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The deuteron electromagnetic form factof{Q?) and B(Q?), and the tensor polarizatiofi,o(Q?), are
unambiguously calculated within the front-form relativistic Hamiltonian dynamics, by using a novel current,
built up from one-body terms, which fulfills Poincarparity, and time reversal covariance, together with
Hermiticity and the continuity equation. A simultaneous description of the experimental data for the three
deuteron form factors is achieved up@3<0.4 (GeVk)?2. At higher momentum transfer, different nucleon-
nucleon interactions strongly affes(Q?), B(Q?), and T,,(Q?), and the effects of the interactions can be
related toS-state kinetic energy in the deuteron. Different nucleon form factor models have huge effects on
A(Q?), smaller effects oiB(Q?), and essentially none o, Q?).

PACS numbse(s): 13.40-f, 24.10.Jv, 27.10th

[. INTRODUCTION the possibility to retain the large amount of successful phe-
nomenology developed within the nonrelativistic ap-

The deuteron is a fundamental system for our understandgproaches. Indeed, in the FFHD seven, out of ten, Poincare
ing of nuclear physics and a challenge to our ability to de-generators are interaction free, in particular the boost genera-
scribe nuclei as systems of interacting nucleons with a welltors, whileP~ = (P,— P,)/\2 (P is the total momentum of
defined internal structure, without an explicit use of theirthe systemand the rotations around tlxeandy axes contain
quark substructure. In particular elastic electron-deuterotthe dynamics. Only the two-nucleon state is usually consid-
scattering is a crucial test for deuteron models. ered and the wave function of the system factorizes for any

There exists a wide literatursee, e.g.[1-7] and refer-  front-form boost in an eigenfunction of the total momentum
ences quoted thergirdevoted to the investigation of deu- times an intrinsic wavefunction, depending only on internal
teron electromagneti@m) properties and in particular to the variables. Therefore, in the case of elastid scattering, one
accuracy of the one-body impulse approximatith) for the  can express the three deuteron em form factors, determined
current operator. It is usually believed that effects beyondy three independent matrix elements of the current, in terms
IA, as meson-exchange currenN;N-pair creation termsZ of the deuteron internal wave function and the elastic em
graphs, isobar configurations in the deuteron wavefunction,nucleon form factorgf.f.).
etc. are important for the explanation of existing data. How- In the FFHD the em properties of the deuteron were usu-
ever, the contributions of these effects are essentially mod@lly studied in the reference frame wheré = (qo+d,)/\2
dependen{8]. Furthermore, the separation into one- and=0 (g is the momentum transfef1,9,18-22. The one-
two-body contributions obviously depends on the referencéody approximation was used to define three matrix ele-
frame (see, e.g.[9,10]). ments of theplus component of the current, while the other

Since precise measurements of the deuteron elastic forfatrix elements of th@lus component and the other com-
factors have been recently performed in a wide range of moponents of the current were properly defined in order to ful-
mentum transfer, up t@%= _qize (GeVic)? for A(Q?) fill Poincare covariance, Hermiticity and current conserva-
[11,12, theoretical models require a relativistic framework tion. However, for spin-one systems, as the deuteron, this
for a reliable description of the available data. Furthermoreprocedure is not unique and gives rise to ambiguities in the
it has been recently showii3] that relativistic effects are calculation of the form factorl8,23. )
relevant even for static deuteron properties, as the magnetic !N Ref.[10], using a representation of the Poincgreup
and quadrupole moments. within FFHD, we ,have shown that extended Poinaareari-

An essential requirement for relativistic approaches is the@nce(i.e., Poincareplus parity,, and time reversaf/, co-
covariance of the current operator with respect to Poincar&ariance is fulfilled by the current which has a one-body
group transformations. This requirement is nontrivial for Sys_form in the Breit reference frame where the initial and final
tems of interacting particles, since some of the generators afgomenta of the system are directed along the spin quantiza-
interaction dependent. tion axis (ﬁl=ﬁ—qzéz=0). Furthermore, we have shown

A widely adopted relativistic framework for the study of that Hermiticity and current conservation can be easily
deuteron em properties is the front-form Hamiltonian dy-implemented. An important feature of our approach is that it
namics(FFHD) with a finite number of particle¢ssee Refs. allows one to use the same definition for all the matrix ele-
[14,15 and Refs[16,17] for extensive reviews which gives  ments of the current.
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In a previous papefl3], as a test of our current, we whereL(l) is the element of the Lorentz group correspond-
evaluated the deuteron form factors @f=0, namely the ing to | e SL(2,C) and U(l) is the unitary representation
magnetic moment.y, and the quadrupole momei@y, of  operator corresponding {o(see, e.9.[28]).
the deuteron, which are not affected by the uncertainties in For systems of interacting particles the operatdt) in
the knowledge of the neutron em form factors at finite mo-general does depend on the interaction, and it is not trivial to
mentum transfers. The deuteron magnetic and quadrupolguild up a current which satisfies E@®). Indeed, in order to
moments represented a longstanding problem in nucledulfill this requirement the current operator has to be interac-
physics. Indeed, theoretical calculations were not able to adion dependent. The key property of our procedir@]| for
curately reproduce in a coherent approach the experimentttie definition of a Poincareovariant current operator is the
values for both quantities at the same time, although a varifollowing spectral decomposition of the current:
ety of approaches have been attempted, by changing the ten-
sor content of the nucleon-nucleoMNN) interaction, or
considering two-body current contributions, both in non- J4(0)= 2 L;3#(0)IT; . (©)
relativistic and in relativistic framework4—26,5. On the .
contrary, using our Poinca@variant current operator, this ) _
usual disagreement between theoretical and experimental r? Ed- (3) II; is the orthogonal projector onto the subspace
sults was reduced to 0.5% fpiy and to 2% forQy by using ~ i=1IiH corresponding to the mad4;, the spinS;, and a
interactions able to reproduce the experimental value of the€finite parity, with{ being the space of states describing
deuteron asymptotic normalization ratip=Ap /As. There- the interacting particle system. This decomposition allows
fore the contributions from explicit two-body currents or On€ to express the possible current operator dependence on
from isobar configurations in the deuteron wave functionth® intéraction as a dependence on mass and spin of the
should be relatively small @2:0_ interacting partlcle system. o _

Encouraged by this result, in the present paper we study, '" the FFHD, the seven Poincagenerators belonging to
within the framework of FFHD and using our Poincare- the subgroup which leaves invariant the hypgrplaﬁgco
variant current operator, the deuteron form factorsQdt &€ kinematical. Then, as already men_tlone_d in the introduc-
#0 and in particular the effects produced by different  tion, the state of a §ysterhl?,)(>, factorizes in a total mo-
N-N interactions, and(ii) different nucleon form factors mentum eigenstat¢P, ,P"), times an intrinsic eigenstate,
models. We will also investigate the possibility to gain in- | x):
formation from elastice-d scattering on the neutron em
structure, and in particular on the neutron charge form factor. IP.x)=|P, ,P*)|x). (4)

Our preliminary results were already published in R2%].

