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Using general baryon interpolating fields for B=N,=,3,, without derivative, we study QCD sum rules
for meson-baryon couplings and their dependence on Dirac structures for the two-point correlation function
with a mesoni fd4xe‘qX(O|T[JB(x)J_B(O)]|M(p)). Three distinct Dirac structures are comparegk, iysp,
and yso,,0“p” structures. From the dependence of the OPE on general baryon interpolating fields, we
propose criteria for choosing an appropriate Dirac structure for the coupling sum rulegsdhgg”p” sum
rules satisfy the criteria while thieys; sum rules beyond the chiral limit do not. For thgsp sum rules, the
large continuum contributions prohibit reliable prediction for the couplings. Thusyibg ,q“p" structure
seems pertinent for realistic predictions. In the($Uimit, we identify the OPE terms responsible for théD
ratio. We then study the dependence of the ratio on the baryon interpolating fields. We decide on the ratio
F/D~0.6—0.8 for appropriate choice of the interpolating fields.

PACS numbses): 13.75.Gx, 12.38.Lg, 11.55.Hx, 24.85

[. INTRODUCTION tant input in making realistic potential models for hyperon-
baryon interaction$11,17 as well as in analyzing the hy-
In QCD sum rule approachd4], the two-point correla- peron semileptonic data.
tion function with a pion At present, there is a clear Dirac structure dependence in
the calculation of thé=/D ratio using Eq.(2). In particular,

. ; — we have reported from the PS sum rule® ~0.2[7] while
4y, AIQ-X
'f d*xe0[TLINCOIn(0) ]| m(p)) @D from T sum rules=/D~0.78[8]. Thus, even though the two
sum rules with different Dirac structures were successful in
is often used to calculate theNN coupling[2—8] by facili-  reproducing the empiricatrNN coupling, their prediction

tating a general external field method developed in R&f.  for the F/D ratio is quite different.

This correlation function contains three distinct Dirac struc- To resolve this issue, additional criteria to choose a proper
tures(1) iys (P9, (2) ys0,,0“p” (T), and(3) iysp (PV), Dirac structure are needed for reliable predictions on the
each of which can in principle be used to calculate the cour/D ratio as well as the meson-baryon couplings. For this
pling. Currently, there is an issue of the Dirac structure depurpose, we first note that in Refg,8] the loffe current or
pendence of the sum rule resu[#$,5]. In calculating the jts SU®3) rotated version has been used to construct sum
coupling, one can construct either the PS sum rules beyongles Eq.(2). The loffe current however is a specific choice
the chiral limit[6,7] or the T sum ruleg4,8]. Both sum rules  for the nucleon current among infinitely many possibilities.
yield the 7NN coupling close to its empirical value. On the The |offe current is often used for the nucleon because it gets

other hand, the yspp sum rules contain large contributions I . . —

from the continuum, which therefore do not provide reliableIarge c;qntnbyﬂon; from the chiral b.reaklng parame ). .

results In addition, direct instantons are believed to play less roles in
' dhis current.

The PS andr sum rules have been extended to calculat N thel i b ful to studv the d d of
the meson-baryon couplingd\N, 722, »Z =, w2, and everineless, 1t may be usetul to study the dependence
the sum rule results on general baryon currents. Depending

722, [7,8] by considering the two-point correlation function on the currents, it is expected that the overlapbetween

