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Statistical signatures of critical behavior in small systems
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The cluster distributions of three different systems are examined to search for signatures of a continuous
phase transition. In a system known to possess such a phase transition, both sensitive and insensitive signatures
are present; while in systems known not to possess such a phase transition, only insensitive signatures are
present. It is shown that nuclear multifragmentation results in cluster distributions belonging to the former
category, suggesting that the fragments are the result of a continuous phase transition.

PACS numbes): 25.70.Pq, 64.60.Ak, 24.60.Ky, 05.70.Jk

I. INTRODUCTION [7-10], used to describe condensation in a fluid system near
its critical point, after modification for nuclear physics ef-

Multifragmentation, the breakup of a system into severafects, was capable of describing the isotopic yields of 50
intermediate sized pieces, is of great interest in many aredsagments with one set of parametfésl1]. The temperature
of physics. Several recent works have been presented ond the system was determined to be about 5 M&V, a
variety of systems including fullerenef4—3] as well as the reasonable value considering that the average binding energy
fragmentation of collisions in solidgl]. This work examines per nucleon in a nucleus is approximately 8 MeV. The suc-
the breakup of excited nuclei, nuclear multifragmentation. cess of this approach reinforced the notion that multifrag-

Beginning in the 1970’s significant advances in the underimentation was both a thermal process and that it was related
standing of nuclear multifragmentation were made possibléo critical phenomena.
with the advent of high statistics inclusive experiments. With the advent of exclusive experiments capable of de-
Typically, only one intermediate mass fragment<{(3; tecting all of the charged reaction products, the possibility of
=<30) was detected per event. From these inclusive studiestudying multifragmentation on an event-by-event basis be-
came the first evidence that intermediate mass fragmentame a reality. High statistics exclusive experiments in
(IMFs) were associated with a simultaneous multibodywhich the fragmenting system is characterized according to
breakup of a system which had undergone expansion. As nucleon number and excitation energy permit both the
study of the fragment mass yield distribution obtained in ancorrelation of dynamical and statistical information and the
inclusive gas jet experiment conducted at Fermilab containedtudy of fluctuations in experimental observables. Fluctua-
the first indication that nuclear multifragmentation might betions are central to all critical phenomena, and indeed, such
related to critical phenomena normally observed in macrofluctuations are apparent in exclusive multifragmentation
scopic system§S]. The Purdue Group was the first to make data. In this paper, the focus will be on the statistical signals
the suggestion that the observed power law in the fragmerdf multifragmentation data observed in the EOS experiment
yield distribution might result from a system whose excita-[12—14. Comparisons will be made with two other systems,
tion energy was comparable to its total binding end§ly = one of which exhibits critical behavior and one of which
The exponent of the power law was<2<3, within the  does not.
range expected for a system near its critical point. Much of the pioneering work in understanding the statis-

The presence of the power law and the value of the expotical aspects of multifragmentation was performed by Campi
nent, coupled with the strong similarity of the nuclear and[15-22 and Mekjian[23-29. Both compared multifrag-
van der Waals potentials, led the Purdue group to suggeshentation data to model systems in order to gain some in-
that multifragmentation of nuclei might be analogous to asight into the nuclear breakup process. In this paper, many of
fluid undergoing a continuous phase transition from a liquidthe ideas suggested by these authors are followed and ap-
to a gas. Furthermore, the Fisher droplet mod@eMD) plied to the EOS data and the model systems in order to
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demonstrate which signals are most useful in the identificaeluster distribution can provide the most insight into the na-
tion of critical behavior. Several methods proposed for deture of the mechanism which created the clusters? Specifi-
tecting signals of critical phenomena in multifragmentationcally, can those systems which contain critical behavior be
are reviewed in this paper. distinguished from those which do not? It will be argued that
It is tempting to compare the experimental data to dy-this question has two answers. Analysis of theensitive
namical models that attempt to describe nuclear multifragfeatures of the cluster distribution cannot make the above-
mentation. However, the task of modeling multifragmenta-mentioned distinctiof55]. However, an analysis of theen-
tion from the initial collision phase of the reaction to freeze-sitive features of the cluster distribution will be shown to
out has proven to be a daunting task. Models that adequatefyrovide deeper insight into the cluster production mecha-
describe the initial stage of the reacti80—35 do not sat-  nism. A similar type of analysis has been previously reported
isfactorily describe the fragment formation stage, in eitheffor clusters resulting from nuclear multifragmentatidr®—
statistical or dynamical aspects. Likewise, the most succes34] and have been performed on modg$,57. Note that
ful models in describing the statistical properties of nucleakhe more generic term “cluster” will be used to refer to any
multifragmentatiorj 3641, assume thermodynamic equilib- composite of constituents, whether these be molecules of a
rium, yet fail to adequately match the dynamical features O?Iuid, nuclear fragments or percolation clusters.

the data. The method employed to address the above question is as
: Gollows. The same analysis is performed on the cluster dis-

) A - “Kributi diff t syst o ,
sical system$42—4§, have not been conclusive in descrlb-StrIbUtlonS produced by three different systems. In one case

ing nuclear multifragmentation and at times have yielded%IuSterS are generated by randomly partitioning an integer.

contradictory results. Later studies suggested flaws in th gﬁ; %r;e';]ddl'rzzpscleoZ?Iapsgailizzlggsdoheassgct):a?]c;iis:: ICr:IttIEZI
application of molecular dynamical models to nuclear multi- Vior indicatly P !

fragmentation, therefore calling into question the conclusionsc‘econd case, three-dimensional bqnd b_undmg percolation is
drawn from the earlier studidg7]. used to produce clusters. Percolation is well-known math-

The most striking of the early theoretical efforts came&Mmatical construct that possesses a continuous phase transi-
from Campi’s analysis of a few hundred completely recon-tion, i.e., a critical point. Finally, the cluster distributions
structed emulsion multifragmentation everi&s] and the resulting from the multifragmentation of gold nuclei are ana-
comparison of these data to clusters generated from a perctyzed. Although it is not known,a priori, whether the
lation calculation[15,16. In this series of papers it was nhuclear multifragmentation bears any relation to critical phe-
shown that the fragment distributions from multifragmenta-nomena, it will be seen that the analysis presented in this
tion bore a striking similarity to the cluster distributions from work yields suggestive results.
percolation lattices. This analysis provided strong evidence This paper is organized as follows. In Sec. Il a brief de-
that multifragmentation was a statistical process which apscription of each system is presented. In Sec. Ill the Fisher
peared to be related to critical phenomena. In that analysi@roplet model is reviewed; this section may be omitted by
another estimate of the exponentvas made which agreed readers already familiar with the model. In Sec. IVA the
with the first measurements from the Purdue Group and sevnsensitive signatures of the cluster distributions for all sys-
eral later analyses of various fragment distributions. tems are examined. In Sec. IV B the sensitive signatures are

In the early 1990’s the ALADIN Group from GSI per- €xamined. Sections V and VI present possible corrections to
formed several multifragmentation experimef8-51. Of  the analysis of the multifragmentation data. Finally, Sec. VI
particular importance was the “rise and fall” of multifrag- discusses the conclusions reached upon the completion of the
mentation. In one analysis the ALADIN group plotted the analyses in Secs. IV and V. Throughout this paper the term
“rise and fall” curve of the production of IMFs versus an ‘“continuous phase transition” will be used instead of “sec-
observable related to the excitation energy of the reaction fopnd order phase transition,” the latter from the outdated
several multifragmenting systems. With the appropriate scalEhrenfest theory of phase transitio&s].
ing the data collapsed to a single curve suggesting that the
multifragmenting systems retained no memory of the reac-
tion entrance channel. This is expected for an equilibrated  1I. DESCRIPTION OF SYSTEMS UNDER STUDY
system.

However, other statistical analyses of multifragmentation
data yielded results that could be interpreted to suggest that Approximately 40000 fully reconstructed events (76
multifragmentation is a sequential ded®2—-54 in contrast <Z,y.nei=82) Were collected with the EOS experimental
to the phase transition picture. The same sort of statisticapparatus discussed in REf2]. In the collision of the pro-
analysis has also been applied to explicitly simultaneougectile gold nucleug197, 79 and the target carbon nucleus,
models[47] and produced results that were similar to thoseso-called prompt nucleons are knocked out of the gold
of multifragmentation data. Thus those signals could be innucleus by quasielastic and inelastic collisions between pro-
terpreted as evidence for either sequential or simultaneoljectile and target nucleor$9]. Immediately following the
multifragmentatior{ 54]. collision, the gold projectile remnant is in an excited state

This last effort puts into focus the main question in thiswith fewer than 197 nucleons. The excited remnant cools
work: what type of analysis of the statistical aspects of aand expands and may evolve to the neighborhood of the

A. 1.0A GeV Au + C multifragmentation

064603-2



STATISTICAL SIGNATURES OF CRITICAL BEHAVIR . .. PHYSICAL REVIEW C 62 064603

critical point in the temperature-density plaf@0], where into 100 bins from 0 to 1. The use af as a control param-

clusters condense from a high temperature low density vapater and the ensuing effects on signatures of continuous

of nucleons. phase transition were investigated by calculating the average
The charge and mass of the projectile remnZgandA,, number of clusters of sizé&; with the 100 000 lattice real-

were determined for each event by subtracting the chargg&ations histogrammed in units of.

and mass of the prompt particles from the charge and mass

of the gold nucleu$60]. Prompt particles havg;=0, 1, and C. Random partitions

2 and were removed from the cluster distributions analyzed Random partitions were generated from 79 total system
in this work. Only clusters created from the excited goldconstituents, chosen to approximate the number of charges in
projectile were considered in the ensuing analysis. For eventfe gold multifragmentation system. The algorithm is as fol-
with the lowest total charged particle multiplicities, the  |ows. First a random choice @h was made from a uniform
remnant  had Z,~76, A;~194, and E*/A; distribution on(1,79. Next the maximum size of a cluster
~2 MeV/nucleon, while for events with the highest multi- AL for an event withm was determined; this depended on
plicities the remnant hadZy~39, Ay~92, and E*/A;  the constraints of the system siag=79 and the choice of
~16 MeV/nucleon60]. m. The size of the first clustek; was then randomly chosen
Clusters of a given chargé were counted on an event by fom a uniform distribution on (Bl.). There were then
event basis to determine the cluster charge distributlgfn m—1 clusters to be generated from-78, constituents. The
In this analysis, although the mass number of the clustermaximum size of a cluster for am—1 event from a 79
was of interest, a cluster’s charge was used as an index. Mass1 constituent system was determinekﬁ]ax. The size of

numbers for clusters of charge 1 and 2 were measured in thfie second clustek, was then randomly chosen form a uni-
EOS time projection chamber. Clusters with=3 were as-  form distribution on (1A2,). This process was repeated un-
signed a mass numbéy; by multiplying the cluster charge | a)| constituents belonged to a cluster. 100000 partitions

by the mass to charge ratio of the excited gold projectilayere generated in this manner. This particular weighting re-

eventsAy/Zy~2.36. This procedure provided an estimate of

a cluster’'s mass number prior to any secondary decay effects. || REVIEW OF THE FISHER DROPLET MODEL

It was assumed that on averayg =Nz, . The normalized

cluster distributiom, =N, /Ag(m) was used in the analy- The focus of most studies of phase transitions is on stan-
f f

dard thermodynamical variables such as a system'’s tempera-
ture, density, compressibility, etc. These quantities are diffi-
cult or impossible to measure directly in present nuclear
multifragmentation experiments. Thus a theory which ad-
Bond building percolation calculations were performed ondresses quantities accessible to MF experiments is needed.
three-dimensional simple cubic lattices of 216 sites. Clusteifo that end Fisher’s gas-to-liquid phase transition model,
distributions for 100 000 lattice realizations were generatedased on Mayer's condensation theory, is follo/é®,61].
in the standard fashion by forming bonds between sites. Fisher begins his model, called the Fisher droplet model
Bonds were either activéon) or inactive (off) according to  (FDM) hereafter, by writing the free energy for the formation

sis presented in this paper.

