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The deuteron electromagnetic form factors,A(Q2) and B(Q2), and the tensor polarizationT20(Q
2), are

unambiguously calculated within the front-form relativistic Hamiltonian dynamics, by using a novel current,
built up from one-body terms, which fulfills Poincare´, parity, and time reversal covariance, together with
Hermiticity and the continuity equation. A simultaneous description of the experimental data for the three
deuteron form factors is achieved up toQ2,0.4 (GeV/c)2. At higher momentum transfer, different nucleon-
nucleon interactions strongly affectA(Q2), B(Q2), andT20(Q

2), and the effects of the interactions can be
related toS-state kinetic energy in the deuteron. Different nucleon form factor models have huge effects on
A(Q2), smaller effects onB(Q2), and essentially none onT20(Q

2).

PACS number~s!: 13.40.2f, 24.10.Jv, 27.10.1h
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I. INTRODUCTION

The deuteron is a fundamental system for our understa
ing of nuclear physics and a challenge to our ability to d
scribe nuclei as systems of interacting nucleons with a w
defined internal structure, without an explicit use of th
quark substructure. In particular elastic electron-deute
scattering is a crucial test for deuteron models.

There exists a wide literature~see, e.g.,@1–7# and refer-
ences quoted therein! devoted to the investigation of deu
teron electromagnetic~em! properties and in particular to th
accuracy of the one-body impulse approximation~IA ! for the
current operator. It is usually believed that effects beyo

IA, as meson-exchange currents,NN̄-pair creation terms (Z
graphs!, isobar configurations in the deuteron wavefunctio
etc. are important for the explanation of existing data. Ho
ever, the contributions of these effects are essentially mo
dependent@8#. Furthermore, the separation into one- a
two-body contributions obviously depends on the refere
frame ~see, e.g.,@9,10#!.

Since precise measurements of the deuteron elastic
factors have been recently performed in a wide range of
mentum transfer, up toQ252qm

2 56 (GeV/c)2 for A(Q2)
@11,12#, theoretical models require a relativistic framewo
for a reliable description of the available data. Furthermo
it has been recently shown@13# that relativistic effects are
relevant even for static deuteron properties, as the magn
and quadrupole moments.

An essential requirement for relativistic approaches is
covariance of the current operator with respect to Poinc´
group transformations. This requirement is nontrivial for s
tems of interacting particles, since some of the generators
interaction dependent.

A widely adopted relativistic framework for the study o
deuteron em properties is the front-form Hamiltonian d
namics~FFHD! with a finite number of particles~see Refs.
@14,15# and Refs.@16,17# for extensive reviews!, which gives
0556-2813/2000/62~6!/064004~20!/$15.00 62 0640
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the possibility to retain the large amount of successful p
nomenology developed within the nonrelativistic a
proaches. Indeed, in the FFHD seven, out of ten, Poinc´
generators are interaction free, in particular the boost gen
tors, whileP25(P02Pz)/A2 (P is the total momentum of
the system! and the rotations around thex andy axes contain
the dynamics. Only the two-nucleon state is usually cons
ered and the wave function of the system factorizes for
front-form boost in an eigenfunction of the total momentu
times an intrinsic wavefunction, depending only on intern
variables. Therefore, in the case of elastice-d scattering, one
can express the three deuteron em form factors, determ
by three independent matrix elements of the current, in te
of the deuteron internal wave function and the elastic
nucleon form factors~f.f.!.

In the FFHD the em properties of the deuteron were u
ally studied in the reference frame whereq15(q01qz)/A2
50 (q is the momentum transfer! @1,9,18–22#. The one-
body approximation was used to define three matrix e
ments of theplus component of the current, while the othe
matrix elements of theplus component and the other com
ponents of the current were properly defined in order to f
fill Poincaré covariance, Hermiticity and current conserv
tion. However, for spin-one systems, as the deuteron,
procedure is not unique and gives rise to ambiguities in
calculation of the form factors@18,23#.

In Ref. @10#, using a representation of the Poincare´ group
within FFHD, we have shown that extended Poincare´ covari-
ance~i.e., Poincare´ plus parity,P, and time reversal,T, co-
variance! is fulfilled by the current which has a one-bod
form in the Breit reference frame where the initial and fin
momenta of the system are directed along the spin quan
tion axis (qW'5qW 2qzeW z50). Furthermore, we have show
that Hermiticity and current conservation can be eas
implemented. An important feature of our approach is tha
allows one to use the same definition for all the matrix e
ments of the current.
©2000 The American Physical Society04-1
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In a previous paper@13#, as a test of our current, w
evaluated the deuteron form factors atQ250, namely the
magnetic moment,md , and the quadrupole moment,Qd , of
the deuteron, which are not affected by the uncertaintie
the knowledge of the neutron em form factors at finite m
mentum transfers. The deuteron magnetic and quadru
moments represented a longstanding problem in nuc
physics. Indeed, theoretical calculations were not able to
curately reproduce in a coherent approach the experime
values for both quantities at the same time, although a v
ety of approaches have been attempted, by changing the
sor content of the nucleon-nucleon (N-N) interaction, or
considering two-body current contributions, both in no
relativistic and in relativistic frameworks@24–26,5#. On the
contrary, using our Poincare´ covariant current operator, thi
usual disagreement between theoretical and experimenta
sults was reduced to 0.5% formd and to 2% forQd by using
interactions able to reproduce the experimental value of
deuteron asymptotic normalization ratioh5AD /AS . There-
fore the contributions from explicit two-body currents
from isobar configurations in the deuteron wave funct
should be relatively small atQ250.

Encouraged by this result, in the present paper we stu
within the framework of FFHD and using our Poincare´ co-
variant current operator, the deuteron form factors atQ2

Þ0 and in particular the effects produced by~i! different
N-N interactions, and~ii ! different nucleon form factors
models. We will also investigate the possibility to gain i
formation from elastice-d scattering on the neutron em
structure, and in particular on the neutron charge form fac
Our preliminary results were already published in Ref.@27#.

The plan of the paper is the following: in Sec. II th
definition of our covariant current operator is recalled;
Sec. III the elastic deuteron form factors are expressed
terms of the matrix elements of the free current in the B
frame; in Sec. IV the front-form deuteron wave function a
the explicit expressions of the current matrix elements
terms of the deuteron wave function are presented; in Se
our results on the dependence of deuteron form factors u
N-N interactions and nucleon em form factors are discus
and, eventually, in Sec. VI our conclusions are drawn.

II. A COVARIANT CURRENT OPERATOR WITHIN
THE FRONT-FORM DYNAMICS

In this section we give the essential lines for the definit
of a current which satisfies extended Poincare´ covariance,
Hermiticity, current conservation, and charge normalizati
to be applied to the calculation of elastic em form factors

Let us first consider the extended Poincare´ covariance. If
the current operatorJm(x) is defined in terms ofJm(0)

Jm~x!5 exp~ ıPx!Jm~0!exp~2ıPx!, ~1!

then the Poincare´ covariance ofJm(x) takes place if

U~ l !21Jm~0!U~ l !5L~ l !n
mJn~0!, ~2!
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whereL( l ) is the element of the Lorentz group correspon
ing to l PSL(2,C) and U( l ) is the unitary representatio
operator corresponding tol ~see, e.g.,@28#!.

For systems of interacting particles the operatorU( l ) in
general does depend on the interaction, and it is not trivia
build up a current which satisfies Eq.~2!. Indeed, in order to
fulfill this requirement the current operator has to be inter
tion dependent. The key property of our procedure@10# for
the definition of a Poincare´ covariant current operator is th
following spectral decomposition of the current:

Jm~0!5(
i j

P iJ
m~0!P j . ~3!

In Eq. ~3! P i is the orthogonal projector onto the subspa
Hi[P iH corresponding to the massMi , the spinSi , and a
definite parity, withH being the space of states describi
the interacting particle system. This decomposition allo
one to express the possible current operator dependenc
the interaction as a dependence on mass and spin of
interacting particle system.

In the FFHD, the seven Poincare´ generators belonging to
the subgroup which leaves invariant the hyperplanex150
are kinematical. Then, as already mentioned in the introd
tion, the state of a system,uP,x&, factorizes in a total mo-
mentum eigenstate,uPW' ,P1&, times an intrinsic eigenstate
ux&:

uP,x&5uPW' ,P1&ux&. ~4!

In Eq. ~4! P15(P01Pz)/A25p1
11¯1pN

1 and PW'

5(Px ,Py)5pW 1'1¯1pW N' are theplus and' components
of the total momentum, withp1 , . . . ,pN the individual mo-
menta of the particles in the system. Because of the dec
position of Eq.~3!, the operatorJm(0) is fully defined by the
set of matrix elements between initial,uPW' ,Pj

1&, and final,

uPW'8 ,Pi8
1&, total momentum eigenstates

Jm~Pi8 ;Pj ![^PW'8 ,Pi8
1uP iJ

m~0!P j uPW' ,Pj
1&. ~5!