with a meson, the physical baryon state and the current may be altered but
ideally the physical parameters such as meson-baryon cou-
iJ d*xe (0| T[ Ig(x)Ig(0) ]| M(p)). (2)  Plings remain unchanged. Indeed, from the correlation func-
tion Eqg.(2), what will actually be determined is the overlap
strength multiplied by the coupling of concern. In the(SU
Calculation of the couplings from this correlation function is symmetric limit, all the strengths depend only on the cur-
somewhat limited due to the ignorance of meson wave funcrents. They are determined from the corresponding baryon
tions when heavier mesons are involved. In thg3Uimit  mass sum rules and all the baryon masses are the same in the
however, this correlation function can be used to determine&SU(3) limit. Thus, in this limit, the dependence on the cur-
the so-called=/D ratio unambiguously because in this limit rents should be driven by the common overlap strength,
the OPE can be exactly classifi€d,8] according to SUB)  which in return provides the coupling independent of the
relations for the couplinggl0]. The F/D ratio is an impor-  currents. This ideal aspect will be pursued in this work as a
criterion for choosing a proper Dirac structure.
An alternative way is to calculate baryon axial charges
*Electronic address: doi@th.phys.titech.ac.jp and convert them into meson-baryon couplings using the
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Goldberger-Treiman relation. Referende] considered the current. The general proton current is a linear combination of
nucleon correlation function in external axial vector field andthe two possibilities mediated by a real parameter
constructed a sum rule fay,—1 using one specific Dirac

) — T
structure. Recently, a new approach was proposed in Ref. Jp(X;1) = 2€apci[ Ua(X) Cdp(X) ] y5Uc(X)
[14] where the axial vector correlation function in a one- t1uT () Cved(3) Tu(x 4
nucleon state is considered. Both obtained an excellent (U120 Cy5dn(x) Juc(x)} @
agreement fog, of the nucleon. Here,a,b,c are color indicesT denotes the transpose with

This paper is organized as follows. In Sec. Il, we con-respect to the Dirac indices, ari@@lthe charge conjugation.
struct meson-baryon coupling sum rules using generarhe choicet=—1 is called the loffe currentl5]. The cur-
baryon currents. A brief discussion on the OPE based orents for= and3 are obtained from the proton current via
chirality is given in Sec. lll. We then briefly check in Sec. IV SU(3) rotations[16]
whether the discussion on the continuum threshbl@] is -
still valid when the general baryon currents are used in the J=(X;1) = = 2€apd[Sa(X) Cup(X) ] ¥55¢(X)
sum rules. In Sec. V, the dependence of the OPE on the T
baryon currents is studied. We study in the (SUIlimit TS (x)CysUp() 15X}

wheth_er or not the dependen_ce on the_ cur_rents are mostly Jz(X;t)=2€abc{[U;(X)CSb(X)]75UC(X)
contained in the overlapg . This constraint gives us a new
criterion to choose an appropriate Dirac structure. In Sec. VI, +t[ul(X) CysSp(X) Jue(x)}. (5
we calculate the couplings in the &) limit from the ) o
y50,,0#p" structure. Theé=/D ratio is identified in terms of ~_ When going beyond the soft-meson limit, one can con-
the OPE. Conclusions are given in Sec. VII. sider three distinct Dirac structures in correlation function in
constructing sum rules:ys (P9, yso,,9“p” (T), andiysp
IIl. CONSTRUCTION OF THE QCD SUM RULES (PV). For thei yg structure, the sum rules are constructed at

the ordem?=m?Z [6]. At this order, the terms linear in quark
We use the two-point correlation function with a meson, mass (n,) in the OPE should be included becausgis the
same chiral order withm? via the Gell-Mann—Oakes—

if d*x€ (0| T[Jg(x)Je(0) ]| M(p)), (3 ~ Renner relation

—2mg(qa)=m2f7. ®)

whereJg is the baryon current of concern apds the mo-
currents for the protor= and S will be considered in this the sum rules at the ord€d(p). At this order, them, terms
work. should not be included in the OPE. Technical details on the

The proton current is constructed from twiaquarks and ~ OPE calculation can be found in Refg,8]. . .
one d quark by assuming that all three quarks are in the Inconstructing the phenomenological side, we first define
swave state. In the construction of the current, one up ands(t), the coupling strength between the baryon current
one down quark are combined into an isoscalar diquark. Thds(X;t) and the physical baryon fielgis(x). Using the pseu-
other up quark is attached to the diquark so that quanturfloscalar type interaction between the meson and baryons
numbers of the proton are carried by the attached up quarlg g #si ys¥sM, we obtain the phenomenological side of
In this method, there are two possible combinations for theéhe correlation function