B. Percolation

the following algorithm. of clusters of size; as
The control parametefe.g., temperature in thermody-
namic systemsfor percolation is the lattice probability, . AGa=—kpTAIN[g(1, T)] =Ky T IN[f(A¢, T)]
A single value ofp, was chosen for the entire lattice. All
probabilities were between 0 and 1. Next, a bond probability tkpT7In(A)+ -, @

pp was randomly chosen from a uniform distribution on . )
0'1 for the ith bond. If | h h heith wherek;, is the Boltzmann constant and tlgeterm is the
(0,2) for theith bond. Ifpy, was less thamp,, then theith ) . tormation energy, or volume term and

bond was active and two sites were joined into a cluster. This
process was performed for each bond in the lattice. g(u, T)=exd (u— teoed!KpT], 2
At low values ofp,, few bonds were formed resulting in
a high multiplicity m of small clusters, a distribution analo- whereu is the chemical potential and..e is the chemical
gous to the gaseous phase of a fluid. At high valuep,of potential along the coexistence curve.
many bonds were formed resulting in a low multiplicity of  Thef term is related to the surface free energy of cluster
mostly large clusters, analogous to the liquid phase of a fluidiormation. It is a form given by Fisher
In an infinite lattice the phase transition occurs at a unique

value of the lattice probabilityp., when the probability of f(A;, T)=exd agwA{eT /ky,T], 3
forming a percolating cluster changes from zero to unity
[61-63. whereo is a critical exponent and is related to the ratio of

To examine the behavior of the average cluster distributhe dimensionality of the surface to the dimensionality of the
tion, the number of clusters of siz& per lattice site was volume,a, is a constant of proportionality relating the aver-
calculated by histogramming the 100 000 lattice realizationgge surface area of a droplet to its number of constituents,
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and w is the surface entropy density;is a measure of the

distance from the critical point. For usual thermodynamic ~ P/(KeT)=2 a Na(€)=0o> a A; "f(2)g(1, T)™
systems e=(T.—T)/T,, in the percolation treatment

=(p;— po)/p. and for multifragmentatiore= (m,—m)/m, =Mo(e). (10)
will be used. All formulations ofe are such thae>0 (e

<0) corresponds to the liquidag region. This form of the It is clear from Eq.(10) that the pressure of the system is
surface free energy is app|icab|e on on|y one side of thée|ated to the zeroth moment of the cluster distribution.
critical point, the single phase side. A more general form The density is then

suggested by efforts from percolation thedB8—64 that

can be applied on both sides of the critical point and leads to _ ﬁ _ 1-r Ag
a power law which describes the behavior of the order pa- P o Qo2 A Al TH(D9(w.T)
rameter is
f(z)=Aexd —(z—B)?C], (4) =2 A Ma(OA=My(e). (12)
where the scaling variableis The density is given by the first moment of the cluster dis-
o tribution.
Z= f €. (5)

It is now a simple matter to derive the power law which
describes the divergence of the isothermal compressibility

The physical interpretation of the parameté&rsB, andC is e
phy P P e k1. By definition:

an open question.
Finally 7 is another critical exponent depending princi- 19V 1/49

pally on the dimensionality of the system and has its origins K= __(_) :_(_p) ] (12)

in considerations of a three dimensional random walk of a VIdP| . pldP];

surface closing on itself, thus for three dimensions2<3

[67]. In Eq.(1), qo is a normalization constant which will be Noting thatk,Tp=g(u,T)[dP/dg(u«,T)], Eq. (12) can be

shown to depend solely on the value 0f68]. rewritten as
From the free energy of cluster formation the average
cluster distribution normalized to the size of the system is -1 () JP (TP 2P
B kr=—| 9, T) - ———=+09(u, 1) " ——
Na(€)=exp(—AGp Ik T)=0oA; "f(2)g(p, ). (6) P 79(w.T) 00T 1 (13)
At the critical pointe=0 bothf and g are unity and the )
cluster distribution is given by a pure power law which leads to
Na(€)=0oA; ™. () _ _
Ao kr=(pkoT) "1+ (p2kT) 12 o Na ()A?
If the first moment of the normalized cluster distribution is IR .
considered at the critical point th¢68] =(pkpT) "+ (pkpT) "M2(€). (14

1—r The sum in the second term illustrates the relation of the
Mi(e=0)=2 Ay nAf(E)AfZQOE aA7 =10 (8  gecond moment of the cluster distributidhy(€) to the iso-
thermal compressibility. The sums in Eq4.0), (11), and
when the sum runs over all clusters. From E).it is obvi-  (14) run over all clusters in the gas and exclude the bulk
ous that the value of the overall cluster distribution normal-liquid drop. In percolation and multifragmentation the largest
ization constantg, is dependent orr via a Riemann{  cluster on the liquid side of the critical point will be consid-
function ered as the liquid drop and will thus be excluded from the
sum. On the gas side of the critical point, the sum runs over
_ 1-7 all clusters as there is no longer a liquid drop.
Qo=1002 5 AT . © In the thermodynamic limit, largd; dominate the sum so

. . . _ . that it may be treated as an integral giving
The above is true only if the scaling assumptions in the FDM

apply to all clusters. For finite size systems even at the criti- o

cal point this is only approximately true. However, it will be KT=(pka)_1+(p2ka)_1f nAf(e)AfdAf. (15)

seen that Eq(9) holds reasonably well at the critical point 0

for systems with a continuous phase transition over some ) o _

range in cluster size. Working along the liquid-gas coexistence curve so that
In the FDM it is assumed that all clusters of sigkecan ~ 9(#,T)=1 Eq.(15) reduces to

be treated as an ideal gas, so that the total pressure of the

entire clusf[er distributio.n can be determined by summing all KT=(pka)’1+(pzka)*lfwA?Tf(z)dAf. (16)

of the partial pressures: 0
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A change of variables from; to z shows that near the criti- the 19th century58,69. Fluctuations in cluster size and the

cal point density of the system arise because of the disappearance of
. the latent heat at the critical point. This is illustrated in the
K1~ (p2k,T) L %j* dzf(2)|z| @~ 79| || (7~ FDM whgn the isothermal compressibility ciivergles at the
aglJo critical point and small changes in pressure gives rise to great
9 1 _ changes in the density. In the FDM as the volume and sur-
=(p°kpT) Tl 17

face contribution to the free energy of cluster formation van-

This is the so-called-power law which describes the diver- ishes the power law dominates and clusters of all length
scales are observéd].

gence of the isothermal compressibility and the second mo= In a cluster distribution the most readily observed fluctua-
ment of the cluster distribution near the critical point. The,. ; . y
tions are those in the size of the largest cluster. For each

scaling relation between the exponemtso, andr is system the root mean squdrens) fluctuations in the size of
3—, the largest cluster normalized to the size of the system
y= (18 A(Anax/Ag), have been calculated as a function of the sys-
tem’s control parameter. This measure of the fluctuations in
the cluster distribution was first studied by Campi for gold
multifragmentation and percolatioii6]. Those results are
replicated here for those two systems.

Figure Xa) showsA(Aa/Ag), as a function ofp, for
percolation. As expected for a system known to exhibit a
Qo [ continuous phase transition, the rms fluctuations peak over a
—f dz f(z)|2| G 77|, (190  narrow range in the control parameter. The location of this
o Jo peak provides a first estimate of the critical poip{=0.33
. . +0.01, see Table I.

The second moment is related to the isothermal compress- Next the percolation lattice is examined using the multi-

Ibll!lt')ili bilj th'e tf:'mpe][e::‘ure and dlens%/ of thetS){[Stem. plicity of clustersm as an estimate of the control parameter.
€ derivation of tn€y-power law demonstrales oneé Way ,q%is qone because in the case of nuclear multifragmenta-

to arrive at the scaling relations between the critical eXPO%ion m is experimentally measurable. Figurébll shows

nents. In addition it illustrates the existence of only two in- ' ih e came qualitative behavior as Fign) 1The fluctua-

R - , >Nidns peak over some narrow range rmfand suggest the
of the cluster distribution to familiar thermodynamic quanti- value of the multiplicity at the critical point, theritical mul-

ties. Fis.hers frame\ivork here iIIustrated arid tempered b¥iplicity, to bem,=55=5.
percolation theory will be used in the analysis of the cluster For random partitions a peaking behavior in the fluctua-

o

The absolute normalization constants of Me(e) power
law depend on the scaling functidiiz) the exponentr and
the overall normalization of the cluster distributigp which
in turn depends on the exponent

r.=

as follows. Atm=1 there can be no fluctuations in the size
of the largest cluster because of the dual constraints of event
cluster multiplicity and the fixed number of constituents. As
the multiplicity increases from unity, the constraints ease and

while for systems with no such phase transition, the frame
work fails, as it should.

IV. PHASE TRANSITION SIGNATURES fluctuations in the size of the largest cluster grow. At the
IN CLUSTER DISTRIBUTIONS maximum possible multiplicity, i.e., whem is equal to the
A. Insensitive signatures total number of constituents, the size of the largest cluster is

) . ] » _ constrained to be equal to unity and the fluctuations vanish.

In this section the insensitive features of the cluster dishs the fluctuations show a peak, but for reasons that have
tribution for each system are examined. It will be demon-nihing to do with a continuous phase transition. Therefore it
strated that on the level of analysis presented here, each sygyst be concluded that the observation of a maximum in the
tem exhibits behaviors that are consistent with systemgctyations of the size of the largest cluster is not sufficient
which undergo a continuous phase transition. The conclusiog, gjstinguish systems with and without critical behavior. On
is inescapable that this sort of analysis can yield necessanhe other hand, the absence of a peak in the fluctuations
but not sufficient, signals. A deeper analysis will be necesy,qy|d indicate that the clusters of the system were not pro-
sary to distinguish those systems which undergo such gyced near a critical point. If the system’s phase space has
phase transition from those which do not. been fully explored, then the stronger statement that the sys-
tem does not possess a critical point could be made. At this
level of analysis the critical multiplicity of this system can be

One of the most striking characteristics of systems underestimated to ben,=5=*2.
going continuous phase transitions is the occurrence of fluc- Finally, Fig. 1(d) shows the Au+ C multifragmentation
tuations that exist on all length scales in a small range of thelata with the cluster distribution normalized to the size of the
control parameter. In fluid systems this was observed as critsystemAy(m). The fluctuations in the mass of the largest
cal opalescence, first noted by Andrews in the latter half otluster exhibit a peak when plotted as a function of the event

1. Fluctuations
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FIG. 1. Fluctuations in the normalized size of
the largest cluster for@) percolation A,=216)
as a function ofp,, (b) percolation as a function
of m, (c) random partitions as a function of,
and(d) Au + C multifragmentation as a function
of m. Solid vertical lines indicate the guess for
the critical point.

