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Correlated scattering corrections to eikonal few-body models
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A basic assumption which underpins recent applications of eikonal few-body models to nuclear scattering
and nuclear reactions is that of the addition of the constituent scattering phases. We investigate the accuracy of
this assumption in the case of the elastic scattering of8He, treated as a five-constituent (a14n) system, from
a light target nucleus at energies of 10’s of MeV/nucleon. To do so we calculate Feshbach’s correlated
scattering or overlapping potential contributions to the eikonal model phase shifts in this many-body case. We
find that even for8He, with ten contributing pair-wise potential overlaps, these terms introduce corrections that
are small in comparison with available experimental precision and also compared to those phase additive
noneikonal corrections which arise from the use of an improved description of the phase shifts for each of the
constituent-target subsystems within the few-body model.

PACS number~s!: 24.10.2i, 21.60.Gx, 25.10.1s, 25.70.Bc
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I. INTRODUCTION

Semiclassical treatments of scattering include the inter
ence and diffraction effects neglected in purely classical
scriptions. In such approaches to high-energy scattering,
tial wave sums can be replaced by integrals over imp
parameters. These representations are connected forma
use of expansions of the Legendre polynomials@1# and by
replacing sums over discrete angular momenta by integ
The treatment of light rays as straight lines has a long his
in optics. The eikonal method is then the semiclassical a
log of the van de Hulst extension of the Rayleigh-Gans s
tering of light @2,3#. The eikonal approximation was firs
applied to the wave function for particle scattering by M
lière @4# and by Fernbachet al. @5#. The best known and mos
successful application of this type was developed by Glau
@6#. Subsequently, eikonal methods have been used ex
sively in nuclear physics.

The eikonal approximation is that the phase shift int
duced in the scattering can be calculated assuming the
ticle trajectory is approximated to a straight line path throu
the field of the target at the appropriate impact paramete
has been applied, typically, when the wavelength of the p
jectile is small compared to the size of the system and
projectile energy exceeds the potential strength respons
for the scattering. In general, the eikonal approximat
ceases to be valid at low energies or large scattering an
since the assumption of a straight line trajectory is less
plicable. Several analyses of the eikonal approximation
understand its range of validity and to extend its predict
power to lower energies and/or larger angles, have been
cussed@7#. These methods involve obtaining improved d
scriptions of the scattering phase. Other approaches main
the eikonal phase shift but then attempt to include the effe
of deviations from the eikonal straight line trajectory usi
an effective impact parameter, e.g., Ref.@8#. The latter have
been used in particular for approximate treatments of
Coulomb deflection in heavy-ion scattering.

The application of eikonal methods to few-body proje
tiles was also first discussed by Glauber@6# for the ~three-
body! deuteron-nucleus system at high energy. More
0556-2813/2000/62~6!/064608~6!/$15.00 62 0646
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cently such models have been applied extensively at lo
energies, typically less than 100 MeV/nucleon, to study
actions of two- and three-body halo nuclei such as11Be,
11Li, and 14Be, effective three- and four-body problems, e.
Refs. @9–13#, and also for8He, an effective six-body prob
lem @14#. Implicit in these approaches is the use of the ad
batic approximation, that the incident energy is sufficien
high compared with ground state and typical excitation
ergies, that the motions internal to the projectile can be f
zen for the duration of the interaction@15#. Comparisons of
adiabatic and nonadiabatic methods@16,17# for two-body
projectiles indicate that for elastic scattering this approxim
tion is good at incident energies as low as 20 MeV/nucle
The projectile incident energies of most interest in this wo
40–100 MeV/nucleon, relevant to beams produced in fr
mentation reactions, are somewhat higher. We are not ye
a position to be able to quantify the corrections to the ad
batic approximation for the8He system studied here. Neve
theless, the eikonal methods provide essentially the o
practical method for quantitative investigations of effecti
few-body systems and so an understanding of their accu
on different energy and angular regions is of considera
importance. The present work is a contribution to such
study.