, ueNa()

i ys structure at the orde®(p?)i ysp* ————— @)
(q°—mg)
(L
Y50 ,,9%p” structure at the orde®(p) yso,,,q"p” gAZB—Bi)Z R (8)
(q°—mg)
Ag(t)m
i ysp structure at the orde®(p) —iysp 9/\42—3(2)28 ©
(9°—mg)

The ellipsis denotes contributions from higher resonances as well as a single pole associated with transitions from the ground
state to higher resonances. The continuum contributions come from transitions among higher resonances, whose spectral
densities are modeled with a step function starting at the thre§goMatching the OPE side with the phenomenological side

and taking Borel transformatichwe get the sum rules of the form

Note, we use a single dispersion relation as advocated in R&f4.§.
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22 0.050 : : ;
Oueha(D[1+A g MZ] =M F U M2;1)
=fE M), 10
M(MZit) (10 0.040 | !
where the single pole term in the phenomenological side ha:
been denoted b# g . Expressions for the OPERS(M2t) < 0080 | ]
are given in the Appendix. &
=
lIl. CHIRALITY CONSIDERATION %\ 0.020 -
The OPEs given in the Appendix have an interesting fea-
ture to discuss wheri=1. Specifically, in theiys and 0.010 |
Y50 ,,0%p* sum rules, Wilson coefficients of chiral-odd op- ’
erators(qq), fs., (qq){(as/m)G?), and mi(qq) are all
zero whent=1. Also in theivysp sum rules, contributions 0.000, Y 35 5 20
from the chiral-even operatofgiq)” and m3(qq)? are zero. ' T M Gev) ' '
To understand this feature, it is useful to decompose the
correlator according to chirality of the current FIG. 1. The Borel curve for therNN coupling from thei ys
structure.g,,N)\ﬁ(t) is determined by taking the intersection of the
JBJ_B:‘]ET;+\]§3E+JEES+ Jléjfé' (11  Vertical axis MZ2=0) with the best-fitting linear curvésee also

Sec. V). The thick lines are foB,=2.07 Ge\? while the thin lines

JE(JS) denotes the left-handedght-handedl component of ~ @€ for S;=2.57 Ge\f. The three different sets of curves corre-

the currentla . On the other hand. E n written spond to threq different values bof The long-dashed Iings are for
e currentlg € ofhe d, Bq3) can be t=1.5, the solid lines fot=—1.5 and the dot-dashed lines for

_ . =—1.0. The difference by changing the continuum threshold is
ij d*x€9*(0|T[Jg(x)Jg(0) ]| M(p)) only 2—-3% atM?=1 Ge\? for eacht.

=iysllpstiyspllp+ ys0,,0“p"IIr. (12 On the other hand, in thieysp structure, the producl’-jL

or JRIR contributes to the sum rule. Among chiral-even op-
erators, an operator such {ﬁq)z cannot be formed in the
productJ-Jt or JRIR simply because two quarks with the
same chirality cannot be combined into the quark-antiquark
pair. Similarly,m?,(&q)2 cannot be formed. This explains the
disappearance of such terms in the OPE when.

Thus, itis easy to see that thegs and yso,, structures have
nonzero contributions only from the chiral mixing term
JRIL+ LR, while the chirality conserving termiRJR
+J3t contributes only to théysp structure.

Now let us classify QCD operators contributing to each
Dirac structure. To do that, we suppress for simplicity the
color indices and write baryon current as

IV. CRITERION I: SENSITIVITY TO THE CONTINUUM
J~(q'Cq)ysa+t(q"Cysq)a. (13) THRESHOLD

Hereq=u,d,s. Whent=1, it is straightforward to show that ~ We now analyze sum rules of the three different Dirac
structures with the general baryon currents, Edsand (5).

