Angular dependence of the pp elastic scattering spin correlation parameter A_{00nn} between 0.8 and 2.8 GeV: Results for 1.80–2.24 GeV

C. E. Allgower,^{1,*} J. Ball,^{2,3} L. S. Barabash,⁴ P.-Y. Beauvais,² M. E. Beddo,^{1,†} N. Borisov,⁴ A. Boutefnouchet,⁵ J. Bystrický,³ P.-A. Chamouard,² M. Combet,^{2,3} Ph. Demierre,⁶ J.-M. Fontaine,^{2,3} V. Ghazikhanian,⁵ D. P. Grosnick,^{1,‡} R. Hess,^{6,§} Z. Janout,^{4,∥} Z. F. Janout,^{6,¶} V. A. Kalinnikov,⁴ T. E. Kasprzyk,¹ Yu. M. Kazarinov,^{4,§} B. A. Khachaturov,⁴ R. Kunne,^{2,**} F. Lehar,³ A. de Lesquen,³ D. Lopiano,¹ M. de Mali,^{3,§} V. N. Matafonov,⁴ I. L. Pisarev,⁴ A. A. Popov,⁴ A. N. Prokofiev,⁷ D. Rapin,⁶ J.-L. Sans,^{2,††} H. M. Spinka,¹ Yu. A. Usov,⁴ V. V. Vikhrov,⁷ B. Vuaridel,⁶ C. A. Whitten,⁵

and A. A. Zhdanov⁷

¹Argonne National Laboratory, HEP Division, 9700 South Cass Avenue, Argonne, Illinois 60439

²Laboratoire National Saturne, CNRS/IN2P3 and CEA/DSM, CEA/Saclay, F-91191 Gif sur Yvette Cedex, France

³DAPNIA, CEA/Saclay, F-91191 Gif sur Yvette Cedex, France

⁴ Laboratory of Nuclear Problems, JINR, RU-141980 Dubna, Moscow Region, Russia

⁵Physics Department, University of California at Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90024

⁶DPNC, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland

⁷Petersburg Nuclear Physics Institute, RU-188350 Gatchina, Russia

(Received 7 July 2000; published 10 November 2000)

Measurements at 19 beam kinetic energies between 1795 and 2235 MeV are reported for the pp elastic scattering spin correlation parameter $A_{00nn} = A_{NN} = C_{NN}$. The c.m. angular range is typically 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters. These results are compared to previous data from Saturne II and elsewhere.

PACS number(s): 13.75.Cs, 24.70.+s, 25.10.+s, 25.40.Cm

I. INTRODUCTION

This experiment is part of a systematic study of the nucleon-nucleon system in the Saturne II energy range. Measurements of the spin correlation parameter $A_{00nn} = C_{NN}$ = $A_{NN} = (N,N;0,0)$ for *pp* elastic scattering (see Ref. [1] for a description of the spin observables) were made at 19 beam kinetic energies between 1.795 and 2.235 GeV and c.m. angles from about $60-100^{\circ}$. The data were obtained with a vertically polarized proton beam incident on a vertically polarized proton target, and the outgoing protons were detected within about $\pm 10^{\circ}$ of the horizontal plane with scintillation counters and multiwire proportional chambers. The spin correlation parameter is defined as

$$A_{00nn} = \frac{d\sigma/d\Omega(\uparrow\uparrow) + d\sigma/d\Omega(\downarrow\downarrow) - d\sigma/d\Omega(\uparrow\downarrow) - d\sigma/d\Omega(\downarrow\uparrow)}{d\sigma/d\Omega(\uparrow\uparrow) + d\sigma/d\Omega(\downarrow\downarrow) + d\sigma/d\Omega(\downarrow\downarrow) + d\sigma/d\Omega(\downarrow\downarrow)},$$
(1)

[†]Present address: Data Ventures LLC, Los Alamos, NM 87544.

[‡]Present address: Department of Physics and Astronomy, Ball State University, Muncie, IN 47306.

[§]Deceased.

^{II}Present address: Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Brehová 7, 11519 Prague 1, Czech Republic. where the arrows denote the spin directions of the beam and target, respectively.

The experiment was performed in four run periods spread over a three-year time span. This paper describes data collected in the first two run periods (I, II); results on the analyzing power $A_{00n0} = A_N$ from these same run periods are described in Ref. [2]. Data for A_N from the last two (III, IV) are presented in Ref. [3], and for A_{00nn} will be given in a forthcoming paper. Each run period was 10–14 days in duration, during which measurements were made at a number of energies. Scattering events from the polarized target were collected simultaneously with those from an unpolarized CH₂ target, and these A_N data are published in Ref. [4]. Results on the spin observables K_{0nn0} and D_{0n0n} from these same run periods are given in Ref. [5]. Some of the A_{00nn}

^{*}Present address: Indiana University Cyclotron Facility, Bloomington, IN 47408.

[¶]Present address: Computing Center of the Czech Technical University, Zikova 4, 16635 Prague 6, Czech Republic.

^{**}Present address: Institut de Physique Nucléaire IN2P3, F-91400 Orsay, France.

^{††}Present address: Centrale Themis, F-66121 Targasonne, France.

data in this paper were previously reported in Ref. [6]; they have been reanalyzed using improved techniques for this paper.

Many details of the experimental apparatus are given in Refs. [2,3,7-12]. A brief description of the polarized beam and target occurs in Sec. II, and of the detectors for the outgoing protons in Sec. III. A short discussion of the data analysis is presented in Sec. IV, and the results are given in Sec. V.

II. POLARIZED BEAM AND TARGET

The polarized beam was produced in an atomic beam-type polarized ion source and accelerated in both the Mimas booster ring and the Saturne II accelerator. Four different beam polarization states were used at most energies during run period II, designated 0_+ (state 1), - (state 2), + (state 3), and 0_{-} (state 4); only the + and - states were used during most data collected in run period I. The polarization of the beam pulses normally alternated in the pattern 0_+ , -, +, $0_{-}, -, +, 0_{+}, -, +, 0_{-}, \cdots$ (or $+, -, +, -, + \cdots$ for run period I). The relative direction is given by the + and signs in the designation of these four vertically polarized states. Certain beam energy ranges had + corresponding to vertically up, and other ranges to vertically down, due to the flipping of the beam spin at certain depolarizing resonances. As described in Ref. [2], the ratios of polarizations were consistent with being constant, with magnitudes

$$P_{0+}: P_{-}: P_{+}: P_{0-} = 0.072: 1.000: 1.000: 0.072.$$
 (2)

These four magnitudes were then multiplied by a different constant at different times as the ion source polarization

FIG. 1. Experimental results for $A_{00nn} = C_{NN}$ as a function of c.m. angle at 1795, 1845, 1935, and 1955 MeV. The closed circles are from this paper, and the open circles from Lehar *et al.* [16]. The solid curve is a PSA prediction of the Saclay-Geneva group [18], and the dashed curves are from Arndt *et al.* [19].

changed or the accelerator depolarization varied. These conclusions are partly based on special measurements made subsequent to the experiments described in this paper; see Ref. [13]. The typical size of the beam near the polarized target was measured to be ~ 20 mm in diameter, and the typical magnitude of the beam polarization, P_+ or P_- , was 0.6–0.9.

Three relative beam polarimeters were used to monitor the vertical (N-type) and horizontal (S-type) transverse components of the beam polarization. These were the SD3 polarimeter [2,8] located some distance after the extraction of the beam from Saturne, the target region or antipolarimeter [2] situated slightly upstream of the polarized target, and the downstream or "Gatchina" polarimeter [3], that was first installed but only partially operational in run period II. They measured the vertical, horizontal, and vertical components of the beam polarization, respectively.

The polarized proton target used for these measurements is described in Refs. [2,9,10]. Details of the target material and size are given in Ref. [2]. The target operated in the frozen spin mode at a temperature as low as 40 mK and a small magnetic holding field of 0.33 T. Data with both signs of polarization were collected at each energy. The target polarization measurements were made with an NMR system, and usually occurred before entering and after leaving the frozen spin mode of operation. Initial values of the target polarization magnitude, before entering the frozen spin mode, were 0.65 - 0.85. The absolute target polarization was found by a comparison of the NMR signals in the polarized state and when the target material was in thermal equilibrium near 1 K. The thermal equilibrium calibrations were typically performed before and after each run period, and these calibrations agreed with each other within statistical errors.

FIG. 2. Experimental results for $A_{00nn} = C_{NN}$ as a function of c.m. angle at 1975, 1995, 2015, and 2035 MeV. The values at 2035 MeV from run period I are shown as solid circles, and from run period II as solid squares. All other data from this paper are given as solid circles. The crosses are data from Bell *et al.* [15], and the dashed curves are from PSA predictions of Arndt *et al.* [19].

FIG. 3. Experimental results for $A_{00nn} = C_{NN}$ as a function of c.m. angle at 2055, 2075, 2095, and 2115 MeV. The values at 2095 MeV from run period I are shown as solid circles, and from run period II as solid squares. All other data from this paper are given as solid circles. The open circles are from Lehar *et al.* [16]. The solid curve is from a PSA prediction of the Saclay-Geneva group [18], and the dashed curves are from Arndt *et al.* [19].

III. EXPERIMENTAL DETECTORS

The apparatus to detect the outgoing particles was designed for pp, np, and pn elastic scattering measurements over a large angular range. The scattered and recoil protons in this experiment were detected in coincidence. The set of beam-right detectors consisted of a magnetic spectrometer, with trigger scintillation counters, four multiwire proportional chambers of three to four sense wire planes each (X,Y,U or X,Y,U,V), and a scintillation counter hodoscope. Its acceptance was approximately 70 msr, and the magnetic field integral was 0.74 T m. Following the hodoscope was an

FIG. 4. Experimental results for $A_{00nn} = C_{NN}$ as a function of c.m. angle at 2135, 2155, 2175, and 2205 MeV. The closed circles are from this paper, and the open triangles from Miller *et al.* [14]. The dashed curves are from PSA predictions of Arndt *et al.* [19].

FIG. 5. Experimental results for $A_{00nn} = C_{NN}$ as a function of c.m. angle at 2215, 2225, and 2235 MeV. The closed circles are from this paper, and the dashed curve is from a PSA prediction of Arndt *et al.* [19].

array of neutron counters with associated charged particle veto counters. The set of beam-left detectors included trigger scintillation counters, two multiwire proportional chambers with three sense planes each, a scintillation counter hodo-scope, plus other chambers used simultaneously for measuring the polarization of these protons (not used for the A_{00nn} data).

FIG. 6. Values of (a) the slope $dA_{00nn}/d\theta$ and (b) $A_{00nn} = C_{NN}$ at 90° c.m. as a function of laboratory kinetic energy. The errors shown are combined statistical and systematic uncertainties. The closed circles (run period I) and squares (run period II) are from this paper, the open triangle from Ref. [14], the cross from Ref. [15], the open circles from Ref. [16], and the open squares from Ref. [17]. The dashed curve is from a PSA prediction of Arndt *et al.* [19].

The trigger required signals in coincidence from a left and a right trigger counter, and from a left and right hodoscope counter; no information from the wire chambers was included. In addition, one or two adjacent neutron counters (used to detect protons) were required to have a signal. Information from the multiwire proportional chambers, various analog-to-digital converters and time-to-digital converters, and scalers were then read out and written to magnetic tape. Many additional details about the apparatus are given in Refs. [2,7,11,12]

IV. DATA ANALYSIS

Details of the data analysis are presented in Refs. [2,7,11]. The data analysis occurred semi-independently in two locations. Much of the off-line software was in common, but there were some important differences in cuts and other details. The results of the two analyses for A_{00nn} were in quite good agreement. The present data are also in fairly good agreement with our preliminary results from the first running period [6]. Those results are now superceded by the final data listed in the present paper.