The matrix elements between total momentum eigensta
Jm(Pi8 ;Pj ), correspond to definite values of masses, sp
and parity, and are operators in the spaceHint of intrinsic
states. Through proper unitary transformations, the cur
operatorJm(Pi8 ,Pj ) in any reference frame can be defined
terms of the auxiliary current operators

j n~KeW z ;Mi ,M j ![^KW i'8 50,Ki8
1uP iJ

m~0!P j uKW j'50,K j
1&
~6!

in the special Breit frame where the total three-momenta
the system in the initial state,KW j52KeW z , and in the final
state,KW i85KeW z , are directed along the spin quantization ax
z. In Eq. ~6! the initial and finalpluscomponents of the tota
momentum are
4-2
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K j
15

1

A2
@~M j1K2!1/22K#,

Ki8
15

1

A2
@~Mi

21K2!1/21K#, ~7!

while K5Q/2, andq5Ki82K j . It has been shown@10# that
the operatorJm(0) fulfills Eq. ~2!, i.e., is Lorentz covariant
if the current operatorsj n(KeW z ;Mi ,M j ) in the above specia
Breit frame are covariant with respect to rotations around
z axis.

Since in the front form the rotations around thez axis are
interaction free, the continuous Lorentz transformations c
strain the currentj m(KeW z ;Mi ,M j ) for an interacting system
in the same way as in the noninteracting case. The s
property holds for the covariance with respect to a reflect
of the y axis,Py , and with respect to the product of parit
and time reversal,u, which leave the light frontx150 in-
variant, and therefore are kinematical. The full space refl
tion is the product ofPy and a dynamical rotation around th
y axis by p, while T5uP, and therefore parity and tim
reversal do not contain an interaction dependence diffe
from the one implied by rotations aroundy axis. As a con-
sequence, the current operator satisfiesP andT covariance, if
it satisfies Poincare´ covariance and covariance with respe
to Py andu @10#.

In conclusion, since in our Breit frame the extended Po
carécovariance constraints for the auxiliary operators are
same for a noninteracting and an interacting system, the
tended Poincare´ covariance is satisfied for an interacting sy
tem by a current composed by the sum of free, one-b
currents, viz.

j f ree
m ~KeW z ;Mi ,M j ![^0,Ki8

1uP iJf ree
m ~0!P j u0,K j

1&, ~8!

whereJf ree
m (0)5( i 51

N j f ree,i
m , with N the number of constitu-

ents in the system.
In the elastic case considered in this paper (Mi5M j

5M ; Si5Sj5S), the property of Hermiticity for the auxil-
iary operators reads as follows:

j m~2KW ;M ,M !5 j m~KW ;M ,M !* , ~9!

where the asterisk means the Hermitian conjugation in
internal spaceHint . For uKW u50 the property of Hermiticity
reads j m(0;M ,M )5 j m(0;M ,M )* , while for uKW uÞ0 it be-
comes a nontrivial constraint and is satisfied if

j m~KeW z ;M ,M !* 5L@r x~2p!#n
m

3DS@r x~2p!# j n~KeW z ;M ,M !

3DS@r x~2p!#21, ~10!

whereDs(u) is the matrix of the unitary irreducible repre
sentation of the groupSU(2) with spins, corresponding to
uPSU(2), andr x(2p) represents a rotation by2p around
the x axis, i.e.,DS@r x(2p)#5 exp(ıpSx) @10#.
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Let P be the projector onto the subspace of bound sta
ux& of massM and spinS, and let J m(KeW z ;M ,M ) be a
current which fulfills extended Poincare´ covariance. Then a
choice for the current compatible with the Hermiticity co
dition, Eq. ~10!, and with the extended Poincare´ covariance
is @10#

j m~KeW z ;M ,M !5
1

2
$J m~KeW z ;M ,M !1Ln

m@r x~2p!#

3exp~ ıpSx!@J n~KeW z ;M ,M !#*

3exp~2ıpSx!%. ~11!

The second term in Eq.~11!, which ensures Hermiticity, in-
troduces implicitly two-body terms in the current, because
the presence of thex component of the front-form spin op
erator,Sx .

This current fulfills also the current conservation, whi
in the elastic case reads

j 2~KeW z ;M ,M !5 j 1~KeW z ;M ,M !. ~12!

Indeed, as shown in Ref.@10#, in the elastic case the ex
tended Poincare´ covariance and Hermiticity imply Eq.~12!,
i.e., impose current conservation.

In Eq. ~11! one has to choose a specific definition for t
operatorJ m(KeW z ;M ,M ). Unfortunately, one cannot simpl
adopt Eq.~8!, because of the charge normalization conditio
which implies

j 1~0;M ,M !5
1

2
$J 1~0;M ,M !1J 2~0;M ,M !%

5A2eMP, ~13!

where e is the total electric charge of the system. Indee
while the charge normalization condition is fulfilled b
j f ree

1 (0;M ,M ), Eq. ~13! is not satisfied by1
2 „j f ree

1 (0;M ,M )
1 j f ree

2 (0;M ,M )…. However, a possible choice is the follow
ing one:

J 1~KeW z ;M ,M !5^0,K81uPJf ree
1 ~0!Pu0,K1&,

JW'~KeW z ;M ,M !5^0,K81uPJW' f ree~0!Pu0,K1&,

J 2~KeW z ;M ,M !5J 1~KeW z ;M ,M !. ~14!

The previous definition of the ‘‘2 ’’ component of J m is
essential for the proper charge normalization
j m(KeW z ;M ,M ), because of the second term in Eqs.~11! and
~13!.

In the elastic case, only 2S11 nonzero matrix element
of the em current defined by Eqs.~11! and~14! are indepen-
dent, corresponding to the 2S11 elastic form factors. The
independent matrix elements can be chosen as the diag
matrix elements ofj 1 with Sz>0 and the matrix element

^MSSzu j x(KeW z ;M ,M )uMSSz21& of j x with Sz>11/2 @10#.
Obviously, any other choice of the independent matrix e
4-3
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F. M. LEV, E. PACE, AND G. SALMÈ PHYSICAL REVIEW C 62 064004
ments to be used in the calculation of the elastic form fac
is completely equivalent, i.e., it will yield exactly the sam
results. One can immediately obtain that

^MSSzu j 1~KeW z ;M ,M !uMSSz&

5^MSSzuJ 1~KeW z ;M ,M !uMSSz&, ~15!

^MSSzu j x~KeW z ;M ,M !uMSSz8&

5
1

2
@^MSSzuJx~KeW z ;M ,M !uMSSz8&

2^MSSz8uJx~KeW z ;M ,M !uMSSz&# ~16!

and therefore the elastic form factors can be evaluate
terms of the matrix elements of the free current only. It h
to be noted that the matrix elements of bothj 1 and j x have
been shown to be real@10#.

In the deuteron case, sinceS51, three matrix elements o
the current are needed.

III. DEUTERON ELECTROMAGNETIC FORM FACTORS

The form factorsA(Q2) andB(Q2), which appear in the
unpolarized cross section, and the tensor polarizat
T20(Q

2), can be expressed in terms of the charge,GC(Q2),
quadrupole,GQ(Q2), and magnetic,GM(Q2), elastic form
factors:

A~Q2!5GC
2 1

8

9
t2GQ

2 1
2

3
tGM

2 ,

B~Q2!5
4

3
t~11t!GM

2 ,

T20~Q2!52t
A2

3

F4

3
tGQ

2 14GQGC1 f GM
2 G

A1B tan2~u/2!
, ~17!

where t5Q2/(4md
2), Q252qm

2 , md is the deuteron mas
and f 51/21(11t)tan2(u/2), with the following normaliza-
tion for the form factors:GC(0)51, GQ(0)5md

2Qd , and
GM(0)5mdmd /mp (mp is the proton mass!.

For the deuteron, the matrix elements of the current
related to the form factorsGC(Q2), GM(Q2), GQ(Q2) by
the following general expression of the macroscopic curr
for spin 1 systems~as the deuteron! @29#

j S
z8 ,Sz

m
5^md1Sz8u j

m~KeW z ,md ,md!umd1Sz&

5eeS
z8

8* a
eSz

b H ~P1P8!mF2S GC2
2

3
tGQDgab

2z2FGC2S 11
2

3
t DGQ2GM GqaqbG

1GM~ga
mqb2gb

mqa!J , ~18!
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where umd1Sz& is the deuteron intrinsic eigenstate,gab the
metric tensor,eSz

and eS
z8

8 are the initial and final deuteron

polarization vectors, respectively,~see Appendix A! and
z215A2mdA11t.