The first term in Eq.(20) is just the ratio of the second

tent with what is expected for a critical phenomenon. How-moment to the zeroth moment. Therefore, the variance in the
ever, as illustrated above, it is inconclusive. At this level ofaverage cluster size can be written in terms of ktie mo-

analysis the estimate for the critical multiplicity m.=31

+6.

ments:

It is also possible to study the fluctuations in the average
size of a cluster. From the example of critical opalescence it
is clear that the greatest fluctuations in cluster size should
occur at the critical point. To that end the quantity known asrhjs quantity is directly related to Campi’g, via
v5 is constructed, again following the work of Canjii6—
21]. The variance in the mean cluster siZg) is defined as

The average cluster size is given by the ratio of the first

moment

o?= lim (%E A?) —(A()2.

N—so0

to the zeroth moment

<Af>:2 nAfAf/E Na, =M1 /Mo.

(20

M, Ml)z
2__
o?=—2_| 1) 22)
Mo (Mg
_ +1-M2Mo 23)
Y2 <A>2 M% )

which is easily measured and was coined by Campi as the
reduced variancgl6].

In a later papef20] Campi discussed the differences in
methods to measurg,. Specifically, the manner in which

the kth moments are computed from the observed cluster
distribution. One method is to measure #i&-moments on

(21)

an event by event basis and then compute an average based
on the control parameter, e.g.,

TABLE I. Critical point determination.

Method/system Percolatiomp() Percolation(m) Random partitions Au- C
A(Amax!Ao) 0.33+0.01 55t5 5+2 316
M, peak 0.28:0.03 62+ 2 5+2 35+2
Fisher r-power law 0.3%0.05 573 59+1 22+1
Scaling function 0.340.03 576 102 22+2
y-matching 0.330.02 49+ 1 9+1 21+2
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1 N 1 N . the location of the peak iy, shows little dependence on the
(€)= N 2 = N 2 (2 n'Af(e)Ak>, method of calculation while the magnitude of the peak does.
N =LA A (24) The gold multifragmentation data exhibit a dependence on
the method of calculation both in the magnitude and location

whereN is the number of events at a control parameter valu®' & Peak iny;.
of €, andi denotes théth event. This method of calculation ~_ Having noted the peaking behavior g3, the significance

of the kth moments will be termedveraging the sumand of the amplitude of tht_a peak is now addressed. It has peen
will yield (y,). suggested that the height of the peak can be used to differ-
The alternate method involves calculating an averag&ntiate between the presence of a power law and that of an
cluster distribution at each value of the control parameter an@xponential: for a power lawy,>2 while for an exponential
then calculating théth moments from the resulting average Y2<2. This alone is not definitive proof of the existence of a
cluster distribution continuous phase transition as other systems show power
laws in the absence of such a phase transition. All of the
— 1 N percolation figures show peaks above two, as do the multi-
M=, (nAf(f))AiF:E (N > nkf(€)>A'f<- (25  fragmentation data plots and the random partitions. How-
At =1 ever, the value ofy, depends on the size of the system in
guestion[20]. For a percolation system with 64 sites, peaks
- in y, under two are observed, see Fige)&and 3c). There-
averages” and will givey,. fore, the lone criteriony,>2 is not sufficient to discriminate
For quantities linear im, there is no difference in the petween those finite systems which do and those which do

two methods so thatM (€))= Mk(E) However, due to the Not posses a power law cluster distribution.
dependence of, on the square of the first moment, there Finally the question of the difference between the zﬂerna-
will be a difference in the two methods of calculation. Re-tive methods of calculatingy, is examined viaA y,= vy,
sults for both methods for each system are shown in Fig. 2—(y,). It has been suggested that a peak in the difference
Of primary significance is the presence of a peak in botrcould indicate critical phenomena and the location of the
measurements of, for all systems. For an infinite system critical point [20]. Unfortunately, the cause of this peak is
exhibiting critical phenomena, the location of the pealyjn  not well understood and vanishes at the limits of the system
will coincide with the location of the critical point. For the size: (0y). Figures 4a) and 4b) do show peaks il y, at
percolation system Figs.(& and 2b) show that both the some intermediate value of the control parameter for this
location and magnitude of the peakysa is dependent on the percolation lattice of 216 sites. However, as the size of the
choice of calculation method. Solid lines indicate this mea-ercolation lattice increases this signal vanisfd. For a
sure of the critical point. For the random patrtitions, Figc)2  percolation lattice with 64 sites Figs(c3 and 3d), respec-

This method of calculation will be termed “summing the
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FIG. 3. Fluctuations as measured by (see
text for detail$ for a percolation lattice of 64
sites: (a) open circles(y,), filled circlesy, as a
function of p;, (b) Ay, as a function ofp, (c)
open circles(y,), filled circles y, as a function
of m, and(d) Ay, as a function oim. Solid ver-
tical lines indicate the guess for the critical point.
A dotted horizontal line shows the value ¢f
=2.

tively, look similar to a cross between the percolatidn ( in the gold multifragmentation data in Figsid® and 4d).

=6, m) results, Figs. ) and 4b), and the random partition

Neither they, measure of fluctuations nor the observation

results shown in Figs.(2) and 4c). This is believed to be of fluctuations in the size of the largest cluster provide de-
due to the twin constraints of the multiplicity and the con-finitive insight into the nature of the cluster producing
servation of constituents imposed upon the system at thmechanism. For a large enough system both random parti-
extremes in cluster multiplicity. Similar behavior is observedtions and percolatiory, peaks at nearly the same value of
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FIG. 4. The quantityAy, for (a) percolation
(Ap=216) as a function op,, (b) percolation as
a function ofm, (c) random partitions as a func-
tion of m, and(d) Au + C multifragmentation as
a function ofm. Solid vertical lines indicate the
guess for the critical point.
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the control parameter regardless of the method of averaginguster represents the bulk liquid. On tigas side of the
used. For the percolation system the valugpht the peak critical point there is no liquid drop and the largest cluster is
in 7, is close to the value op, where A(A./Ao) is a  merely the largest gas particle. With this understanding it is
maximum. This coincidence does not hold for random particlear that the largest cluster should be omitted from the sum-
tions; compare Figs.() and 4c). For both percolatiogm) ~ mation in the second moment only in thiguid region,
and multifragmentation, there is better agreement on th&hereas the summation should run over all clusters in the

critical point from fluctuations and than from, was com- gasregion. For a proper construction of the second moment,
puted via Eq(24). knowledge of the location of the critical point is required. In

the thermodynamic limit of infinite system size, exclusion of
_ the largest cluster makes little difference. However in small
2. Divergences systems the proper construction of the second moment is
Another signature used previously to infer the existenceerucial if critical behavior is to be observed in RET1].
of a continuous phase transition from cluster distributions is
the observance of a peak in the second monj&st70Q.
However, it has been pointed out that models with no phase Plots of the natural log of the normalized size of the larg-
transition can exhibit a peaking behavior in the second moest cluster I, ,/Ao) versus the natural log of the second
ment[55]. Figure 5 shows the behavior of the second mo-moment In\,) were first presented by Campi in a compari-
ment for each of the systems examined in this work. In thisson of gold multifragmentation and percolatifitb]. Figure
figure, for the sake of illustration, the largest cluster has beef shows the resulting plots for each of the systems discussed
excluded from the sum at all values of the control parameteiin this paper. In each plot there is a liquid leg for the largest
Each system shows a peak at some intermediate value of s, and smallM, and a gas leg for smalleA,, and
control parameter. Table | lists the location of the secondnidrange values df1,. That similar behavior is observed for
moment peaks. It is clear from the peak observed for thall systems isan indication that this is a necessary, but not
random partitions that it is possible to observe a peak in thsufficient observation for critical behavior. Quantitative in-
second moment for a noncritical cluster distribution. Thusformation extracted from such plots may indeed be consis-
this behavior alone cannot be used to distinguish betweetent with known ratios of critical exponents. This has been
critical and noncritical systems. done recently for peripheral collisions between gold nuclei at
An issue with the use of the second moment’s peakind@35A MeV [72].
behavior is the exclusion of the largest cluster from the sum
in Eq. (14). Again, in the FDM formalism the sum runs over
all clusters in thegas On theliquid side of the critical point In many nuclear multifragmentation studies the term *“in-
a gas exists in addition to a liquid drop. Thus, the largestermediate mass fragmen{IMF) has been defined as a clus-

3. Campi plots

4. Rise and fall of intermediate mass fragments

064603-9
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ter which has a charge betweerZ;<30. For the percola- laws and extract exponent values. In an effort to make this a
tion system presented herecharge has been assigned to more quantitative analysis the value of the extracted expo-
each cluster by multiplying the number of constituents in thenent r.; was examined as a function of some control param-
cluster by the charge to mass ratio of a gold nucleus. For theter that was experimentally or numerically accessible. It
random partitions the number of constituents is used as thgas assumed that at the critical point the valuegfshould
charge Since the definition of an IMF is arbitrary, the pre- attain a lower value than fits which were performed away
cise_bo_unda_ries of the range in cluster size used makes littigom the critical poin{73—78. The logic of this assumption
qualitative difference. was based upon the idea that at ltemperaturesa system

Aside from the equilibrium arguments made by thep,q fe\y small clusters, so the power law should be steep,
ALIDIN group [49_.511' little insight tOW%f.dS the presence or leading to a highre; value. At high temperatures there are
altz)steor}ct?]eo;vzr;orgl2Somubsefgflsl\jFt(rga/lnsItl;)\r/]elriugsaiﬂgdc;f-m ﬁl]any small clusters and little else, which is refk_ected i_n a
P 9 IMF high value ofr.; and a steep power law. At the critical point

. N . Glusters on all length scales appear and the power law is
discussed in this work. Each system shows a pedWife) shallow with a lower value of;. In this analysis the largest

at some intermediate value of the control parameter. Coméluster was omitted from the fitting procedure and both the

paring the peak position in Fig. 7 to the values listed in Tableconstant of proportionality and, were allowed to vary in-

| shows that there is little corresp_ondence pgtween_the Var'dependently. Many investigations of nuclear multifragmen-
ous proposed methods f.or. _Iocatmg the critical point. Thetation both theoretical and experimental, employed this
arbitrary nature of the definition of an IMF makes it unlikely methéd of analysi§73—74 '

that the peak i{M ) occurs precisely at the critical point. 51 g i this analys.is method is the use of a two pa-
To some de_gree the rise and fal[ feature IS due.to the CON e meter fit for the power law. Allowing both the overall nor-
straint of a fixed number of constituents. It it obvious that a alization of the power law and the exponent to vary inde-
the extreme values of the control parameter, the number og1 Y

S ) . ; . endently is in conflict with the scaling assumptions
IMFs must diminish, while at intermediate values, it must be . .
at least as great. Thus, the occurrence of a peak at so underlying the FDM as shown in Eqe) and (9). A proper

intermediate value of the control parameter is expected Mt for a power law within the context of the FDM Sh(.)UI(.j be_

" based on single parameter; as such, the cluster distribution
must be normalized to the size of the system as was outlined
in Sec. lll.

With the first observation of a power law in the nuclear Leaving aside for a moment that the execution of the
multifragmentation yield distribution5,11] it became a 7-minimum analysis violates the scaling assumptions of
common analysis tool to fit cluster distributions to a powerthe FDM, the signal of a minimum in the cluster yield power

5. T Minimum
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law will be examined. A two parameter fit far; searches respectively. For all systems, the cluster distributions were fit
for the minimum in an effective exponent which is defined asat each value of the control parameter. Only clusters with
[79-81: ~0.02<(A;/Ap)<~0.22 were included in the fits. The first

three systems Weightegf with errors associated wiumAf(e)

S (26) while thexi for the gold multifragmentation cluster distribu-
eff alnA; tions were weighted with errors on both () andA .