There were several steps in the data analysis. The first step analyzed the scalar values read at the end of each spill. Spills with bad or unusual experimental conditions, or with scalar hardware problems were identified and removed with cuts. Various scalar ratios and asymmetries were computed from the polarimeter scalar data, and the information used in the evaluation of some of the elastic scattering results when sizable time dependent changes were observed.

The next step dealt with the elastic scattering events. The data were examined for changes in the relative efficiency of the hodoscope counters, wire chambers, or neutron counters as a function of time or beam polarization state. If such changes were found, the counter, wire, or wire chamber plane information was subsequently eliminated for all runs, beam, and target polarization states for that data set in order to prevent certain systematic errors.

After the cuts described above were made, the remaining elastic scattering candidate events were analyzed. The scintillation counter hodoscope, neutron counter, and multiwire proportional chamber data were decoded to give the positions of the particle tracks. Events were rejected if more than one counter was triggered in either hodoscope, or if the wire chamber data were inconsistent or insufficient to fully reconstruct the particle trajectory. Cuts were applied to the reconstructed interaction point, the observed momentum as a function of scattering angle, and the observed scattering angles of the two outgoing particles. The location of typical cuts and further details are given in Ref. [2].

After all cuts, the coplanarity of the remaining events was then computed as $\delta \phi = \phi_L + \phi_R - 180^\circ$, where ϕ_L and ϕ_R are the left and right azimuthal angles of the detected particles. The coplanarity distributions contained a peak on a small, slowly varying, and approximately symmetric background. Then the number of elastic events in the peak, after background subtraction, was estimated for each c.m. angle, and each of the target and beam polarization states. These counts were normalized to the relative, integrated beam intensity for those states. The relative intensity was obtained from the target-region polarimeter rates in the up and down arms; these rates were insensitive to the vertical component of the beam polarization.

The normalized number of elastic events for the two target polarization states and the two, three, or four beam polarization states were used to derive the values of A_N and $A_{00nn} = C_{NN} = A_{NN}$ at each c.m. angle, as well as the beam polarization magnitude, as described in Ref. [2]. The relative magnitudes of the beam polarization states were assumed to obey Eq. (2). It was also assumed that there was only a slow variation in detector efficiencies over the period of beam polarization changes (seconds), but the equations allow for drifts in efficiencies with target polarization reversals (hours).

V. RESULTS

The $A_{00nn} = C_{NN} = A_{NN}$ results at each c.m. angle are given in Table I and Figs. 1-5. Two independent analyses were performed, with slightly different cuts and other details, and the results were combined for this paper. Also, it can be seen in Figs. 2 and 3 that there is good agreement of the two data sets at 2035 and 2095 MeV, which were taken in different run periods. The quoted statistical uncertainties, ΔA_{00nn} , contain a contribution which is half the difference between the values from the two analyses. Relative errors σ_{rel} are also shown in Table I. These consist of an estimated uncertainty in the absolute target polarization $(\pm 3.0\%)$ and in the value of the beam polarization used. The quantity (1 $+\sigma_{rel}$) represents a multiplicative factor that moves all points of one data set up or down together. Such a normalization is usually performed for comparison of two different sets of data, for example in a phase shift analysis (PSA). Assuming a Gaussian distribution of errors, then the total uncertainty on A_{00nn} is given by

$$(\delta A_{00nn})^2 = (\Delta A_{00nn})^2 + (A_{00nn} \times \sigma_{rel})^2.$$
(3)

The A_{00nn} angular dependence for pp elastic scattering is a symmetric function with respect to 90° c.m. due to the Pauli principle [1]. Thus the value of the slope, $dA_{00nn}/d\theta$ at 90° c.m. should be zero, and this fact was used as a test on the data. The measured values for $\theta_{c.m.} = 90^{\circ} \pm 5^{\circ}$ were fitwith a straight line to yield $A_{00nn}(90^{\circ})$ as well as the slope, and these are presented in Table II and Fig. 6. The slope is seen to be consistent with zero, as expected. Based on the analyzing power measurements obtained from these same data, it appears there was probably a slight misalignment of the apparatus compared to the actual average beam direction; see Refs. [2,3]. Such a misalignment is expected to have negligible effects on the A_{00nn} results compared to the quoted statistical uncertainties.

Previous results near the energies and angles of this experiment are also shown in Figs. 1–4. These data are from the Argonne ZGS [14,15] and from Saturne [16]. The ZGS results of Bell *et al.* [15] at 1968 MeV and of Miller *et al.* [14] at 2205 MeV are both higher than the present data, while the Saturne data of Lehar *et al.* [16] at 1796 and 2096 MeV are lower in magnitude. However, only statistical errors

TABLE I. Measured values of A_{00nn} and the associated statistical errors, ΔA_{00nn} . The quantities $\langle \theta_{c.m.} \rangle$ and -t are the central values of the c.m. angle and four-momentum transfer squared for each bin in degrees and $(\text{GeV}/c)^2$, respectively. The fractional uncertainty due to knowledge of the absolute beam and target polarization is denoted σ_{rel} .

$\langle \theta_{\rm c.m.} \rangle$	-t	A_{00nn}	ΔA_{00nn}	$\left< \theta_{\rm c.m.} \right>$	-t	A_{00nn}	ΔA_{00nn}
	(a) 1795 M	eV, $\sigma_{rel} = \pm 0.110$			(c) 1935 MeV,	$\sigma_{rel} = \pm 0.095$	
60.0	0.842	0.302	0.028	68.0	1.136	0.293	0.037
62.0	0.894	0.307	0.029	70.0	1.194	0.342	0.061
64.0	0.946	0.357	0.029	72.0	1.254	0.329	0.041
66.0	0.999	0.346	0.028	74.0	1.315	0.411	0.058
68.0	1.053	0.424	0.027	76.0	1.377	0.434	0.039
70.0	1.108	0.420	0.027	78.0	1.437	0.455	0.061
72.0	1.164	0.466	0.028	80.1	1.502	0.410	0.038
74.0	1.220	0.532	0.026	82.0	1.563	0.438	0.059
76.0	1.277	0.481	0.028	84.0	1.627	0.482	0.038
78.0	1.334	0.483	0.028	86.0	1.688	0.455	0.040
80.0	1.392	0.495	0.028	88.0	1.751	0.494	0.053
82.0	1.450	0.507	0.026	90.0	1.815	0.537	0.045
84.0	1.508	0.530	0.027	92.0	1.880	0.525	0.048
86.0	1.567	0.557	0.027	94.0	1.942	0.483	0.050
88.0	1.625	0.574	0.028	95.9	2.003	0.553	0.041
90.0	1.684	0.602	0.029	97.3	2.047	0.483	0.098
92.0	1 743	0.572	0.028	<i>y</i> , , , , , , , , , , , , , , , , , , ,	(1) 1055 M X		01070
94.0	1.802	0.540	0.020		(d) 1955 Mev	, $\sigma_{rel} = \pm 0.086$	
91.0	(L) 1945 M	-V + 0.072	0.027	60.0	0.916	0.226	0.036
	(D) 1845 M	ev, $\sigma_{rel} = \pm 0.073$		62.0	0.973	0.318	0.035
56.0	0.763	0.279	0.049	64.0	1.030	0.312	0.035
58.0	0.814	0.291	0.024	65.9	1.087	0.280	0.049
60.0	0.866	0.289	0.024	68.0	1.148	0.303	0.055
62.0	0.918	0.327	0.024	70.0	1.207	0.388	0.045
64.0	0.972	0.317	0.025	72.0	1.267	0.406	0.050
66.0	1.027	0.340	0.024	74.0	1.329	0.417	0.038
68.0	1.083	0.346	0.023	76.0	1.391	0.472	0.039
70.0	1.139	0.395	0.024	78.0	1.453	0.468	0.038
72.0	1.196	0.410	0.024	80.0	1.517	0.484	0.039
74.0	1.254	0.470	0.023	82.0	1.580	0.529	0.042
76.0	1.312	0.472	0.024	84.0	1.643	0.528	0.043
78.0	1.371	0.471	0.025	86.0	1.706	0.520	0.043
80.0	1.431	0.509	0.025	88.0	1.770	0.515	0.039
82.0	1.490	0.512	0.024	90.0	1.834	0.616	0.040
84.0	1.550	0.502	0.024	92.0	1.900	0.493	0.040
86.0	1.610	0.586	0.024	94.0	1.962	0.563	0.043
88.0	1.671	0.558	0.025	95.9	2.024	0.490	0.042
90.0	1.731	0.545	0.025		(e) 1975 MeV	$\sigma_{rel} = \pm 0.072$	
92.0	1.792	0.636	0.026	567	0.836	0.268	0.080
94.0	1.852	0.597	0.025	58.1	0.850	0.208	0.030
96.0	1.912	0.530	0.026	58.1	0.025	0.208	0.028
98.0	1.972	0.507	0.025	62.0	0.923	0.270	0.030
100.0	2.032	0.471	0.039	62.0	0.985	0.242	0.020
	(c) 1935 M	eV. $\sigma_{nul} = \pm 0.095$		64.0 65.0	1.041	0.332	0.027
56 5	0.915	0.269	0.062	00.9 60 0	1.098	0.280	0.028
JU.J 59 1	0.815	0.208	0.005	08.0	1.100	0.559	0.029
Jð.1	0.850	0.278	0.034	/0.0	1.219	0.330	0.028
39.9 62.0	0.906	0.183	0.038	/2.0	1.281	0.383	0.028
02.0	0.964	0.270	0.034	/4.0	1.342	0.379	0.026
04.0	1.019	0.288	0.046	/0.0	1.405	0.41/	0.031
00.0	1.077	0.281	0.040	/8.0	1.468	0.432	0.030

TABLE I. (Continued).