The plan of the paper is the following: in Sec. Il the N " . -
definition of our covariant current operator is recalled; in'" Ed- (4) P =(P0:LPZ)/\/§= pr+--+py and P,

Sec. Ill the elastic deuteron form factors are expressed i (Px,Py)=p1, +---+py, are theplusand L components
terms of the matrix elements of the free current in the Breitof the total momentum, witlp,, . .. ,py the individual mo-
frame; in Sec. IV the front-form deuteron wave function andmenta of the particles in the system. Because of the decom-
the explicit expressions of the current matrix elements irposition of Eq.(3), the operatod#(0) is fully defined by the
terms of the deuteron wave function are presented; in Sec. ¥et of matrix elements between initi¢l§l ,pj+>, and final,

our r(_esults on the dependence of deuteron form fact_ors up ' P!*), total momentum eigenstates

N-N interactions and nucleon em form factors are discusse

and, eventually, in Sec. VI our conclusions are drawn. ) . . N
JU(P{ ;P =(P] P/ T[TIiJ*(O)ITL;|P, ,P]"). )

Il. A COVARIANT CURRENT OPERATOR WITHIN

The matrix elements between total momentum eigenstates,
THE FRONT-FORM DYNAMICS

JX(P;{;P;), correspond to definite values of masses, spins

In this section we give the essential lines for the definitionand parity, and are operators in the spagg, of intrinsic
of a current which satisfies extended Poinceowariance, ~States. Through proper unitary transformations, the current
Hermiticity, current conservation, and charge normalizationoperatorJ*(P{ ,Pj) in any reference frame can be defined in
to be applied to the calculation of elastic em form factors. terms of the auxiliary current operators

Let us first consider the extended Poinceowariance. If
the current operatai*(x) is defined in terms 08#(0) iP(Ke,: M, ,MQE(IZ{l=0,Ki’*|HiJ”(O)HJ-|IZJ-i=0,K]-+>

(6)
JH(x)= exp(1Px)J*(0)exp —1PX), (1)

in the special Breit frame where the total three-momenta of
the system in the initial stat;= —Ke,, and in the final

stateKi’ = Kéz, are directed along the spin quantization axis,

. z In Eq. (6) the initial and finalplus components of the total
U =3#0)u()=L(1)53"(0), (20 momentum are

then the Poincareovariance ofl#(x) takes place if
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1 Let IT be the projector onto the subspace of bound states
Kfzﬁ[(MﬁKz)m—K], [x) of massM and spinS, and Ie_:tj"(Kéng,M) be a
current which fulfills extended Poincam®variance. Then a
1 choice for the current compatible with the Hermiticity con-
K+ =—[(M2+K2)Y24 K], 7 dition, Eq. (10), and with the extended Poincacevariance
i \/5[( i ) ] @ [10]

while K=Q/2, andg=K/—K;. It has been showfiL0] that

the operatod*(0) fulfills Eq. (2), i.e., is Lorentz covariant,

if the current operatorjs”(KéZ;Mi ,M;) in the above special o .

Breit frame are covariant with respect to rotations around the xexp(1mS)LT"(Kez; M M) ]

Zaxis. _ _ X exp(—17S,)}. (11
Since in the front form the rotations around thaxis are

interaction free, the continuous Lorentz transformations conThe second term in Eq11), which ensures Hermiticity, in-

strain the current“(KéZ;Mi ,M;) for an interacting system troduces implicitly two-body terms in the current, because of

in the same way as in the noninteracting case. The santhe presence of the component of the front-form spin op-

property holds for the covariance with respect to a reflectiorerator,S; .

of they axis, P,, and with respect to the product of parity, ~ This current fulfills also the current conservation, which

j“(Kéz:M,M)=%{J“(Kéz;M,M)JrL’ﬁ[fx(—W)]

and time reversald, which leave the light fronk™=0 in-  in the elastic case reads
variant, and therefore are kinematical. The full space reflec- . .
tion is the product of?, and a dynamical rotation around the i (Key;M M)=j"(Ke,;M,M). (12)

y axis by m, while 7= 6P, and therefore parity and time i ) )

reversal do not contain an interaction dependence differedffdeed, as shown in Ref10], in the elastic case the ex-

from the one implied by rotations aroundaxis. As a con- tended Poincareovariance and Hermiticity imply E12),

sequence, the current operator satisfemd7 covariance, if ~-€-» IMPOSe current conservation. y o

it satisfies Poincareovariance and covariance with respect " EQ.(11) one has to choose a specific definition for the

to Py and 6 [10]. operator7#(Ke,;M,M). Unfortunately, one cannot simply
In conclusion, since in our Breit frame the extended Poin-adopt Eq(8), because of the charge normalization condition,

carecovariance constraints for the auxiliary operators are thavhich implies

same for a noninteracting and an interacting system, the ex-

tended Poincareovariance is satisfied for an interacting sys-

tem by a current composed by the sum of free, one-body

currents, viz.

1
JTO:M M) = S{T7(0;M, M) + T (0;M,M)}

=\2eMIl, (13
; ~ - — r+ +
Ire(KeoiM; M) = (0K T[T Jfreo O)I 0K, (8) where e is the total electric charge of the system. Indeed,
whereJ%_(0)==N Jj# .., with N the number of constitu- While the charge normalization condition is fulfilled by
ents in the system. ’ jtree(0:M, M), Eq. (13) is not satisfied by (j{;ee(0;M,M)
In the elastic case considered in this pap#t; €M, _Jrjf_,ee(O;M,M)). However, a possible choice is the follow-

=M; §=5;=9), the property of Hermiticity for the auxil- INg one.
iary operators reads as follows: .

T (Key,;M,M)= (0K *|T1{,oo(O)TI|OK ),

(= KiM,M) = 4K M, M), 9)

p = . _ r+ 3 +
where the asterisk means the Hermitian conjugation in the J1(Kezi M M)=(0K" [T, 1re OTI[OKT),

internal spacé,;. For|K|=0 the property of Hermiticity T (Ké,:M,M)=T"(K&,:M,M). (14)
readsj“(0;M,M)=j*(0;M,M)*, while for |K|#0 it be-
comes a nontrivial constraint and is satisfied if The previous definition of the “” component of 7# is
) essential for the proper charge normalization of
JH(Ke M M)* =L[r, (—m)]Y j*(Ke,;M,M), because of the second term in E¢fsl) and
e (13.
XDHry(—m)]j"(Ke;;M,M) In the elastic case, only®+1 nonzero matrix elements
XDt (—m)] L, (10) of the em current defined by Eq4d.1) and(14) are indepen-

dent, corresponding to theS21 elastic form factors. The
where DS(u) is the matrix of the unitary irreducible repre- independent matrix elements can be chosen as the diagonal
sentation of the grouU(2) with spins, corresponding to  Matrix elements of * with S,>0 and the matrix elements
ue SU(2), andr,(— ) represents a rotation by 7 around  (MSS|j(Ke,;M,M)|MSS—1) of j, with S,=+ 1/2[10].
the x axis, i.e.,DY[r,(— m)]= exp(#S) [10]. Obviously, any other choice of the independent matrix ele-
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ments to be used in the calculation of the elastic form factorsvhere|my1S,) is the deuteron intrinsic eigenstat,; the

is completely equivalent, i.e., it will yield exactly the same metric tensores andey, are the initial and final deuteron
4

results. One can |mmed|ately obtain that . .
polarization vectors, respectivelysee Appendix A and

(MSS]j*(KE,;iM M)MSS) {=2mgLt 7 |
In FFHD, hadron form factors are often calculated in the
=(MSS|J"(Ke,;M,M)|MSS), (15)  reference frame wherg” =0. If X and\' are the helicities
in the initial and final states, respectively, arlq:,
(MSS|j(Ke,;M,M)MSS) =(\'|37(0)[\), then, because of Hermiticity? and 7 co-

variance, and covariance for rotations aboutzheis, all the
matrix elementd,,, for the deuteron can be expressed in
terms ofl,5, lgp, 110 @and Iy ;. As shown, e.g., in Refs.
R [18,9], the following constraint, usually called “angular con-
—(MSS|J(Ke,;M,M)IMSS)] (16)  dition,” must be fulfilled in theq™ =0 frame, viz.