In FFHD, hadron form factors are often calculated in t
reference frame whereq150. If l andl8 are the helicities
in the initial and final states, respectively, andI l8l

5^l8uJ1(0)ul&, then, because of Hermiticity,P andT co-
variance, and covariance for rotations about thez axis, all the
matrix elementsI l8l for the deuteron can be expressed
terms of I 11, I 00, I 10 and I 1,21. As shown, e.g., in Refs
@18,9#, the following constraint, usually called ‘‘angular con
dition,’’ must be fulfilled in theq150 frame, viz.

~112t!I 112I 002~8t!1/2I 101I 1,2150. ~19!

However, this constraint, which is related to the rotation
covariance of the current, is not satisfied if the matrix e
mentsI l8l are calculated with the free operator,Jf ree

1 (0) in
theq150 frame. Then, three out of the four matrix elemen
are usually defined through the free operator, while
fourth one is defined by Eq.~19!. However, different choices
of the three matrix elements to be calculated by the f
operator are possible and therefore different prescripti
can be used to calculate the three physical form factors. A
consequence, within this approach there is a large ambig
in the theoretical results~see, e.g.,@9,18–21,23#!, and, fur-
thermore, different definitions are used for different mat
elements of the current.

A relevant result of our approach is that, using in t
left-hand side of Eq.~18! the microscopic current defined b
Eqs.~11! and ~14!, the extraction of elastic em form factor
is no more plagued by the ambiguities, which are pres
when the free current is used in the reference frame wh
q150. Indeed, using our current operator, it turns out th
only three matrix elementsj S

z8 ,Sz

m
are independent, corre

sponding to the three elastic em form factors. For instan
one can consider the matrix elementsj 0,0

1 , j 1,1
1 , j 1,0

x , which
have been shown to be real@10#. On the contrary, using the
one-body current in theq150 frame, one has four indepen
dent matrix elements@18#.

The form factorsGC , GM , andGQ can be easily obtained
from the matrix elements of the current in our Breit fram
since from Eq.~18! one has

^md11u j 1~KeW z ;md ,md!umd11&5z21FGC2
2

3
tGQG ,

^md10u j 1~KeW z ;md ,md!umd10&5z21FGC1
4

3
tGQG ,

^md11u j x~KeW z ;md ,md!umd10&5z21t1/2GM . ~20!

By means of Eq.~20! and using the properties~15! and
~16! of the matrix elementsj S

z8 ,Sz

m
, the form factorsGC ,

GM , and GQ can be expressed in terms of the matrix e
ments J Sz ,Sz

1 5^md1SzuJ 1(KeW z ,md ,md)umd1Sz& and
4-4
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J S
z8 ,Sz

x
5^md1Sz8uJx(KeW z ,md ,md)umd1Sz&, i.e., in terms of

the matrix elements of the free current, calculated in
Breit frame where the momentum transfer is along the s
quantization axis,z @27#. One obtains

GC5~2J 1,1
1 1J 0,0

1 !z/3, GM5~J 1,0
x 2J 0,1

x !z/~2At!,

GQ5~J 0,0
1 2J 1,1

1 !z/~2t!. ~21!

Then, the deuteron magnetic moment, in nuclear magnet
is given by

md5
mp

~A2md!
lim
Q→0

1

Q
@J 1,0

x 2J 0,1
x #, ~22!
n

t

s

he

at
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while the deuteron quadrupole moment is

Qd5
A2

md
lim
Q→0

1

Q2
@J 0,0

1 2J 1,1
1 #. ~23!

We stress that, as was shown in@1#, using the free current in
the frame whereq150, in the limit Q2→0 the angular con-
dition is satisfied at the first order inQ, but it is violated at
the second order. Therefore the angular condition is no
problem for the calculation ofmd , while the quadrupole mo-
ment is not uniquely determined within that approach.

From Eqs.~17! and~21! it is straightforward to obtain the
expressions for the elastic structure functionsA(Q2), B(Q2)
and for the tensor polarizationT20(Q

2) in terms of the matrix
elements of the free currentJ Sz ,Sz

1 andJ S
z8 ,Sz

x
:

A~Q2!5
z2

3
@~J 0,0

1 !212~J 1,1
1 !21~J 1,0

x 2J 0,1
x !2/2#,

B~Q2!5
1

6md
2 ~J 1,0

x 2J 0,1
x !2,

T20~Q2!52z2
A2

3

@~J 0,0
1 !22~J 1,1

1 !21 f ~J 1,0
x 2J 0,1

x !2/4#

A1B tan2~u/2!
. ~24!
an
IV. DEUTERON FRONT-FORM WAVE FUNCTION
AND MATRIX ELEMENTS OF THE CURRENT

OPERATOR

We consider the deuteron as a system of two differe
interacting particles with the same mass,m5(mp1mn)/2
(mn is the neutron mass!, and spin 1/2. For a system ofN
particles with four-momentapi ( i 51,2, . . . ,N), FFHD in-
ternal variableskW1, . . . , kWN can be defined, such tha
( i 51

N kW i50 . The intrinsic three-momentumkW i is the spatial
part of the quantity

ki5L@b~G!#21pi , ~25!

where G5P0 /M0 is the four-velocity, andP05p11•••

1pN the total four-momentum of a system of free particle
with M05uP0u[uP0

2u1/2. The matrix b(G)P SL~2,C! ~see
Appendix B! represents a front-form boost. The action of t
boost L@b(G)#21 is such thatP085L@b(G)#21P0[@PW 0'8
50,P08

15M0 ,P08
25M0#.

Then the wave function for the deuteron internal st
umd1Sz&[ux1,Sz

& can be written as follows@30#:

x1,Sz
~kW' ,j,s1 ,s2!5^kW ,s1 ,s2ux1,Sz

&

5^kW ,s1 ,s2uR21uCd&v~k!1/2, ~26!
t,

,

e

wherej5p1
1/P1, and kW'5pW 1'2jPW' . The internal three-

momentum iskW5(kW' ,kz), where kz5(2j21)v(k), v(k)
5(m21kW2)1/2, and k5ukW u. It can be easily shown thatM0

52v(k). The normalization of̂ kW ,s1 ,s2ux1,Sz
& is such that

(
s1 ,s2

E u^kW ,s1 ,s2ux1,Sz
&u2

dkW

~2p!3v~k!
51. ~27!

The matrixR is given by

R5v~kW ,sW1!v~2kW ,sW2!, ~28!

wherev(kW ,sW) is the Melosh matrix@31,15#

v~kW ,sW !5
v~k!1m1kz1ı~ ŝxky2ŝykx!

@2„v~k!1m…„v~k!1kz…#
1/2

, ~29!

while sW1, andsW2 are the usual nucleon spin operators,s1 and
s2 the eigenvalues ofs1z and s2z , respectively, andŝ i the
Pauli matrix operators. The generalized Melosh matrix c
also be written as

v~2kW ,sW !5expS ı

2
wnW ŝW D , ~30!

with nW 5(eW z`kW )/k' , by defining the anglew
4-5



n

ey

in

o-
on-
ta-
e

e-
ally

r

-

e
the

F. M. LEV, E. PACE, AND G. SALMÈ PHYSICAL REVIEW C 62 064004
w52 arctan
k'

v~k!1m2kz
. ~31!

The anglew will be used in the Appendix for the calculatio
of the deuteron quadrupole moment.

The wave function for the deuteron internal state ob
the mass equation

M2x1,Sz
~kW' ,j,s1 ,s2!5md

2x1,Sz
~kW' ,j,s1 ,s2!, ~32!

while the wave functionCd in Eq. ~26! is the usual solution
of the ‘‘nonrelativistic’’ Schrödinger equation. Indeed, if in
the front-form dynamics the mass operatorM̃ for the func-
tion Cd is defined byM̃25RM2R215M0

21V with V the

interaction operator, then the mass equationM̃2Cd5md
2Cd

has the same form as the ‘‘nonrelativistic’’ Schro¨dinger
equation in momentum representation@32,15#:

S kW2

m
1VDCd~kW ,s1 ,s2!5EdCd~kW ,s1 ,s2!, ~33!

where

V5V/4m, Ed5~md
224m2!/4m5ed1ed

2/~4m!, ~34!
06400
s

with md52m1ed . Therefore the eigenvalueEd of Eq. ~33!
can be identified with the deuteron energyed , if the small
quantity ed

2/(4m) is disregarded. It has to be noted that,
the case of theN-N interactions of the Nijmegen group@36#,
Ed is directly linked through Eq.~34! to the deuteron energy
ed used in their fits. For the continuous part of the tw
nucleon spectrum the mass equation is identical to the ‘‘n
relativistic’’ Schrödinger equation in momentum represen
tion @16#. Therefore the operatorV has to satisfy the sam
constraints of the potential as in nonrelativistic quantum m
chanics and can be chosen to have any of the forms usu
employed for theN-N interaction in nonrelativistic nuclea
physics.