$\langle \theta_{\rm c.m.} \rangle$	- <i>t</i>	A_{00nn}	ΔA_{00nn}	$\langle \theta_{\rm c.m.} \rangle$	- <i>t</i>	A _{00nn}	ΔA_{00nn}
	(e) 1975 M	eV, $\sigma_{rel} = \pm 0.072$			(g) 2015 MeV, a	$\sigma_{rel} = \pm 0.079$	
80.1	1 533	0.451	0.030	04.0	2,022	0.400	0.040
82.0	1.595	0.471	0.030	94.0	2.022	0.496	0.049
84.0	1.660	0.490	0.036	96.0	2.088	0.554	0.050
86.0	1.723	0.501	0.027	97.4	2.150	0.474	0.071
88.0	1.788	0.470	0.029		(h) 2035 MeV (l	1), $\sigma_{rel} = \pm 0.070$	
90.0	1.853	0.516	0.030	567	0.862	0.365	0.005
92.0	1 919	0 494	0.032	58.1	0.802	0.303	0.095
94.0	1.983	0.477	0.031	50.1 60.0	0.900	0.203	0.029
96.0	2.046	0.472	0.029	62.0	1.013	0.204	0.032
97.4	2.092	0.444	0.061	64.0	1.013	0.235	0.028
<i>)1</i> .4	(0) 1005 M		0.001	65.0	1.130	0.300	0.029
	(f) 1995 M	ev, $\sigma_{rel} = \pm 0.101$		68.0	1.194	0.302	0.027
62.0	0.993	0.311	0.043	70.0	1.154	0.342	0.027
64.0	1.051	0.305	0.043	70.0	1 319	0.342	0.033
66.0	1.111	0.323	0.045	72.0	1 383	0.323	0.025
68.0	1.171	0.316	0.046	74.0	1.303	0.302	0.035
70.0	1.232	0.302	0.045	78.0	1.512	0.420	0.027
72.0	1.293	0.395	0.047	80.0	1.572	0.475	0.042
74.0	1.356	0.407	0.044	82.0	1.578	0.430	0.035
76.0	1.419	0.440	0.046	84.0	1.710	0.475	0.035
78.0	1.483	0.497	0.045	86.0	1.776	0.474	0.042
80.0	1.547	0.466	0.043	88.0	1.843	0.507	0.054
82.0	1.611	0.513	0.044	90.0	1 909	0.431	0.034
84.0	1.676	0.544	0.044	92.1	1.979	0.470	0.044
86.0	1.741	0.499	0.045	94.0	2.042	0.466	0.040
88.0	1.807	0.524	0.047	96.0	2.109	0.440	0.042
90.0	1.872	0.575	0.049	97.5	2.159	0.374	0.053
92.0	1.937	0.514	0.048	2110		0.07	010000
94.0	2.002	0.505	0.046		(:) 2025 M-V (I	(1) + 0.064	
96.0	2.068	0.469	0.046		(1) 2055 WeV (1)	1), $\sigma_{rel} = \pm 0.004$	
98.0	2.132	0.416	0.087	60.1	0.959	0.261	0.031
	(g) 2015 M	leV, $\sigma_{ral} = \pm 0.079$		62.0	1.013	0.290	0.026
567	0.853	0.204	0.105	64.0	1.072	0.305	0.028
58.1	0.895	0.204	0.034	65.9	1.130	0.314	0.027
60.0	0.0/1	0.210	0.034	68.1	1.197	0.387	0.029
62.0	1.003	0.220	0.034	70.0	1.256	0.367	0.025
64.0	1.003	0.243	0.032	72.0	1.319	0.379	0.026
65.0	1.002	0.298	0.032	74.0	1.383	0.416	0.033
68.0	1.120	0.344	0.037	76.0	1.447	0.451	0.041
70.0	1.104	0.237	0.043	78.0	1.512	0.475	0.026
70.0	1.243	0.307	0.038	80.0	1.578	0.469	0.028
74.0	1.307	0.340	0.040	82.1	1.647	0.497	0.042
74.0	1.309	0.408	0.047	84.0	1.710	0.488	0.042
70.0	1.434	0.382	0.037	86.0	1.//6	0.523	0.028
70.U 80.0	1.497	0.421	0.040	88.0	1.843	0.493	0.039
82.0	1.504	0.402	0.030	90.0	1.909	0.467	0.033
02.U 94.0	1.02/	0.492	0.037	92.0	1.976	0.4//	0.060
04.U	1.095	0.550	0.042	94.0	2.042	0.531	0.044
00.0 99.0	1.738	0.312	0.044	96.0	2.109	0.492	0.03/
00.0	1.024	0.470	0.040	97.9 00.9	2.1/3	0.575	0.031
90.0	1.090	0.458	0.039	77.8 101.2	2.234	0.498	0.043
74.1	1.900	0.465	0.045	101.5	2.203	0.492	0.108

$\langle \theta_{\rm c.m.} \rangle$	- <i>t</i>	A_{00nn}	ΔA_{00nn}	$\langle \theta_{\rm c.m.} \rangle$	- <i>t</i>	A _{00nn}	ΔA_{00nn}
	(j) 2055 N	fleV, $\sigma_{rel} = \pm 0.070$			(l) 2095 MeV (I),	$\sigma_{rel} = \pm 0.068$	
56.7	0.871	0.128	0.113	72.0	1.358	0.363	0.043
58.1	0.908	0.243	0.026	74.0	1.424	0.339	0.024
60.0	0.965	0.225	0.025	76.0	1.490	0.393	0.032
62.0	1.023	0.212	0.024	78.0	1.557	0.402	0.033
64.0	1.083	0.255	0.028	80.0	1.624	0.404	0.046
65.9	1.141	0.306	0.028	82.0	1.692	0.441	0.042
68.1	1.208	0.307	0.031	84.0	1.760	0.505	0.050
70.0	1.268	0.346	0.030	86.0	1.829	0.475	0.041
72.0	1.334	0.322	0.044	88.0	1.897	0.510	0.035
74.0	1.397	0.368	0.035	90.0	1.966	0.433	0.069
76.0	1.462	0.403	0.038	92.0	2.034	0.440	0.059
78.0	1 527	0.401	0.043	94.0	2.103	0.455	0.047
80.0	1 594	0.452	0.034	96.0	2.171	0.450	0.032
82.0	1.659	0.455	0.041	97.6	2.227	0.463	0.050
84.0	1.035	0.495	0.038				
86.0	1.723	0.495	0.030		(m) 2095 MeV (1	I), $\sigma_{rel} = \pm 0.050$	
88.0	1.861	0.477	0.044	58.7	0.945	0.325	0.086
90.0	1.001	0.501	0.049	60.1	0.985	0.236	0.029
02.1	1.928	0.501	0.056	62.0	1.043	0.248	0.026
94.0	2.063	0.439	0.031	64.0	1.104	0.276	0.025
96.0	2.003	0.457	0.031	65.9	1.164	0.311	0.030
07.6	2.12)	0.467	0.051	68.1	1.232	0.376	0.026
97.0	(1_{c}) 2075 N	10.407	0.005	70.0	1.293	0.376	0.024
58 1	(K) 2073 N	0.246	0.025	72.0	1.358	0.411	0.024
50.1 60.0	0.919	0.240	0.025	74.0	1.424	0.357	0.028
62.0	1.022	0.240	0.020	75.5	1.473	0.347	0.029
64.0	1.033	0.271	0.022	78.0	1.557	0.388	0.027
04.0 65.0	1.095	0.227	0.025	79.5	1.607	0.465	0.027
69.0	1.155	0.200	0.029	82.0	1.692	0.480	0.031
70.0	1.219	0.274	0.034	84.0	1.760	0.490	0.028
70.0	1.200	0.310	0.033	86.0	1.829	0.476	0.026
72.0	1.347	0.371	0.027	88.0	1.897	0.470	0.025
74.0	1.409	0.399	0.023	90.0	1.966	0.478	0.027
70.0	1.470	0.403	0.024	92.0	2.034	0.473	0.029
/8.0	1.543	0.434	0.039	94.0	2.103	0.559	0.027
80.0	1.608	0.402	0.027	96.0	2.171	0.462	0.029
82.0	1.0/0	0.456	0.027	98.0	2.239	0.431	0.029
84.0	1.743	0.482	0.030	100.4	2.322	0.472	0.025
86.0	1.811	0.456	0.027	102.0	2.374	0.434	0.042
88.0	1.8/9	0.457	0.036		(n) 2115 MeV	$a = \pm 0.071$	
90.0	1.946	0.461	0.025		(II) 2113 MeV,	$0_{rel} - \pm 0.0/1$	
92.0	2.016	0.516	0.029	58.3	0.942	0.299	0.043
94.0	2.082	0.499	0.033	60.1	0.995	0.249	0.032
96.0	2.151	0.486	0.036	62.0	1.052	0.224	0.030
97.7	2.207	0.436	0.035	64.0	1.115	0.288	0.044
	(l) 2095 Me	V (I), $\sigma_{rel} = \pm 0.06$	8	66.0	1.176	0.298	0.032
58.1	0.928	0.200	0.036	68.0	1.243	0.345	0.037
60.0	0.984	0.277	0.033	70.0	1.306	0.300	0.034
62.0	1.043	0.252	0.029	72.1	1.374	0.420	0.041
65.0	1.135	0.284	0.024	74.0	1.437	0.423	0.035
68.0	1.231	0.346	0.047	76.0	1.504	0.455	0.032
70.0	1.293	0.341	0.046	78.0	1.572	0.406	0.037

TABLE I. (Continued).

TABLE I. (Continued).