At lower energies the basis of the few-body eikon
model is as follows. For each impact parameterb of the
center of mass of the projectile the few-body eikonal mo
calculation of the scattering amplitude involves the expec
tion value, over the projectile’s ground state few-body de
sity, of the product of the eikonal approximations to ea
constituent-targetS matrix. That is, it is assumed that th
phase shift for the projectile-target system is the sum of
~eikonal! phase shifts due to each cluster interacting indep
dently with the target. These interactions between the pro
tile constituents and the target are represented by com
optical potentials with the real part of the potential descr
ing refraction of the incident wave and the imaginary part
absorption of flux from each two-body elastic channel. R
cently it was shown that if, instead of the eikonal pha
shifts, one uses the exact partial wave phase shifts contin
to a continuous angular momentum variable, called the ex
continued ~EC! prescription, one improves the calculate
©2000 The American Physical Society08-1
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cross sections at lower energies significantly@18–20#. One
should note that, even with this replacement, it is still
sumed that the total phase shift is the sum of the phase s
generated by each constituent cluster with the target. I
implicit therefore that each two-body scattering takes pl
and is calculated without regard to the positions of the ot
constituents.

This approximation, which underpins recent applicatio
may not be accurate particularly when the number of c
stituents in the projectile increases and especially if these
localized in a small spatial volume. The target may then
under the influence of two cluster interactions simul
neously. This adds correlation terms in the total phase s
function that depend nonlinearly on the pairwise clust
target interactions. Feshbach discusses and derives, fo
many nucleon case, these overlapping potential contribut
to the total phase shift within the semiclassical approxim
tion @21–23#.

The motivation for this paper is to assess the importa
of these corrections to the eikonal model. We consider8He
scattering from12C. An earlier eikonal model analysis of th
system, at 60 MeV/nucleon@14#, was in reasonable agree
ment with available quasielastic scattering data. The8He
system has been chosen here, not due to these data, b
cause in8He the larger number of clusters~five! involved
occupy a relatively smaller volume than is usual for ha
nuclei, and thus those effects generated through the ove
ping potentials should be emphasized for this system.
use of the harmonic oscillator based cluster orbital sh
model approximation~COSMA! for the 8He wave function
@24#, with Gaussian rather than realistic single nucleon
ymptotics, also confines the valence nucleons to smaller r
and will thus also tend to increase the importance of
overlapping potential contributions. We expect therefore t
the calculations presented will provide an upper bound
the likely importance of such terms and an indication of
need for their treatment in other cases. They are expecte
be significantly smaller for more weakly bound and mo
extended one- and two-neutron halo nuclei.

In the following, we discuss separately the magnitudes
corrections arising~1! from the leading overlapping potentia
terms, in the straight line trajectory limit and~2! from phase
additive improvements to the cluster-target phase shifts
to nonstraight line trajectory modifications. We note that
high energy ('1 GeV! hadronic collisions a more unifie
treatment of noneikonal and several other corrections
made possible by use of a 1/k perturbation expansion schem
by Wallace@25#. This expansion scheme is not readily app
cable for the lower energy potential model description
interest here.

II. FEW-BODY EIKONAL MODEL

Assuming central two-body interactions, the (n11)-body
eikonal elastic scattering amplitude for the scattering o
n-body projectile, with ground state wave functionf0

(n) ,
from a target is@13#
06460
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f 0
(n11)~u!52 ikE

0

`

bdbJ0~qb!$S0
(n)~b!21%, ~1!

wherek is the projectile incident wave number in the cen
of mass frame, andq52k sin(u/2) is the momentum transfer
The composite nature of the projectile is contained with
S0

(n)(b), which is the eikonal approximation to the projectil
target elasticS matrix expressed as a function of impact p
rameterb,

S0
(n)~b!5^f0

(n)u)
j 51

n

S0
j ~bj !uf0

(n)&. ~2!

