 3. The purely eikonal calcu-

with 7j=l/aj2, anda; the potential range. Decompositgge lation is shown by the solid line. The short-dashed line
Fig. 2) each constituent position vector with respect to theShows the results when the Feshbach correctign®f Eq.

target in terms of its impact parametey=b; +z wherez, (18 are included in Eq(13). As might be expected, the
—z+2/, in Eq.(14), and defining correlated scattering corrections arise principally at relatively
] L) . 1

small impact parameters since it is along these trajectories
that there are very significant simultaneous multiconstituent
overlaps with the target. The fractional changef3fb)| are

large, of order 50% as clarified below, however, the constitu-

V(b ,z))=(Vh+iwhexp - y[b?+2%]),  (16)

then ents are also strongly absorbed along such paths. These over-
e lapping potential corrections are seen to become very small
__Ke . N for the grazing trajectories in the region of the nuclear sur-
=" j’%j Vb;,Z)) V(b Zm) f_mdz face. The long-dashed line in Fig. 3 shows the corresponding

result when the noneikonal EC two-body matrices are
Xexf — (¥ + ymZ°—2(yjZ) + ymzi)z]. (17 used, instead of the)(b;), in Eq. (13). Now Xz=0. This
EC phase introduction shows significant modifications to the
After integration overz, the Feshbach phase, for GaussianelasticS matrix in the nuclear surface region. This is a direct
potentials, is therefore consequence of the extended range of the e{&€) two-
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FIG. 5. Calculated®He+%C elastic differential cross section
FIG. 4. Fractional changes of the moduli of the Feshbach modiangular distributiongas ratio to Rutherfordat 60 and 10 MeV/
fied and the eikonab matrices as a function of the assumed oscil- nucleon. The curves show the results of the eikdsalid line), the
lator radius parametar, in the COSMA wave function, fofHe EC phaseglong-dashed ling and the eikonal plus overlapping po-
+12C scattering at 60 MeV/nucleon. tentials(short-dashed linecalculations.

body S matrices with impact parameter compared to those ofjata available currently. Figure 5 therefore also shows calcu-
the eikonal limit, Eq.(3). These effects on the constituedt |ations at an incident energy of 10 MeV/nucleon. At this
matrices were shown in Figs. 1 and 3 of Ref0]. energy one would expect there to be additional corrections,
That the changes if5(b)|, arising fromA¢, are large are  due to our use of the adiabatic approximation. These calcu-
shown in Fig. 4. This shows the fractional change in modu4ations show nevertheless that, while the EC phase correc-
lus of the Feshbach modifi¢8(b)| from that of the eikonal  tions become very significant, the overlapping potential ef-
calculation (Sg(b)|—[Sy(b)[)/|Sp(b)|, as a function of the fects remain very small upon calculated cross sections.
assumed oscillator radius parametgin the COSMA wave The sensitivity of these few-body model calculations to
function. This value is usually taken as 2.2 f@d], based on  variations of physical parameters, such as the real and imagi-
the resulting rms size dfHe for which the change is of order nary potential strengths, their range and diffuseness, and of
50% in the target volume. Decreasingin the calculations  the valence particle separation energy, has also been investi-
further localizes the five constituents with an observed ingated for single neutron halo nuclei, such'&e, with fewer
crease in the importance of the correlated scattering terms, fgodies and larger spatial extension. These can be found else-
57% atb=0 for ro=1.8 fm. In all cases, however, these where[32]. There it is confirmed that, for such systems, the

effects are confined to small impact parameters of the propverlapping potential contributions are of even less signifi-
jectile’s center of mass. cance.

The corresponding elastic scattering differential cross sec-
tion angular distributions, presented as the ratio to Ruther-
ford, are shown in Figs. 5 and 6 for 60 MeV/nucleon incident
energy and different angular ranges. The curves have the
same meanings as in Fig. 3. As would be deduced from the 10
detailed discussion of th& matrices, the small impact pa-
rameter localization of overlapping potential corrections .
leads to significant modifications to the calculated cross sec- g
tions only at larger center of mass scattering angles, Fig. 5. It
should be pointed out that the quasielastic scattering data of -
Ref.[14], at 60 MeV/nucleon, included center-of-mass scat- 10
tering angles of less than 20° and the error bars on those data
are large compared to the effects calculated here. For this

angular range, Fig. 6, the EC phase modifications are far 0 2 4 6 8 10 12 1'4 16
more significant than the correlated scattering modifications.
However, as the figure shows, and was also shown in Ref.
[20], these noneikonal EC modifications are themselves al- FIG. 6. As for Fig. 5, for small angles and for incident energy of
ready small at this energy, and smaller than the errors on th&d MeV/nucleon.

0., (degrees)
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VI. SUMMARY AND CONCLUSIONS emphasized for this system. We use the COSRHe wave

Coupled channels formulations have been developeBmCtion' for simplicity, qnd obtain the expected sepsitivity
which, within the few-body adiabatic approximation, allow of the correlated scattering terms to the assumed size of the

for essentially exact calculations of the scattering of effective’'2Ve ;unCti?% The use of the EC phases in the present six-
three-body projectile$33]. Whereas, within eikonal meth- body, °He+ *“C, system is straightforward and the results are
ods, all break-up relative angular momenta between fragpresented here at 60 and 10 MeV/nucleon. We have shown

8 .
ments are implicitly included, in the coupled channels ap{hat, even for the’He system, the small impact parameter

proach these must be specified. The number of Coume[?calization of the correcti(_)ns due to the overlapping poten-
channels increases very rapidly with the number of bodied@l terms means that their effects are very small on cross

and included angular momenta. As a result, eikonal and imsections at center of mass angles currently accessible to ex-

pact parameter based models currently provide the mod&eriment. Those noneikonal corrections due to use of the EC
practical methods for quantitative investigations of effectivePN@ses are more significant at center of mass scattering
few-body systems, such as discussed here®ke, and an angles below 20°, and in particular at the lower energy. We

assessment of the accuracy of these approximate calculatiof@nclude that at the incident energies of exotic beams pro-
is of considerable importance. duced in fragmentation reactions, the addition of phases as-

As part of such an assessment, in this paper we hayaumption is remarkably accurate in few-body calculations on

calculated the importance of Feshbach’s correlated scatterir{@h,t target nuc_lei_gnd that correlat_ed .scattering terms are
or overlapping potential contributions to the eikonal model.Unlikely to be significant in any application of the few-body

The importance of these terms is also compared to thos&Cdels.
phase additive noneikonal corrections introduced when using

an improved description of the phase shift for each of the
constituent-target subsystems within the few-body model.

8He was chosen because its larger number of clugfisnes The financial support of the Engineering and Physical Sci-
occupy a smaller volume than is usual for halo nuclei. Thuences Research CoundiU.K.) through Grant Nos. GR/J
the effects due to the overlapping potential terms should b85867 and GR/M 82141 is gratefully acknowledged.
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