For the percolationff) a minimum in7.; was observed
Assuming that the system under study follows a power lawy , — 0.3 with x2=2.3, q,=0.214+0.005 and r=2.19
in the cluster yield at the critical point, and away from thei0.0l; shown in VFigs. @), 8(b), and &c) by the dotted
critical point the cluster yield is affected by a scaling func-“nes_ However, atp,=0.33 the X,2,=1-02, 9o=0.181

tion such as in Eq(7), then +0.003, andr=2.27+0.01; shown in Figs. @—8(c) with
alnf the dashed Iine§. Based on a _goodness of.ﬂt comparisor), the
; ) (27) latter value ofp, is a better choice for the critical point. This
9 A result is in agreement with the analytic discussion7pf
above, namely, that a minimum iy is a poor indicator of

The minimum in7; can be found by differentiating Eq. the critical point. If the results fop,=0.33 are compared to

27): the center of the¢, p,~0.28, the differences in the® and
go results are even more striking.

(28) Similar results were seen for percolatiom), see Fig. 9.
Here the minimum in the; well yielded worse results for
both XE and gy than does the choice of the critical point

The location of the minimum imy is dependent on the form based on a choice from thé~1 region where there is good

of the scaling functiorf. Assuming the scaling function has agreement between the fittgg and the value computed us-

the form of Eq.(4) then the minimum inre; will be at e  ing Eq. (9) and the canonicat value for three-dimensional

=B/2AY, not at the critical poink,=0. percolation.

Despite the flaws in thegs-minimum analysis it is of Significant differences between percolation and random
interest to examine the results for the systems discussed artitions are observed in this analysis as seen in Fig. 10. The
this paper. Figures 8—11 show the results for a two parametesolid lines show thergs and qq values for systems in the
fit to the cluster distribution for percolatioiprobability and  three-dimensional Ising universality class, while the dashed
multiplicity), random partitions and gold multifragmentation, line shows ther.; andq, for three-dimensional percolation.

dln nAf(e)

Tei=T— A

dTeff d dInf
_:—Af—_:O
dG Jde &Af
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FIG. 8. Results forre; minimum analysis on
percolation as a function qf, : (a) x?, (b) fitted
Tett» @NA(C) go. The vertical dotted lines show the
location of the minimum inte;. The vertical
dashed line shows one instance of a better fit
based ony?. The horizontal solid lines show the
accepted values of andq, for percolation.

The first noticeable difference is a lack of a valley shape in The gold multifragmentation data show results similar to

the plot of 7o versus control parameter, see Fig(l)0The
value of 7o is below 2.2 for all butm>60. Next is the lack
of a region inm where)(§~1 (other than am=2), see Fig.

those of percolationr). Here the cluster size is measured in
terms of the nucleon number and the cluster distribution is
normalized to the mass of the gold projectile remnant. Figure

10(a). All fits yield Iargex,z, values indicating poor fits to the 11(b) shows a valley inre; as a function ofm, albeit one
cluster distribution by a power law for the range of clusterswith a shallow and questionable upwards slope at mgh
Figure 11c) shows fitted values ofj, that coincide with

examined.
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FIG. 9. Results forreg-minimum analysis on
percolation as a function afi (a) Xi: (b) fitted
7o @Nd(C) (o. The vertical dotted line show the
location of the minimum inte;. The vertical
dashed line shows one instance of of a better fit
based ony?. The horizontal solid lines show the
accepted values of andq, for percolation.
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canonical values. Figure (& shows a region of lowy?>  one could argue for the neighborhood of the critical point

values followed by steadily increasing values. If no knowl-and a value ofjy and 7 in some broad range.

edge of theq, and = values is assumed, then this analysis

shows no definitive signals. They valley shows a broad 6. Conclusion

minimum in x2 thus no one value ofh can be selected for The analyses presented above yield inconclusive results.
the critical point based on goodness of fit arguments. At besAll of the considered systems show similar signals which are

N><> .
(a) .I.'
10 O R ..-' ¢ -
L \.‘ . S T B I Ll FIG. 11. Results forreg-minimum analysis
10 20 30 40 50 60 m on Au + C multifragmentation(a) x?, (b) fitted
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e 36 E s lines show the accepted values ofand q, for
o
34 ; {b) percolation(3D Ising).
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qualitative in nature and open to interpretation. It is thereforewvhich is best fit by a single parameter power law as sug-
impossible, based solely on this level of analysis, to make gested by the FDM formalism. By this estimation the critical
definitive conclusion as to the presence of a continuougoint for this 216 site percolation lattice is @=0.31
phase transition in any of these systems. What is needed is0.05 with 7=2.2+0.1, 0o=0.20+0.01, and axﬁzl_ez_
an analysis or set of analyses that more clearly differentiategne precise canonical values ofand q, are not extracted
between systems with and without critical behavior. due in part to unavoidable finite size effects, and in part to
the binning of cluster yields together over a range of 0.01 in
B. Sensitive signatures p;, which causes th&ue cluster distribution at the critical
point to be contaminated by distributions at other values of
the control parameter. In spite of these difficulties, the sig-

In this section the cluster yields are fit to a power law in anature of the critical behavior suggested by the FDM formal-
manner consistent with the FDM formalism. As with the two jsm is evident. The location of the critical point determined
parameter fits the yields for clusters with0.02<(A¢/Ag)  here is consistent, at the 10% level, with the insensitive sig-
<~0.22 were fit at each value of the control parameternatures presented in the previous section, see Table I. Figure
However, only a single parameter, the valuerofwas al-  16(g) shows the best fit power law. For the percolation sys-
lowed to vary to minimize th? of the fit. The value of the  tem clusters consisting of a single site are excluded from the
normalizationg, was determined via the Riemagrfunction  fitting procedure. It is accepted that those clusters reflect the
in Eq. (9). As suggested by Fish¢7], the value ofr was  effects of the finite size of the system to a higher degree than
constrained to be between 2 and 3 so that the sum irf the |arger clusters. Clusters with;<53 were included in the fit.
function converges. The largest cluster from ea@ventwas excluded from con-

If the cluster distribution is well described by the FDM, sideration when generating the average cluster distribution in
then at the critical point the fit to a single parameter powelkeeping with the FDM formalism. Figure 1# shows the
law should show a minimum i’. Away from the critical ~ data for the entire cluster distribution in open circles. It is
point the power law is modified by a scaling function with a clear from this figure that the majority of the cluster distri-
form similar to that given in Eq(4). Therefore, fits to a bution was used in the power law fit and further, that the
single parameter power law should become worse as thexclusion or inclusion of the larger clusters has almost no
modification from the scaling function increases away fromeffect on the results of this procedure. The extracted param-

1. The Fisherz-power law and the critical point

the critical point. eters, namely,r, gy, and p;, do not depend on the fit
Figure 12 shows the results for the percolation systenrange.
with p; as the control parameter. In Fig.(&2 a minimum in Figure 13 shows the results of the single parameter fit

Xﬁ is observed for fits in the migh, range. This minimum analysis when applied to the same percolation system but
indicates the location i, of the cluster yield distribution with the cluster multiplicity used as a measure of the con-
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trolparameter. Again there is a minimum in t]@é values at The results of the single parameter power law fits for the

some intermediate value of the control parameter which infandom partitions are presented in Fig. 14. There is a mini-
dicates thatm,=57*=3 with 7=2.2£0.1, q;=0.20£0.01, mum in the)(ﬁ value atm=>59. However)(ﬁ: 10.83, which
and y2=0.72. Note the consistency between these values d§ an order of magnitude above the percolation results,
go and 7 and those obtained witp, following this method.  should not be used as an indication of a good fit of the cluster
The location of the critical point determined here is consis-distribution by a single parameter power law. The location of
tent, at the 10% level, with the insensitive signatures prethe 2 minimum is also in disagreement with the insensitive
sented in the previous section. The lowgrvalue is due to  signatures presented in the last section. Here only clusters of
the finer bins over which the cluster distributions weresjzeA;=1 and sizeA;= A, Were excluded from the fitting
grouped. Figure 1®) shows the best fit power law. Here procedure.
only clusters of sizéA=1 and sizeA= Ap;,, Were excluded Figure 15 shows the results of this analysis applied to the
from the fitting procedure. gold multifragmentation data. As with the percolation re-
From Figs. 12 and 13 it could be argued, based on the begjjts, they? shows a minimum that drops nearly two orders
agreement between the fittedaind the accepted three dimen- of magnitude from the peaks for high and lomto the valley
sig_nal per_colation value, that there are better choices for thgt 4 midrange value of, see Fig. 16). In the context of the
critical point than those quoted above. However, those argu=pM analysis this result suggests that the critical point is
ments assume knowledge of the valuerdds an input. The |gcated atm,=22+1 with 7=2.2+0.1 andqy=0.18+0.01
use of the location of the best fit to a single parameter poweg ¥2=2.70. The best fit power law is show in Fig. (i
law as an indicator of the critical point makes no assumptiory , unVcertainty of one unit of multiplicity is assigned ia,

regarding the value of and is a test of the FDM formalism to take into account the relatively low val f th
in which only the range ofr is suggested:  7<3. The neighbolring fits . Vely low values pﬁ orthe

;ﬁgjhe;i:fr\'ﬂfgﬁ gfo tﬁ:-:-e fgllljésx:]z r::]r;;sga;reiggrl:ttz doifnﬂ':rifis For the above fits to the gold multifragmentation data the
. 2. . . _r
paper follows the same philosophy. That is, the analysis idv is weighted by the errors in bomf andA; . The fitting

designed to test the cluster distribution in question for behavprocg.dure has also been performed with no error weighting
ior consistent with the FDM formalism. The values of quan-9" Xy and with errors only im,_for weighting. Both analy-
tities, such as critical exponents, are results of the analysises shows results that were not significantly different from
method and are in no way selected for on the basis of theithose quoted here. As mentioned previously, clusters with
particular values. Agreement between exponent values detefs=2 are created in both the prompt first stage and in the
mined by this procedure and the canonical values in variougultifragmenting of the gold nuclear remnant. The prompt
universality classes is then significant because the values @ =2 clusters have been excluded from the gold multifrag-
the exponents are determined solely by the behavior of thenentation analysis. As a further test of the single parameter
cluster distributions so analyzed. power law fit, only clusters with & 7;<16, i.e., clusters
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with no contamination from the prompt first stage, were in-results showed no difference from those presented here. The
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FIG. 14. Results for the full Fisher-power
law analysis on random partition&) Xﬁ, (b) fit-
ted 7, and(c) qo. The horizontal soliddashed
lines show the accepted values nfand q, for
percolation(3D Ising).