(a) 2115 MeV, $\sigma_{rel} = \pm 0.071$ (b) 2155 MeV, $\sigma_{rel} = \pm 0.067$ 79.91.8360.4550.03990.02.0210.3970.03882.01.7790.4740.04892.02.1630.4740.03686.01.8470.4160.03396.02.2330.4320.03788.01.9140.4270.03597.82.9290.4190.04090.01.9830.4660.054(g) 2175 MeV, $\sigma_{rel} = \pm 0.067$ 90.092.02.0540.4250.03966.11.0220.2730.03794.02.1230.4460.04362.01.0830.2830.02897.72.2510.4460.04364.01.1460.2480.034(0) 135 MeV, $\sigma_{rel} = 0.070$ 66.01.2110.2240.03360.01.0030.2400.03370.01.3430.2270.03261.01.0620.2900.03072.01.4100.2840.04262.01.6620.2900.03275.01.5470.3310.03264.01.1250.2940.03374.01.4790.3310.03265.01.1380.3550.44882.11.7590.4000.03370.01.3180.3550.43479.91.6840.4280.04272.01.3850.3650.43479.91.6840.4280.04273.01.4150.3240.333 </th <th>$\langle \theta_{\rm c.m.} \rangle$</th> <th>- <i>t</i></th> <th>A_{00nn}</th> <th>ΔA_{00nn}</th> <th>$\left< \theta_{\rm c.m.} \right>$</th> <th>- <i>t</i></th> <th>A_{00nn}</th> <th>ΔA_{00nn}</th>	$\langle \theta_{\rm c.m.} \rangle$	- <i>t</i>	A_{00nn}	ΔA_{00nn}	$\left< \theta_{\rm c.m.} \right>$	- <i>t</i>	A_{00nn}	ΔA_{00nn}
79.91.6360.4550.03990.02.0210.3770.03882.01.7090.4740.04892.02.0920.3840.01484.01.7770.4630.03594.02.1630.4740.03585.01.9140.4270.03597.82.2950.4190.04090.01.9830.4660.054(q) 2175 MeV, $\sigma_{rel} = \pm 0.067$ 0.7330.2030.04792.02.0540.4250.03958.40.9720.1880.03694.02.1220.4870.03762.01.0830.2830.02895.72.2510.4460.04364.01.1460.2480.034(a) 2135 MeV, $\sigma_{rel} = \pm 0.070$ 66.01.2110.2640.03360.01.0020.2040.03370.01.4330.2370.03362.01.0020.2040.03972.01.4100.2840.03264.01.1250.2940.03276.01.5470.3300.03165.01.540.3240.03576.01.5470.3300.03166.01.280.3650.04482.11.7590.4010.03270.01.5190.30592.02.1110.3880.03772.01.3850.3650.04479.91.6840.4220.03270.01.5190.33185.01.5990.4000.03270.01.540 </td <td></td> <td>(n) 2115 M</td> <td>fleV, $\sigma_{rel} = \pm 0.071$</td> <td></td> <td></td> <td>(p) 2155 MeV,</td> <td>$\sigma_{rel} = \pm 0.067$</td> <td></td>		(n) 2115 M	fleV, $\sigma_{rel} = \pm 0.071$			(p) 2155 MeV,	$\sigma_{rel} = \pm 0.067$	
82.0 1.709 0.474 0.048 92.0 2.692 0.334 0.041 84.0 1.777 0.463 0.035 94.0 2.163 0.474 0.035 88.0 1.914 0.427 0.035 97.8 2.295 0.419 0.007 92.0 2.054 0.425 0.039 (q) 2175 MeV, σ _{ext} =±0.077 0.188 0.056 94.0 2.123 0.468 0.036 60.1 1.022 0.273 0.037 95.0 2.192 0.487 0.037 62.0 1.083 0.283 0.028 97.7 2.251 0.446 0.033 70.0 1.343 0.237 0.033 6.0 1.033 0.240 0.033 70.0 1.343 0.331 0.032 6.0 1.125 0.290 0.032 76.0 1.417 0.331 0.032 6.0 1.125 0.290 0.033 78.0 1.616 0.372 0.030 7.0	79.9	1.636	0.455	0.039	90.0	2.021	0.397	0.038
84.0 1.77 0.443 0.035 94.0 2.163 0.474 0.036 86.0 1.847 0.416 0.034 96.0 2.233 0.432 0.037 90.0 1.983 0.466 0.054 (q) 2175 MeV, σ _{ref} =±0.067 92.0 2.054 0.425 0.036 60.1 1.022 0.273 0.037 94.0 2.123 0.468 0.036 60.1 1.022 0.273 0.037 96.0 2.121 0.447 0.037 62.0 1.063 0.284 0.038 96.0 1.215 0.446 0.043 66.0 1.211 0.244 0.033 60.0 1.003 0.240 0.033 70.0 1.343 0.237 0.033 62.0 1.062 0.290 0.032 76.0 1.547 0.330 0.031 62.0 1.025 0.294 0.033 80.0 1.848 0.402 0.442 0.402 72.0 1.385	82.0	1.709	0.474	0.048	92.0	2.092	0.384	0.041
86.0 1.847 0.416 0.034 96.0 2.233 0.432 0.037 88.0 1.914 0.427 0.035 97.8 2.295 0.419 0.040 92.0 2.054 0.425 0.037 (j) 2175 MeV, $\sigma_{rel} = 0.067$ 92.0 2.192 0.487 0.037 62.0 1.083 0.238 0.028 96.0 2.192 0.487 0.037 62.0 1.083 0.238 0.032 97.7 2.251 0.446 0.043 64.0 1.146 0.248 0.032 96.0 1.003 0.240 0.033 70.0 1.343 0.032 60.0 1.002 0.390 72.0 1.410 0.284 0.032 60.0 1.125 0.294 0.032 76.0 1.547 0.330 0.031 63.0 1.254 0.324 0.038 78.0 1.616 0.372 0.030 70.0 1.318 0.305 0.048 82.1 1.759 0.401 0.032 70.0 1.318 0.365 0.043	84.0	1.777	0.463	0.035	94.0	2.163	0.474	0.036
88.0 1.914 0.427 0.035 97.8 2.295 0.419 0.040 90.0 1.983 0.466 0.054 (a) 2175 McV, $\sigma_{rel} = 0.067$ \sim 94.0 2.123 0.448 0.036 60.1 1.022 0.273 0.037 96.0 2.129 0.446 0.043 66.0 1.211 0.264 0.032 97.7 2.251 0.446 0.043 70.0 1.343 0.237 0.033 88.3 0.952 0.303 0.044 68.0 1.211 0.264 0.032 60.0 1.062 0.290 0.030 72.0 1.410 0.284 0.032 64.0 1.125 0.294 0.033 78.0 1.547 0.330 0.031 65.0 1.188 0.305 0.048 82.1 1.759 0.401 0.033 70.0 1.318 0.365 0.048 82.1 1.759 0.401 0.033 70.0 1.547	86.0	1.847	0.416	0.034	96.0	2.233	0.432	0.037
90.0 1.983 0.466 0.054 (q) 2175 MeV, $\sigma_{rel} = \pm 0.067$ 92.0 2.054 0.425 0.039 58.4 0.972 0.188 0.056 94.0 2.123 0.447 0.037 62.0 1.083 0.283 0.028 97.7 2.251 0.447 0.037 62.0 1.083 0.283 0.028 58.3 0.952 0.303 0.044 68.0 1.276 0.346 0.032 60.0 1.062 0.290 0.303 72.0 1.410 0.284 0.032 62.0 1.662 0.290 0.303 72.0 1.410 0.284 0.032 63.0 1.254 0.324 0.038 78.0 1.616 0.372 0.303 64.0 1.125 0.294 0.033 78.0 1.616 0.372 0.033 70.0 1.318 0.305 0.033 78.0 1.616 0.372 0.033 74.0 1.451 0.361 0.035 84.0 1.884 0.042 0.040 0.035	88.0	1.914	0.427	0.035	97.8	2.295	0.419	0.040
92.0 2.054 0.425 0.039 58.4 0.972 0.188 0.056 94.0 2.123 0.466 0.036 60.1 1.022 0.273 0.037 97.7 2.251 0.446 0.043 64.0 1.146 0.248 0.032 (o) 2135 MeV, $\sigma_{rel} = \pm 0.070$ 66.0 1.211 0.264 0.033 6.0 1.062 0.290 0.033 70.0 1.343 0.237 0.033 62.0 1.062 0.290 0.030 72.0 1.410 0.284 0.032 66.0 1.125 0.294 0.039 74.0 1.479 0.331 0.032 66.0 1.388 0.305 0.034 79.9 1.684 0.428 0.042 7.0 1.385 0.365 0.048 82.1 1.757 0.430 0.033 7.0 1.385 0.365 0.044 0.833 9.0 2.040 0.033 7.0 1.587	90.0	1.983	0.466	0.054		(a) 2175 MeV	$\sigma = \pm 0.067$	
94.0 2.123 0.468 0.036 65.4 0.972 0.182 0.173 0.037 96.0 2.192 0.487 0.037 62.0 1.083 0.283 0.038 97.7 2.251 0.446 0.043 64.0 1.146 0.248 0.034 (o) 2135 MeV, $\sigma_{eel} = \pm 0.070$ 66.0 1.211 0.264 0.033 60.0 1.003 0.240 0.033 70.0 1.343 0.237 0.033 62.0 1.062 0.290 0.030 72.0 1.410 0.284 0.032 64.0 1.125 0.294 0.038 78.0 1.616 0.372 0.030 70.0 1.318 0.305 0.034 79.9 1.684 0.422 0.033 71.0 1.385 0.365 0.048 82.1 1.757 0.401 0.033 72.0 1.385 0.365 0.20 2.111 0.388 0.033 74.0 1.451	92.0	2.054	0.425	0.039	50.4	(q) 2175 MeV	, 0 _{rel} = 0.007	0.056
96.0 2.192 0.487 0.037 60.1 1.022 0.273 0.028 97.7 2.251 0.446 0.043 64.0 1.146 0.248 0.038 97.7 2.251 0.346 0.033 66.0 1.211 0.264 0.033 58.3 0.952 0.303 0.044 68.0 1.276 0.346 0.032 60.0 1.062 0.290 0.030 72.0 1.410 0.284 0.032 64.0 1.125 0.294 0.039 74.0 1.479 0.331 0.032 66.0 1.188 0.309 0.032 76.0 1.547 0.330 0.031 70.0 1.318 0.305 0.034 79.9 1.684 0.428 0.042 71.0 1.385 0.365 0.048 82.1 1.759 0.400 0.035 74.0 1.451 0.352 90.0 2.041 0.453 0.037 75.0 1.587	94.0	2.123	0.468	0.036	58.4	0.972	0.188	0.056
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	96.0	2.192	0.487	0.037	60.1	1.022	0.273	0.037
bit b	97.7	2.251	0.446	0.043	62.0	1.083	0.283	0.028
1012 MeV, $0_{rel}^{-1} = 2003$ 66.0 1.211 0.264 0.033 60.0 1.003 0.240 0.033 70.0 1.343 0.237 0.033 62.0 1.062 0.290 0.030 72.0 1.410 0.284 0.032 64.0 1.125 0.294 0.039 74.0 1.479 0.331 0.032 66.0 1.188 0.309 0.032 76.0 1.547 0.330 0.031 68.0 1.254 0.324 0.038 78.0 1.684 0.422 0.033 70.0 1.318 0.365 0.048 82.1 1.759 0.401 0.033 74.0 1.451 0.361 0.035 94.0 1.899 0.400 0.035 78.0 1.587 0.382 0.033 94.0 2.183 0.418 0.037 79.0 1.654 0.446 0.033 94.0		(a) 2135 N	$f_{aV} = \pm 0.070$		64.0	1.146	0.248	0.034
8.8.30.9520.3030.04468.01.27.60.3460.03260.01.0030.2400.03370.01.3430.2370.08362.01.0620.2900.03072.01.4100.2840.03264.01.1250.2940.03276.01.5470.3310.03168.01.2540.3240.03878.01.6160.3720.03070.01.3180.3050.03479.91.6840.4280.04272.01.3850.3650.04482.11.7590.4300.03274.01.4510.3610.03584.01.8270.4500.03275.01.5190.3980.03386.01.8990.4000.03578.01.5870.3820.03398.01.9680.3990.03379.91.6540.4400.03592.02.1110.3880.03884.01.7250.4510.03596.02.2540.4200.03485.01.9320.3930.03797.82.3170.4100.03890.02.0020.4660.03758.50.9880.2550.06191.02.1430.4550.03460.01.1360.2490.03497.82.2740.4630.04161.01.1620.2370.03697.82.2740.4630.04164.01.1620.3340.03766.0		(0) 2133 1	$lev, o_{rel} = \pm 0.070$	0.044	66.0	1.211	0.264	0.030
60.0 1.003 0.240 0.033 70.0 1.343 0.237 0.035 62.0 1.062 0.290 0.030 72.0 1.410 0.284 0.032 64.0 1.125 0.294 0.039 74.0 1.479 0.331 0.032 66.0 1.188 0.309 0.052 76.0 1.547 0.330 0.031 70.0 1.318 0.305 0.034 79.9 1.684 0.428 0.042 71.0 1.385 0.365 0.048 82.1 1.759 0.401 0.033 74.0 1.451 0.361 0.035 84.0 1.827 0.450 0.035 78.0 1.587 0.382 0.033 86.0 1.899 0.400 0.035 79.9 1.654 0.440 0.035 90.0 2.041 0.453 0.037 82.0 1.725 0.451 0.035 92.0 2.111 0.388 0.037 82.0	58.3	0.952	0.303	0.044	68.0	1.276	0.346	0.032
62.0 1.062 0.290 0.030 72.0 1.410 0.284 0.032 66.0 1.125 0.294 0.039 74.0 1.479 0.331 0.032 66.0 1.284 0.324 0.038 78.0 1.616 0.372 0.030 70.0 1.318 0.305 0.034 79.9 1.684 0.428 0.042 72.0 1.385 0.365 0.048 82.1 1.759 0.401 0.035 74.0 1.451 0.361 0.035 86.0 1.899 0.400 0.035 75.0 1.587 0.382 0.033 86.0 1.899 0.400 0.035 78.0 1.274 0.446 0.035 90.0 2.041 0.453 0.037 86.0 1.725 0.451 0.035 90.0 2.183 0.418 0.037 86.0 1.544 0.427 0.035 96.0 2.254 0.420 0.034 87.0	60.0	1.003	0.240	0.033	70.0	1.343	0.237	0.033
64.0 1.125 0.294 0.039 74.0 1.479 0.331 0.032 66.0 1.188 0.309 0.032 76.0 1.547 0.330 0.031 68.0 1.254 0.324 0.038 78.0 1.616 0.372 0.030 70.0 1.318 0.305 0.044 79.9 1.684 0.428 0.042 72.0 1.385 0.365 0.048 82.1 1.759 0.401 0.033 74.0 1.451 0.361 0.035 84.0 1.827 0.450 0.032 76.0 1.519 0.398 0.033 86.0 1.899 0.400 0.035 78.0 1.654 0.440 0.035 92.0 2.111 0.388 0.037 82.0 1.725 0.451 0.055 92.0 2.183 0.418 0.037 84.0 1.794 0.446 0.033 94.0 2.183 0.418 0.034 90.0 2.002 0.486 0.054 (r) 2205 MeV, $\sigma_{rel}=\pm 0.073$ 0.410 0.038	62.0	1.062	0.290	0.030	72.0	1.410	0.284	0.032
66.0 1.188 0.309 0.032 76.0 1.347 0.330 0.031 68.0 1.254 0.324 0.038 78.0 1.616 0.372 0.030 70.0 1.318 0.305 0.034 79.9 1.684 0.428 0.042 72.0 1.385 0.365 0.048 82.1 1.759 0.401 0.033 74.0 1.451 0.361 0.035 84.0 1.827 0.450 0.033 76.0 1.519 0.398 0.033 86.0 1.968 0.399 0.033 78.0 1.654 0.440 0.035 90.0 2.041 0.453 0.038 82.0 1.725 0.451 0.035 92.0 2.111 0.388 0.038 84.0 1.794 0.446 0.033 94.0 2.183 0.418 0.037 86.0 1.932 0.393 0.037 97.8 2.254 0.420 0.034 90.0 2.002 0.446 0.037 62.0 1.098 0.225 0.031 <td>64.0</td> <td>1.125</td> <td>0.294</td> <td>0.039</td> <td>74.0</td> <td>1.479</td> <td>0.331</td> <td>0.032</td>	64.0	1.125	0.294	0.039	74.0	1.479	0.331	0.032
68.0 1.254 0.324 0.038 78.0 1.616 0.372 0.037 70.0 1.318 0.305 0.034 79.9 1.684 0.428 0.042 72.0 1.385 0.365 0.048 82.1 1.759 0.401 0.033 74.0 1.451 0.361 0.025 84.0 1.827 0.450 0.032 76.0 1.519 0.398 0.033 86.0 1.899 0.400 0.035 78.0 1.587 0.382 0.035 90.0 2.041 0.453 0.037 82.0 1.725 0.451 0.035 92.0 2.111 0.388 0.038 84.0 1.794 0.446 0.033 94.0 2.183 0.418 0.037 85.0 1.864 0.427 0.035 96.0 2.254 0.420 0.034 90.0 2.002 0.486 0.054 (r) 2205 MeV, $\sigma_{rel} = \pm 0.073$ res 2.317 0.410 0.038 90.0 2.202 0.073 0.86.5 0.988 0.255	66.0	1.188	0.309	0.032	76.0	1.547	0.330	0.031
70.0 1.318 0.305 0.034 79.9 1.684 0.428 0.042 72.0 1.385 0.365 0.048 82.1 1.759 0.401 0.033 74.0 1.451 0.361 0.033 86.0 1.899 0.400 0.033 76.0 1.519 0.398 0.033 86.0 1.899 0.400 0.035 78.0 1.587 0.382 0.033 88.0 1.968 0.399 0.033 82.0 1.725 0.451 0.035 92.0 2.111 0.388 0.038 84.0 1.794 0.446 0.033 94.0 2.183 0.418 0.037 86.0 1.864 0.427 0.035 96.0 2.254 0.420 0.034 90.0 2.002 0.486 0.054 (r) 2205 MeV, $\sigma_{rel} = \pm 0.073$ 97.8 2.317 0.410 0.038 90.0 2.0173 0.462 0.037 58.5 0.988 0.255 0.061 94.0 2.143 0.443 0.037 66.0 1.228	68.0	1.254	0.324	0.038	78.0	1.616	0.372	0.030
72.0 1.385 0.365 0.048 82.1 1.799 0.401 0.035 74.0 1.451 0.361 0.035 84.0 1.827 0.450 0.032 76.0 1.519 0.398 0.033 86.0 1.899 0.400 0.035 78.0 1.587 0.382 0.033 88.0 1.968 0.399 0.033 79.9 1.654 0.440 0.035 90.0 2.041 0.453 0.037 82.0 1.725 0.451 0.035 92.0 2.111 0.388 0.038 86.0 1.864 0.427 0.035 96.0 2.254 0.420 0.034 88.0 1.932 0.393 0.037 97.8 2.317 0.410 0.038 90.0 2.002 0.486 0.054 (r) 2205 MeV, $\sigma_{rel} \pm 0.073$ 92.0 2.073 0.462 0.037 58.5 0.988 0.255 0.061 94.0 2.143 0.455 0.034 60.0 1.036 0.145 0.034 97.8 2.274	70.0	1.318	0.305	0.034	79.9	1.684	0.428	0.042
74.0 1.451 0.361 0.035 84.0 1.827 0.430 0.032 76.0 1.519 0.398 0.033 86.0 1.899 0.400 0.035 78.0 1.587 0.382 0.033 88.0 1.968 0.399 0.033 79.9 1.654 0.440 0.035 90.0 2.041 0.453 0.037 82.0 1.725 0.451 0.035 92.0 2.111 0.388 0.038 84.0 1.794 0.446 0.033 94.0 2.183 0.418 0.037 86.0 1.864 0.427 0.035 96.0 2.254 0.420 0.034 88.0 1.932 0.393 0.037 97.8 2.317 0.410 0.038 90.0 2.002 0.486 0.054 (r) 2205 MeV, $\sigma_{rel} = \pm 0.073$ 97.8 2.317 0.410 0.034 94.0 2.143 0.443 0.037 62.0 1.098 0.225 0.033 97.8 2.274 0.463 0.041 64.0 1.162	72.0	1.385	0.365	0.048	82.1	1.759	0.401	0.033
76.0 1.519 0.398 0.033 86.0 1.899 0.400 0.035 78.0 1.587 0.382 0.033 88.0 1.968 0.399 0.033 79.9 1.654 0.440 0.035 92.0 2.111 0.388 0.038 84.0 1.725 0.451 0.035 92.0 2.111 0.388 0.037 86.0 1.864 0.427 0.035 96.0 2.254 0.420 0.034 86.0 1.932 0.393 0.037 97.8 2.317 0.410 0.038 90.0 2.002 0.486 0.054 (r) 2205 MeV, $\sigma_{rel} = \pm 0.073$ 0.255 0.061 94.0 2.143 0.443 0.037 58.5 0.988 0.255 0.061 94.0 2.143 0.443 0.037 62.0 1.098 0.225 0.036 97.8 2.274 0.463 0.041 64.0 1.162 0.237 0.036 61.1 1.013 0.176 0.035 70.0 1.360 0.259 0.046	74.0	1.451	0.361	0.035	84.0	1.827	0.450	0.032