Here, eachS0
j (bj )5exp@iX 0

j (bj )# is the eikonalSmatrix de-
scribing the interaction between clusterj and the target at its
own impact parameterbj . The bra-ket notation in this equa
tion implies integration over the projectile’s internal coord
nates. The eikonalSmatrices are related to the eikonal pha
shift functionsX 0

j (bj ), and hence to the two-body interac
tions Vj with the target, through

X 0
j ~bj !52

mpt

\2k
E

2`

`

dzVj~Abj
21z2!, ~3!

where mpt is the projectile-target reduced mass. The tre
ment of Coulomb interactions within theVj is discussed in
detail in Ref.@20# and leads to an analogous expression
the scattering amplitude

f̄ 0
(n11)~u!5 f pt~u!2 ikE

0

`

bdbJ0~qb!eiXpt(b)$S̄0
(n)~b!21%,

~4!

where S̄0
(n) is now the eikonal elasticS matrix, including

Coulomb interactions, andf pt is the point charge Coulomb
scattering amplitude. In the calculations presented here
do not include Coulomb breakup and so the Coulomb in
action is assumed to act on the8He center of mass. In this
case the Coulomb modified projectile-target elasticS matrix
is

S̄0
(n)~b!5S0

(n)~b!exp@ iX0r~b!2 iXpt~b!#, ~5!

whereS0
(n) is the~nuclear! S matrix of Eq.~2! and the expo-

nential factor accounts for the difference between the s
tering phase of the actual Coulomb potential and that du
point charge scattering.

III. NONEIKONAL PHASE CORRECTIONS

Methods offering a framework with which to make sy
tematic corrections to the eikonal phase have proved use
Originally, the eikonal phase was replaced with the Wentz
Kramers-Brillouin ~WKB! phase @26,27#. Subsequently
Rosen and Yennie@28# developed this approach, as did Wa
lace @7,29–31#. Very recently, it was shown that using d
rectly the exact partial wave phase shift, continued to a c
tinuous angular momentum variable, the exact continu
8-2
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CORRELATED SCATTERING CORRECTIONS TO . . . PHYSICAL REVIEW C62 064608
~EC! prescription@20#, provides a very much simpler proce
dure. Rather than develop and sum an expansion for
phase shift, one solves directly the radial Schro¨dinger equa-
tion at the required impact parametersbj , and therefore for
noninteger angular momental. Thesel are associated with
the physical angular momental, and bj , according tol
5bjk5l 11/2. Each componentSmatrix Sj (bj ) is obtained
by matching, in the normal manner, the numerical solutio
of the radial equation for the potentialsVj to the required
asymptotic solutions, also analytically continued for real
@20#.

These ECS matrices, which include noneikonal corre
tions to each cluster-target phase shift to all orders, can
used in place of theS0

j in Eqs. ~2! and ~5!. The resulting
calculation retains the structure of the few-body eiko
model, involving a product of each clusterS matrix and
hence the assumption of addition of constituent phases.
inclusion of the leading order correlated scattering corr
tions are discussed in the next section.

IV. OVERLAPPING POTENTIAL CORRECTIONS

In the semiclassical approximation of Feshbach@21–23#,
the derivation of the scattering amplitude develops in a si
lar fashion to that of the eikonal approximation. The coor
nate system used is shown in Fig. 1. An expression for
scattering amplitude is developed which is similar to t
few-body eikonal expression, except that higher order te
in the expansion of the exponential argument are retain
Feshbach writes

f F
(n11)~u!52 ikE

0

`

bdbJ0~qb!

3@^f0
(n)uexp$ iX~b,$x%!%uf0

(n)&21#, ~6!

where the phase functionX is

X~b,$x%!5E
2`

`

dzF~R,$x%! ~7!