1 -
= 5[(MSS|Z(Ke,;M,M)|MSS)

and therefore the elastic form factors can be evaluated in (1+27)1 33— loo— (87) Y 1o+ 1, 1 =0. (19
terms of the matrix elements of the free current only. It has _ _ o _
to be noted that the matrix elements of bpthandj, have ~ However, this constraint, which is related to the rotational

been shown to be redl0]. covariance of the current, is not satisfied if the matrix ele-
In the deuteron case, singe= 1, three matrix elements of mentsl, ., are calculated with the free operatdg,.¢(0) in
the current are needed. theq™ =0 frame. Then, three out of the four matrix elements
are usually defined through the free operator, while the
IIl. DEUTERON ELECTROMAGNETIC FORM FACTORS fourth one is defined by E¢19). However, different choices

of the three matrix elements to be calculated by the free

The form factorsA(Q?) andB(Q?), which appear in the operator are possible and therefore different prescriptions
unpolarized cross section, and the tensor polarizatiorC can be used to calculate the three physical form factors. As a
T,o(Q?), can be expressed in terms of the cha@g(Q?), consequence, within this approach there is a large ambiguity

| 2 : 2) elastic f in the theoretical resultésee, e.g.[9,18-21,23), and, fur-
?;Catlgrrgpo €Go(Q7), and magneticy(Q7), elastic form thermore, different definitions are used for different matrix

elements of the current.
8 2 A relevant result of our approach is that, using in the
A(Q})=GZ+ §TZG(23+ §TG2 : left-hand side of Eq(18) the microscopic current defined by
Egs.(11) and(14), the extraction of elastic em form factors
4 is no more plagued by the ambiguities, which are present
B(Q?)=7(1+7)G, when the free current is used in the reference frame where
3 g*"=0. Indeed, using our current operator, it turns out that

only three matrix elementgss, are independent, corre-

S,
sponding to the three elastlc em form factors For instance,

, (17 one can consider the matrix elemefs, j11, 1o, Which
have been shown to be rgdl0]. On the contrary, using the
one-body current in thg* =0 frame, one has four indepen-
dent matrix elementgl8].

The form factor$G¢, Gy, andGq can be easily obtained
from the matrix elements of the current in our Breit frame,
since from Eq.(18) one has

4
) 5z §TGg+4GQGC+fG§A
T Q) =—7—
3

A+Btarf(6/2)

where 7= Q2/(4md) QZ——q , My is the deuteron mass
andf=1/2+ (1+ 7)tarf(6/2), W|th the following normaliza-
tion for the form factors:G¢(0)=1, Gq(0)= mde, and
Gw(0)= pgmy/my (M, is the proton mags

For the deuteron, the matrix elements of the current aré
related to the form factorsac(QZ), Gu(Q?), Go(Q?) by

- 2
the fo!lowing general expression of the macroscopic current  (mgl1|j " (Ke,;mg,my)|mygll)=¢"1 Ge— §TGQ ,
for spin 1 systemsas the deutergr 29]
. - - - 4
lg; ,SZ:<md13z|J”(Kez,md,md)|md15z> (my10]j " (Ke,;mg,mg)|mgl0)=¢"Y G+ 37Caq|:
Ik a g P+P/)# G 2 G . = —-1_1/
=eey ) (P+P’) cT379Q|Yap (Mgl1[j,(Ke,;;mg,mg)[mgl0)=¢ rGy . (20)
) 2 By means of Eq(20) and using the propertied5) and
{9 G| 1+ 37/Go~Gwm (Al (16) of the matrix elementg, ¢ , the form factorsGc,
Gu, andGg can be expressed in terms of the matrix ele-
+GM(9’;‘qﬁ—g§qa)]. (18 ments Jg s=(MylS|J " (Ke,,my,my)|mylS,)  and
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jg < =(md1$£|jx(Kéz,md,md)|md132>, i.e. in terms of while the deuteron quadrupole moment is
z2'"Z

the matrix elements of the free current, calculated in the

Breit frame where the momentum transfer is along the spin Qq :m_d lim Q—[joo T4l (23
guantization axisz [27]. One obtains Q-0
N N N « We stress that, as was shownlf, using the free current in
Gc=(2T11t T8, Gu=(T10~T01)¢/(2 V), the frame wherg™ =0, in the limitQ?—0 the angular con-
N N dition is satisfied at the first order i@, but it is violated at
Go=(Jo0~ J11¢(27). (21)  the second order. Therefore the angular condition is not a

) i roblem for the calculation gf4, while the quadrupole mo-
Then, the deuteron magnetic moment, in nuclear magnetongnent is not uniquely determined within that approach.

is given by From Eqs(17) and(21) it is straightforward to obtain the

expressions for the elastic structure functiéq€?), B(Q?)
[«71 o— «70 h (22) and for the tensor polarizatiof,(Q?) in terms of the matrix
(\/_md) Q%O Q elements of the free curretts s and.J s,

2
AQ@)= S (T30 210+ (Th- T5702),

1
B(Qz): 2(\7?_'0_ jé_l)z,
6mMmg

T,4Q%) = — \/—[(joo)z (J19)%+H(TLo— To,0%4]
2 3 A+ B tark(6/2) '

(24)

IV. DEUTERON FRONT-FORM WAVE FUNCTION
AND MATRIX ELEMENTS OF THE CURRENT
OPERATOR

where ¢=p; /P*, andk, =p,, — £P, . The internal three-
momentum isk= (k, ,k,), wherek,=(2&—1)w(k), w(k)
=(m?+k?¥2 andk=|k|. It can be easily shown thatl,

We consider the deuteron as a system of two different,zzw(k)_ The normalization 0(E101,02|X15> is such that

interacting particles with the same mass=(m,+m;)/2
(m, is the neutron magsand spin 1/2. For a system of

particles with four-momentg; (i=1,2,... N), FFHD in- 2 |<k 0'1:0'2|X1$Z>| dk = (27)
ternal variablesk,, ..., ky can be defined, such that 7107 (2m)%w(k)
Ei'\'zllzi=0 . The intrinsic three-momentuﬁ] is the spatial The matrixR is given by
part of the quantity

R=v(k,sp)v(—K,Sy), (28)

ki=L[B(G)] 'pi, (25 .
wherev (k,s) is the Melosh matri{31,15

where G=Py/M, is the four-velocity, andPy=p;+ - - - A e
+ py the total four-momentum of a system of free particles, v(Kk,S)= @(k) Mkt 1{awky = ayky) , (29)
with Mo=|Po|=|P2|¥2 The matrix 8(G)e SL(2,0) (see [2(w(K) +m)(w(k) +k,)]2

Appendix B represents a front-form boost. The action of the . .
boost L[B(G)] ™! is such thatPj= L[B(G)]ilPOE[ﬁKSL while sy, ands, are the usual nucleon spin operaterg,and

—0,PL =Mg,PL ™ =M,]. o, the eigenvalues of,, ands,,, respectively, andr; the
Then the wave function for the deuteron internal statePauli matrix operators. The generalized Melosh matrix can
Img1S,)=|x1s,) can be written as follow§30]: also be written as
N | SR
- - v(—k,s)=ex;{—cpn0), (30
x1s, (K. &.01,02)=(K,o1,09|x15) 2

=(K, 0,05 R7Y¥Hw(k)¥2 (26)  with n=(e,/\k)/k, , by defining the angle
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k, with my=2m+ ¢4. Therefore the eigenvalug, of Eg. (33
p=2 arctanm (3D can be identified with the deuteron energy, if the small

quantity eﬁ/(4m) is disregarded. It has to be noted that, in
The anglep will be used in the Appendix for the calculation the case of thé&-N interactions of the Nijmegen groug6],

of the deuteron quadrupole moment. Eg is directly linked through Eq(34) to the deuteron energy
The wave function for the deuteron internal state obeysy used in their fits. For the continuous part of the two-
the mass equation nucleon spectrum the mass equation is identical to the “non-

R R relativistic” Schradinger equation in momentum representa-
MzXl,SZ(kL ,f,Ul,O'Q)ngXl'SZ(kL §,01,05), (32)  tion [16]. Therefore the operatdr has to satisfy the same
constraints of the potential as in nonrelativistic guantum me-
while the wave functionV 4 in Eq. (26) is the usual solution chanics and can be chosen to have any of the forms usually
of the “nonrelativistic” Schralinger equation. Indeed, if in employed for theN-N interaction in nonrelativistic nuclear
the front-form dynamics the mass operabdrfor the func- ~ Physics. _ _ _
tion W4 is defined byM2=RM?R 1= M§+V with V the Since the wave functio® 4 is an eigenstate of the stan-