78.0 1.587 0.382 0.033 88.0 1.968 0.399 0.033 79.9 1.654 0.440 0.035 90.0 2.041 0.453 0.037 82.0 1.725 0.451 0.035 92.0 2.111 0.388 0.038 84.0 1.794 0.446 0.033 94.0 2.183 0.418 0.037 86.0 1.864 0.427 0.035 96.0 2.254 0.420 0.034 80.0 2.002 0.486 0.054 (r) 2205 MeV, $\sigma_{rel} = \pm 0.073$ 92.0 2.073 0.462 0.037 58.5 0.988 0.255 0.061 94.0 2.143 0.455 0.034 60.0 1.036 0.145 0.034 96.0 2.213 0.443 0.037 62.0 1.098 0.225 0.033 97.8 2.274 0.463 0.041 64.0 1.162 0.237 0.036 61 1.013 0.176 0.035 70.0 1.360 0.322 0.036 62.0 1.073	76.0	1.519	0.398	0.033	86.0	1.899	0.400	0.035
79.9 1.654 0.440 0.035 90.0 2.041 0.453 0.037 82.0 1.725 0.451 0.035 92.0 2.111 0.388 0.038 84.0 1.794 0.446 0.033 94.0 2.183 0.418 0.037 86.0 1.864 0.427 0.035 96.0 2.254 0.420 0.034 88.0 1.932 0.393 0.037 97.8 2.317 0.410 0.038 90.0 2.002 0.486 0.054 (r) 2205 MeV, $\sigma_{rel} = \pm 0.073$ 92.0 2.073 0.462 0.037 58.5 0.988 0.225 0.033 94.0 2.143 0.455 0.034 60.0 1.036 0.145 0.041 96.0 2.213 0.443 0.037 62.0 1.098 0.225 0.033 97.8 2.274 0.463 0.041 64.0 1.162 0.237 0.036 62.0 1.073 0.258 0.031 72.0 1.431 0.349 0.037	78.0	1.587	0.382	0.033	88.0	1.968	0.399	0.033
82.0 1.725 0.451 0.035 92.0 2.111 0.388 0.038 84.0 1.794 0.446 0.033 94.0 2.183 0.418 0.037 86.0 1.864 0.427 0.035 96.0 2.254 0.420 0.034 90.0 2.002 0.486 0.054 (r) 2205 MeV, $\sigma_{rel} = \pm 0.073$ 92.0 2.073 0.462 0.037 58.5 0.988 0.255 0.061 94.0 2.143 0.455 0.034 60.0 1.036 0.145 0.034 96.0 2.213 0.443 0.037 62.0 1.098 0.225 0.033 97.8 2.274 0.463 0.041 64.0 1.162 0.237 0.036 (p) 2155 MeV, $\sigma_{rel} = \pm 0.067$ 66.0 1.228 0.237 0.036 61.1 1.013 0.176 0.035 70.0 1.360 0.259 0.046 62.0 1.073 0.258 0.031 72.0 1.431 0.349 0.037 64.0 1.136 0.249 0.03	79.9	1.654	0.440	0.035	90.0	2.041	0.453	0.037
84.0 1.794 0.446 0.033 94.0 2.183 0.418 0.037 86.0 1.864 0.427 0.035 96.0 2.254 0.420 0.034 88.0 1.932 0.393 0.037 97.8 2.317 0.410 0.038 90.0 2.002 0.486 0.054 (r) 2205 MeV, $\sigma_{rel} = \pm 0.073$ 94.0 2.143 0.455 0.034 60.0 1.036 0.145 0.031 94.0 2.143 0.443 0.037 62.0 1.098 0.225 0.033 97.8 2.274 0.463 0.041 64.0 1.162 0.237 0.036 (p) 2155 MeV, $\sigma_{rel} = \pm 0.067$ 66.0 1.228 0.237 0.036 61.1 1.013 0.176 0.035 70.0 1.360 0.259 0.046 62.0 1.073 0.258 0.031 72.0 1.431 0.349 0.037 64.0 1.136 0.249 0.032 74.0 1.500 0.322 0.036 65.0 1.330 0.396 0.03	82.0	1.725	0.451	0.035	92.0	2.111	0.388	0.038
86.0 1.864 0.427 0.035 96.0 2.254 0.420 0.034 88.0 1.932 0.393 0.037 97.8 2.317 0.410 0.038 90.0 2.002 0.486 0.054 (r) 2205 MeV, $\sigma_{rel} = \pm 0.073$ 94.0 2.143 0.455 0.034 60.0 1.036 0.145 0.034 96.0 2.213 0.443 0.037 62.0 1.098 0.225 0.033 97.8 2.274 0.463 0.041 64.0 1.162 0.237 0.036 (p) 2155 MeV, $\sigma_{rel} = \pm 0.067$ 66.0 1.228 0.237 0.036 58.4 0.962 0.181 0.047 68.0 1.293 0.342 0.037 60.1 1.013 0.176 0.035 7.00 1.360 0.259 0.046 62.0 1.091 0.296 0.038 76.0 1.500 0.322 0.037 64.0 1.136 0.249 0.032 74.0 1.500 0.322 0.036 65.0 1.199 0.296 0.03	84.0	1.794	0.446	0.033	94.0	2.183	0.418	0.037
88.0 1.932 0.393 0.037 97.8 2.317 0.410 0.038 90.0 2.002 0.486 0.054 (r) 2205 MeV, $\sigma_{rel} = \pm 0.073$ 92.0 2.073 0.462 0.037 58.5 0.988 0.255 0.061 94.0 2.143 0.455 0.034 60.0 1.036 0.145 0.034 96.0 2.213 0.443 0.037 62.0 1.098 0.225 0.033 97.8 2.274 0.463 0.041 64.0 1.162 0.237 0.036 (p) 2155 MeV, $\sigma_{rel} = \pm 0.067$ 66.0 1.228 0.237 0.036 658.4 0.962 0.181 0.047 68.0 1.293 0.342 0.037 64.0 1.136 0.249 0.032 74.0 1.500 0.322 0.036 64.0 1.136 0.249 0.035 76.0 1.568 0.260 0.035 66.0 1.199 0.296 0.038 76.0 1.568 0.260 0.036 70.0 1.330 0.396	86.0	1.864	0.427	0.035	96.0	2.254	0.420	0.034
90.0 2.002 0.486 0.054 (r) 2205 MeV, $\sigma_{rel} = \pm 0.073$ 92.0 2.073 0.462 0.037 58.5 0.988 0.255 0.061 94.0 2.143 0.455 0.034 60.0 1.036 0.145 0.034 96.0 2.213 0.443 0.037 62.0 1.098 0.225 0.033 97.8 2.274 0.463 0.041 64.0 1.162 0.237 0.036 (p) 2155 MeV, $\sigma_{rel} = \pm 0.067$ 66.0 1.228 0.237 0.036 60.1 1.013 0.176 0.035 70.0 1.360 0.259 0.046 62.0 1.073 0.258 0.031 72.0 1.431 0.349 0.037 64.0 1.136 0.249 0.032 74.0 1.500 0.322 0.036 66.0 1.199 0.296 0.038 76.0 1.568 0.260 0.035 68.0 1.265 0.344 0.035 78.0 1.639 0.420 0.036 70.0 1.330 0.396<	88.0	1.932	0.393	0.037	97.8	2.317	0.410	0.038
92.02.0730.4620.03758.50.9880.2550.06194.02.1430.4550.03460.01.0360.1450.03496.02.2130.4430.03762.01.0980.2250.03397.82.2740.4630.04164.01.1620.2370.036(p) 2155 MeV, $\sigma_{rel} = \pm 0.067$ 66.01.2280.2370.03658.40.9620.1810.04768.01.2930.3420.03760.11.0130.1760.03570.01.3600.2590.04662.01.0730.2580.03172.01.4310.3490.03764.01.1360.2490.03274.01.5000.3220.03666.01.2650.3440.03578.01.6390.4200.03667.01.3300.3960.03580.01.7090.3180.03670.01.3300.3940.03482.11.7830.3920.03874.01.4650.3940.03486.01.9250.3960.03679.91.6680.4290.03690.02.0690.3720.04182.01.7420.4110.03792.02.1400.3620.04284.01.8100.3890.04594.02.2140.3660.03986.01.8810.4320.03596.02.2850.3610.042	90.0	2.002	0.486	0.054		(r) 2205 MeV	, $\sigma_{rel} = \pm 0.073$	
94.0 2.143 0.455 0.034 60.0 1.036 0.145 0.034 96.0 2.213 0.443 0.037 62.0 1.098 0.225 0.033 97.8 2.274 0.463 0.041 64.0 1.162 0.237 0.036 (p) 2155 MeV, $\sigma_{rel} = \pm 0.067$ 66.0 1.228 0.237 0.036 58.4 0.962 0.181 0.047 68.0 1.293 0.342 0.037 60.1 1.013 0.176 0.035 70.0 1.360 0.259 0.046 62.0 1.073 0.258 0.031 72.0 1.431 0.349 0.037 64.0 1.136 0.249 0.032 74.0 1.500 0.322 0.036 66.0 1.28 0.256 0.344 0.035 78.0 1.639 0.420 0.036 68.0 1.265 0.344 0.035 80.0 1.709 0.318 0.036 70.0 1.330 0.394 0.034 82.1 1.783 0.392 0.038	92.0	2.073	0.462	0.037	58.5	0.988	0.255	0.061
96.02.2130.4430.03762.01.0980.2250.03397.82.2740.4630.04164.01.1620.2370.036(p) 2155 MeV, $\sigma_{rel} = \pm 0.067$ 66.01.2280.2370.03658.40.9620.1810.04768.01.2930.3420.03760.11.0130.1760.03570.01.3600.2590.04662.01.0730.2580.03172.01.4310.3490.03764.01.1360.2490.03274.01.5000.3220.03666.01.1990.2960.03876.01.5680.2600.03568.01.2650.3440.03578.01.6390.4200.03670.01.3300.3960.03482.11.7830.3920.03874.01.4650.3940.03484.01.8520.3590.04875.01.6320.3450.04088.01.9960.3940.03779.91.6680.4290.03690.02.0690.3720.04182.01.7420.4110.03792.02.1400.3620.04284.01.8100.3890.04594.02.2140.3660.03986.01.8810.4320.03596.02.2850.3610.042	94.0	2.143	0.455	0.034	60.0	1.036	0.145	0.034
97.82.2740.4630.04164.01.1620.2370.036(p) 2155 MeV, $\sigma_{rel} = \pm 0.067$ 66.01.2280.2370.03658.40.9620.1810.04768.01.2930.3420.03760.11.0130.1760.03570.01.3600.2590.04662.01.0730.2580.03172.01.4310.3490.03764.01.1360.2490.03274.01.5000.3220.03666.01.2650.3440.03578.01.6390.4200.03670.01.3300.3960.03580.01.7090.3180.03672.01.3970.3780.03482.11.7830.3920.03874.01.4650.3940.03486.01.9250.3960.03679.91.6680.4290.03690.02.0690.3720.04182.01.7420.4110.03792.02.1400.3620.04284.01.8100.3890.04594.02.2140.3660.03986.01.9510.4250.03596.02.2850.3610.042	96.0	2.213	0.443	0.037	62.0	1.098	0.225	0.033
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	97.8	2.274	0.463	0.041	64.0	1.162	0.237	0.036
58.40.9620.1810.04768.01.2930.3420.03760.11.0130.1760.03570.01.3600.2590.04662.01.0730.2580.03172.01.4310.3490.03764.01.1360.2490.03274.01.5000.3220.03666.01.1990.2960.03876.01.5680.2600.03568.01.2650.3440.03578.01.6390.4200.03670.01.3300.3960.03580.01.7090.3180.03672.01.3970.3780.03482.11.7830.3920.03874.01.4650.3940.03486.01.9250.3960.03678.01.6020.3450.04088.01.9960.3940.03779.91.6680.4290.03690.02.0690.3720.04182.01.7420.4110.03792.02.1400.3620.04284.01.8100.3890.04594.02.2140.3660.03986.01.9510.4250.03596.02.2850.3610.042		(p) 2155 MeV, $\sigma_{rel} = \pm 0.067$			66.0	1.228	0.237	0.036
0.1 1.013 0.176 0.035 70.0 1.360 0.259 0.046 62.0 1.073 0.258 0.031 72.0 1.431 0.349 0.037 64.0 1.136 0.249 0.032 74.0 1.500 0.322 0.036 66.0 1.199 0.296 0.038 76.0 1.568 0.260 0.035 68.0 1.265 0.344 0.035 78.0 1.639 0.420 0.036 70.0 1.330 0.396 0.035 80.0 1.709 0.318 0.036 72.0 1.397 0.378 0.034 82.1 1.783 0.392 0.038 74.0 1.465 0.394 0.034 84.0 1.852 0.359 0.048 76.0 1.533 0.419 0.034 86.0 1.925 0.396 0.036 78.0 1.602 0.345 0.040 88.0 1.996 0.394 0.037 79.9 1.668 0.429 0.036 90.0 2.069 0.372 0.041 82.0 1.742 0.411 0.037 92.0 2.140 0.362 0.042 84.0 1.810 0.389 0.045 94.0 2.214 0.366 0.039 86.0 1.881 0.432 0.035 97.8 2.349 0.364 0.047	58.4	0.962	0.181	0.047	68.0	1.293	0.342	0.037
62.0 1.073 0.258 0.031 72.0 1.431 0.349 0.037 64.0 1.136 0.249 0.032 74.0 1.500 0.322 0.036 66.0 1.199 0.296 0.038 76.0 1.568 0.260 0.035 68.0 1.265 0.344 0.035 78.0 1.639 0.420 0.036 70.0 1.330 0.396 0.035 80.0 1.709 0.318 0.036 72.0 1.397 0.378 0.034 82.1 1.783 0.392 0.038 74.0 1.465 0.394 0.034 84.0 1.852 0.359 0.048 76.0 1.533 0.419 0.034 86.0 1.925 0.396 0.036 78.0 1.602 0.345 0.040 88.0 1.996 0.394 0.037 79.9 1.668 0.429 0.036 90.0 2.069 0.372 0.041 82.0 1.742 0.411 0.037 92.0 2.140 0.362 0.042 84.0 1.881 0.432 0.035 96.0 2.285 0.361 0.042 88.0 1.951 0.425 0.035 97.8 2.349 0.364 0.047	60.1	1.013	0.176	0.035	70.0	1.360	0.259	0.046
64.01.1360.2490.03274.01.5000.3220.03666.01.1990.2960.03876.01.5680.2600.03568.01.2650.3440.03578.01.6390.4200.03670.01.3300.3960.03580.01.7090.3180.03672.01.3970.3780.03482.11.7830.3920.03874.01.4650.3940.03484.01.8520.3590.04876.01.5330.4190.03486.01.9250.3960.03678.01.6020.3450.04088.01.9960.3940.03779.91.6680.4290.03690.02.0690.3720.04182.01.7420.4110.03792.02.1400.3620.04284.01.8100.3890.04594.02.2140.3660.03986.01.8810.4320.03596.02.2850.3610.04288.01.9510.4250.03597.82.3490.3640.047	62.0	1.073	0.258	0.031	72.0	1.431	0.349	0.037
66.01.1990.2960.03876.01.5680.2600.03568.01.2650.3440.03578.01.6390.4200.03670.01.3300.3960.03580.01.7090.3180.03672.01.3970.3780.03482.11.7830.3920.03874.01.4650.3940.03484.01.8520.3590.04876.01.5330.4190.03486.01.9250.3960.03779.91.6680.4290.03690.02.0690.3720.04182.01.7420.4110.03792.02.1400.3620.04284.01.8100.3890.04594.02.2140.3660.03986.01.8810.4320.03596.02.2850.3610.04288.01.9510.4250.03597.82.3490.3640.047	64.0	1.136	0.249	0.032	74.0	1.500	0.322	0.036
68.01.2650.3440.03578.01.6390.4200.03670.01.3300.3960.03580.01.7090.3180.03672.01.3970.3780.03482.11.7830.3920.03874.01.4650.3940.03484.01.8520.3590.04876.01.5330.4190.03486.01.9250.3960.03678.01.6020.3450.04088.01.9960.3940.03779.91.6680.4290.03690.02.0690.3720.04182.01.7420.4110.03792.02.1400.3620.04284.01.8100.3890.04594.02.2140.3660.03986.01.8810.4320.03596.02.2850.3610.04288.01.9510.4250.03597.82.3490.3640.047	66.0	1.199	0.296	0.038	76.0	1.568	0.260	0.035
70.0 1.330 0.396 0.035 80.0 1.709 0.318 0.036 72.0 1.397 0.378 0.034 82.1 1.783 0.392 0.038 74.0 1.465 0.394 0.034 84.0 1.852 0.359 0.048 76.0 1.533 0.419 0.034 86.0 1.925 0.396 0.036 78.0 1.602 0.345 0.040 88.0 1.996 0.372 0.041 82.0 1.742 0.411 0.037 92.0 2.140 0.362 0.042 84.0 1.810 0.389 0.045 94.0 2.214 0.366 0.039 86.0 1.881 0.432 0.035 96.0 2.285 0.361 0.042 88.0 1.951 0.425 0.035 97.8 2.349 0.364 0.047	68.0	1.265	0.344	0.035	78.0	1.639	0.420	0.036
72.01.3970.3780.03482.11.7830.3920.03874.01.4650.3940.03484.01.8520.3590.04876.01.5330.4190.03486.01.9250.3960.03678.01.6020.3450.04088.01.9960.3940.03779.91.6680.4290.03690.02.0690.3720.04182.01.7420.4110.03792.02.1400.3620.04284.01.8100.3890.04594.02.2140.3660.03986.01.8810.4320.03596.02.2850.3610.04288.01.9510.4250.03597.82.3490.3640.047	70.0	1.330	0.396	0.035	80.0	1.709	0.318	0.036
74.0 1.465 0.394 0.034 84.0 1.852 0.359 0.048 76.0 1.533 0.419 0.034 86.0 1.925 0.396 0.036 78.0 1.602 0.345 0.040 88.0 1.996 0.394 0.037 79.9 1.668 0.429 0.036 90.0 2.069 0.372 0.041 82.0 1.742 0.411 0.037 92.0 2.140 0.362 0.042 84.0 1.810 0.389 0.045 94.0 2.214 0.366 0.039 86.0 1.881 0.432 0.035 96.0 2.285 0.361 0.042 88.0 1.951 0.425 0.035 97.8 2.349 0.364 0.047	72.0	1 397	0.378	0.034	82.1	1.783	0.392	0.038
1.100 1.100 0.031 0.011 0.011 0.011 0.011 0.011 76.0 1.533 0.419 0.034 86.0 1.925 0.396 0.036 78.0 1.602 0.345 0.040 88.0 1.996 0.394 0.037 79.9 1.668 0.429 0.036 90.0 2.069 0.372 0.041 82.0 1.742 0.411 0.037 92.0 2.140 0.362 0.042 84.0 1.810 0.389 0.045 94.0 2.214 0.366 0.039 86.0 1.881 0.432 0.035 96.0 2.285 0.361 0.042 88.0 1.951 0.425 0.035 97.8 2.349 0.364 0.047	74.0	1.465	0.394	0.034	84.0	1.852	0.359	0.048
78.0 1.602 0.345 0.040 88.0 1.996 0.394 0.037 79.9 1.668 0.429 0.036 90.0 2.069 0.372 0.041 82.0 1.742 0.411 0.037 92.0 2.140 0.362 0.042 84.0 1.810 0.389 0.045 94.0 2.214 0.366 0.039 86.0 1.881 0.432 0.035 96.0 2.285 0.361 0.042 88.0 1.951 0.425 0.035 97.8 2.349 0.364 0.047	76.0	1.533	0.419	0.034	86.0	1.925	0.396	0.036
79.9 1.668 0.429 0.036 90.0 2.069 0.372 0.041 82.0 1.742 0.411 0.037 92.0 2.140 0.362 0.042 84.0 1.810 0.389 0.045 94.0 2.214 0.366 0.039 86.0 1.881 0.432 0.035 96.0 2.285 0.361 0.042 88.0 1.951 0.425 0.035 97.8 2.349 0.364 0.047	78.0	1.602	0.345	0.040	88.0	1.996	0.394	0.037
1.000 1.000 0.025 0.050 1.000 0.011 0.011 82.0 1.742 0.411 0.037 92.0 2.140 0.362 0.042 84.0 1.810 0.389 0.045 94.0 2.214 0.366 0.039 86.0 1.881 0.432 0.035 96.0 2.285 0.361 0.042 88.0 1.951 0.425 0.035 97.8 2.349 0.364 0.047	79.9	1.668	0.429	0.036	90.0	2.069	0.372	0.041
84.0 1.810 0.389 0.045 94.0 2.214 0.366 0.039 86.0 1.881 0.432 0.035 96.0 2.285 0.361 0.042 88.0 1.951 0.425 0.035 97.8 2.349 0.364 0.047	82.0	1.742	0.411	0.037	92.0	2.140	0.362	0.042
86.0 1.881 0.432 0.035 96.0 2.285 0.361 0.042 88.0 1.951 0.425 0.035 97.8 2.349 0.364 0.047	84.0	1 810	0 389	0.045	94.0	2.214	0.366	0.039
88.0 1.951 0.425 0.035 97.8 2.349 0.364 0.047	86.0	1 881	0.432	0.035	96.0	2.285	0.361	0.042
	88.0	1.951	0.425	0.035	97.8	2.349	0.364	0.047