Since the wave functionCd is an eigenstate of the stan
dard nonrelativistic spin operator@9,16,17#

SW nr5 lW~kW !1sW11sW2 , ~35!

where lW(kW ) is the usual orbital angular momentum, th
Clebsh-Gordan coupling coefficients can be used. Then
internal deuteron wave functionx1,Sz

(kW ,s1 ,s2) with polar-

ization vectoreWSz
~see Appendix A!, is given by~cf. @9#!
put

n.’’
^kW ,s1 ,s2ux1,Sz
&5~2p!3/2Av~k!/2(

s18s28
@v~kW ,sW1!21#s1 ,s

18
@v~2kW ,sW2!21#s2 ,s

28
•Fw0~k!d i j

2
1

A2
S d i j 2

3kikj

k2 D w2~k!G @ŝ i ŝy#s
18 ,s

28
~eWSz

! j

52Ap3v~k!~eWSz
! jFx0~k!d i j 1

3kikj

A2k2
w2~k!G @v~kW ,sW1!21ŝ i ŝyv~2kW ,sW2!* #s1 ,s2

, ~36!

where a sum over the repeated indicesi , j 51,2,3 is assumed andx0(k)5w0(k)2(1/A2)w2(k). The wave functionsw0(k) and
w2(k) coincide with the nonrelativisticS and D waves in momentum representation@32#. The normalization ofw0(k) and
w2(k) is such that*@w0(k)21w2(k)2#dkW51. For the calculation of the matrix elements of the current it will be useful to
the internal deuteron wave function in a more compact form

x1,Sz
~kW ,s1 ,s2!52Ap3v~k!~eWSz

! jFi j ~kW !@Ci~kW !1ıŝW •DW i~kW !#s1 ,s2
, ~37!

where

Fi j ~kW !5Fx0~k!d i j 1
3kikj

A2k2
w2~k!G ~38!

and

Ci~kW !1ıŝW •DW i~kW !5v~kW ,sW1!21ŝ i ŝy@v~2kW ,sW2!#* , i 51,2,3. ~39!

In this paper the matricesCi(kW )1ıŝW •DW i(kW ) will be called ‘‘generalized Melosh matrices for the deuteron wave functio
Explicit expressions for the real quantitiesCi(kW ),DW i(kW ) can be found in Appendix C.
4-6
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The matrix elementsJ S
z8 ,Sz

m
can be easily calculated, by using the action of the free current on a two-body

uPW' ,P1&uxS,Sz
& @30#:

^p18 ,p28 ;s18 ,s28uJf ree
m ~0!uPW' ,P1&uxS,Sz

&5(
s1

w̄~p18 ,s18!•H 2m@ f e
is
„~p182p1!2

…2 f m
is
„~p182p1!2

…#

3
~p11p18!m

~p11p18!2
1 f m

is~~p182p1!2!gmJ •w~p1 ,s1!^kW ,s1 ,s28uxS,Sz
&

1

j
, ~40!

where, in our case,

Jf ree
m ~0!5Jp

m~0!1Jn
m~0!. ~41!

In Eq. ~40! w(p,s) is the front-form Dirac spinor@30# ~see Appendix B!, while f e
is5 f e

p1 f e
n and f m

is5 f m
p 1 f m

n are the isoscalar
electric and magnetic Sachs form factors of the nucleon.

An explicit calculation, with the help of the matrix elements of theg matrices between front-form Dirac spinors report
in Appendix B, shows that, as a consequence of Eqs.~40! and ~41!,

^x1,Sz
uJ 1~KeW z ,md ,md!ux1,Sz

&5^x1,Sz
u^0,K81u Jf ree

1 ~0!u0,K1&ux1,Sz
&

5A2md (
s1 ,s18s2

E x1,Sz
~kW8,s18 ,s2!* H am~ f e

is2 f m
is!@am1ıb~ ŝk!'#

a2m21b2kW'
2

1 f m
isJ

s
18s1

•x1,Sz
~kW ,s1 ,s2!~jj8!1/2

dkW8

~2p!3v~k8!j
, ~42!

^x1,S
z8
uJx~KeW z ,md ,md!ux1,Sz

&5^x1,S
z8
u^0,K81u Jf ree

x ~0!u0,K1&ux1,Sz
&

5 (
s1 ,s18s2

E x1,S
z8
~kW8,s18 ,s2!* H 4mkx~ f e

is2 f m
is!@am1ıb~ ŝk!'#

a2m21b2kW'
2

1 f m
is@akx1ıb~mŝy1kyŝz!#J

s
18s1

x1,Sz
~kW ,s1 ,s2!

dkW8

~2p!3v~k8!j
, ~43!

where (ŝk)'5ŝxky2ŝykx,

a5FK81j8

K1j
G 1/2

1F K1j

K81j8
G 1/2

, b5FK81j8

K1j
G 1/2

2F K1j

K81j8
G 1/2

~44!

and the form factorsf e
is and f m

is are functions of (p182p1)2. In our Breit reference frame, whereKW '50 andqW'50, the relations

between the internal (kW' , kz) and individual nucleon variables, in the initial,x1,Sz
(kW ,s1 ,s2), and final,x1,S

z8
(kW8,s18 ,s28), wave

functions are given by

pW 1'5pW 1'8 5kW'5kW'8 , p1
15jK1, kz5v~k!~2j21!, kz85v~k8!~2j821!,

j85
p18

1

K81
511~j21!

K1

K81
5

j@Amd
21K22K#12K

Amd
21K21K

5
j@A11k22k#12k

A11k21k
, ~45!

with k5K/md . It is important to note that nucleon form factors cannot be factorized out in the current matrix elements
from Eq. ~45! one has

~p182p1!2524t~m21kW'
2 !/~jj8!Þ2Q2. ~46!
064004-7
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By using the expression~36! of the deuteron wave function, a direct calculation shows that

^x1,Sz
uJ 1~KeW z ,md ,md!ux1,Sz

&5A2md~eWSz
! j 8
* ~eWSz

! jE Fv~k!j8

v~k8!j
G 1/2

•Fx0~k8!d i 8 j 81
3ki 8

8 kj 8
8

A2k82
w2~k8!G

3Fx0~k!d i j 1
3kikj

A2k2
w2~k!G• 1

2
TrH @v~2kW8,sW2!#Tŝyŝ i 8v~kW8,sW1!

3Fam~ f e
is2 f m

is!@am1ıb~ ŝk!'#

a2m21b2k'
2

1 f m
isG •v~kW ,sW1!21ŝ i ŝy@v~2kW ,sW2!#* J dkW8, ~47!

^x1,S
z8
uJx~KeW z ,md ,md!ux1,Sz

&5~eWS
z8
! j 8
* ~eWSz

! jE F v~k!

v~k8!
G 1/2

•Fx0~k8!d i 8 j 81
3ki 8

8 kj 8
8

A2k82
w2~k8!G

3Fx0~k!d i j 1
3kikj

A2k2
w2~k!G• 1

2
TrH @v~2kW8,sW2!#Tŝyŝ i 8v~kW8,sW1!

3H 4mkx~ f e
is2 f m

is!@am1ıb~ ŝk!'#

a2m21b2k'
2

1 f m
is@akx1ıb~mŝy1kyŝz!#J

3v~kW ,sW1!21ŝ i ŝy@v~2kW ,sW2!#* J dkW8

j
, ~48!

where the superscriptT on a matrix indicates the transposition of the matrix and a sum over the repeated indicesi , j ,i 8, j 8 is

understood. By means of the matricesCi(kW )1ıŝW •DW i(kW ), Eqs.~47! and ~48! can be rewritten as follows:

^x1,Sz
uJ 1~KeW z ,md ,md!ux1,Sz

&5A2md~eWSz
! j 8
* ~eWSz

! jE Fv~k!j8

v~k8!j
G 1/2

Fi 8 j 8~kW8!Fi j ~kW !•
1

2
Tr$@Ci 8~kW8!2ıŝW •DW i 8~kW8!#

3@A11ıŝW •BW 1#@Ci~kW !1ıŝW •DW i~kW !#%dkW8, ~49!