. . ~ dard nonrelativistic spin operatf®,16,1
interaction operator, then the mass equaM)?ﬂfdzmﬁ\Ifd P P b 1

has the same form as the ‘“nonrelativistic” ScHiager
equation in momentum representati@?,15: S =0(K)+8,+85, (35)

|Z2

‘l’d(lz,(rl,()'z)=Ed‘I’d(E,UlyUz), (33

where [(k) is the usual orbital angular momentum, the
Clebsh-Gordan coupling coefficients can be used. Then the

internal deuteron wave functio;alysz(lz,al,oz) with polar-
V=V/4m, Ez=(mi—4m?)/4m=ey+€3/(4m), (34  ization vectorésZ (see Appendix A is given by(cf. [9])

where

(Ko1,02lx15) =2 ¥ (2 [0(KS) o, ri[v(=KS) Mo, 0| €0(K) 5
1 3kk “ o~ -
_E T2 @a(k) Loioy]or oy(€s)]
3 A 3kiki c o1~ L o)\ *
=2mPw(k)(es); xo(k) 8+ 5 02(K) | [0 (K.S) 0100 (~ K89 1o, oy (36)

where a sum over the repeated indicgs=1,2,3 is assumed angh(K) = ¢qo(k) — (1/\/§)<p2(k). The wave functiong(k) and
¢»(K) coincide with the nonrelativisti& and D waves in momentum representati@2]. The normalization ofpy(k) and
©,(K) is such thatf[ ¢o(k)2+ <p2(k)2]dl2= 1. For the calculation of the matrix elements of the current it will be useful to put
the internal deuteron wave function in a more compact form

Xas,(Kior1,05) = 2w (K) (€5 Fiy ([ Ci(K) 10D (K) ], e (37)
where
Fij(k)= xO<k>5.J+ sl (38)
V2K?
and
Ci(K)+10-Bi(K)=v(K,5) ooy [v(—K,S)T*, 1=1,2,3. (39)

In this paper the matrice@i(IZ)+ o 5i(IZ) will be called “generalized Melosh matrices for the deuteron wave function.”
Explicit expressions for the real quantitié$(E),5i(E) can be found in Appendix C.
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s can be easily calculated, by using the action of the free current on a two-body state

z

The matrix elements7%,
.

P, 1P+>|Xs,sz> [30]:
(P1P5; 01,05 Ifree0)|PL P ) x5 5) = 2 v‘v(pi.cri)-[2m[f‘§((p1—p1>2)—f‘r§(<p1—pl>2>]

M is r_ 2 N , E
X(pl+ p;)? (PP )yﬂ] W(py,o1)(K,o1,09 xss,) £ (40)

where, in our case,
Jhree(0)=J5(0) +J5(0). (41)

In Eq. (40) w(p, o) is the front-form Dirac spinof30] (see Appendix B while fo=fE+fZ andf.=fh +f, are the isoscalar
electric and magnetic Sachs form factors of the nucleon.

An explicit calculation, with the help of the matrix elements of thenatrices between front-form Dirac spinors reported
in Appendix B, shows that, as a consequence of Ef3.and (41),

<X1,sz|u7+(Kéz,md Myl x1s) = (x15)(0K" | Irree 0)|OK ) x15)

am(fS—f'$ram+1b(ok), ]
2m?+b%k?

=\2my E leSZ(k ,01,02)*

01, 0'10'2

_ N dk’
+f§] X185, (K 01,00) (£E )P (42
o ' (2m) w(k') €

!
191

<X1,S;|L7x(Ké)z My 1md)|Xl,SZ> :<Xl,S;|<0-K,+| J)f(ree(o)|0'K+>|X1,Sz>

E leS(k ,01,02)*

[4mkx(fi§—fif; [am+1b(ok), ]

22 1 h2[2
01,007 m*+ bk}
+fis[ak,+1b(moy,+kyo,)] (k ) i (43
a Ib(mo o O1,02) =,
I SRR G (k) g
()'10'1
where @k), = axky a'ykx,
K+ 1/2 K¢ ) K+ 112 K* ¢ 112 »
K+§ K/+§-/ K+§ K/+§r

and the form factor$'® andf'S are functions of p; — p;)2. In our Breit reference frame, wheke =0 andq, =0, the relations

between the internaIZ(L , k,) and individual nucleon variables, in the initiqﬁysz(lz,al,oz), and final,Xl‘S/(IZ’,cri ,05), Wave
z

functions are given by

> >

P =pi. =k =k, pi=¢K*, k=w(k)(2é-1), k,=w(k')(2¢-1),

pr* KY  gVmi+K2—K]+2K V14 k2= k]+2k
§=—=1+(£-1) = = ,
K'™* K'* Vmi+K2+K Vi+k2+k

with k=K/my. It is important to note that nucleon form factors cannot be factorized out in the current matrix elements, since
from Eq. (45) one has

(45

(pi—p1)?=—4r(m?+K2)/(£¢") # — Q2. (46)
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By using the expressio(86) of the deuteron wave function, a direct calculation shows that

w(k)g,rlz
w(k")§

. . . . /k/
<X1,SZ|»7+(Kezimd1md)|X1,SZ>:\/Emd(esz)jr(esz)jf o(k )5Ij’+\/— 2902( )

3k;k RN Lol
XO(k)5IJ+\/— 2<P2(k) T"[[U( k',52)]Tayoiv(k',Sy)

am(fS—fiS[am+1b(ok), ]

a’?m?+b%k?

a)(k) ‘|1/2
w(k")

+fis .v(|2,§1)1&i&y[v(—|2,§2)]*}d|2', (47)

. L 3Kk,
<X1,s;|\7x(Kez,mdvmd)|X1,sz>:(es;)jr(esz)jJ' xo(K") Sirjr+ \/—k2<P2( ")

X[ xo(K) & + \/—szz(k) Tr[[v —Kk' 51" ayaiv(K',sp)

amk (f'S—fiS)[am+1b(ak), ]
><| e an:z+b2kf —+ i ak,+ 1b(Mmay + ko) ]

>
!

. BN . dk
Xv(k,sl)1o'ia'y[v(—k,sz)]*]— (48)

£

where the superscrigi on a matrix indicates the transposition of the matrix and a sum over the repeated ingiceg’ is
understood. By means of the matric@gk) + 1o D;(k), Egs.(47) and (48) can be rewritten as follows:

- -, - k)¢’
<X1,Sz|j+(Kez-md1md)|Xl,SZ>:\/Emd(esz)jr(esz)jf {% Firjr (K )Fu(k) Tr{[C (k' )_lff Di/(k')]
X[A* +10-B][C,(K) +10-D;(K) }dK', (49)
1/2
- - % > w(k) N N l i S N R >
<X1,S£|~7X(Kez-mdamd)|X1,SZ>=(esé)j/(esz)jf {Tk) Firjr(K)F(K) - 5 THICi (K') =10 B (K) [ At 10 By
N« |4
X[Ci(k)""o"Di(k)]}?a (50)
where
Lo~ =, am(fg—fo[am+ib(ok), ]
A*+ig-B*= 2 07K +fis (51)
and
< - Amk(fS—fls b(ok . . .
A+10-B,= mkd Lam?iblo )L]+f'r§[akx+|b(moy+kyaz)]. (52)

m?+b2k?
It is straightforward to see th#, is proportional to the quantitg, while B* and I§X are proportional tdo, defined in Eq(44).
All the quantitiesA™,B*,A,,B,,Ci(k),D;(k) are real.