$\langle \theta_{\rm c.m.} \rangle$	-t	A_{00nn}	ΔA_{00nn}	$\langle \theta_{ m c.m.} angle$	-t	A_{00nn}	ΔA_{00nn}
	(s) 2215 M	IeV, $\sigma_{rel} = \pm 0.085$			(t) 2225 MeV,	$\sigma_{rel} = \pm 0.070$	
58.5	0.994	0.268	0.065	78.0	1.654	0.430	0.040
60.1	1.041	0.202	0.034	80.0	1.725	0.438	0.055
62.0	1.103	0.211	0.034	82.1	1.800	0.446	0.046
64.0	1.167	0.245	0.035	84.0	1.869	0.456	0.051
66.0	1.233	0.258	0.035	86.0	1.942	0.426	0.051
68.0	1.299	0.260	0.043	88.0	2.014	0.344	0.039
70.0	1.367	0.278	0.042	90.0	2.088	0.468	0.043
72.0	1.436	0.264	0.040	92.0	2.160	0.402	0.048
74.0	1.505	0.307	0.043	94.0	2.233	0.468	0.054
76.0	1.575	0.277	0.039	96.0	2.306	0.438	0.038
78.0	1.646	0.365	0.036	97.8	2.370	0.378	0.047
80.0	1.717	0.410	0.039		(11) 2235 MeV	$\sigma_{i} = \pm 0.066$	
82.1	1.793	0.410	0.060	(0.1	1 050	, o _{rel} = 0.000	0.046
84.0	1.861	0.353	0.039	60.1	1.050	0.239	0.046
86.0	1.934	0.442	0.043	62.0	1.113	0.272	0.040
88.0	2.006	0.409	0.041	64.0	1.178	0.339	0.037
90.0	2.078	0.359	0.052	66.0	1.244	0.286	0.035
92.0	2.150	0.389	0.047	67.9	1.310	0.379	0.038
94.1	2.226	0.373	0.043	70.0	1.380	0.361	0.053
96.0	2.296	0.421	0.039	72.0	1.449	0.338	0.036
97.8	2.359	0.344	0.048	74.0	1.520	0.409	0.045
	(t) 2225 M	$[eV \sigma] = +0.070$		/6.0	1.590	0.356	0.039
50 (1 000	0.211	0.082	/8.0	1.001	0.401	0.034
58.0	1.000	0.311	0.082	80.0	1./33	0.457	0.036
60.1	1.046	0.289	0.034	82.1	1.809	0.462	0.050
62.0	1.108	0.225	0.033	84.0	1.878	0.371	0.034
64.0	1.172	0.265	0.034	86.0	1.951	0.444	0.035
66.0	1.239	0.306	0.045	88.0	2.024	0.437	0.051
67.9	1.303	0.290	0.039	90.0	2.097	0.428	0.039
70.0	1.374	0.312	0.039	92.0	2.169	0.429	0.043
72.0	1.444	0.384	0.033	94.1	2.246	0.456	0.063
74.0	1.512	0.342	0.036	96.0	2.316	0.408	0.057
76.0	1.583	0.425	0.049	97.7	2.380	0.440	0.039