‘]R~2(q;CqR)qR, (14)  As pointed out in R_e_fs[.5,8], sum rule_ results from thieysp
structure are sensitive to the continuum threshg§jdand
Ji~—2(g/Cq)q, . (15) therefore this structure is not reliable. On the other hael,

andyso,,q“p” structures are insensitive 8. The chirality
Thus, at this specifig, chirality of all quarks are the same as consideration suggested in Rg8J implies that in thei ysp
that of the baryon. sum rules the large slope and the strong sensitivit$tof
In theiys or ysa,, sum rules, we need to consider the the Borel curves can be explained if higher resonances with
my !

1 e . . different parities add up. With this scenario, the higher reso-
RqL LR m
products)”J" andJ"J". In making such products using Egs. nances contributions cancel each other in ihg and

(14),(15), all three quark propagators should break the chiral- e o .
ity when they move from the coordinate 0 xoHence, it is Y5047 p" SUm rules therefore explaining the weak sensi-
! tivity to Sy and the small slope of the Borel curves.

easy o see that, among chiral-odd operators, terms such as Since only the loffe current is used in the analysis of Refs.
— 2 3 2 = [5.8], let us briefly check if this scenario still works when the
Mg(qd)*,(qd)”,my(qa), - - - (16) general baryon currents are used. As the scenario does not
rely on the specific form for the current, what has been
5 < claimed in Refs[5,8] must be valid even with the general
chiral-odd operators such d§a), f3,, (ad)((as/m)G?),  baryon currents. To see this, we plot the right-hand side
m%(qq) cannot. (RHS of Eq. (10) for the #NN coupling from ivys,

can contribute to theys or yso,, correlator, while other
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FIG. 2. The Borel curve for therNN coupling from the
Y50 ,,Q"P” structure. The thick lines are for thg,=2.07 GeV
case, while thin lines are for th8,=2.57 Ge\ case. The long-
dashed, solid, or dot-dashed lines correspond=td.5,—1.5-1.0,

1.0 1.5 2.0
M? (GeV?)
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the thin lines forS,=2.57 Ge\f. The trend observed here is
the same for the other couplings.

In Fig. 3, we observe that the/sp structure is sensitive to
the continuum threshold even when the general current is
used. The difference by changing the continuum threshold is
~15% atM?=1 Ge\2. Note also that the slope is relatively
large in this case. Since the coupling is determined from the
intersection of the best fitting curve with the vertical line at
M?=0 [see Eq.(10)], the 15% change am?=1 Ge\?,
when it combined with the large slope, produces huge
change in the extracted coupling. In contrast, from Figs. 1
and 2, theiys and yso,,g“p" structures are insensitive to
Sp- Also the slopes of the curves are small. This observation
is practically independent of the parameterAt M?=1
Ge\?, the difference is only 2—3 % level. Thus, the analysis
in Refs.[5,8] is still valid and the sum rule results fronysp
structure should be discarded under this consideration.

V. CRITERION Il : THE DEPENDENCE OF THE OPE
ON BARYON CURRENTS

respectively. The difference by changing the continuum threshold is  Using the sum rules derived in Sec. Il, we discuss the
only 2-3 % level aM?=1 Ge\? for eacht.

dependence of the OPE on the baryon curfeet, the de-
pendence on). For a givent, we linearly fit the RHS of

Y50 ,,9“p", andiysp structures in Figs. 1, 2, 3, respec- Eq. (10)

tively. To show the dependence tnwe plot the curves for
t=-1.5,1.5 as well as=—1.0 (the loffe currenk In these

plots, we use the standard QCD parameters

(qa)=—(0.23 GeV®, <%92>=(0.33 GeV}?,

5%=0.2 GeV,

m3=0.8 Ge\’. 17

greh (D[ 1+ Aps(M?]= M),
and determingg g\ 3(t) Jrieq- BeCauUsd Vg is quadratic in
t, [gMBxé(t)]fmed is also quadratic. Ideally, the physical pa-
rameterg g should be independent oif the sum rules are
reliable. In other wordg, is just a parameter for the current.
By changingt, only the coupling strength(t) is expected
to be affected, but not the physical parameter. This is a con-