By an explicit calculation of the traces in Eq49) and(50) one has
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TABLE |I. Magnetic moment(in nuclear magnetonsand quadrupole moment for the deuteron, corre-
sponding to differenN-N interactionsyu}R andQ}F are the nonrelativistic resultg,q (LPS) andQq (LPS)
our results;Pp is the D-state percentage, ang=Ap/Ag the asymptotic normalization ratighis table is
taken from Ref[13], a part from the results for the Nijmegen2 interaction

Interaction Po 7 uh® g (LPS QYR fm? Qg (LPS) fm?
Exp 0.02564) [40] 0.8574061) [41] 0.28593) [38]
RSC[33] 6.47 0.0262 0.8429 0.8611 0.2796 0.2852
Av14 [34] 6.08 0.0265 0.8451 0.8608 0.2860 0.2907
Paris[35] 5.77 0.0261 0.8469 0.8632 0.2793 0.2841
Av18 [25] 5.76 0.0250 0.8470 0.8635 0.2696 0.2744
Nijm93 [36] 5.75 0.0252 0.8470 0.8629 0.2706 0.2750
Reid93[36] 5.70 0.0251 0.8473 0.8637 0.2703 0.2750
Nijm1 [36] 5.66 0.0253 0.8475 0.8622 0.2719 0.2758
Nijm2 [36] 5.64 0.0252 0.8477 0.8652 0.2707 0.2756
CD-Bonn[37]  4.83 0.0255 0.8523 0.8670 0.2696 0.2729
N I e | L
(x15,|T " (Kez,mg,my)[x1s)= \/Emd(esz)?/(esz)jf oK) Firj (K)Fij(K)-{AT[Cir (k") Ci(k)

+D;/(k")-Di(k)]-B*[Ci:(k")D;i(k) — D/ (k') Ci(k) — Di/ (K" ) AD;(K) I}dk’,  (53)

1/2

- - - w(k) . - . -
<Xl,S£|u7x(Kez-md1md)|Xl,SZ>:(eS£)j*r(eSZ)jf (k') Firjr(K)Fii(K) - {ALCir (k") Ci(K)
~ i A 5 TN (L S " " S " S dl-()’
+Dir(k")-Di(k) ] =By Cis(K")Dj(k) = Dj/ (k") Ci(K) = Dj. (k )/\Di(k)]}?- (54)
|
It has to be noted that the integrals in E(&3) and(54) are The standard nonrelativistic results obtained with a one-

real. Therefore, since the matrix e|eme[7[§Z s, and j’é, < body current crucially depend on the asymptotic normaliza-
' 2"z tion ratio n=Ap/Ag of D and S wave functions and on the
D-state percentage in the deuter®,, but one cannot ob-
tain at the same time the experimental values for hoftand
Qg. Using the free current within the FFHD in tlig" =0
reference frame, the relativistic correctitRC) turned out to
V. NUMERICAL RESULTS FOR THE DEUTERON FORM be very small foiIQg, while for nq it could explain only part
FACTORS of the disagreement with the experimental val@g On the
contrary, in our Poincareovariant calculatiof13] the RC's
bring both 4 and Q4 closer to the experimental values,
The direct evaluation of magnetic and quadrupole mo-except for the charge-dependent Bonn interacf®r. We
ments through the limits of Eq$22) and (23) implies very  wish to stress that our current operator and the one used in
delicate numerical problems and then a careful analytical reRef. [9] are different, since both of them are obtained from
duction of these equations is needed. For the sake of conthe free one, but in different reference frames, related by an
pleteness we report in Appendix D the explicit expressiongnteraction dependent rotation. As was already observed for
that have actually been used. Magnetic and quadrupole mahe nonrelativistic calculations 64 [38,39, we have shown
ments have already been calculated in IRES] for a variety  in Ref. [13] that a remarkable linear behavior against the
of N-N interactions. In this paper we recall our main results,asymptotic normalization ratioy, holds for both the deu-
which are summarized in Table I. In the table the values oteron moments calculated within our approdtite values of
the magnetic and quadrupole moments calculated with many 4 and Qg corresponding to the Nijmegen2 interaction obey
N-N interactions, already shown in RéflL3], are reported precisely the same trend as the other interacjiofise val-
together with the values obtained using the local Nijmegen2ies of uy andQq, suggested by this linear behavior in cor-
interaction, which was not considered in REf3]. respondence of the experimental value af [7®*P

are real (see the end of Sec.)]l only the real part of
(es)}/(€s); can contribute to these matrix elements.
4

A. Deuteron magnetic and quadrupole moments
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FIG. 1. Deuteron form factoA(Q?) obtained using the RSE-N interaction[33] and the Gari-Kfmpelmann nucleon form factof42].
Solid line: full result of our approach with the Poincaravariant current operator. Dashed line: the argument of the nucleon form factors,
(p;—pa)? is replaced by- Q2. Long-dashed line: nonrelativistic result obtained with exact relativistic relations between deuteron form
factors and current matrix elements, within the Breit reference frame whegg [43], but with nonrelativistic expressions for the matrix
elements evaluated in impulse approximatij@d]. Experimental data are from Rd#4] (open squargs Ref. [45] (triangleg, Ref. [46]
(diamonds, Ref.[11] (full dots) and Ref[12] (open dots (b) The same as ifa), but for B(Q?). Experimental data are from R&#7] (open
dot9, Ref.[48] (open squargsRef.[49] (full diamonds, Ref.[50] (triangles, Ref.[51] (full square$, and Ref[52] (open diamonds (c)
The same as ifa), but for T,o(Q?). Experimental data are from Ré563] (open dots Ref.[54] (full triangles, Ref.[55] (open trianglel
Ref. [56] (full dots), Ref.[57] (open squargsRef.[58] (full square$, and Ref[59] (diamonds.

=0.0256(4)[40]] differ from the experimental onesugy B. Deuteron form factors and N-N interactions
=0.857406(1)41] andQq=0.2859(3)[38] Jonly by 0.5% | &t ys first compare in Figs. 1 and 2 our relativistic results
_an_d 2%, respectively, e, much less than for the nonrelativy,, A(Q?), B(Q?), and T,,(Q?), obtained using the RSC
istic results. The RC tay is rather large and the total result interaction[33] and the Gari-Kfmpelmann nucleon form
becomes slightly greater tharf*®, while the nonrelativistic  factors[42], with the corresponding nonrelativistic results.
one is smaller. This shows that, within our framework, evengo|lowing Lomon[24], the latter ones have been obtained by
the sign of explicit contributions of two-body currents is dif- ysing the exact relativistic relations between the deuteron
ferent from the one needed in the nonrelativistic case. Iform factors and the current matrix elements, within the
conclusion, it appears that, within our approach, the totaBreit reference frame where the momentum transfer is di-
contribution of two-body currentéfrom meson-exchange, rected along the axis[43], but with nonrelativistic expres-
Z-graphs, etg.and isobar configurations has to be relatively sions for the matrix elements evaluated in impulse approxi-
small atQ?=0. mation [24].

064004-10



POINCARE COVARIANT CURRENT OPERATOR AND . . . PHYSICAL REVIEW G2 064004

scription is not accurate, even at very low values of the mo-
mentum transfer, as one can see in Fitp) 2and, further-
more, it strongly depends on tHé-N interaction and the
nucleon form factor model. For instance, using the CD-Bonn
interaction[37] and the nucleon form factors by Hoehler
et al. [60], for A(Q?) and T,o(Q?) the agreement is com-
pletely lost atQ?=0.4 (GeVk)?2.

A comparison of our results with the deuteron form fac-
tors obtained by using the sandN interactions and the
same nucleon form factors, but within different relativistic
r approaches, for instance within the front-form calculation of
pb——nl el ] Ref.[9], can also be interesting. Using the Paris interaction
0.0 01 2 ! [35] and the form factors of Ref60], large differences have

& (Geviel] been found forA(Q?) at Q?=2 (GeV/c)?, which become
L L of orders of magnitude @?=6 (GeV/c)? (see Ref[27]).
For B(Q? we found a minimum around Q2
=1.8 (GeVk)? instead ofQ?=1.6 (GeVk)? as in Ref.
[9], and forT,(Q?) a zero alQ?=1.4 (GeVk)? instead of
1.2 (GeVk)?.