cluded in a repeat of this analysis. Again the results shovdata consistently exhibited a deep valley in jifeversusm
practically the same behavior as those shown here. As ygtlot which indicated that the location of the critical point was
another test, clusters with<2Z;<Z,,, were included in the m,~22 and thatr~2.2, q;~0.18 and 1<X12,<4- Thus the
fitting procedure, and again the results showed little differ-value of r and the location ofm, are not sensitive to the fit

ence from those presented here. Finally clusters wit#tyZ3

region. The behavior of the data show this clearly, see open

<Zmnax Were included in the fitting procedure, and again thecircles in Fig. 16d).
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FIG. 15. Results for the full Fisher-power
law analysis on Aut+ C multifragmentation{a)
Xﬁ, (b) fitted 7, and(c) go. The vertical dashed
line shows the estimate of the critical point based
on a best fit based og?. The horizontal solid
(dashed lines show the accepted valuesoénd
o for percolation(3D Ising).
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The single parameter power law analysis of the clustecluster formation, via the scaling functidiiz), that depends
distributions of the various systems yielded a result whichon the number of constituents of the cluster raised to the
differentiated between systems that follow the FDM formal-powerc; see Eqgs(1), (4), and(5). Therefore, it is possible to
ism and systems that do not. The differences between Figsletermine the value af by examining cluster production as
12(a), 13(a), 15(@), and 14a) are clear. For both percolation a function of the control parameter. To see this, consider that
and gold multifragmentation the behavior ,@f was just as the behavior of the order parameter suggests that the scaling
predicted by the FDM formalism for continuous phase tranfunction f(z) has a maximuni61]. At the maximum of the
sitions. Far from the critical point the cluster distribution wasscaling functionf ,.{Zmna,, the production ofA; sized clus-
fit poorly by a single parameter power law due to the influ-ters is greatest:
ence of a scaling function where volume and surface effects " B
overwhelm the underlying power law. At the critical point, A, (€ma) = AoAr T (Zmax)- (29)
where the influence of the scaling function vanishes, the
cluster distributions were well described by a single paramThe argument of ,,, is
eter power law with an exponent value-2.2 and thug
~0.2, in keeping with what is expected for many universal- Zmax= A E€max: (30

ity classes. This fitting procedure does not merely search out . )
a cluster distribution which is well fit by a power law, but Where the value of,., depends on the specific details of the

finds the cluster distribution which is well fit by the FDM system in questiofi63]. Rearranging Eq(30) yields
formalism. This is achieved via the coupling between the _ Y

exponentr and the normalization factay,, see Eq(9). The Emax— Zma\r -

random partitions fail to produce such signals. This is ex-r
pected as that system does not obey the FDM formalism an
thus should not show the same signals as systems that ag
known to follow the FDM such as percolation. This analysis
of the cluster yield of gold multifragmentation yields a signal
that is suggestive of critical phenomenon in keeping with th
FDM formalism.

(31)

hus €.,2x, the value of the control parameter at which the
reatest number of clusters of si&eare produced, is related
the cluster size through a simple power law with exponent
o. The exponentr can then be determined from knowledge
of the location of the critical point and the value of the con-
Srol parameter at the greatest production of clusters of size
As.
The location of the critical point was determined in the
search for the Fisher-power law in Sec. IVB 1 and will be
In Sec. Il it was shown that in the context of the FDM the used here to determine the The value of the control pa-
surface of a cluster makes a contribution to the free energy afameter which yields the greatest production of eAgllus-

2. The critical exponento
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ter size was determined from the peak location in a plot okedure discussed above;=0.52+0.02 andz,,,= —0.89

na(€) versus the system’s control parameter, see Fig. 17. - 03, and the accepted values for three-dimensional perco-

For each system at each cluster size plots such as thoggion, o= 0.45 andz,,.= — 0.8[63], establishes the reliabil-
shown in Fig. 17 were used to determine the location of thety of this exponent extraction method. The analysis differs
peak of na (€). For example, in percolationp(), €max in method from previous efforts on percolation lattices
=(Pc— Pmay/Pc pairs of pointgn, (€),p;] for a particular  [71,83 but not in result. o
A were fed into asPLINE routine[82]. Input pairs were then 1€ next test of this analysis is to extract a valueoof
smearedby assigningdn, (¢) as the standard deviation of a from percolatlon (n). In order for this procedure to be useful

. f . on multifragmentation data it must be demonstrated that the

Gaussian centered mrhf(e). Output of thesPLINE routine

. ) exponento can be determined using cluster multiplicity as
was used to interpolate the behavior of a smooth curve behe control parameter. To that end the multiplicity at which

tween t_he_ pairs of input points. Stepping along the_ interpothe production of each cluster size is maximal,,, was
!at|0ns in mcrements much smaller than the-separatlon of thgetermined via the procedure described previously. Using
input p;, @ maximum ofn, (€) was determined anfimax  the value of m.+ ém. determined via searching for the
was recorded. This process was repeated thousands of timEgher r-power law andm,,,, the exponents was deter-

for each cluster size and lead to an estimate pgf,x ~ mined by taking the slope of la{,) versus In&;). The

* SPmax @S a function ofA; . value ofm; was varied uniformly throughout the range sug-

Using Pmax(At) = 6Pma{Af) and the value ofp.* dp., gested bysm, and several fits were made with varying start-
from the Fisher7-power law determination process, the ing and ending points iA; of the fitting region. The value of
value of the exponent was determined by taking the slope z,,, was determined by exponentiating the offset. Results of
of In(ena versus Infy). The value ofz,,,, was determined the average power law fits to E(B1) are plotted as a solid
by exponentiating the offset. The value pf was varied line in Fig. 18b). The agreement between the values re-
uniformly throughout the range suggesteddpy. and tens of  turned by this procedurey=0.52+0.02, the value foro
fits were made with varying starting and ending point&\jn  quoted above, and the accepted values for three-dimensional
of the fitting region. The final value of+ o and z,,,,  percolation again establishes the reliability of this exponent
* 8zmax are the average and RMS values resulting from allextraction method and shows that the usemoés a control
the fits. parameter is acceptable.

Results of this analysis performed on percolatipy) @re The value ofz,,,,,= — 2.4 0.1 extracted for percolation as
shown in Fig. 18a). Here the value of the control parameter a function of multiplicity is different from the value quoted
that coincides with the maximum in production of clusters ofabove,z,,,,= —0.89+0.03, for the percolation system as a
size As,emax, IS plotted against the cluster size. Results offunction of probability. This is a result of changing the mea-
the average power law fits to E(B1) are plotted as a solid sure of the control parameter from probability to multiplicity.
line. The agreement between the values returned by the prd-his difference was observed in previous percolation efforts
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[83] and explained therein. A plot oé(p,) againste(m) those analyses the largest cluster was excluded from consid-
show thatz,.(p;) andz,.{mM) map to each other. See Fig. eration at every value of the control parameter. This is at
9 of Ref.[83]. odds with the formalism of the FDM where the sums ex-
Clusters from the random distribution were also subjectedludes the largest cluster far>0 and include the largest
to this analysis. Due to the failure of the search for the Fishetluster fore<0.
T-power law in the random partitions, the valuenof deter- The previous analyses yielded values o 0.68+0.05
mined in the analysis of the gold multifragmentation wasand 0.65- 0.06 for work with the un-normalized charge dis-
used,m.=22+1. The value of the cluster multiplicity for tribution and normalized mass distribution respectively.
maximum production oA sized clusters was determined in When this analysis was redone using formalism of the FDM,
the same manner as with the percolation system. The flatnege., the largest cluster excluded on one side of the critical
of the nAf(e) versusm curves, see Fig. 1), makes finding  point (liquid) and included on the other sidgas, the values
a unique value ofn,,,, impossible. This is reflected in the Of o were reduced by approximately 50%:=0.32+0.02.
large error bars 0B, Semay S€€N When plotted againat  In the case of percolation the difference introduced in the
in Fig. 18c). The value ofn,,,, reported by the peak finding Vvalue ofa when following the FDM formalisntas was done
procedure employed here reflects, approximately, the midabove or not(as was the case in R¢83]) is on the order of
point of the multiplicity range ofi, () for a particularA;. @ few percent. o ) )
Coupling them, from the filtered gold multifragmentation One_ source of this d!ﬁer!ng behawor_between mulitifrag-
data with them, ., and fitting In(e..,) versus Ind;) gaveo mentation and per_colatlon is _the changing mass of the sys-
—0.4+0.2 andz, = — 2.0+ 0.8. However, it is clear when tem. For gold multifragmentation, fromy,~194 at lowm to

comparing the resulting average fit for the random partitionéo‘0~92 gt highm [60], Wh'l.e the system SIze IS constant. fgr
shown in Fig. 18) with either of the percolation results percolation. For gold multifragmentation effects of the finite

shown in Fig. 18) that theo resulting for the random par- size Of the system are felt more at high multipliciti_es_ tha_n
titions cluster distribution is meaningless. This is to be exJOW. Since the percolation system size Is constant, finite size

pected as the framework of the FDM, used in the extractiorﬁaffec.tS are felt more evenly. .
of the exponentr, is meaningful only when applied to sys- . Itis 'the higher \{alues crhyvherg cluster producUon p.eaks
tems which undergo a continuous phase transition. fatie in multlfragmentanon. The finite size of the system limits the
ure of this analysis on this system is expected based on thel#€ to which a cluster can grow. Thus the_number of clusters
basis of thefailure of the analysis in the preceding section of sizeAs MNap as a function ofnis contaminatedvhen the
that aimed to find the Fisher-power law and the critical largest clustein, is included in a plot ofna versusA;
point. becauseéA .« would liketo be larger, but finite size effects
Results for the extraction aF from the gold multifrag-  limit the size A, can attain. Therefore, one method to ac-
mentation data have been published previoydl$,14. In  count for this effect is to excluda,,, from the cluster dis-
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TABLE II. Critical exponents.

Exponent/system 3D percolation Percolatiqm) ( Percolation(m) Random partitions Au- C 3D Ising

T 2.18 2.2:0.1 2.20.1 2.0t0.1 2.2t0.1 2.21

s 0.45 0.52£0.02 0.52£0.02 0.4:0.2 0.64+0.05 0.64
3—7 1.82 1.5-0.2 1.5-0.2 2512 1.3:0.2 1.23

y=

y. (matching 1.8£0.2 1.64-0.04 0.4:0.1 1.4-0.3

v_ (matching 1.8+0.2 1.7+0.1 0.5-0.2 1.4-0.3

() (matching 1.8+0.2 1.67-0.05 0.5:0.1 1.4-0.3

Ay (matching 0.0+0.3 0.06:0.1 0.1+-0.2 0.0-0.4

v (hyperscaling 0.87 0.770.07 0.7 0.07 0.63£0.07 0.63

tribution at largem values where these effects are largest.Doing this has the effect of appropriately scal'rm,q(e) and

This was done for the gold multifragmentation data. collapsing the data onto a single curve. Figure 19 shows the
The multiplicity at which the production of each cluster (g5 its of this sort of scaling.

sizg is maximalmmax was determined via. the procedqre de- |n Figs. 19a), 190b), and 19d), the data from percolation
scribed previously. The value af, determined in the Fisher (p, andm) and multifragmentation, respectively, show col-

7-power law analysis was useml.=22= 1. The value oM. 3556 onto a single curve for a wide range in cluster size and
was varied uniformly throughout the range suggestediby e nearly the full range in control parameter. Random par-
and several fits were made with varying starting and endingiiions shows no such collapse, see Fig(cl9

points inA¢ of the fitting region. The exponent was deter- As a demonstration of this type of collapse the same data
mined by taking the slope of Ig(,) versus Inky) and the  paq peen scaled in the same fashion, but with a different

value of zn, was determined by exponentiating the offset.chojce of the critical point. Figure 20 shows the systems
The results werer=0.64+0.05 andzy,=—6.020.8, see  ging a critical point with a value of half of the critical point
Tgbles Il and lll. The average power law fits are shown ingetermined via the Fisher-power law, while Fig. 21 shows
Fig. 1&d). the same analysis with a value of twice the critical point
determined via the Fisher-power law. A visual inspection
of Figs. 19, 20, and 21 reveals the greatest data collapse
occurs when the choice of the Fishempower law critical
point is used, at least for the percolatiop, @and m) and
multifragmentation systems. Random partitions show no
such collapse. Using different values o&ndo in this scal-

ing analysis of random partitions does not significantly alter

3. The scaling function {z)

With the critical point . or m.), 7, go, and o deter-
mined and assuming coexistenges 1, it is possible to find
the scaling function by rewriting Ed6) as

Na,(€)/0oAT "= 1(2). (32)

TABLE llI. Critical amplitudes.