For eacht, the thick lines are for the continuum threshold Straint to be satisfied when the sum rules are “good.”
S,=2.07 Ge\? corresponding to the Roper resonance, while 10 proceed, we take the $8) symmetric limit. Then, the

0.05 T T / , T
s
S
/
// /
0.04 | , // ]
Ly // //
N: 0.03 - /// 1
=3 7 -
74 pd
L // - Pg
0.02 + e Pite P
/‘/ ’-/
/’i””
001 | i 1
X e
-
0.00 . : :
0.0 05 1.0 1.5 2.0
M (GeV?)

FIG. 3. The Borel curve for therNN coupling from thei ysp
structure. Each curve is obtained similarly as thg; and

strengtha g(t) should be independent of the baryons
A(D)=Az(t)=As (1), (18

as the baryon mass sum rules are the same in the limit. Fur-
thermore, we have

(ss)=(qa), m,=m,_,

f,=f

7 ™ f37]:f3171

My=Mz=My, Mg=mg. (19
This SU?3) limit is particularly interesting when we select a
suitable Dirac structure. Suppose we p[lg;MB)\zB(t)]fmed in
terms oft. If the sum rules are “good,” alb g should be
just constants, independent bfThe functional behavior is
driven only by the strengthé(t). The baryon mass sum
rules in the SWB) limit constrain that all)\é(t) arethe same
irrespective of the baryons. Therefore, “good” sum rules

¥s50,,9"p” cases. The difference by changing the continuummust give[ 9@ 5(t) Jfied Which are proportional to each
threshold is large, almost 15% level =1 Ge\~.

other.

055202-4



PERTINENT DIRAC STRUCTURE FOR QCD SUM RULE. .. PHYSICAL REVIEW C 62 055202

0.0040 T T T

0.010

0.0035 | 4

0.0030 | .
N 0.0025 p g

0.005

0.0020

0.0015

Ag(t) (GeV°)

0.0010

gMB}‘Bz(t) (Gevs)

0.000 0.0005

0.0000

~0.0005 | T .

- : -0.0010 ' : .

—20 1.0 0.0 1.0 20 -2.0 -1.0 0.0 1.0 2.0
t

t

FIG. 4. [gueM2(t) Jiiwea from theiys structure is plotted as a FIG. 6._)\§(t) is plotted with the thick solid line as a function of
function oft, for 7NN, 7NN, 72E, yEE, #33, and#33. We  tusing chiral-odd nucleon mass sum r(@3) at M2=1 Ge\? and
choose the Borel window as 0.8312<1.24 Ge\, and the con- the continuum threshol8,=2.07 GeV. Also shown with the thin
tinuum threshold aS,=2.07 Ge\%. long-dashed lingthe thin dot-dashed lineis for M?=1.2 Ge\,

S=2.07 GeVf (M?2=1 Ge\?, S,=2.57 GeVf).

Our constraint should be satisfied when the OPE are ex- ) )
act. But in practice, the full OPE ternfg)© are separated MOSt region oft. On the other hand, in the latter case,
into two groups [9mBA (1) Jited derived fromf Fig: . may be quite different

from those obtained froniQ <, , and our ideal constraint
fron = foae T frost» (200 may not be satisfied in most’

Therefore, the ideal constraint can be used as a new cri-
wheref O; " denotes the calculable OPE, affgf denotes the  terion for choosing reliable sum rules. In order to apply this
rest of the full OPE. In this notation, the reliability of sum constraint to our sum rules, we again use the standard QCD
rule simply means parameter$17) and linearly fit[ g v\ 3(t) Jrweq at €acht. In