FIG. 1. Definition of the coordinate system used for the desc
tion of the effective six-body8He1target system.
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and$x% denotes the set of then constituents’ position vectors
relative to the projectile’s center of mass. These sati
( jmjxj50 wheremj is the mass of constituentj. The higher
order terms are included in the differential phase functionF
@23# and, for a 8He nucleus modeled as an alpha core a
four neutrons, it can be written

F~R,$x%!5Fk22(
j

U j~r j !G1/2

2k, ~8!

wherej 5a,n1 , . . . ,n4 and theU j are the reduced potential
U j (r )52mptVj (r )/\2. Defining a differential phase function
for each constituent as

f j~r !5@k22U j~r !#1/22k, ~9!

rearranging Eq.~9! for U j , substituting in Eq.~8!, and using
the binomial expansion to second order in thef j then gives

F~R,$x%!5(
j

f j~r j !2
1

2k (
j ,mÞ j

f j~r j !fm~r m!1••• ,

~10!

and hence the phase shift function is

X~b,$x%!52
1

2kE2`

`

dz(
j

U j~r j !

2
1

8k3E2`

`

dz (
j ,mÞ j

U j~r j !Um~r m!. ~11!

The first term of Eq.~11! is precisely the usual eikonal ad
dition of phases representationX0(b,$x%)5( jX 0

j (bj ). There
are of course additional terms, of orderk23 and higher,
which involve the interactionU j of only a single constituen
j. These are the noneikonal phase corrections, discusse
Sec. III, and which will be calculated to all orders.

The remaining terms, which we denoteXF , are the lead-
ing Feshbach overlapping potential terms, i.e.,

XF~b,$x%!52
1

8k3E2`

`

dz (
j ,mÞ j

U j~r j !Um~r m!. ~12!

Clearly, in the case of8He, this is a sum of ten pair-wise
terms. There will be contributions toXF from those spatial
configurations of the constituents in the projectile which, a
given impact parameterb of its center of mass, can interac
simultaneously with the target. The overlapping-potenti
corrected projectile-target elasticS matrix is, finally,

SF
(n)~b!5^f0

(n)uexp@ iX0~b,$x%!1XF~b,$x%!#uf0
(n)&

5^f0
(n)u H )

j 51

n

S0
j ~bj !J exp@ iXF~b,$x%!#uf0

(n)&.

~13!

The same Coulomb phase is applied to thisS matrix as ap-
pears in Eq.~5!.

-

8-3
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V. APPLICATION TO 8He¿12C SCATTERING

We apply the formalism above to the elastic scattering
8He from 12C at 60 MeV/nucleon. The 12 dimensional sp
tial integral, over four independent internal coordinatesxj ,
involved in the calculation of the8He compositeS matrix,
Eq. ~13!, is calculated by use of random sampling integ
tion. Use is also made of the harmonic oscillator-based c
ter orbital shell model approximation~COSMA! wave func-
tion for 8He @24#. The details of this integration are the sam
as are presented in Ref.@14#. There, calculations are for th
eikonal case, when Eq.~13! is evaluated assumingXF50.
Here the additional factor involvingXF must be included in
the integrand. The explicit form of this term is now clarifie

A. Feshbach phase

Writing e5mpt /(\
2k2), Eq. ~12! can be written

XF~b,$x%!52
ke2

2 E
2`

`

dz (
j ,mÞ j

Vj~r j !Vm~r m!. ~14!

For simplicity, Gaussian neutron anda particle target poten-
tials are used, i.e.,

Vj~r !5~V0
j 1 iW0

j !exp~2g j r
2!, ~15!

with g j51/aj
2 , andaj the potential range. Decomposing~see

Fig. 2! each constituent position vector with respect to
target in terms of its impact parameter,r j5bj1zj wherezj

5z1zj8 , in Eq. ~14!, and defining

V~bj ,zj8!5~V0
j 1 iW0

j !exp~2g j@bj
21zj8

2# !, ~16!

then

XF52
ke2

2 (
j ,mÞ j

V~bj ,zj8!V~bm ,zm8 !E
2`

`

dz

3exp@2~g j1gm!z222~g j zj81gmzm8 !z#. ~17!