Amplitude/system Percolatiorp() Percolation(m) Random partitions Au+ C
do 0.20+0.01 0.20:0.01 0.0720.01 0.18-0.01
Zmax —0.89+0.03 —-2.4+0.1 —-2.0+0.8 —-11.0+2.0
Zmax (SCaling fcn -0.9+0.1 —-2.5+0.5 —-2.0+8.0 -9.0+2.0
I', (scaling 0.9+0.1 4,905 3.5-0.5 19.0-3.0
I'_ (scaling 0.17+0.05 0.3t0.1 1.0t0.2 0.24+0.05
I', /T _ (scaling 5.0+2.0 16.0-6.0 3.5-0.9 80.0-20.0
I', (matching 1.0+0.3 7.0:0.6 26.0-2.0 26.0-9.0
I'_ (matching 0.08+0.07 0.28-0.04 3.7%0.4 0.27-0.06
I', /T~ (matching 13.0+12.0 25.0:4.0 7.0-1.0 100.0-40.0
I', (C.T.S. 3dp 0.9+0.1 6.4-0.5 170.6:20.0 30.6:5.0
I'_(C.T.S. 3dp 0.06+0.01 0.38:0.04 0.08:0.01 0.08-0.01
r,/r_ (C.T.S. 3dp 15.0+3.0 17.0-2.0 2100.-400.0 380.@:60.0
I', (C.T.S. 3d) 140.0+10.0 55.0:5.0
I'_(C.T.S. 3dp 0.1+0.01 0.28-0.05
r,/I'_ (C.T.S. 3d) 1400.0+200.0 200.6:40.0
[scaled 22.0+3.0
[scaled 0.21+0.05
[sealegrscaled 100.0+60.0
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tuations in all bins were then summed and plotted as a funathe random partition system. This analysis serves as another,
tion of the choice of critical point, see Fig. 22. In the perco-albeit crude, estimate of the location of the critical point.
lation (p; andm) and multifragmentation systems the dataTable | lists the results.

shows the most collapse in the neighborhood of the Fisher The scaled data were used to determine the functional
T-power law critical point. No such behavior is observed inform of the scaling function by fitting the data with an em-
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pirical parameterization consisting of two Gaussians insteadimensions, i.e., it is universal for three-dimensional perco-
of the single Gaussian in E¢4): lation independent of size. The scaling functionsgpandm
1 bo\2 1 bo\ 2 determined above agree well with the scaled cluster distribu-
f(z)=a1ex;{ e +a2ex;{ _ _(Z_ 2) } tions of different size lattices, see Fig. 23, and can be used to
2\ ¢ 2\ ¢ predict the behavior of the second moment for any size lat-

B3 tice [83]. In the same spirit, the scaling function determined
. ) here for gold multifragmentation ithe scaling function for
This was suggested by the asymmetry of the percolapen ( charged nuclear matter which describes the cluster distribu-

data, Fig. 168), and is consistent with a simplified version of o<’ nroduced in the multifragmentation of any nucleus, not
corrections to scalin§79] as discussed in Sec. V. Figure 19 .

N ; ust the excited gold remnant discussed in this work. With
shows the resulting fits for all systems. Fit parameter value{ane knowledge of the form of the scaling function various
can be found in Table IV. Errors on the parameters of the

. : other quantities can be determined as illustrated in Sec. Il
fits, e.g.,a4, etc., reflect the change in those parameters when
d shown below.

the range of clusters included was changed, e.g., cluste o . o
with Z;=2 were included or excluded and so on, and theb The clui;[]e;hdlstrlbutlons f.o.r tr|1e randorp. pa}{l"'[lthl’IS S fIIEt
weighting on the fit was changed, e.g(ﬁ is unweighted, y €ye, wi € same empirical parametrization as in tq.

. . ., . (33) see Fig. 1&). The random partitions cannot be de-
weighted with errors omy (€)/qoA; ™ or with errors on scribed by EQq.(33). The solid curve in Fig. 1@) will be

Na (€)/goA; " ande. used in the following section to demonstrate the failure of
The scaling function for percolationp( and m) deter-  the scaling analysis, as is also seen here, when applied to a
mined here isthe scaling function for percolation in three system where a continuous phase transition is absent. Fi-

TABLE IV. Scaling function parameters.

Parameter/system Percolation) Percolation(m) Random partitons Au+r C  Scaled Au+ C

a 0.8+0.2 1.8:0.2 0.75:0.5 5.90.1 2.0£0.2
by —1.0£0.1 —2.6x0.3 —3.0£0.5 —7.5£0.3 —3.0£0.3
C1 0.5+0.2 1.8:0.2 4.0:0.5 3.2£0.1 2.1£0.2
a, 1.0£0.1 0.3£0.03 0.75:0.5 0.8£0.2 6.3£0.7
b, —0.5+0.1 0.:+0.01 —3.0=0.5 —-12+04 —10.0+1.0
Co 0.8£0.2 1.1x0.1 4.0-0.5 1.5£0.2 3.3:0.4
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nally, a consistency check in this analysis is the agreemerguredM, of the smaller lattice over some regionadrthat is
between the location of the peak in the scaling functions angeither too near to, nor too far from the critical poiat: 0.

the values ot determined in ther analysis, see Table Ill. |t is this region that will be determined, independently, in the
following section.
4. y-power law from the scaling function For the percolationgg, andm) system, the disagreement

The behavior ofcr or M, can bederivedfrom the func- between the measured, data and the calculated curves is

tional form of the scaling function and the critical parametersdUe to two well-known reasons: far from the critical point,
via Eq.(17). Performing the integration in E4L7) using the thg assumptions of scaling are no longer valid gnd the ana-
functional form of the scaling function determined above!Ytic background overwhelms the singular behavior. Near the
yields a direct calculation of the critical amplitudEs via ~ critical point finite size effects dominatkl,, limiting the
Eq. (19). The critical exponent is calculated from the val- sizes of the large clusters which make the most significant
ues ofr ando via a scaling relation in E¢18). Combining ~ contribution. In contrast, the-power law was observed at
these twoI'. andy, it is possible to calculate thge-power  the critical point because it is determined by smaller clusters
law that describes the behavior of the second moment. Thighich suffer the least from the finite size effects.
calculatedy-power law can then be compared to the behav- Figure 24c) shows the results when this analysis was
ior of M, as measured from the cluster distribution. Figuresapplied to random partitions. The power law predicted from
24(a), 24(b), and 24d) shows the agreement between thethe scaling function analysis applied to the cluster distribu-
measuredV, data (largest cluster omitted in the liquid re- tion of the random partitions fails to reflect the behavior of
gion) and the calculateg-power law curves for percolation the measured second moment. This is not surprising as the
(py andm) and gold multifragmentation, respectively, and random partitions presented here are not the result of a sys-
Tables Il and Il list the results. tem undergoing a continuous phase transition. The disagree-
The values ofy determined via the scaling relation in Eq. ment observed in Fig. 2d) then serves as an indication of
(18) for percolation ¢, andm) show approximate agreement how this particular analysis probes for the presence of a con-
with the accepted value of 1.8. The high valueoéxtracted tinuous phase transition. This figure shows the results of this
above leads to a low value ofhere. Figures 24) and 24b) analysis for a system with no phase transition, while Figs.
also show the behavior of the second moment of a 250,0424(a) and 24b) show the results of this analysis on a system
site lattice. The power law predicted using the scaling funcwhere such a phase transition is present.
tion determined with a 216 site lattice shows rough agree- The results of this analysis when applied to nuclear mul-
ment with the measurell, of the larger lattice in both the tifragmentation are shown in Fig. @. In this case, the
amplitude (".) and exponent ). There is approximate comparison to the predictegtpower law is neither as good
agreement between the predicted power law and the meas that for percolation nor as poor as that for the random
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partitions. It shall be shown in Sec. VI that some improve-histogrammed and average values for all quantities con-
ment can be achieved if account is taken of the changingerned were determined. The results are summarized in
system sizeAy(m) and finite size scaling effects. Tables I, Il, and Ill and shown in Fig. 25.

The approximate agreement between the predicted The lines plotted in Fig. 25 do not result from any single
y-power law and the measurédd, behavior is in keeping fit, but display the average results for. andI" .. that have
with the behavior expected for small systems undergoing aatisfied condition$l) and(2). The points in Fig. 25 are the
continuous phase transition, e.g., the percolation system. Theeasured second moment for the particular cluster distribu-
multifragmentation results are clearly different that then re-tion in questions plotted againgt which depends on the
sults of a system without a continuous phase transition, e.gaverage value op, or m; that satisfies conditionél) and
random partitions. (2). Therefore the lines in Fig. 25 should not be interpreted

as a fit to the data points shown, but as the average results
5. ¥ matching from the y-matching procedure. Full circles in Fig. 25 show
the average fitting regions that satisfy conditi¢hsand(2).

In the previous works the procedure for determining criti- . . . .
P P g For percolatiorp, the value ofy determined in this man-

cal exponent values and the location of the critical point L . .
b P er is within a few percent of the value determined in Ref.

from the cluster distribution was based on a method o S . .
matching exponent values on both sides of the critical poin 7.1] and the_lnflnlte lattice vglue. The ratio Bf, /T detv_ar-
[12,71). The idea was to find the region on either side of the.mlned by this method, a ratio that depends on the universal-

critical point where the power law behavior predicted by the' c.las_s.of the_ system in question, is also in agreement with
scaling function holds. As is seen in Fig. 24 there is soméhe infinite lattice value and thE.. values predicted by the
scaling function, see Table Ill. The value pf determined

intermediatee region where the second moment data arehere is within 15% of the value determined in a previous
described by a power law, a region where ke behavior is ; 0 X .
yap g g analysis of theL =6 lattice [71] and the value determined

dominated by they-power law and all other effects are small b i the Fish | VSi Table Il and
in comparison. In earlier percolation studiggl] general above In the Fisher-power law analysis, see Table Il an

guidelines based on the correlation length and size of thE'9: 25a). _ . .
fluctuations were used to find the boundarieseirof the The results for the analysis of percolation withas a
regions to be fit. In nuclear multifragmentation analyie®] measure of the control parameter are worse thqt the results
it was impossible to use such guidelines. Instead a metho,When the natural Controlmparametequs used, the dlfferegce
was developed that searched for regions best fit by powdP ¥+ and y- was Ay"=0.06=0.1 compared toAy"

laws and determined the location of the critical point and— 0-:0=0-3. This is to be expected because for each value of

exponent values simultaneously. The values of the criticaP! there is some spread in the resulting valuesnpbo that
exponents and the normalizations associated with powetiNNiNgG inm groups togetheeventswith different values of
laws were obtained from the best fit power laws in thosé? - There is also a nonlinear relation between the average

regions. As with the previous analyses presented in this pa/2lues ofp; andm [83]. In spite of these two effects the
per, this method of exponent matching does not select a pafesults of the analysis in Sec. IV B 4 suggests that vestiges of
ticular value of a critical exponent or the critical point. In- th€ Signature of a phase transition are still present even when

stead the values found are the outcome of an unbiasdd IS Used as the control parameter. That is also the case in
procedure. the present analysis. Table Il shows that thealue agrees,

The method is as follows. A choice of the critical point, within error bars, with the infinite lattice value. The values of

p. or m; was made. From this choice plots such as thosdhe critical amplituded™.. do not yield a ratio that agrees

shown in Fig. 24 were made. Then fitting boundariesein with the infinite lattice value. This is due to the non-linear
near  mapping ofp; ontom and is discussed in Reff83].