{OPE,_ (OPE. 21) the fitting, t_he continuum threshold is set$g=2.07 Ge\?,.
calc™ Trest corresponding to the Roper resonance, and the Borel window
is taken 0.65M?<1.24 GeV as in Refs.[6-8]. In this
Borel window, (1) the Borel curve for each coupling is al-
fOPE_ fOPE (220  Most linear(see Figs. 1,2 (2) the contribution from the
highest dimensional OPE term is typically 5—-15% in the
In the former case, we expect tHaf \gA3(t) Jiweq derived  ¥50,,0“P” sum rules and 20% level in theys sum rules,
from fQFE .. is almost the same as those frdifffty,, in and(3) the continuum contribution is less than 20% in both
’ ’ structures. It should be noted that because all the couplings
0.010 — , , , are related under SB) rotations, we need to take a common
e Borel window(7,8].

Figure 4 showigMB)\é(t)]med as a function ot for the
iys sum rules. Theyso,,q”p” cases are shown in Fig. 5.
Interesting features in theso,,q*p” cases are thatl) all
the curves are zero when=1 and almost zero at-—0.5,

(2) each extremum of the curves coincides arourd.3.
Under the chirality consideration given in Sec. lll, we can
easily understand Wh[/gMB)\%(t)]fmed is zero whent=1.
From the figure, though not exact, one observes that the
curves can be almost overlapped when multiplied by appro-
priate constants. For example, let us comparetNeN and
7NN curves. When they are positive, theNN curve lies
above theyNN curve. When they are negative, the situation
~0.005 L : : is reversed. This behavior of theNN curve can be repro-
-2.0 -1.0 0.0 1.0 20 duced by multiplying an appropriate constant to thl N
curve. Of course, this claim can not be made when

FIG. 5. [geN5(t) Jitea from the yso,,0#p” structure is plot-  —0.5 because one curve becomes zero while the other does

ted as a function of. not. Therefore, except aroune — 0.5, the Borel curves sat-

The sum rules are “unreliable” if

0.005
n

°(t) (GeV°)

B

OueM

0.000
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isfy the ideal constraint in most region bfSuch a trend can 1
not be observed from thieys sum rules(see Fig. 4 There- gn="=4a—1)0n, Fz=Ra—1)g,n, (29
fore, we claim that theyso,,q“p" sum rules are more ap- 3
propriate.

To support our claim that theso,,g“p” sum rules are
more suitable than those from tligs structure, one more 992= "~ ﬁ(l’Lz“)ng' 9rs=2ag.N,
check to do is to see thedependence af3(t) from baryon
mass sum rules. In Fig. 8,3(t) in the SU3) limit is plotted

using chiral-odd nucleon mass sum fule g”2=%(1—a)gw,\‘.

2

r .
mB)\é(t)e‘mé’Mzz Z T(—5—2t+7t2)<qq>M4E1(x) To see how these relations are reflected in the OPE of the

(2m) Y50 ,,9“pP” sum rules(see the Appendix for the OREwe

3 o take the SW3) symmetric limit to organize them in terms of
+ sz(l—tz)mg(quon(x) two terms®, and©, defined as

't — | —m2/M2 —

K 2 Ts52 0.6 MM = —2+4t—2t%)(qq)M*Eq(x)
+og(~T+2t+5t )<qq>< —G H 1 96772“( (qa) M Eq(

(23) f T )
— = (=1+t)(qo)M*— = .57(—1+1t9)
wherem, order terms are neglected and the(S)Urelations 3 54

are used:my=mz=my=mg; Ay=Az=As=\g; (uu) _ 1 b Jas_,
=(dd)=(ss)=(qq). Comparing with Fig. 5, we confirm x(qa)+ - 12fﬂ(_1+2t_t UCEN Y
that the t dependence of[gMB)\é(t)]fmed from the