The results obtained within our approach with different
N-N interactions are analyzed in Figs. 3 and 4, using the
nucleon form factor model by Hoehlet al. [60]. We con-
sider the old RSC interactioi83] and recent realistic inter-
actions, able to describe the two-body data with a reduced
x?~1. In particular we study the AV18 interaction by the
T | Argonne group[25], some interactions by the Nijmegen
0.01 0.1 1 group (Nijmegenl, Nijmegen2, Nijmegen93, Reid936],

& [(GeVicy’] and the charge-dependent CD-Bonn interaction by the Bonn
group[37]. The results for the Reid93 interaction are essen-
tially equal to the results of the AV18 interaction and are not

FIG. 2.2 (@ As in Fig. Xa), but for the reduced form factor
A(Q?)/(G3-F) with Gp=(1+Q%0.71)2 and F=(1 : .
+(§2/)o.(1)92~5. )(b) As in Fig.DJ(b)(, bu?for the) reduced form fasctor reported in the flggres. , . 5
Tw(Q)/(G3-Fy) with T'1y(Q2) =[G(Q2)my/(11gme)]2 and Fy 2The effects o; dlffe_rent mteragtlons are Iarzge AQ°) at
=(1+Q?/0.1) 3. Experimental data are as in Fig. 1. Q=1 (GeVic)*, while for B(Q“) andT,o(Q“) already at

Q?=0.5 (GeVk)?. It can be noted that the CD-Bonn inter-

In order to have a closer insight to the form factor behav-action, which is characterized by a larger nonlocality, yields
ior, in addition to the usual plots fok(Q?) andB(Q?) ina larger differences with respect to the other interactions. At
logarithmic scale, shown in Fig. 1, we report in Figa2the  low values ofQ? [Q?<0.4 (GeVk)?], where the nucleon
quantity A(Q?) divided by the factor q;%. F), with Gp form factors are better known, a simultaneous description of
—(1+Q20.71) 2 and F=(1+Q%0.1) %5 in a linear the experimental data foA(Q?), B(Q?), and T,o(Q?) is
scale, and in Fig. (®) the quantity I'y(Q? achieved. The dependence on the nucleon-nucleon interac-
:[GM(QZ)mp/(Mdmd)]z divided by the factor G3-F,), tion in this region is minor, although not negligidisee, in
with F;=(1+Q?/0.1) 3. As is clear from Figs. 1 and 2, the particular, Fig. 4b)].
differences between relativistic and nonrelativistic results are For the mentioned interactions and using the Gari-
a few percent foQ?<0.1 (GeVk)?, while becoming large Krimpelmann nucleon form factofg2], we report in Fig.
as Q? increases. FoA(Q?) the differences are larger than 5(a) the value of Q% corresponding to the minimum of
20% already atQ?=0.2 (GeVk)? and are of orders of B(Q?) and in Fig. b) the value 0fQ? corresponding to the
magnitude forQ?=2 (GeVic)2. For B(Q?) the relativistic ~ second zero off,,(Q?) against the nonrelativistiG-state
and nonrelativistic results differ by 50-100% fd@?  kinetic energy,Ts, in order to find a correlation between
=0.3 (GeVk)?, while for T,o(Q?) they differ considerably different effects of theN-N interactions. For both quantities
for Q?=0.5 (GeVk)?. In Figs. 1 and 2 we have also re- a distinct linear behavior is clear: a lower valueTof yields
ported by dashed lines the results obtained by keeping fixed minimum forB(Q?) and a zero fofT,(Q?) at a larger
the argument of the nucleon form factors in E¢&7) and  momentum transfer. Analogous results can be obtained with
(48). The effects of factorization become large #(Q?) different nucleon form factors, as the ones of R6€]. From
andB(Q?) atQ?=1 (GeVIlc)?, while for T,o(Q?) already  Figs. 3a) and 4a) it is clear that forQ?=1 (GeV/lc)? a
at Q?=0.5 (GeVk)?. From Fig. 1 it appears that the non- similar correlation holds foA(Q?), i.e., a lower value of g
relativistic approach is able to give an overall description ofyields a lower value oA(Q?). It has also to be noted that the
the data forA(Q?), B(Q?), andT,o(Q?). However, this de- AV18 and Reid93 interactions, which give essentially the
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FIG. 3. (@ The deuteron form factoh(Q?) obtained using our Poincamvariant current operator, differeNtN interactions and the
nucleon form factors by Hder et al.[60]. Solid line: RSC interactiof33]; dashed lineAV18 interactior{ 25]; dot-dashed line: Nijmegenl
interaction; long-dashed line: Nijmegen2 interaction; short-dashed line: Nijmegen93 intef86iiodiotted line: CD-Bonn interactiof87].
Actually the Nijmegen93 result is very similar to the AV18 one and is not reported in this fignréhe same as ita), but for B(Q?). (c)
The same as ifia), but for T,(Q?). Experimental data are as in Fig. 1.

same results foA(Q?), B(Q?) andT,«(Q?), have the same mum, bothB(Q?) and T,,(Q?) could be reproduced by a

Sstate kinetic energy. novel N-N interaction, without a relevant role for explicit
Let us note that recent measurements of$He mixing  two-body currents.

parameterg,, point to a stronger tensor force than the one

exhibited by the interaction models we have analyg&d.

In turn, a stronger tensor force is favored by a high degree of ~C. Deuteron form factors and nucleon electromagnetic

locality, which vyields significantly larger kinetic energies form factors

and, in particular, larger values df [62]. Then, by an ex-

trapolation of the linear relations found above, one can argue In order to investigate the effects of the nucleon form

that aN-N interaction able to reproduce these recent meafactors on the deuteron form factors, we have displayed in

surements ofe; could yield, on one hand, agreement be-Fig. 6 our results obtained with the Nijmegen2 nucleon-

tween experimental and theoretical values Tgg(Q?) and,  nucleon interaction and corresponding to the nucleon form

on the other one, a minimum f&(Q?) slightly lower than  factor models of Refd42,60,63. For A(Q?) the differences

the value indicated by the available experimental datdetween different models are very large a2

[aroundQ?=1.6 (GeVk)? instead ofQ?=1.8 (GeVk)?]. =0.5 (GeVk)?, increase a®)? increases, and can be re-

Therefore, if new, more precise experimental data&0D?) lated to the sizably different behavior GE(QZ) for the

will show such a lower value for the position of the mini- various models. The influence of the nucleon form factor
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— T ——— as A(Q?) is concerned, one could try to exploit the strong
. dependence oA(Q?) on GZ(Q?) to gain information on
GE(Q?) by a fit of theA(Q?) experimental data, following a
procedure analogous to the one used, in a nonrelativistic con-

rent(see, e.g[2]). As already notedl10,30], these contribu-
tions have to be Poincamovariant, and to satisfy Hermitic-
ity and current conservation by themselves. We intend to
perform such a fit and to study these contributions elsewhere.

M text, by Platchkowet al.[45]. Obviously the results of this fit
a will be different for different interactions. Another possibil-
N‘\E , ity to be studied in our covariant framework is obviously the

B o4 a role of isobar configurations in the deuteron stétee, e.g.
o= ] [7]) and of explicit two-body contributions in the e.m. cur-

0.01 0.1 1

2 2
Q  [(GeVig)] VI. CONCLUSIONS

FIG. 4. (a) As in Fig. 3a), but for the reduced form factor In this paper the deuteron form factgkéQ?) andB(Q?),
A(Q%/(GH-F). (b) Asin (a), but atlowQ?. (c) As in Fig. 3b), but  and the tensor polarizatiofi,,(Q?) have been evaluated in
for the reduced form factoF(Q?)/(G5-F). The NijmegenLl re-  the framework of front-form Hamiltonian dynamics, using a
s_ult is very si_milar to the CD-Bon_n one and is not reported in thispgincarecovariant current operator, without any ambiguity.
figure. Experimental data are as in Fig. 1. The current is built up from the free one in the Breit refer-

ence frame Wheréi is along thez axis and fulfills parity and

models is less marked iB(Q?), while, as already known time reversal covariance, as well as Hermiticity and current
[8], the tensor polarization is essentially independent of theonservation.
nucleon form factors. Large differences have been found between the results of

Therefore, the linear behavior of the locations of the mini-calculations performed within a nonrelativistic framework
mum of B(Q?) and the second zero df,(Q?) vs Tgis  and within our Poincareovariant approach. These differ-
substantially independent of the form factor models, as welences become huge at high momentum transfer, as expected,
as the conjecture at the end of the previous paragraph. As faut are relevant for accurate calculations even in the limit of
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S T ) definitions for different matrix elements of the current opera-
r : ] tor [9]. Our current operator, which was already shown to be
able to describe the deuteron magnetic and quadrupole mo-
ments, is also able to simultaneously reproduce the three
deuteron form factors at low momentum transfer, where the
nucleon form factor are better known and the effects of dif-

ferent interactions are minor.