^x1,S
z8
uJx~KeW z ,md ,md!ux1,Sz

&5~eWS
z8
! j 8
* ~eWSz

! jE F v~k!

v~k8!
G 1/2

Fi 8 j 8~kW8!Fi j ~kW !•
1

2
Tr$@Ci 8~kW8!2ıŝW •DW i 8~kW8!#@Ax1ıŝW •BW x#

3@Ci~kW !1ıŝW •DW i~kW !#%
dkW8

j
, ~50!

where

A11ıŝW •BW 15
am~ f e

is2 f m
is!@am1ıb~ ŝk!'#

a2m21b2k'
2

1 f m
is ~51!

and

Ax1ıŝW •BW x5
4mkx~ f e

is2 f m
is!@am1ıb~ ŝk!'#

a2m21b2k'
2

1 f m
is@akx1ıb~mŝy1kyŝz!#. ~52!

It is straightforward to see thatAx is proportional to the quantitya, while BW 1 andBW x are proportional tob, defined in Eq.~44!.
All the quantitiesA1,BW 1,Ax ,BW x ,Ci(kW ),DW i(kW ) are real.

By an explicit calculation of the traces in Eqs.~49! and ~50! one has
064004-8
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^x1,Sz
uJ 1~KeW z ,md ,md!ux1,Sz

&5A2md~eWSz
! j 8
* ~eWSz

! jE Fv~k!j8

v~k8!j
G 1/2

Fi 8 j 8~kW8!Fi j ~kW !•$A1@Ci 8~kW8!Ci~kW !

1DW i 8~kW8!•DW i~kW !#2BW 1@Ci 8~kW8!DW i~kW !2DW i 8~kW8!Ci~kW !2DW i 8~kW8!`DW i~kW !#%dkW8, ~53!

^x1,S
z8
uJx~KeW z ,md ,md!ux1,Sz

&5~eWS
z8
! j 8
* ~eWSz

! jE F v~k!

v~k8!
G 1/2

Fi 8 j 8~kW8!Fi j ~kW !•$Ax@Ci 8~kW8!Ci~kW !

1DW i 8~kW8!•DW i~kW !#2BW x@Ci 8~kW8!DW i~kW !2DW i 8~kW8!Ci~kW !2DW i 8~kW8!`DW i~kW !#%
dkW8

j
. ~54!

TABLE I. Magnetic moment~in nuclear magnetons! and quadrupole moment for the deuteron, corre-
sponding to differentN-N interactions;md

NR andQd
NR are the nonrelativistic results,md ~LPS! andQd ~LPS!

our results;PD is the D-state percentage, andh5AD /AS the asymptotic normalization ratio~this table is
taken from Ref.@13#, a part from the results for the Nijmegen2 interaction!.

Interaction PD h md
NR md ~LPS! Qd

NR fm2 Qd ~LPS! fm2

Exp 0.0256~4! @40# 0.857406~1! @41# 0.2859~3! @38#

RSC @33# 6.47 0.0262 0.8429 0.8611 0.2796 0.2852

Av14 @34# 6.08 0.0265 0.8451 0.8608 0.2860 0.2907

Paris@35# 5.77 0.0261 0.8469 0.8632 0.2793 0.2841

Av18 @25# 5.76 0.0250 0.8470 0.8635 0.2696 0.2744

Nijm93 @36# 5.75 0.0252 0.8470 0.8629 0.2706 0.2750

Reid93@36# 5.70 0.0251 0.8473 0.8637 0.2703 0.2750

Nijm1 @36# 5.66 0.0253 0.8475 0.8622 0.2719 0.2758

Nijm2 @36# 5.64 0.0252 0.8477 0.8652 0.2707 0.2756

CD-Bonn @37# 4.83 0.0255 0.8523 0.8670 0.2696 0.2729
o
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It has to be noted that the integrals in Eqs.~53! and~54! are
real. Therefore, since the matrix elementsJ Sz ,Sz

1 andJ S
z8 ,Sz

x

are real ~see the end of Sec. II!, only the real part of
(eWS

z8
) j 8
* (eWSz

) j can contribute to these matrix elements.

V. NUMERICAL RESULTS FOR THE DEUTERON FORM
FACTORS

A. Deuteron magnetic and quadrupole moments

The direct evaluation of magnetic and quadrupole m
ments through the limits of Eqs.~22! and ~23! implies very
delicate numerical problems and then a careful analytica
duction of these equations is needed. For the sake of c
pleteness we report in Appendix D the explicit expressio
that have actually been used. Magnetic and quadrupole
ments have already been calculated in Ref.@13# for a variety
of N-N interactions. In this paper we recall our main resu
which are summarized in Table I. In the table the values
the magnetic and quadrupole moments calculated with m
N-N interactions, already shown in Ref.@13#, are reported
together with the values obtained using the local Nijmege
interaction, which was not considered in Ref.@13#.
06400
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The standard nonrelativistic results obtained with a o
body current crucially depend on the asymptotic normali
tion ratio h5AD /AS of D andS wave functions and on the
D-state percentage in the deuteron,PD , but one cannot ob-
tain at the same time the experimental values for bothmd and
Qd . Using the free current within the FFHD in theq150
reference frame, the relativistic correction~RC! turned out to
be very small forQd , while for md it could explain only part
of the disagreement with the experimental value@9#. On the
contrary, in our Poincare´ covariant calculation@13# the RC’s
bring both md and Qd closer to the experimental value
except for the charge-dependent Bonn interaction@37#. We
wish to stress that our current operator and the one use
Ref. @9# are different, since both of them are obtained fro
the free one, but in different reference frames, related by
interaction dependent rotation. As was already observed
the nonrelativistic calculations ofQd @38,39#, we have shown
in Ref. @13# that a remarkable linear behavior against t
asymptotic normalization ratio,h, holds for both the deu-
teron moments calculated within our approach~the values of
md andQd corresponding to the Nijmegen2 interaction ob
precisely the same trend as the other interactions!. The val-
ues ofmd andQd , suggested by this linear behavior in co
respondence of the experimental value ofh @hexp
4-9
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FIG. 1. Deuteron form factorA(Q2) obtained using the RSCN-N interaction@33# and the Gari-Kru¨mpelmann nucleon form factors@42#.
Solid line: full result of our approach with the Poincare´ covariant current operator. Dashed line: the argument of the nucleon form fac
(p182p1)2, is replaced by2Q2. Long-dashed line: nonrelativistic result obtained with exact relativistic relations between deuteron

factors and current matrix elements, within the Breit reference frame whereq̂5eW z @43#, but with nonrelativistic expressions for the matr
elements evaluated in impulse approximation@24#. Experimental data are from Ref.@44# ~open squares!, Ref. @45# ~triangles!, Ref. @46#
~diamonds!, Ref.@11# ~full dots! and Ref.@12# ~open dots!. ~b! The same as in~a!, but forB(Q2). Experimental data are from Ref.@47# ~open
dots!, Ref. @48# ~open squares!, Ref. @49# ~full diamonds!, Ref. @50# ~triangles!, Ref. @51# ~full squares!, and Ref.@52# ~open diamonds!. ~c!
The same as in~a!, but for T20(Q

2). Experimental data are from Ref.@53# ~open dots!, Ref. @54# ~full triangles!, Ref. @55# ~open triangles!,
Ref. @56# ~full dots!, Ref. @57# ~open squares!, Ref. @58# ~full squares!, and Ref.@59# ~diamonds!.
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50.0256(4) @40# # differ from the experimental ones@md

50.857406(1)@41# andQd50.2859(3)@38# # only by 0.5%
and 2%, respectively, i.e., much less than for the nonrela
istic results. The RC tomd is rather large and the total resu
becomes slightly greater thanmd

exp, while the nonrelativistic
one is smaller. This shows that, within our framework, ev
the sign of explicit contributions of two-body currents is d
ferent from the one needed in the nonrelativistic case
conclusion, it appears that, within our approach, the to
contribution of two-body currents~from meson-exchange
Z-graphs, etc.! and isobar configurations has to be relative
small atQ250.
06400
v-
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l

B. Deuteron form factors and N-N interactions

Let us first compare in Figs. 1 and 2 our relativistic resu
for A(Q2), B(Q2), and T20(Q

2), obtained using the RSC
interaction @33# and the Gari-Kru¨mpelmann nucleon form
factors @42#, with the corresponding nonrelativistic result
Following Lomon@24#, the latter ones have been obtained
using the exact relativistic relations between the deute
form factors and the current matrix elements, within t
Breit reference frame where the momentum transfer is
rected along thez axis @43#, but with nonrelativistic expres-
sions for the matrix elements evaluated in impulse appro
mation @24#.
4-10
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In order to have a closer insight to the form factor beh
ior, in addition to the usual plots forA(Q2) andB(Q2) in a
logarithmic scale, shown in Fig. 1, we report in Fig. 2~a! the
quantity A(Q2) divided by the factor (GD