mnv - - _
ggzgéqofié(stl;_m rules can be reproduced from théepen " 7_27(_ 1+t2)m§<qq>, (26)
In the region—0.5<t<1 in Fig. 6, \3(t) is negative,
thus not physical. In this region, the sum rules should defi- 2 5 _ 2f .
nitely fail and a reliable prediction for a physical parameter O €~ """ = 96071 12(1-t*)(qayM*Eq(x) + T(t—tz)

may not be possible. At~ —0.5 ort~1, of course, the OPE

is almost zero suggesting that there are cancellations among _ 1 _
OPE terms, i.e., the correlation function can not be well satu- X{qg)M?~ 2—7fﬂ52(3— 13t+10t%)(qq)
rated by the calculated OPE. Therefore, the optimal current
should be chosen away from these points. 1 N
+ g (17t )<QQ><?Q >
VI. THE F/D RATIO FROM THE PSEUDOTENSOR SUM 7

f -
RULES + 351 3t+2t2)mp(qq). (27)

In this section, we analyze thgso,,q“p” sum rules to
determine the=/D ratio. In particular, we investigate the
dependence of the ratio using the general interpolating fields
for the bgr_yons. As qlready mentioned, mesons and baryons ng)\ﬁl(lJrA#NMz):OlJrOZ’
are classified according to $8 symmetry, which provides
simple relations for the meson-baryon couplings in terms of
the two parameterfl0]

Specifically, we have

V3O AE(L+A NME) = -0, +0,,

F AL+ ALzM?) = -0y,
O,y and a= . (29
F+D ,
V39,20 5(1+ A, =M2) = — 0, - 20,,
That is,
s Ai(1+AsM?) =0,
2Definition of the functionE,,(x=S,/M?) is given in the Appen- V3g SAAFTA sM?)=20,+0,. (28

dix. The Wilson coefficient of the dimension 7 OPE is different

from Ref.[19]. Whent=—1 (the loffe current, however, our wil-  Note that another S@) relation\y=Az=\y has been used
son coefficient reduces to that of REJ]. Nevertheless, the dimen- in writing these equations. Neglecting the unknown single
sion 7 condensate contributes to the sum rule only slightly. Thuspole termA 5, we identify theF/D ratio in terms of the
this discrepancy is marginal. OPE
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FIG. 7. TheF/D ratio from theyso,,q*p” structure is plotted FIG. 8. TheF/D ratio from theiys structure is plotted as a

as a function of cog, where# is defined as tafi=t (see the tejt function of cosd. See the caption of Fig. 7 for the explanation of
Corresponding is also shown at the top of the figure. Circles are each symbol. Th&/D ratio is sensitive td and we cannot predict
obtained with 0.65M?2<1.24 Ge\f and the continuum threshold reliable value.

So=2.07 GeV; triangles: 0.65:M?<1.24 GeV, $,=2.57 Ge\;

squares: 0.96M?<1.50 GeVf, S,=2.07 Ge\. In the realistic  not simultaneously. Th&/D ratio is basically obtained by

region —0.78<c0s#=<0.61, theF/D ratio is insensitive td. taking a ratio of any two curves but the ratio of the two
curves around~ —0.5 (cos6~—0.9) is not well behaved.
> 0, On the other hand, at=1 (cosf#=1/\/2), theF/D ratio does
20~ 0,+0, —F/D~ 20,+ 0, (29 not diverge because all curves for the couplings in Fig. 5 go

to zero linearly in {—1).