were chosen. The fitting range was definedeff/and e i !
For cxampl, on the ges i o th cical ot i of, " LT IS rocesur wes ol o e e
In(M,) versus Infe]) was made for all data withe*?|< e .
( f§2 sus Infe) de fo hel<|¢ amount of trial fits passed the combined testg$lgfand (2).
SThe results compared poorly to the percolation results. At

<|€2]. The slope of the resulting linear fit was recorded a
v+, the offset as I(,) and the goodness of fit %2# . The best the values of/, and y_ match to within 20% of the

same procedure was applied to the liquid side of the chosegverage value of, compared to perfect matching for perco-
critical point, recordingy_, In(l'_), and Xﬁ_. For each

) - ) . i ' lation p and matching within 5% for percolatiom. The
Cg?'ce Ofnt!;re critical point, several choices of fitting regions, a1ye of the critical pointn, returned from this analysis also

er and e, were made and results recorded. Five paramgompared poorly to other outcome of previous analyses, see
eters were chosen for each region examinéll; €2°*, and  Taple I. Finally, while fit regions for all systems were lim-
Pc Or me. ited, the fit regions are the smallest for the random patrtitions.
The fit regions and critical point locations were evaluated The results of they-matching analysis applied to multi-
by demanding thatl) they yield y, and y_ values that fragmentation data has been published in R&2]. In that
matched each other to within the error bars on those valuegork the data were contaminated by the inclusion of prompt
returned by the fitting routine an@) that they? of the fits  nucleons; prompt nucleons are excluded from consideration
were in the lowest quarter of the distribution resulting fromin this work. In that work the second moment of the cluster
all the fits which satisfy conditiotil). The results from the distribution was determined based on the charge of a cluster
power law fit regions that passed these two criteria were therather than its mass as is done in this work. Previously, the
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second moment was generated from a cluster distributionous phase transition. There is some region where matcehing
that was not normalized to the changing size of the system aglues can be obtained, some regions imhere they-power

is done here. Furthermore the prior analysis consisted of onliaw overwhelms all other effects. The fits in Fig.(8bare of

one quarter of the total number of events used in the presehigher quality than those for random partitions in Fig(@25
analysis. Thus the current analysis has higher statistics, hasd cover a greater range. When compared to the percolation
been freed of prompt nucleons, has a second moment that results the multifragmentation data compare favorably in
has been constructed with the masses from the cluster distierms of overall goodness of fits, width of fit region and
bution and a cluster distribution that has been normalized tenatching of y.., see Table Il. The location of the critical
the changing system size. The exclusion of prompt nucleongoint returned by this analysis also compares well with the
and normalization to the changing system size are an effoitbcation from other analyses, see Table I.

to address the criticisms raised in RE84] and rebutted in

Ref. [85]. When they-matching procedure was applied to

the data presented in this paper essentially the same results as V. CORRECTIONS TO SCALING

presented in Ref.12] were recovered. See Table Il and Fig.

25(d). One difference observed is in the value of the crmcalthe data for the second moment in all systems agreed over

point returned,mg‘_‘= 26=1 reported in Ref[12] and me? only a limited area. To some degree this is to be expected.
=21=2 reported in this work. The difference is not as greatnear the critical point, assumptions valid for thermodynamic
as it appears to be. The origin of the published valuendt  systems are invalid for the finite systems discussed in this
lies in picking the peak of the distribution afi. values that  work. For that reason, finite size effects dominate at the criti-
satisfied Conditi0n$1) and (2) as the location of the critical cal point and the second moment peaks instead of diverging_
point. The value was estimated based on the location of thear from the critical point other effects come into play. The
maximum and the error based on the width of the distribuscaling assumptions inherent in the FDM are valid only in
tion in m.. The mean and rms of the, distribution in Ref.  the neighborhood of the critical point. The size of this neigh-
[12] suggest a value of the critical point }*=25+3. This  borhood is somewhat ill defined and seems to depend on
value agrees, to within error bars, with the valuero®  many factors, e.g., the quantity in question, the nature of the
presented here. The relatively small shiftrm can then be system, the size of the system and so on.
understood to arise from the differences in the data sets. However, scaling behavior in physical systems can be ob-
Noting this it is clear that the presemtmatching analysis is served over a wide range in temperatures and densities. This
in agreement with the previous work. is most elegantly illustrated in the Guggenheim pi&&] of

The results of the present work are, again, in keeping wittscaled temperatureT(T.) as function of scaled density
the expected results of a small system undergoing a contindp/p.) for several different gase®Ne, Ar, Kr, Xe, N,, O,,

In the last section it was seen that thepower law and
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CO, and CH). In that plot the data collapse onto a curve ond integral divided by the first. The correction-to-scaling
that is well described by a power law with an exponent ofexponent isA=0Q/o.

B=1/3. The range in validity of this agreement between data Using Eq. (36) to fit the second moment distribution
and power law is shown on the Guggenheim plot to be oveiould lead to determining four fit parameters: two ampli-
a range ofAT~0.5T, and Ap~2.50.. However, another tudes and two exponents. To explore the effects of correc-
system, the combination of isobutyric acid and water, show4ons to scaling an assumption was made as to the universal-
the Guggenheim type of scaling only near the critical point'ty class of the system in question and thus the choice of

87]. Already when the range considerediid ~0.04T. and  €Xponent values. For the three-dimensional percolation uni-
[87] y g v ersality class\ = 1.22[79,88 and for the three-dimensional

Ap~0.01p. corrections to scaling can be observed. To thai/sing universality class = 0.56 [89-91. The amplitudes

end, higher order corrections to scaling are now examined i ore left as free parameters and the second moment of the
order to determine if fits such as those shown in previouéN as lree p . " .
luster distributions were fit. The value of the critical point

fﬁ:t'e?(nseﬁgg gfen;@g??{edérgﬁgfe\fgggp;g;’ﬁgegéﬁsmes etermined from the~-matching analysis of Sec. IV B 5 was
T F" | pt' ; ling in th P t. t of used for each system. Figure 26 shows the results.
0 Tully explore corrections (o scaling In the Conteéxt O £qr the percolation system with the corrections-to-scaling

the present systems where the cluster distributions serve aspetter fit to the second moment data was possible over a
the main observable the FDM is revisited in a fashion eMyange ine up to twice the range of the average fitted region

ployed in Refs.[79,88. Assuming coexistence Eq6) is i the y-matching analysis, see Figs.(@6and 26b). The

then rewritten as fits still failed to reproduce the behavior ®, near the
_, 0 critical point where finite size effects dominate the system.
Na(6)=0oA; Tfo(2) +A Tf1(2)+---1, (349 Table Il lists the results for the critical amplitud&s. . The

agreement in the critical amplitudes determined in this analy-
where f1(z) is the correction-to-scaling function arfd is  sis and the amplitudes from thematching analysis is due to
the correction-to-scaling exponent. The form of E2¢) an-  the agreement of the behavior of E§6) and they-power
ticipates the presence of a second functiom.dh Sec. IV3  law from they-matching analysis over the region érdeter-
it was found empirically that both the scaled percolation andnined by y-matching. Thus they-matching analysis finds

. to scaling.
could be reasonably well described by the sum of two Gaus- For the random partitions an improvement is only ob-

sians,. Eq.(33). In that treatmdent, hEhAe gmplitugje gf each served for the high multiplicity region where a better fit over
gaussian was a constaat, and a,. IS restricted to a5 larger range was obtained for both choices of universality
single value, the prescription give by E@4) is equivalent  ¢jaqq see Fig. 26). The low multiplicity events showed no

to that of Eq.(33). Equation(34) predicts that there should ¢ ,ch improvement partly due to the limited rangesiavail-
be an ordering to the scaled cluster distributions, i.e., smallegple. Both the three-dimensional percolation and three-
cluster sizes should lie above the larger clusters due to th@imensional Ising exponents were used in this analysis for
correction term. This can be observed in Figs(al®nd  the random partitions and the multifragmentation data. Both
19(b) in the neighborhood of the maximum of the scaled datahoices of universality classes showed similar results. The
for the percolation systems. In the tails of the distribution,|gck of effect of corrections to scaling is to be expected in a
either large or small cluster production is suppressed. In thgystem that does not follow FDM-like scaling laws.
case of multifragmentation data, Fig. (@ the ordering is The multifragmentation data also showed improvement
generally observed where the statistics are adequate, namefgsulting in a better agreement between the fits andvthe
nearz=0. The ordering of the random partitions implies gata points over a larger range & see Fig. 26d). The
that ) <0. improvement was observed for both choices of universality
From Eq.(34) it possible to derive theorrectedisother-  ¢|asses thus indicating this analysis is insensitive to the dif-
mal compressibilitysecond momentpower law. Following  ferences[92,93, though the goodness of fit was better for

the method in Sec. Il leads to the choice of the three-dimensional Ising exponents over the
same fit region$3D Ising: x2, = 0.4 andy?_=0.7; 3D per-
Ky~ (p2k,T) 2 %J‘ dzfy(2)|2| G e colation:x2, =0.7 an_d)(ﬁ,z 1.1). Atthis level of analysis it
oo appears that corrections to scaling improves the fits for the
. v-power law. Whether this is due to the presence of a con-
+ @f‘ dzf,(2)|z @-1-0-Q)0|| (| Ol B —3lo tinuous phase trans_ition in_ r_luclear multifragmentation, or
oJo merely extra terms in the fitting function remains an open
(35 guestion.
L . e . VI. CHANGING SYSTEM SIZE AND FINITE
which is usually simplified and written as SIZE CORRECTIONS
kr~T .| Y(1+a.|el®). (36) It has been pointed out that the previous statistical analy-

sis of gold multifragmentatiofl 2] ignored the changing size
Now the overall amplitudel .. is given by the first integral, of the systen{84]. To first order this may have been a rea-
and the correction-to-scaling amplitude is given by the secsonable procedurf85] as many statistical signatures of a
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continuous phase transition have been observed both befoigtopic yield ratio thermometér; [98]. These temperatures
and after the scaling to account for the changing system sizgive an approximate indication of the initial and final tem-
has been performed; e.g., thgpower law shown here and in peratures of the system. Figure(Byshows thaf; is well fit
previous works agree well. However, the data collapse irby a quadratic function, whil&; is well fit by a linear func-
Fig. 19d) is qualitatively not as great as that shown by thetion. Another linear function reproduces the averager of
percolation(m) system in Fig. 1) and the agreement be- and T;: T=23.0+0.14m, this was used for the following
tween the calculated and measuhd behavior in gold mul-  analysis. The critical temperature of infinite nuclear matter
tifragmentation in Fig. 2@l) is qualitatively not as good as was assumed to BE, =22.9 MeV[99].

that shown by percolatiofm) in Fig. 24b). In this section, From the Fisherr-power law analysis the value of the
the effect of the changing size of the system is explored anghultiplicity at the critical point was determined to b
accounted for. =m,=22+1. The system size at that point is thég(m

The size of the multifragmenting system is shown in Fig.=22)=164+2 and the temperature ®=6=+2 MeV. This
27(a) after Ref.[60]. An approximately linear relation be- indicates that the critical temperature for a charged nuclear
tween the system sizé\, and m was found:Ag=199  gystem with 164 nucleong;S"(A,), is approximately & 2
—1.6m, see Fig. 2#@). The functional form ofAg(m) was  pev.
used in the following analysis to account for the changing According to theory, to first order the critical point scales
system size in an average way, i.e., not on an event-to-evegiith system size as
basis.