The effects on the deuteron form factors of different
nucleon-nucleon interactions and different nucleon form fac-
tor models have been studied. The different nucleon form
: factor models strongly affedd(Q?), while the different in-
801 o1 - teractions have large effects @gB andT,,. These effects

& [(GeVicf] are linked to theS-state kinetic energy in the deuteron,
which, in turn, is related to the degree of non-locality of the
interactions and to the strength of the tensor force. A novel
N-N interaction with a strong tensor force, able to reproduce

the recent measurements @f, would be helpful to describe

— the deuteron form factors and, in particular, to offer a solid
TR ground for the study of the neutron charge form factor from

a the analysis ofA(Q?). We stress the relevance of a well
C\Q defined relativistic approach to gain reliable information on
= the nucleon-nucleon interaction and the nucleon form fac-
ng 0.1 tors.
—
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0 APPENDIX A: POLARIZATION VECTORS

“g o5 E } % R The deuteron polarization four—vectos_:,z, in any refer-
= ' ence frame can be obtained by a proper boost from the po-
b % B larization vectors in the deuteron rest l‘raneag-gi(rf)z(e‘r)f
: @ =0gs), with
45 .
: I I I E e 1(1 0), e 1(1 0), €,=(0,0,2)
_o I L1 L1 L1 e+1:—— ’|, s e_].:_ ,—|, s e(): ,0, .
0 0.5 1 1.5 2 V2 V2

@ [(GeVic)] (A1)

FIG. 6. (a) The reduced deuteron form factAt(Qz)/(G%~F)
obtained with the Nijmegen2 interaction for different nucleon form
factor models. Solid line: nucleon form factor of RE#3]; dashed
line: nucleon form factor of Refl60]; dotted line: nucleon form
factor of Ref.[42]. (b) As in (a), but for the reduced form factor
FM(QZ)/(G%Fl). (¢) As in (a), but for T,(Q?). Experimental
data are as in Fig. 1. e =€, ;=7

In our Breit frame, wheré®, =P! =0, the transverse deu-
teron polarization vectors, in both the initial and final states,
read as follows:

iz(o,l,tl,O), (A2)

3

zero momentum transfer, as is clear from our results for the
deuteron magnetic and quadrupole mom¢h8s. Large dif-
ferences have also been found with respect to a front-formnwhile the longitudinal polarization vector in the initial state
approach which ensures Poincagzevariance by different is
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1
e0=a(— K,0,0,\/m§+ K?) (A3)
d
and in the final state is
1
e6=m—(K,0,0,\/m§+ K?). (A4)
d

APPENDIX B: FRONT-FORM DIRAC SPINORS
AND MATRIX ELEMENTS OF y MATRICES

Adopting the following representation for thematrices:

1 0
0 -1

0 — 0
aj 0

(B1)

NGRS
Y71 o

5:

“, y

with i=1,2,3 ando; the Pauli matrices, the front-form Dirac

spinorw(p,o) can be written as

B(@)x(o)

(@ Y|’ ®2)

w(p.o)=m|

where x(o) is the ordinary spin 1/2 spinor describing the

state with spin projection on theaxis equal too and the
matrix 8(g) has the components

B11= B =2"4g")2  B1,=0, Bor=(gy+ 9y) B22,

(B3)

with g=p/m.
One can immediately obtain

_ 1
w(p',o")w(p,o)= W(”'Hm(WﬂLP’U

—1o(pTpy—p' " py)
+1oy(p pe—p' Tp0]lo), (B4

with normalization

_ 1
w(p,a")W(p,0)=—(a'|m2p*|o)=2md,, . (BS)
p

The matrix elements of the matrices, needed for the calcu-

lation of the deuteron form factors, are

W(p’10-,)'}’+W(p10-):2Vp+p,+5(r(r’1 (BG)

_ 1 ~
W(p',O")’)’xW(va'): W<0—’|[Imq+o—y+ p+p>/<

+p' " ptioy(p' py—ptp))]lo).
(B7)

In our special Breit frame Eq$B4) and (B7) become

PHYSICAL REVIEW G2 064004

_ 1
w(p',o")w(p,0)= WW’I[m(pr’*)

+|q+((}xky_a—ykx)]|0>1 (B8)

_ 1
W(pIYU,)’YXW(pIO-): W
+(pT+p ket 10k, g7 ]| o).
(B9)

(a'l[img" oy

APPENDIX C: GENERALIZED MELOSH MATRICES
FOR THE DEUTERON WAVE FUNCTION

The generalized Melosh matrices for the deuteron wave
function have been defined in Sec. IV as the matrices

Ci(K) +16-Di(K) =v(K,S1) ~La0[v(—K,Sp)]*,
i=1,2,3. (C1

From the expressiot29) for the matrixv (k,S) one obtains

. Kyk;

Ci(k)=N 52im+—m+w(k) , (C2
—— kK — 85k2
[Di(K) ]x=N —53im+m+—w(k), (C3
[Di(K)1y=Me,NK);, (C4
[Di(k)]z:N[élim"'m_'_—w(k)}r (CH
where

1 1

(Co)

N= - .
MoVE(L—§)  mP+K?

APPENDIX D: DEUTERON MAGNETIC AND
QUADRUPOLE MOMENTS

In this appendix we illustrate the main steps for the cal-
culations of the deuteron magnetic and quadrupole moments
from Egs.(22) and (23). To this end, expansions ik= /7
=Q/(2my) of the quantitiesa andb [Eq. (44)] up to the first
order

(D1)

and of the quantitieg andk, [Eq. (45)] up to the second
order

E=¢' —2x(1-¢&")—2k%(1-¢"),
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ko(k")

!

K2
) —(4¢'
2¢'2

k,=k}—

z

+w(k -3) (D2)

will be needed, since the intrinsic moment in the final state,

k', is the integration variable in the integrals for the calcula-
tion of the current matrix elements.

1. Magnetic moment

The deuteron magnetic moment is given by E2p)

lim _[~710 «701]
Q~>0

(D3)

\/_md)

where the matrix elementg} ; and 7 , can be obtained by
Eq. (54). Let us preliminarily note that/] , and 75, have

the same expression, but for the exchange of the role o

PHYSICAL REVIEW C 62 064004

initial and final variables irF; ;(k), Fi, /(k'), and in the
quantity between curly brackets in E(4) [we recall that
only the real part of éH)J gives a nonvanishing contribu-
tion to the matrix elementsin order to obtain the magnetic
moment, one can expand/; o 10 jO,]] as a function ofx,
and consider only the terms which are linearsr{indeed,
because of Eq945) and (46), the current matrix elements
are functions ok]. As a first step, by using E4D1) and Eq.
(D2), we expand the quantity between curly brackets in Eq.
(54) at the first order inc. We obtain a term independent of
x and a term linear i, which is identical, but with opposite
signs, for the two matrix elementg] , and 7, . It is clear
that in correspondence to the latter term one can evaluate the

radial wave functions in Eq54) with the same argumelﬁt

After an integration over the polar anglg [k=(k, 6, )]
qne has

L il LY RPN L Kk KP4
Ma= ('?'TO 20mg g fo d(ki)f_m 2 faxo(K)| xo(k)| 1+ 5 s +3¢2(k)_2\/§k2
mp ) 2y | dkz 3 is__fis w(k)
2mm§ d(kﬁkJ_w?m(k) xO(k)+E<p2(k) fis few(k)—Hn, (D4)

where the first term and the last two terms correspond to the zero and first order terms in the expansion of the curly bracket
of Eq. (54), respectively. In Eq(D4), F is given by the followi

l
Z

3

w(K)
w(K")