TABLE I. (Continued).

are shown in the figures. When the normalization factors, corresponding to the systematic absolute beam and target polarization uncertainties, are included, the agreement is quite acceptable.

Data from Lin *et al.* [17] from the Argonne ZGS and also from Refs. [14–16] are plotted in Fig. 6. Both statistical and quoted systematic uncertainties are included in the errors shown. Excellent agreement is seen with the present results.

Recently, the Saclay-Geneva group performed a direct reconstruction of the pp elastic scattering amplitudes and a phase shift analysis (Ref. [18]) at four fixed, high energies where complete sets of spin observables had been measured, namely at 1800, 2100, 2400, and 2700 MeV. The predictions for A_{00nn} are shown at 1795 and 2095 MeV in Figs. 1 and 3. Also, the Arndt *et al.* energy-dependent PSA was recently extended from 1.6 to 2.5 GeV [19]. Their predictions using the SAID solution SP99 at selected energies are given in Figs. 1–5. Note that energy-dependent PSAs describe the angular dependence of all observables over a large energy interval, and may average over possible local energy variations. Nevertheless, the PSA predictions reproduce the data reasonably well and agree closely at both 1795 and 2095 MeV. The data from Refs. [2,3] and this paper are included in the recent data bases of both Arndt *et al.* and the Saclay-Geneva group, but the results from this paper are not in the data base for the Arndt *et al.* SP99 solution. However, the good agreement of the PSA predictions and the present results is not surprising, since the new data are consistent with previous measurements and since the PSAs are anchored by the complete sets of spin observables at the four energies noted above.

The data from run periods I and II, shown in Figs. 1-5, will make a major contribution to the pp elastic scattering data base. A total of 21 data sets, at 19 beam kinetic energies, and 442 different points, are included. There is satisfactory agreement with previous measurements, and between data from run periods I and II when measure-

TABLE II. Results from straight line fits to the A_{00nn} data near 90° c.m. The beam kinetic energy, fitted slope, and value at 90° are presented. The 90° data include systematic errors. The value of χ^2 per degree of freedom for the weighted average is 0.72.