If the multifragmenting system is assumed to be a system [Tﬁﬁ(Ao) —ToUTE= bAgl’dV, (37
undergoing a phase transition, then the theory of finite size
scaling of the critical poinf94—97 suggests that the effec- whered is the Euclidean dimension of the system ands
tive critical temperaturd@ .(Ag), changes as a function of the the so-called hyperscaling exponent. At the smallest of sys-
system size. Coupling this with the changing size of the system sizes higher order correction terms may play an impor-
tem indicates that at each valuerofthe value ofT€(Ay) is  tant role in the scaling of the critical poifit00]. This for-
different. malism is usually applied to neutral matter. Obviously the

The value of‘rgff(Ao) can be determined in the following excited nuclear system dealt with in this work is charged. In
manner. First a relation between the multifragmenting sysan attempt to account for the effects of the Coulomb force
tem’s temperaturd andm must be determined. Again from felt by the nuclear systef¢'[ Ao(m=22)] was increased by
Ref. [60] a relation can be found, see Fig.(BY Two esti- adding 0.250.016Aq(m), in keeping with the work of Ref.
mates ofT were made, one from a Fermi gasicorrected for  [99] regarding the effects of the Coulomb energy on the criti-
the effect of expansion energyl; and the other from an cal temperature. Fol,~ 164, T§ﬁ~9 MeV.
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If it is assumed that gold multifragmentation is the resultall values ofe to account for finite size effects in the analysis
of a continuous phase transition and that transition occurs ito extracto. The analysis in this section directly accounts for
three dimensiongj=3, then using the hyperscaling relation finite size effects, thus the standard FDM formalism with

[61] respect to the largest cluster is followed. This results in a
value of 0=0.65+0.07 and z5%3°% —10+2, Fig. 28a)
7—1 shows the resulting power law.
Y= e (38) The scaling function for gold multifragmentation was

then plotted using the above corrections for the changing

with the extracted values af and 7, gives v=0.63+0.07.  System size and finite size scaling, see Fighp8The data
The coefficientb in Eq. (37) can be determined using collapse is qualitatively better than in Fig. (2 The two
T AN(M)]1=9+2 MeV, TZ, d, and »; resulting inb ~ gaussian parametrization cb(zsfa'eﬂ_ was fit to the scaled
— —9+2. Note that this value ob suggests thaTgﬁ(Ao) s_callng function and is shown in Fig. @8 with parameters
=0 for Ay=60+40. This is a result of the form of E¢37)  liSted in Table IV. o _ _
and the notion that the critical temperature lowers as the size USing the fitted parametrization of the scaling function
of the system decreases. Presumably higher order effects rfgfd Other quantities, the-power law can be determined as
taken into account in Eq(37) will affect the location in Pefore. Figures 28) and 2&c) show the mgasuregle% of
system sizeA,, where the effective critical temperature van- 90!d multifragmentation plotted as a function ef™es A
ishes. For the form of finite size scaling corrections shown inY-Power law was plotted on, not fitted, Figs.(B8and 2&c)
Eq.(37), only b= —1 yields an effective critical temperature With ¥=1.3+0.2[from 7, o and Eq.(18)] and offsets de-
that vanishes ato=1. termined via the scaled sgallng function. Thigpower law

Now Eq. (37) can be used to solve faiAo(m)], this  29rees moderately well with the measuMd the full 3¢3'ed

; ; aled_ i ;
measure of the effective critical temperature is for neutrafﬁnge' the e|>.<c§pt|(?]n being nedf**=0 there finite S'Zfe ﬁf
material. To account for the effects of the Coulomb energy€ System limits the maximum &fl,. The treatment of the

present in a nuclear system this estimate is lowered by 0.28ffects of the Coulomb energy in this analysis is model de-

+0.016A,(m). The scaled control parameter is then pendent. However, if the Coulomb effects are completely
' o neglected, the results are unchnaged to within error bars.

scaled_ yTeff eff
={T[Ag(m)]=THTTA(m)]. 39
€ { ¢ [Ao(m)] } ¢ [Ao(m)] (39 VIl. DISCUSSION AND CONCLUSIONS
.The_anilglles(js to extract the exponemtwas performed The focus in the present paper was on the behavior of
with this e>***“by finding thsecageak A Ss'fa?e% cluster pro-  ¢yster distributions and the types of analyses which can shed
duction as a function afi, (€ J versuse>*¢ Previously, light on their creation mechanism. In particular, attempts
it was argued that the largest cluster should be excluded fawere made to identify procedures that can distinguish those
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distributions which are related to critical behavior from thosementioned peaks occur. For the random partitions, this was
which are not. While this question is easily answered fomot the case.

systems containing large numbers of constituents, it is more If a system possesses a critical point, it is also expected to
difficult to address the case of interest here, namely, systenf0Ssess a scaling function that describes its behavior away
with at most only a few hundred particles. In order to answefloMm the critical point. Phase transition theory specifies how

this question for small systems, two different computationalthe argument of this function depends on cluster mass and

models. bond building percolation and a random artitionsdistance from the critical point. If such a function exists, the
h ' d g p I K hat in th P “theory permits the determination of the critical exponent
ave been used. It is well known that in the macroscopierys ‘determination was done for the percolation system

limit, the former system possesses a continuous phase trag'relding satisfactory agreement with its known value. The
sition characterized by a unique scaling function and set o§ame procedure was applied to the random breakup model
critical exponents while the latter system does not. In addiand to the multifragmentation data. It was clear from this
tion, data arising from the multifragmentation of gold nuclei analysis that percolation and multifragmentation were simi-
has been studied using the same procedures. For this systelar, in many features, while the random system was different,
it is not known,a priori, whether a critical point is present. see Figs. 17 and 18. N o

Many cluster properties have been proposed as being suit- Again, if a system possesses a critical point, it is expected
able measures of critical behavior. Among these are the flud® POSSess a scaling function that describes its behavior away
tuations in the size of largest fragmeifig. 1), peaking in from the critical point. Therefore, when the data is properly

. . . 2 . scaled, it should collapse onto a single curve. Figure 19
the qu_antltyyz_ (Fig. 3, pgakmg behavior iV, (F_lg._5), shows the amount of data collapse for the systems discussed
Campi plots(Fig. 6) and simple power law behavior in the

AR X here. The quality of the data collap$Eigs. 19—-2] rein-
cluster mass distribution for a particular value of the appros, ces the notion that the random breakup system is different

priate control parameter. It was seen that none of these megym the others. Although the precise form of the scaling
sures, taken alone or together, was sufficient to distinguish gynction is not dictated by phase transition theory, both the
system possessing critical behavior from one which does nopercolation system and multifragmentation data were satis-
The first procedure which produced different results forfactorily described by a sum of two Gaussians. The random
critical and noncritical systems was the single parametepreakup model was not.
power law fit to the cluster mass distributiofigs. 12—-15. The issue of finite size scaling was discussed. Unlike the
For the percolation systems and for the multifragmentatiorother systems examined here, which had a fixed number of
data, it was shown that the one parameter power law fit deconstituents, the nuclear multifragmentation data originated
scribes the data well only over a very limited range of thefrom systems whose size varied monotonically with ob-
control parameter. The value of the control parameter whergerved charged particle multiplicity, see Fig.(87 Phase
the power law fit is best is very close to where the aboveiransition theory makes a prediction, E§7), as to how the
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FIG. 29. Results of a scaling analysis performed on the cluster

distribution of random partitions. The scaled cluster distribution FIG. 30. Results of the summation to determine the offiges
(nearly) collapses to unity over the entire multiplicity range. a function of the upper limit of the summation.

value of the control parameter at the critical point changes as Although the multifragmentation data possess many of
a function of system size. Applying E¢37) produced an the gross and detailed characteristics that the percolation sys-
improvement in the quality of the data collapse for the scalyem goes, it is not at all obvious why this should be the case.
ing function gnd yielded a better prediction for the behaviorafier all, real nuclei obey quantum mechanics, have varying
of M5, see Fig. 28. o binding energies per particle, and, most significantly, are
Critical exponent values have been determined in an UNcharged. On the other hand, it is well known that near a
biased manner for each system. For both sets of analyses @Rical point the details of the interaction become unimpor-
the percolation clusters, the standard percolation exponenfgnt and only the dimensionality of the system and the di-
were recovered to within error bars. For the random partimension of the order parameter are important. As noted in
tioning, exponents could be extracted, but none that fulfilledye |ntroduction, the attractive nuclear force bears a similar-

well known scaling laws. The exponent values determinedyy, 1o 4 van der Waals force. However, the Coulomb force is
from the gold multifragmentation cluster distributions fulfill long range force and imposes a natural limit to the size of

the scaling laws, to within error bars, and fall near the thregiaple nuclei. Thus, it is not clear to what extent a finite
dimensional Ising universality class. L charged system can exhibit critical behavior when the mac-
The effect of secondary decays from hot initial fragments.qscopic system cannot exist. The exact role of the Coulomb
on the critical exponents has not been explicitly cons@ereqlorce in physical systems undergoing a change of phase is
in this paper. In the SMM36-39 such effects become sig- ¢y rrently of great interegtl01,103 and is, at this point, an
nificant above E*/A,=7 MeV/nucleon. Thust and y,  gpen question. The philosophy of this paper has been to
which are determined at lower excitation energies, will bepake use of phase transition theory as it applies to un-
unaffected in the SMM's fragment distributions. The expo-charged systems. What results for the analysis of the gold
nento is determined by the multiplicities at which individual ptifragmentation data bears great similarity to the results
light fragment yields attain their peak values. As shown insf the same procedures applied to a system known to possess
Fig. 17d), the lightest fragments peak at large multiplicities, 5 critical point. It is tempting then to conclude that multifrag-

corresponding to excitation energies for which secondary dementation is related to critical behavior occurring in a finite
cay are important in the SMM. An SMM calculatiqd03] | clear system.

indicates that the value af from the SMM'’s fragment dis-
tribution was increased by about 70% due to this effect.
However, it is unclear from that calculation that the effects
of secondary decay are as great in the experimental data as
they are in the SMM. The SMM calculation over predicts the  This work was supported in part by the U.S. Department
yield of light fragments which could indicate that the SMM of Energy Contracts or Grants No. DE-ACO3-76F00098,
estimates of secondary decay are too severe. Corrections RE-FG02-89ER-40513, DE-FG02-88ER-40408, DE-FG02-
the model independent quantities determined in this pape88ER40412, DE-FG05-ER40437 and by the U.S. National
based on the SMM calculations are premature. Science Foundation under Grant No. PHY-91-23301.
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APPENDIX A: DISCUSSION OF POWER LAW APPENDIX B: RIEMANN ¢ FUNCTION SUMMATION
IN RANDOM PARTITIONS

As a demonstration of the power of the sort of scaling The value ofty used in this work based on tiefunction
analysis presented above it is shown that the random partivas generated witltAx FORTRAN code using double preci-
tions follow a simple power law ONATNAf_l- Figure 29 ~ sion and letting the sum run from 1 to ®0rhe sum was
shows the scaled cluster distribution as a functiomdfom ~ €rminated at this point in order to keep computing times
clusters withA;=3. The data nearly collapses to unity along "ithin reason. For a value af=2.18 summing to 10gives
the horizontal axis over the multiplicity range for>5. The @ value ofgg that is within 10% of the value when the sum
deviations are due to the constraints rfand finite size. IS terminated at 18, see Fig. 30. Increasing the upper limit
With a simple scaling analysis the underlying power lawof the summation in the function causes no significant

describing the cluster distribution becomes clear. changes in the analysis presented in this work.
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