2
•F), with GD

5(11Q2/0.71)22 and F5(11Q2/0.1)22.5, in a linear
scale, and in Fig. 2~b! the quantity GM(Q2)
5@GM(Q2)mp /(mdmd)#2 divided by the factor (GD

2
•F1),

with F15(11Q2/0.1)23. As is clear from Figs. 1 and 2, th
differences between relativistic and nonrelativistic results
a few percent forQ2<0.1 (GeV/c)2, while becoming large
as Q2 increases. ForA(Q2) the differences are larger tha
20% already atQ2>0.2 (GeV/c)2 and are of orders o
magnitude forQ2>2 (GeV/c)2. For B(Q2) the relativistic
and nonrelativistic results differ by 50–100 % forQ2

>0.3 (GeV/c)2, while for T20(Q
2) they differ considerably

for Q2>0.5 (GeV/c)2. In Figs. 1 and 2 we have also re
ported by dashed lines the results obtained by keeping fi
the argument of the nucleon form factors in Eqs.~47! and
~48!. The effects of factorization become large forA(Q2)
andB(Q2) at Q2>1 (GeV/c)2, while for T20(Q

2) already
at Q2>0.5 (GeV/c)2. From Fig. 1 it appears that the non
relativistic approach is able to give an overall description
the data forA(Q2), B(Q2), andT20(Q

2). However, this de-

FIG. 2. ~a! As in Fig. 1~a!, but for the reduced form facto
A(Q2)/(GD

2
•F) with GD5(11Q2/0.71)22 and F5(1

1Q2/0.1)22.5. ~b! As in Fig. 1~b!, but for the reduced form facto
GM(Q2)/(GD

2
•F1) with GM(Q2)5@GM(Q2)mp /(mdmd)#2 and F1

5(11Q2/0.1)23. Experimental data are as in Fig. 1.
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scription is not accurate, even at very low values of the m
mentum transfer, as one can see in Fig. 2~a! and, further-
more, it strongly depends on theN-N interaction and the
nucleon form factor model. For instance, using the CD-Bo
interaction @37# and the nucleon form factors by Hoehle
et al. @60#, for A(Q2) and T20(Q

2) the agreement is com
pletely lost atQ2>0.4 (GeV/c)2.

A comparison of our results with the deuteron form fa
tors obtained by using the sameN-N interactions and the
same nucleon form factors, but within different relativist
approaches, for instance within the front-form calculation
Ref. @9#, can also be interesting. Using the Paris interact
@35# and the form factors of Ref.@60#, large differences have
been found forA(Q2) at Q2>2 (GeV/c)2, which become
of orders of magnitude atQ256 (GeV/c)2 ~see Ref.@27#!.
For B(Q2) we found a minimum around Q2

51.8 (GeV/c)2 instead ofQ251.6 (GeV/c)2 as in Ref.
@9#, and forT20(Q

2) a zero atQ251.4 (GeV/c)2 instead of
1.2 (GeV/c)2.

The results obtained within our approach with differe
N-N interactions are analyzed in Figs. 3 and 4, using
nucleon form factor model by Hoehleret al. @60#. We con-
sider the old RSC interaction@33# and recent realistic inter
actions, able to describe the two-body data with a redu
x2'1. In particular we study the AV18 interaction by th
Argonne group@25#, some interactions by the Nijmege
group ~Nijmegen1, Nijmegen2, Nijmegen93, Reid93! @36#,
and the charge-dependent CD-Bonn interaction by the B
group@37#. The results for the Reid93 interaction are ess
tially equal to the results of the AV18 interaction and are n
reported in the figures.

The effects of different interactions are large forA(Q2) at
Q2>1 (GeV/c)2, while for B(Q2) andT20(Q

2) already at
Q2>0.5 (GeV/c)2. It can be noted that the CD-Bonn inte
action, which is characterized by a larger nonlocality, yie
larger differences with respect to the other interactions.
low values ofQ2 @Q2,0.4 (GeV/c)2#, where the nucleon
form factors are better known, a simultaneous description
the experimental data forA(Q2), B(Q2), and T20(Q

2) is
achieved. The dependence on the nucleon-nucleon inte
tion in this region is minor, although not negligible@see, in
particular, Fig. 4~b!#.

For the mentioned interactions and using the Ga
Krümpelmann nucleon form factors@42#, we report in Fig.
5~a! the value of Q2 corresponding to the minimum o
B(Q2) and in Fig. 5~b! the value ofQ2 corresponding to the
second zero ofT20(Q

2) against the nonrelativisticS-state
kinetic energy,TS , in order to find a correlation betwee
different effects of theN-N interactions. For both quantitie
a distinct linear behavior is clear: a lower value ofTS yields
a minimum for B(Q2) and a zero forT20(Q

2) at a larger
momentum transfer. Analogous results can be obtained w
different nucleon form factors, as the ones of Ref.@60#. From
Figs. 3~a! and 4~a! it is clear that forQ2>1 (GeV/c)2 a
similar correlation holds forA(Q2), i.e., a lower value ofTS
yields a lower value ofA(Q2). It has also to be noted that th
AV18 and Reid93 interactions, which give essentially t
4-11
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FIG. 3. ~a! The deuteron form factorA(Q2) obtained using our Poincare´ covariant current operator, differentN-N interactions and the
nucleon form factors by Ho¨hler et al. @60#. Solid line: RSC interaction@33#; dashed line:AV18 interaction@25#; dot-dashed line: Nijmegen1
interaction; long-dashed line: Nijmegen2 interaction; short-dashed line: Nijmegen93 interaction@36#; dotted line: CD-Bonn interaction@37#.
Actually the Nijmegen93 result is very similar to the AV18 one and is not reported in this figure.~b! The same as in~a!, but for B(Q2). ~c!
The same as in~a!, but for T20(Q

2). Experimental data are as in Fig. 1.
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same results forA(Q2), B(Q2) andT20(Q
2), have the same

S-state kinetic energy.
Let us note that recent measurements of theS-D mixing

parameter,e1, point to a stronger tensor force than the o
exhibited by the interaction models we have analyzed@61#.
In turn, a stronger tensor force is favored by a high degre
locality, which yields significantly larger kinetic energie
and, in particular, larger values ofTS @62#. Then, by an ex-
trapolation of the linear relations found above, one can ar
that aN-N interaction able to reproduce these recent m
surements ofe1 could yield, on one hand, agreement b
tween experimental and theoretical values forT20(Q

2) and,
on the other one, a minimum forB(Q2) slightly lower than
the value indicated by the available experimental d
@aroundQ251.6 (GeV/c)2 instead ofQ251.8 (GeV/c)2].
Therefore, if new, more precise experimental data forB(Q2)
will show such a lower value for the position of the min
06400
of

e
-

-

a

mum, bothB(Q2) and T20(Q
2) could be reproduced by a

novel N-N interaction, without a relevant role for explic
two-body currents.

C. Deuteron form factors and nucleon electromagnetic
form factors

In order to investigate the effects of the nucleon fo
factors on the deuteron form factors, we have displayed
Fig. 6 our results obtained with the Nijmegen2 nucleo
nucleon interaction and corresponding to the nucleon fo
factor models of Refs.@42,60,63#. For A(Q2) the differences
between different models are very large atQ2

>0.5 (GeV/c)2, increase asQ2 increases, and can be re
lated to the sizably different behavior ofGE

n(Q2) for the
various models. The influence of the nucleon form fac
4-12
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models is less marked inB(Q2), while, as already known
@8#, the tensor polarization is essentially independent of
nucleon form factors.

Therefore, the linear behavior of the locations of the mi
mum of B(Q2) and the second zero ofT20(Q

2) vs TS is
substantially independent of the form factor models, as w
as the conjecture at the end of the previous paragraph. A

FIG. 4. ~a! As in Fig. 3~a!, but for the reduced form facto
A(Q2)/(GD

2
•F). ~b! As in ~a!, but at lowQ2. ~c! As in Fig. 3~b!, but

for the reduced form factorGM(Q2)/(GD
2
•F1). The Nijmegen1 re-

sult is very similar to the CD-Bonn one and is not reported in t
figure. Experimental data are as in Fig. 1.
06400
e
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far

as A(Q2) is concerned, one could try to exploit the stron
dependence ofA(Q2) on GE

n(Q2) to gain information on
GE

n(Q2) by a fit of theA(Q2) experimental data, following a
procedure analogous to the one used, in a nonrelativistic c
text, by Platchkovet al. @45#. Obviously the results of this fit
will be different for different interactions. Another possibi
ity to be studied in our covariant framework is obviously t
role of isobar configurations in the deuteron state~see, e.g.
@7#! and of explicit two-body contributions in the e.m. cu
rent ~see, e.g.@2#!. As already noted@10,30#, these contribu-
tions have to be Poincare´ covariant, and to satisfy Hermitic
ity and current conservation by themselves. We intend
perform such a fit and to study these contributions elsewh

VI. CONCLUSIONS

In this paper the deuteron form factorsA(Q2) andB(Q2),
and the tensor polarizationT20(Q

2) have been evaluated i
the framework of front-form Hamiltonian dynamics, using
Poincare´ covariant current operator, without any ambiguit
The current is built up from the free one in the Breit refe
ence frame whereqW is along thez axis and fulfills parity and
time reversal covariance, as well as Hermiticity and curr
conservation.