After integration overz, the Feshbach phase, for Gauss
potentials, is therefore

FIG. 2. Definition of the vector coordinates and components
a projectile constituentj with respect to the target and with respe
to the projectile’s center-of-mass position.
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XF~b,$x%!52
ke2

2 (
j ,mÞ j

V~bj ,zj8!V~bm ,zm8 !

3S p

g j1gm
D 1/2

expF ~g j zj81gmzm8 !2

g j1gm
G . ~18!

B. Numerical results

The parameters of the Gaussian interactions are chose
reproduce approximately the potentials used in the ea
eikonal analysis@14#. The a112C potential isV0

a5285.0
MeV, W0

a5228.0 MeV,aa53.0 fm, and then112C poten-
tial is V0

n5237.4 MeV,W0
n5210.0 MeV,an53.1 fm.

We first assess the nature of the Feshbach and EC p
corrections at the level of the8He elasticS matrix. These
are presented, asuS(b)u, in Fig. 3. The purely eikonal calcu
lation is shown by the solid line. The short-dashed li
shows the results when the Feshbach correctionsXF of Eq.
~18! are included in Eq.~13!. As might be expected, the
correlated scattering corrections arise principally at relativ
small impact parameters since it is along these trajecto
that there are very significant simultaneous multiconstitu
overlaps with the target. The fractional changes inuS(b)u are
large, of order 50% as clarified below, however, the const
ents are also strongly absorbed along such paths. These
lapping potential corrections are seen to become very sm
for the grazing trajectories in the region of the nuclear s
face. The long-dashed line in Fig. 3 shows the correspond
result when the noneikonal EC two-bodyS matrices are
used, instead of theS0

j (bj ), in Eq. ~13!. Now XF50. This
EC phase introduction shows significant modifications to
elasticSmatrix in the nuclear surface region. This is a dire
consequence of the extended range of the exact~EC! two-

f

FIG. 3. Modulus of the calculated eikonal~solid line!, the EC
phases~long-dashed line!, and the eikonal plus overlapping poten
tial corrections~short-dashed line! elasticSmatrix, as a function of
impact parameter, for8He112C scattering at 60 MeV/nucleon.
8-4
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CORRELATED SCATTERING CORRECTIONS TO . . . PHYSICAL REVIEW C62 064608
bodySmatrices with impact parameter compared to those
the eikonal limit, Eq.~3!. These effects on the constituentS
matrices were shown in Figs. 1 and 3 of Ref.@20#.

That the changes inuS(b)u, arising fromXF , are large are
shown in Fig. 4. This shows the fractional change in mo
lus of the Feshbach modifieduSF(b)u from that of the eikonal
calculation (uSF(b)u2uS0(b)u)/uS0(b)u, as a function of the
assumed oscillator radius parameterr 0 in the COSMA wave
function. This value is usually taken as 2.2 fm@24#, based on
the resulting rms size of8He for which the change is of orde
50% in the target volume. Decreasingr 0 in the calculations
further localizes the five constituents with an observed
crease in the importance of the correlated scattering term
57% at b50 for r 051.8 fm. In all cases, however, thes
effects are confined to small impact parameters of the p
jectile’s center of mass.

The corresponding elastic scattering differential cross s
tion angular distributions, presented as the ratio to Ruth
ford, are shown in Figs. 5 and 6 for 60 MeV/nucleon incide
energy and different angular ranges. The curves have
same meanings as in Fig. 3. As would be deduced from
detailed discussion of theS matrices, the small impact pa
rameter localization of overlapping potential correctio
leads to significant modifications to the calculated cross s
tions only at larger center of mass scattering angles, Fig.
should be pointed out that the quasielastic scattering dat
Ref. @14#, at 60 MeV/nucleon, included center-of-mass sc
tering angles of less than 20° and the error bars on those
are large compared to the effects calculated here. For
angular range, Fig. 6, the EC phase modifications are
more significant than the correlated scattering modificatio
However, as the figure shows, and was also shown in R
@20#, these noneikonal EC modifications are themselves
ready small at this energy, and smaller than the errors on