4

Qoz(k)ﬁoz(k')]

K

]—"—377J d(kz)kZJ

. 3k,(k? +kky)
2k2k'2

and, according to the observation at the beginning of this s
andk’ in the quantity between square brackets.

ing expression:

!

| Xo(K)@a(K") + xo(K") @2(K) —=—

k,
\/Ek 2 \/Ek

(DS)

ubsedtiohas the same expression, but for the exchande of

The limit in Eq. (D4) can be easily handled and one obtains the final result

[( (k>)2+k2] 9o (k) i
Md_877_f kzdkf d(co 21 12)? [ [@2(K)1?(1~ cos 0) + fiaxo(K)| xo(K)| 2 T ek +m)
(1+ cog 6) ki o ok
+3<Pz(k)T +XO(k)E Xo(K)+ E(PZ(I() fm_w(k)—+m : (D6)

In Egs. (D4) and (D6) the nucleon form factors!® and f'S have to be evaluated in the lim@—0, i.e., fi(0)=1,

f15(0)=0.8797.

The nonrelativistic result fopy can be immediately recovered from E@6) in the limit m— o,

2. Quadrupole moment

The quadrupole form factdisee Eq(21)] is given by

V2mg [Tgo— T4l

Q™ Q2

1+~ ©n
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The proper combinationj(ao— jlfl) of the matrix elements of © can be directly calculated from E3) by using Eqs(38)
and (51) and the explicit expressions for the quantit@$|2),l5i(IZ) given in Appendix C. One obtains

1/2]
is__gis (bk E—amH) is i
Joo~ Ji=m d\/—f k)J [(fe_f bklinzki_feE dk’, (DY)
where
1 3¢2(K)xo(K') 3 _
E= 5 xo(K)xo(K)[1- cosip—g")]+ %[( i - ki)cos(<p—<,o'>+gkzkismupww}
1 22lOxoll0 )XO(k)[(ZkZ k’z)coi(qo <P)—§k ki sin(o—¢ )} —9¢2(k)¢2(k)(2k2 kzké)
\/—k2 2k2k2
X[(K] +kk;)cog o= ') + (K, ~ kK, sin(o—¢')] (D9)
and

1 | 3ea(Kxok)[[ 5 1, 3
H:EXO<k>xO<k'>sum¢—¢'>+*%(f2—i§[(ki—Eki)sm—@')gkzncosup—cp')}

+3<P2(k/)Xo(k)
V2k'2

X[(K? +kky)sin(e— ")+ (k,~k})k, coge—e")]. (D10)

9¢5(K) ga(K') ( o kz)

12 1 2 H ’ 3 ’ ’
k"= S ki |sin(e—¢')— Skzk, cogp—¢’) |+
2k2k'2

The angley’ is defined by Eq(31) with K replaced byk’.
The expression foGq given by Egs.(D7), (D8), (D9), and (D10) holds at any value 002, For the evaluation of the
guadrupole moment

V2 w(k¢ o (bk, E—amH) .
=— lim Teo—T1=lim — fo—fP)bk, ———————fCE|dK’ D11
Qu My o, OQ[ 00~ 140 QHOQZ w(k')é (e mPk. a?m?+b%k2  © (B1D
an expansion of 74 o~ J1 1] at the second order ir is needed.
Let us note that at the first order inone has
g KK (D12)
T He(g+m)
and, as a consequence, the quartttis of the first order in«
H=xH;+O(«?), (D13)
with
k| 1 , (KE—2KD) w(K)(w(k)+m)
H1:2_§la)(k)—+m' —[xo(k)] +T3€D2(k) 2\/§¢o(k)+€02(k)+3€02(k)T
Qo) k)<k2—k§>+ K 028200 ) 9e0k) 014
\/zk ®2(K) xo(K)——— ®ol ER @2 E .

Sinceb is also of the first order i [see Eq(D1)], in Eq.(D11) one can take=2 and disregarth?k? with respect t@?m?
in the limit Q°—0. As a result one has

dk'=Qq1+ Qu2, (D15)

Qd: I|m .
Q-0 Q?

’ 2 _
w(K)€ 1 Q < s m(klE méH;) s
w(kE] | m3 4m2 &2
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where

2 is is
le:m_g J [fe(o)_fm(o)]kl- 4m2§2

w(K) & 12
w(k")E

Qo= lim fISEdK .

Q—0 Q

(ki Eo—méH,)

PHYSICAL REVIEW C 62 064004

(D16)

(D17)

In the integral of Eq(D16) each quantity has been evaluatedQdt=0 (i.e., é=¢', k,=k.) and

3¢2(K) (242p0(k) + @2(k))

1
— 2_ _ 2 2
Eo=E(Q —0)—(§kl—kz i

(D18)

To evaluateQ, we need an expansion of the integral in H917) up to the second order iQ. By using the expansions of

¢ andk, up to the second order ir given in Eq.(D2), one obtains

w(k)glrz Lt S0 (D19)
ik |
w(k')E ! ?
K2
E:E0+KE1+?E2, (DZO)
where
4¢3 16¢'2—-36¢'+21
Y Qz——4§,2 (D21)
3w(k' )k, | 3k? ook >> (ki 2)( dpa(K) Ipo(K") qoz(k'>a<p2(k’>)
E,= k’ —| —=—k! k’ ! ,
1= \/—5 3 — ok )(‘Po( )+ 22 5> K ®o(k") P + P + 2 K
(D22
B k? k'2[ xo(k")]? ,(ki ,z) 3 (k')
Ez_k'zg’z(w(k’)+m)2[ 5 —3pa(K)| 5 —k; (ﬁxO<k>+5<pz<k>) N ——(w(k')+m)
ook b €02(k) | dgo(K') [qoz(k )12 (K2 o 3w(k' )k}
X m(k)(ki-kiﬁkf( o(k’) «pz<k>T) (; ) ]+W
, k? ,2) , 9e0k) 3<P2(k) L g2(K) 9gaK) 3k? ( <p2<k'>)
x(4¢ 3){( k {‘Pz(k) P +¢o(k) 2 P K @2(K")| @o(k’)+ 22
3[w(k)] ( ) (La%(k) ,za%o(k') ( k') ,2a2¢2<k'>)
—_—— k’ k k’ k
\Fflzk“ll Z |: 2( ) (9k, + z (7k/2 O( ) (9k’ + 4 (7k/2
k;? Pey(k)| K2 3 dea(K')  3\2k}?
+E¢Z(k')%l+ki = ook ) @p(K') (3K~ K2) — 6k, pg(K') ‘P(jk, H LealK)T?

ea(kK')
ak’

+12

|

Furthermore, because of E@6), one has

k? d
f—Zkéz) ga(K')
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i dfe(p;—p1)?) (ri$)? 2ik2(m2+Kk?)
fe((pi—p)H)=1+Q* —————| =1- , (D24)
v d(Q?) -0 3 £’
where
- dfe((pi—p1)?)
(r?=6|— ————|  =reptien D25
d((p;—p1)? P (b23)

Q?=0

is the sum of the squares of the proton and neutron charge mean squafietadirecall that|§; — p,)*><0]. Then, since only
the second order terms in the expansion of the integral in([B4j7) can give a contribution t,, one obtains

1
Qd2:_4_m§J

where each quantity has to be evaluate@4t0.

(rg)? (m*+kD) |

QEq+Ept 20461~ 4Eg—3 z dk, (D26)
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