Large differences have been found between the result
calculations performed within a nonrelativistic framewo
and within our Poincare´ covariant approach. These diffe
ences become huge at high momentum transfer, as expe
but are relevant for accurate calculations even in the limit

s

FIG. 5. ~a! The position of the minimum ofB(Q2), and~b! the
position of the second zero ofT20(Q

2), corresponding to the Gari
Krümpelmann nucleon form factors@42#, vs the nonrelativistic
S-state kinetic energy for the deuteron for different realistic int
actions.
4-13
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zero momentum transfer, as is clear from our results for
deuteron magnetic and quadrupole moments@13#. Large dif-
ferences have also been found with respect to a front-f
approach which ensures Poincare´ covariance by different

FIG. 6. ~a! The reduced deuteron form factorA(Q2)/(GD
2
•F)

obtained with the Nijmegen2 interaction for different nucleon fo
factor models. Solid line: nucleon form factor of Ref.@63#; dashed
line: nucleon form factor of Ref.@60#; dotted line: nucleon form
factor of Ref.@42#. ~b! As in ~a!, but for the reduced form facto
GM(Q2)/(GD

2
•F1). ~c! As in ~a!, but for T20(Q

2). Experimental
data are as in Fig. 1.
06400
e

m

definitions for different matrix elements of the current ope
tor @9#. Our current operator, which was already shown to
able to describe the deuteron magnetic and quadrupole
ments, is also able to simultaneously reproduce the th
deuteron form factors at low momentum transfer, where
nucleon form factor are better known and the effects of d
ferent interactions are minor.

The effects on the deuteron form factors of differe
nucleon-nucleon interactions and different nucleon form f
tor models have been studied. The different nucleon fo
factor models strongly affectA(Q2), while the different in-
teractions have large effects onA,B andT20. These effects
are linked to theS-state kinetic energy in the deutero
which, in turn, is related to the degree of non-locality of t
interactions and to the strength of the tensor force. A no
N-N interaction with a strong tensor force, able to reprodu
the recent measurements ofe1, would be helpful to describe
the deuteron form factors and, in particular, to offer a so
ground for the study of the neutron charge form factor fro
the analysis ofA(Q2). We stress the relevance of a we
defined relativistic approach to gain reliable information
the nucleon-nucleon interaction and the nucleon form f
tors.
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APPENDIX A: POLARIZATION VECTORS

The deuteron polarization four-vectors,eSz
, in any refer-

ence frame can be obtained by a proper boost from the
larization vectors in the deuteron rest frame,eSz

(r f )[(er f
0

50,eWSz
), with

eW 1152
1

A2
~1,ı,0!, eW 215

1

A2
~1,2ı,0!, eW05~0,0,1!.

~A1!

In our Breit frame, wherePW'5PW'8 50, the transverse deu
teron polarization vectors, in both the initial and final stat
read as follows:

e615e618 57
1

A2
~0,1,6ı,0!, ~A2!

while the longitudinal polarization vector in the initial sta
is
4-14
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e05
1

md
~2K,0,0,Amd

21K2! ~A3!

and in the final state is

e085
1

md
~K,0,0,Amd

21K2!. ~A4!

APPENDIX B: FRONT-FORM DIRAC SPINORS
AND MATRIX ELEMENTS OF g MATRICES

Adopting the following representation for theg matrices:

g05UU0 1

1 0
UU, g55UU1 0

0 21
UU, g i5UU 0 2s i

s i 0
UU,
~B1!

with i 51,2,3 ands i the Pauli matrices, the front-form Dira
spinorw(p,s) can be written as

w~p,s!5AmUU b~g!x~s!

„b~g!21
…

†x~s!
UU, ~B2!

where x(s) is the ordinary spin 1/2 spinor describing th
state with spin projection on thez axis equal tos and the
matrix b(g) has the components

b115b22
21521/4~g1!1/2, b1250, b215~gx1gy!b22,

~B3!

with g5p/m.
One can immediately obtain

w̄~p8,s8!w~p,s!5
1

Ap1p81
^s8u@m~p11p81!

2ıŝx~p1py82p81py!

1ıŝy~p1px82p81px!#us&, ~B4!

with normalization

w̄~p,s8!w~p,s!5
1

p1
^s8um2p1us&52mdss8 . ~B5!

The matrix elements of theg matrices, needed for the calcu
lation of the deuteron form factors, are

w̄~p8,s8!g1w~p,s!52Ap1p81dss8 , ~B6!

w̄~p8,s8!gxw~p,s!5
1

Ap1p81
^s8u@ ımq1ŝy1p1px8

1p81px1ıŝz~p81py2p1py8!#us&.

~B7!

In our special Breit frame Eqs.~B4! and ~B7! become
06400
w̄~p8,s8!w~p,s!5
1

Ap1p81
^s8u@m~p11p81!

1ıq1~ ŝxky2ŝykx!#us&, ~B8!

w̄~p8,s8!gxw~p,s!5
1

Ap1p81
^s8u@ ımq1ŝy

1~p11p81!kx1ıŝzkyq
1#us&.

~B9!

APPENDIX C: GENERALIZED MELOSH MATRICES
FOR THE DEUTERON WAVE FUNCTION

The generalized Melosh matrices for the deuteron w
function have been defined in Sec. IV as the matrices

Ci~kW !1ıŝW •DW i~kW !5v~kW ,sW1!21ŝ i ŝy@v~2kW ,sW2!#* ,

i 51,2,3. ~C1!

From the expression~29! for the matrixv(kW ,sW) one obtains

Ci~kW !5N Fd2im1
kyki

m1v~k!G , ~C2!

@DW i~kW !#x5N F2d3im1
kzki2d3ik

2

m1v~k! G , ~C3!

@DW i~kW !#y5N~eW z`kW ! i , ~C4!

@DW i~kW !#z5N Fd1im1
kxki

m1v~k!G , ~C5!

where

N5
1

M0Aj~12j!
5

1

Am21k'
2

. ~C6!

APPENDIX D: DEUTERON MAGNETIC AND
QUADRUPOLE MOMENTS

In this appendix we illustrate the main steps for the c
culations of the deuteron magnetic and quadrupole mom
from Eqs.~22! and ~23!. To this end, expansions ink5At
5Q/(2md) of the quantitiesa andb @Eq. ~44!# up to the first
order

a52, b52
k

j
~D1!

and of the quantitiesj and kz @Eq. ~45!# up to the second
order

j5j822k~12j8!22k2~12j8!,
4-15
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kz5kz82
kv~k8!

j8
1v~k8!

k2

2j82
~4j823! ~D2!

will be needed, since the intrinsic moment in the final sta
kW8, is the integration variable in the integrals for the calcu
tion of the current matrix elements.

1. Magnetic moment

The deuteron magnetic moment is given by Eq.~22!

md5
mp

~A2md!
lim
Q→0

1

Q
@J 1,0

x 2J 0,1
x #, ~D3!

where the matrix elementsJ 1,0
x andJ 0,1

x can be obtained by
Eq. ~54!. Let us preliminarily note thatJ 1,0

x and J 0,1
x have

the same expression, but for the exchange of the role
06400
,
-

of

initial and final variables inFi , j (kW ), Fi 8, j 8(k
W8), and in the

quantity between curly brackets in Eq.~54! @we recall that

only the real part of (eW 11) j gives a nonvanishing contribu
tion to the matrix elements#. In order to obtain the magneti
moment, one can expand@J 1,0

x 2J 0,1
x # as a function ofk,

and consider only the terms which are linear ink @indeed,
because of Eqs.~45! and ~46!, the current matrix element
are functions ofk]. As a first step, by using Eq.~D1! and Eq.
~D2!, we expand the quantity between curly brackets in E
~54! at the first order ink. We obtain a term independent o
k and a term linear ink, which is identical, but with opposite
signs, for the two matrix elementsJ 1,0

x andJ 0,1
x . It is clear

that in correspondence to the latter term one can evaluate

radial wave functions in Eq.~54! with the same argumentkW .