FIG. 4. Fractional changes of the moduli of the Feshbach m
fied and the eikonalS matrices as a function of the assumed osc
lator radius parameterr 0 in the COSMA wave function, for8He
112C scattering at 60 MeV/nucleon.
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data available currently. Figure 5 therefore also shows ca
lations at an incident energy of 10 MeV/nucleon. At th
energy one would expect there to be additional correctio
due to our use of the adiabatic approximation. These ca
lations show nevertheless that, while the EC phase cor
tions become very significant, the overlapping potential
fects remain very small upon calculated cross sections.

The sensitivity of these few-body model calculations
variations of physical parameters, such as the real and im
nary potential strengths, their range and diffuseness, an
the valence particle separation energy, has also been inv
gated for single neutron halo nuclei, such as11Be, with fewer
bodies and larger spatial extension. These can be found
where@32#. There it is confirmed that, for such systems, t
overlapping potential contributions are of even less sign
cance.

i-
-

FIG. 5. Calculated8He112C elastic differential cross sectio
angular distributions~as ratio to Rutherford! at 60 and 10 MeV/
nucleon. The curves show the results of the eikonal~solid line!, the
EC phases~long-dashed line!, and the eikonal plus overlapping po
tentials~short-dashed line! calculations.

FIG. 6. As for Fig. 5, for small angles and for incident energy
60 MeV/nucleon.
8-5



pe
w
iv
-
a
p
le
ie
im
o

ive

tio

a
ri
e
o

sin
th
e

u
b

ity
f the
six-
re

own
er
en-
oss

ex-
EC
ring

We
ro-
as-
on
are
y

ci-

J. M. BROOKE AND J. A. TOSTEVIN PHYSICAL REVIEW C62 064608
VI. SUMMARY AND CONCLUSIONS

Coupled channels formulations have been develo
which, within the few-body adiabatic approximation, allo
for essentially exact calculations of the scattering of effect
three-body projectiles@33#. Whereas, within eikonal meth
ods, all break-up relative angular momenta between fr
ments are implicitly included, in the coupled channels a
proach these must be specified. The number of coup
channels increases very rapidly with the number of bod
and included angular momenta. As a result, eikonal and
pact parameter based models currently provide the m
practical methods for quantitative investigations of effect
few-body systems, such as discussed here for8He, and an
assessment of the accuracy of these approximate calcula
is of considerable importance.

As part of such an assessment, in this paper we h
calculated the importance of Feshbach’s correlated scatte
or overlapping potential contributions to the eikonal mod
The importance of these terms is also compared to th
phase additive noneikonal corrections introduced when u
an improved description of the phase shift for each of
constituent-target subsystems within the few-body mod
8He was chosen because its larger number of clusters~five!
occupy a smaller volume than is usual for halo nuclei. Th
the effects due to the overlapping potential terms should
s

l.

.
-

.
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emphasized for this system. We use the COSMA8He wave
function, for simplicity, and obtain the expected sensitiv
of the correlated scattering terms to the assumed size o
wave function. The use of the EC phases in the present
body, 8He112C, system is straightforward and the results a
presented here at 60 and 10 MeV/nucleon. We have sh
that, even for the8He system, the small impact paramet
localization of the corrections due to the overlapping pot
tial terms means that their effects are very small on cr
sections at center of mass angles currently accessible to
periment. Those noneikonal corrections due to use of the
phases are more significant at center of mass scatte
angles below 20°, and in particular at the lower energy.
conclude that at the incident energies of exotic beams p
duced in fragmentation reactions, the addition of phases
sumption is remarkably accurate in few-body calculations
light target nuclei and that correlated scattering terms
unlikely to be significant in any application of the few-bod
models.
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