Energy (MeV)	Slope (deg^{-1})	$A_{00nn}(90^\circ)$	
1795	-0.0018 ± 0.0043	0.568 ± 0.064	
1845	0.0047 ± 0.0039	0.584 ± 0.044	
1935	0.0056 ± 0.0071	0.498 ± 0.052	
1955	0.0031 ± 0.0067	0.541 ± 0.050	
1975	-0.0013 ± 0.0046	0.492 ± 0.038	
1995	0.0003 ± 0.0073	0.522 ± 0.057	
2015	-0.0015 ± 0.0071	0.483 ± 0.043	
2035I	-0.0022 ± 0.0068	0.466 ± 0.038	
2035II	-0.0020 ± 0.0059	0.499 ± 0.036	
2055	-0.0049 ± 0.0061	0.474 ± 0.038	
2075	0.0073 ± 0.0047	0.478 ± 0.033	
2095I	-0.0057 ± 0.0071	0.472 ± 0.038	
2095II	0.0087 ± 0.0042	0.493 ± 0.027	
2115	0.0053 ± 0.0056	0.438 ± 0.035	
2135	0.0059 ± 0.0055	0.440 ± 0.035	
2155	0.0026 ± 0.0057	0.426 ± 0.033	
2175	0.0015 ± 0.0057	0.411 ± 0.032	
2205	-0.0046 ± 0.0060	0.378 ± 0.033	
2215	-0.0078 ± 0.0067	0.397 ± 0.039	
2225	0.0086 ± 0.0079	0.416 ± 0.036	
2235	-0.0006 ± 0.0071	0.437 ± 0.035	
Wt. av.	0.0016 ± 0.0012		

ments were repeated at the same beam energy. Many of the data sets are at energies and angles where no previous A_{00nn} results exist.

ACKNOWLEDGMENTS

We wish to express our gratitude to all the operations staff of the Saturne II accelerator for excellent performance of the polarized beams. We are also indebted to C. Lechanoine-LeLuc, E. Lomon, and J. Comfort for their encouraging suggestions. This work was supported in part by the U.S. Department of Energy, Division of Nuclear Physics, Contract No. W-31-109-ENG-38, by the Swiss National Science Foundation, and by the Russian Foundation for Fundamental Physics Program 122.03.

- [1] J. Bystricky, F. Lehar, and P. Winternitz, J. Phys. (Paris) 39, 1 (1978).
- [2] C. E. Allgower, J. Ball, L. S. Barabash, P.-Y. Beauvais, M. E. Beddo, Y. Bedfer, N. Borisov, A. Boutefnouchet, J. Bystrický, P. A. Chamouard, M. Combet, Ph. Demierre, J.-M. Fontaine, V. Ghazikhanian, D. P. Grosnick, R. Hess, Z. Janout, Z. F. Janout, V. A. Kalinnikov, T. E. Kasprzyk, Yu. M. Kazarinov, B. A. Khachaturov, R. Kunne, J. M. Lagniel, F. Lehar, J. L. Lemaire, A. de Lesquen, D. Lopiano, M. de Mali, V. N. Matafonov, G. Milleret, I. L. Pisarev, A. A. Popov, A. N. Prokofiev, D. Rapin, J. L. Sans, H. M. Spinka, Yu. A. Usov, V. V. Vikhrov, B. Vuaridel, C. A. Whitten, and A. A. Zhdanov, Phys. Rev. C 60, 054001 (1999).
- [3] C. E. Allgower, J. Ball, M. E. Beddo, J. Bystrický, P.-A. Chamouard, M. Combet, Ph. Demierre, J.-M. Fontaine, D. P. Grosnick, R. Hess, Z. Janout, Z. F. Janout, V. A. Kalinnikov, T. E. Kasprzyk, B. A. Khachaturov, R. Kunne, F. Lehar, A. de Lesquen, D. Lopiano, M. de Mali, V. N. Matafonov, I. L. Pisarev, A. A. Popov, A. N. Prokofiev, D. Rapin, J.-L. Sans, H. M. Spinka, A. Teglia, Yu. A. Usov, V. V. Vikhrov, B.

Vuaridel, and A. A. Zhdanov, Phys. Rev. C 60, 054002 (1999).

- [4] C. E. Allgower, J. Ball, M. Beddo, Y. Bedfer, A. Boutefnouchet, J. Bystricky, P.-A. Chamouard, Ph. Demierre, J.-M. Fontaine, V. Ghazikhanian, D. Grosnick, R. Hess, Z. Janout, V. A. Kalinnikov, T. E. Kasprzyk, B. A. Khachaturov, R. Kunne, F. Lehar, A. de Lesquen, D. Lopiano, V. N. Matafonov, I. L. Pisarev, A. A. Popov, A. N. Prokofiev, D. Rapin, J.-L. Sans, H. M. Spinka, A. Teglia, Yu. A. Usov, V. V. Vikhrov, B. Vuaridel, C. A. Whitten, and A. A. Zhdanov, Nucl. Phys. A637, 231 (1998).
- [5] C. E. Allgower, J. Ball, L. S. Barabash, M. Beddo, Y. Bedfer, A. Boutefnouchet, J. Bystricky, P.-A. Chamouard, Ph. Demierre, J.-M. Fontaine, V. Ghazikhanian, D. Grosnick, R. Hess, Z. Janout, Z. F. Janout, V. A. Kalinnikov, T. E. Kasprzyk, Yu. M. Kazarinov, B. A. Khachaturov, R. Kunne, C. Lechanoine-LeLuc, F. Lehar, A. de Lesquen, D. Lopiano, M. de Mali, V. N. Matafonov, I. L. Pisarev, A. A. Popov, A. N. Prokofiev, D. Rapin, J.-L. Sans, H. M. Spinka, Yu. A. Usov, V. V. Vikhrov, B. Vuaridel, C. A. Whitten, and A. A. Zhdanov, Eur. Phys. J. C 5, 453 (1998).

- [6] J. Ball, P. A. Chamouard, M. Combet, J. M. Fontaine, R. Kunne, J. M. Lagniel, J. L. Lemaire, G. Milleret, J. L. Sans, J. Bystricky, F. Lehar, A. de Lesquen, M. de Mali, Ph. Demierre, R. Hess, Z. F. Janout, E. L. Lomon, D. Rapin, B. Vuaridel, L. S. Barabash, Z. Janout, V. A. Kalinnikov, Yu. M. Kazarinov, B. A. Khachaturov, V. N. Matafonov, I. L. Pisarev, A. A. Popov, Yu. A. Usov, M. Beddo, D. Grosnick, T. Kasprzyk, D. Lopiano, H. Spinka, A. Boutefnouchet, V. Ghazikhanian, and C. A. Whitten, Phys. Lett. B **320**, 206 (1994).
- [7] C. E. Allgower, Ph.D. thesis, Arizona State University; Argonne National Laboratory Report No. ANL-HEP-TR-97-71, 1997.
- [8] J. Bystricky, J. Derégel, F. Lehar, A. de Lesquen, L. van Rossum, J. M. Fontaine, F. Perrot, C. A. Whitten, T. Hasegawa, C. R. Newsom, W. R. Leo, Y. Onel, S. Dalla Torre-Colautti, A. Penzo, H. Azaiez, and A. Michalowicz, Nucl. Instrum. Methods Phys. Res. A 239, 131 (1985).
- [9] R. Bernard, P. Chaumette, P. Chesny, J. Derégel, R. Duthil, J. Fabre, C. Lesmond, G. Seité, J. Ball, T. I. Niinikoski, and M. Rieubland, Nucl. Instrum. Methods Phys. Res. A 249, 176 (1986).
- [10] J. Ball, M. Combet, J.-L. Sans, B. Benda, P. Chaumette, J. Derégel, G. Durand, A. P. Dzyubak, C. Gaudron, F. Lehar, A. de Lesquen, T. E. Kasprzyk, Z. Janout, B. A. Khachaturov, V. N. Matafonov, and Yu. A. Usov, Nucl. Instrum. Methods Phys. Res. A **381**, 4 (1996).
- [11] M. Arignon, J. Bystricky, J. Derégel, F. Lehar, A. de Lesquen, F. Petit, L. van Rossum, J. M. Fontaine, F. Perrot, J. Ball, and C. D. Lac, Nucl. Instrum. Methods Phys. Res. A 262, 207 (1987).
- [12] J. Ball, Ph. Chesny, M. Combet, J. M. Fontaine, R. Kunne, J. L. Sans, J. Bystricky, C. D. Lac, D. Legrand, F. Lehar, A. de Lesquen, M. de Mali, F. Perrot-Kunne, L. van Rossum, P.

Bach, Ph. Demierre, G. Gaillard, R. Hess, Z. F. Janout, D. Rapin, Ph. Sormani, B. Vuaridel, J. P. Goudour, R. Binz, A. Klett, E. Rössle, H. Schmitt, L. S. Barabash, Z. Janout, V. A. Kalinnikov, Yu. M. Kazarinov, B. A. Khachaturov, V. N. Matafonov, I. L. Pisarev, A. A. Popov, Yu. A. Usov, M. Beddo, D. Grosnick, T. Kasprzyk, D. Lopiano, and H. Spinka, Nucl. Instrum. Methods Phys. Res. A **327**, 308 (1993).

- [13] C. E. Allgower, J. Arvieux, P. Ausset, J. Ball, P.-Y. Beauvais, Y. Bedfer, J. Bystricky, P.-A. Chamouard, P. Demierre, J.-M. Fontaine, Z. Janout, V. A. Kalinnikov, T. E. Kasprzyk, B. A. Khachaturov, R. Kunne, J.-M. Lagniel, F. Lehar, A. de Lesquen, A. A. Popov, A. N. Prokofiev, D. Rapin, J.-L. Sans, H. M. Spinka, A. Teglia, V. V. Vikhrov, B. Vuaridel, and A. A. Zhdanov, Nucl. Instrum. Methods Phys. Res. A **399**, 171 (1997).
- [14] D. Miller, C. Wilson, R. Giese, D. Hill, K. Nield, P. Rynes, B. Sandler, and A. Yokosawa, Phys. Rev. D 16, 2016 (1977).
- [15] D. A. Bell, J. A. Buchanan, M. M. Calkin, J. M. Clement, W. H. Dragoset, M. Furić, K. A. Johns, J. D. Lesikar, H. E. Miettinen, T. A. Mulera, G. S. Mutchler, G. C. Phillips, J. B. Roberts, and S. E. Turpin, Phys. Lett. **94B**, 310 (1980).
- [16] F. Lehar, A. de Lesquen, J. P. Meyer, L. van Rossum, P. Chaumette, J. Derégel, J. Fabre, J. M. Fontaine, F. Perrot, J. Ball, C. D. Lac, A. Michalowicz, Y. Onel, D. Adams, J. Bystricky, V. Ghazikhanian, C. A. Whitten, and A. Penzo, Nucl. Phys. B294, 1013 (1987).
- [17] A. Lin, J. R. O'Fallon, L. G. Ratner, P. F. Schultz, K. Abe, D. G. Crabb, R. C. Fernow, A. D. Krisch, A. J. Salthouse, B. Sandler, and K. M. Terwilliger, Phys. Lett. **74B**, 273 (1978).
- [18] J. Bystrický, C. Lechanoine-LeLuc, and F. Lehar, Eur. Phys. J. C 4, 607 (1998).
- [19] R. A. Arndt, C. H. Oh, I. I. Strakovsky, R. L. Workman, and F. Dohrmann, Phys. Rev. C 56, 3005 (1997); SAID solution SP99.