After an integration over the polar anglef @kW[(k,u,f)#
one has
bracket

of
md52 lim
Q→0

mp@F2F8#

2Qmd
1

pmmp

md
2 E

0

`

d~k'
2 !E

2`

` dkz

j2
f m

isx0~k!Fx0~k!S 11
k'

2

2m„v~k!1m…

D 13w2~k!
k21kz

2

2A2k2G
1

mpp

2mmd
2 E0

`

d~k'
2 !k'

2 E
2`

` dkz

j2
x0~k!Fx0~k!1

3

A2
w2~k!G F f m

is2 f e
is v~k!

v~k!1mG , ~D4!

where the first term and the last two terms correspond to the zero and first order terms in the expansion of the curly
of Eq. ~54!, respectively. In Eq.~D4!, F is given by the following expression:

F53pE
0

`

d~k'
2 !k'

2 E
2`

` dkz8

j F v~k!

v~k8!
G 1/2

f e
is
•F x0~k!w2~k8!

kz8

A2k82
1x0~k8!w2~k!

kz

A2k2

1
3kz~k'

2 1kzkz8!

2k2k82
w2~k!w2~k8!G ~D5!

and, according to the observation at the beginning of this subsection,F8 has the same expression, but for the exchangekW

andkW8 in the quantity between square brackets.
The limit in Eq. ~D4! can be easily handled and one obtains the final result

md58p
mmp

md
2 E

0

`

k2dkE
0

1

d~cosu!
@„v~k!…21kz

2#

~m21k'
2 !2

•H 9v~k!

4m
@w2~k!#2~12 cos2 u!1 f m

isx0~k!Fx0~k!S 21
k'

2

m„v~k!1m…

D
13w2~k!

~11 cos2 u!

A2
G1x0~k!

k'
2

m2 Fx0~k!1
3

A2
w2~k!G F f m

is2
v~k!

v~k!1mG J . ~D6!

In Eqs. ~D4! and ~D6! the nucleon form factorsf e
is and f m

is have to be evaluated in the limitQ→0, i.e., f e
is(0)51,

f m
is(0)50.8797.

The nonrelativistic result formd can be immediately recovered from Eq.~D6! in the limit m→`.

2. Quadrupole moment

The quadrupole form factor@see Eq.~21!# is given by

GQ5
A2md

Q2

@J 0,0
1 2J 1,1

1 #

A11t
. ~D7!
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The proper combination (J 0,0
1 2J 1,1

1 ) of the matrix elements ofJ 1 can be directly calculated from Eq.~53! by using Eqs.~38!

and ~51! and the explicit expressions for the quantitiesCi(kW ),DW i(kW ) given in Appendix C. One obtains

J 0,0
1 2J 1,1

1 5mdA2E Fv~k!j8

v~k8!j
G 1/2F ~ f e

is2 f m
is!bk'

~bk'E2amH!

a2m21b2k'
2

2 f e
isEGdkW8, ~D8!

where

E5
1

2
x0~k!x0~k8!@12 cos~w2w8!#1

3w2~k!x0~k8!

A2k2 F S 1

2
k'

2 2kz
2D cos~w2w8!1

3

2
kzk' sin~w2w8!G

1
3w2~k8!x0~k!

A2k82
F S 1

2
k'

2 2kz8
2D cos~w2w8!2

3

2
kz8k' sin~w2w8!G1

9w2~k!w2~k8!

2k2k82
S 1

2
k'

2 2kzkz8D
3@~k'

2 1kzkz8!cos~w2w8!1~kz2kz8!k' sin~w2w8!# ~D9!

and

H5
1

2
x0~k!x0~k8!sin~w2w8!1

3w2~k!x0~k8!

A2k2 F S kz
22

1

2
k'

2 D sin~w2w8!1
3

2
kzk' cos~w2w8!G

1
3w2~k8!x0~k!

A2k82
F S kz8

22
1

2
k'

2 D sin~w2w8!2
3

2
kz8k' cos~w2w8!G1

9w2~k!w2~k8!

2k2k82
S kzkz82

1

2
k'

2 D
3@~k'

2 1kzkz8!sin~w2w8!1~kz2kz8!k' cos~w2w8!#. ~D10!

The anglew8 is defined by Eq.~31! with kW replaced bykW8.
The expression forGQ given by Eqs.~D7!, ~D8!, ~D9!, and ~D10! holds at any value ofQ2. For the evaluation of the

quadrupole moment

Qd5
A2

md
lim
Q→0

1

Q2
@J 0,0

1 2J 1,1
1 #5 lim

Q→0

2

Q2E Fv~k!j8

v~k8!j
G 1/2F ~ f e

is2 f m
is!bk'

~bk'E2amH!

a2m21b2k'
2

2 f e
isEGdkW8 ~D11!

an expansion of@J 0,0
1 2J 1,1

1 # at the second order ink is needed.
Let us note that at the first order ink one has

w82w5
k'k

j„v~k!1m…

~D12!

and, as a consequence, the quantityH is of the first order ink

H5kH11O~k2!, ~D13!

with

H15
k'

2j H 1

v~k!1m
•F2@x0~k!#21

~k'
2 22kz

2!

2k2
3w2~k!S 2A2w0~k!1w2~k!13w2~k!

v~k!~v~k!1m!

k2 D G
2

9v~k!

A2k2 Fw2~k!x0~k!
~k'

2 2kz
2!

k2
1

kz
2

k S w0~k!
]w2~k!

]k
2w2~k!

]w0~k!

]k D G J . ~D14!

Sinceb is also of the first order ink @see Eq.~D1!#, in Eq. ~D11! one can takea52 and disregardb2k'
2 with respect toa2m2

in the limit Q2→0. As a result one has

Qd5 lim
Q→0

2

Q2E Fv~k!j8

v~k8!j
G 1/2FQ2

md
2 ~ f e

is2 f m
is!k'

~k'E2mjH1!

4m2j2
2 f e

isEGdkW85Qd11Qd2 , ~D15!
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where

Qd15
2

md
2 E @ f e

is~0!2 f m
is~0!#k'

~k'E02mjH1!

4m2j2
dkW , ~D16!

Qd252 lim
Q→0

2

Q2E Fv~k!j8

v~k8!j
G 1/2

f e
isEdkW8. ~D17!

In the integral of Eq.~D16! each quantity has been evaluated atQ250 ~i.e., j5j8, kz5kz8) and

E05E~Q250!5S 1

2
k'

2 2kz
2D3w2~k!„2A2w0~k!1w2~k!…

2k2
. ~D18!

To evaluateQd we need an expansion of the integral in Eq.~D17! up to the second order inQ. By using the expansions o
j andkz up to the second order ink given in Eq.~D2!, one obtains

Fv~k!j8

v~k8!j
G 1/2

511kV11
k2

2
V2 , ~D19!

E5E01kE11
k2

2
E2 , ~D20!

where

V152
4j823

2j8
, V25

16j82236j8121

4j82
, ~D21!

E15
3v~k8!kz8

A2j8k83 F3k'
2

k8
w2~k8!S w0~k8!1

w2~k8!

2A2
D 2S k'

2

2
2kz8

2D S w0~k8!
]w2~k8!

]k8
1w2~k8!

]w0~k8!

]k8
1

w2~k8!

A2

]w2~k8!

]k8
D G ,

~D22!

E25
k'

2

k82j82
„v~k8!1m…

2 H k82 @x0~k8!#2

2
23w2~k8!S k'

2

2
2kz8

2D SA2x0~k8!1
3

2
w2~k8! D1

9v~k8!

A2k8
„v~k8!1m…

3Fw2~k8!

k8
x0~k8!~k'

2 2kz8
2!1kz8

2S w0~k8!
]w2~k8!

]k8
2w2~k8!

]w0~k8!

]k8
D 1A2

@w2~k8!#2

k8
S k'

2

2
2kz8

2D G J 1
3v~k8!kz8

A2j82k83

3~4j823!H S k'
2

2
2kz8

2D Fw2~k8!
]w0~k8!

]k8
1w0~k8!

]w2~k8!

]k8
1

w2~k8!

A2

]w2~k8!

]k8
G2

3k'
2

k8
w2~k8!S w0~k8!1

w2~k8!

2A2
D J

1
3@v~k8!#2

A2j82k84 H S k'
2

2
2kz8
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Furthermore, because of Eq.~46!, one has
064004-18
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f e
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where

~r e
is!256Fd fe

is
„~p182p1!2

…

d„~p182p1!2
…

G
Q250

5r ep
2 1r en

2 ~D25!

is the sum of the squares of the proton and neutron charge mean square radii@let us recall that (p182p1)2<0]. Then, since only
the second order terms in the expansion of the integral in Eq.~D17! can give a contribution toQd , one obtains
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where each quantity has to be evaluated atQ250.
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edited by K. Siegbahn~North-Holland, Amsterdam, 1965!,
Vol. 2, p. 1620.
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