This is an obvious consequence of using the baryon currents The strong sensitivity of thé&/D ratio to t within the

vides the consistency of our sum rules with the($Uela-  because first of all, absolute total value of the OPE in each

tions for the couplings. coupling is very small in this region. The convergence of the

To determine th&/D ratio, however, the unknown single OPE may not be sufficient enough. Secondly, the strength
pole termA 5 should be taken into account. For that pur-@s can be seen from Fig. 6 is negative, thus not physical.
pose, we linearly fit the RHS of Eq28) and determine Therefore, a reasonable value for théD ratio should be
[9eN3(t) Jiiwed fOr @ givent. Once two of[ g v A(t) Jrited obtained away from this region. We moderately take the re-

are determined, their ratio can be converted to yieldRHp ~ alistic region ag(1) t=—0.8 (~0.78<cosf) and (2) 1.3<t
ratio according to Eq(25). (cosf=<0.61). The former constraint gives us the maximum

In Fig. 7, theF/D ratio is plotted as a function of ces value of F/D~0.84, and the latter constraint gives us the
Here, to investigate the whole range efe<t<+w, we Minimum value of F/D~0.63. Therefore, we conclude
introduce a new parametérdefined as F/D~0.6-0.8. This range includes the value from thd@U

quark model E/D=2/3), and is slightly higher than that

extracted from semileptonic decay rates of hyperdhd)(

tang=t. (300  ~0.57)[20]. It is often argued that the choice of — 1 (the

loffe currenj is optimal because the instanton effgzt] and
Thus, the range €t<+ corresponds to €6<mx/2 while  the continuum contributiorf19] is small, and the chiral
the range—«<t<0 spansa/2<6<m. In Fig. 7, circles are breaking effects are maximized. If we choase—1, our
obtained from the Borel window 0.65M?<1.24 Ge\f with estimate becomels/D ~0.76-0.81, that is somewhat larger
the continuum threshol8,=2.07 Ge\f. To see the sensitiv- than the SWb) value.
ity to this choice, we also calculate the ratio usitig 0.65 As a comparison, let us briefly consider thg structure
<M?<1.24 GeV, S,=2.57 GeV (triangles, (2) 0.90 case. In this case too, we can classify the OPE of the Appen-
<M?2<1.50 GeV, S,=2.07 Ge\? (squares We see that dix according to Eq(25) and identify the terms responsible
the F/D ratio is insensitive to the continuum threshold, for the F/D ratio. By taking similar steps as T sum rules, we
agreeing with the discussion in Sec. IV. Also, the calculatedletermine thé=/D ratio. Figure 8 shows thE/D ratio as a
F/D ratio is relatively insensitive to the choice of the Borel function of cosd. Compared with Fig. 7, th&/D ratio is
window. The peak around~ — 0.5 (cos6~—0.9) can be un-  very sensitive td. As discussed in Sec. oot may cause
derstood from Fig. 5. Most curves are zero around thist  this huget dependence. Another possibility is due to the
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large contribution from direct instanton in the pseudoscalatarge strange quark massn{) may cause non-negligible
channel. The direct instanton effect is believed to cause larg8U(3) breaking effects. So far, the OPE for thgo,,q*p”
OZI breaking inpand '. To confirm it, it will be necessary structure is truncated t@(p) so that it is consistent with the
to include the direct instanton effect in this pseudoscalachiral expansion, while effects afiy can only be included at
channel. Nevertheless, the correlation functi@nis often  ©(p?). In order to quantify S(B) breaking effects on the
used in literature to calculate various couplings and our studyneson-baryon couplings, it will be necessary to include
suggests that one has to be careful in choosing a Dirac stru¢(p?) contribution. The present formulation may give a

ture in that correlation function. solid starting point for such analyses in future.
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used general baryon currents with no derivative instead ofuPported by the Brain Korea 21 project. We would like to
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of sum rule results on currents. We proposed a new criterion
to choose a pertinent Dirac structure by studying the depen-APPENDIX: COUPLING SUM RULES FROM THE PS, T,
dence of the correlation function on the baryon currents. PV STRUCTURE
Specifically, it is imposed that a physical parameter is ideally _ o
independent of a chosen current. In checking this constraint, Coupling sum rules formNN, #NN, 7=5=, 7=Z&,
the SU3) symmetric limit is quite useful as it provides 7>, and nXX are presented here. For thecouplings,
simple relations among the couplings. It is found that the?— %’ Mixing is not introduced because our analysis in this
ys0,,q“p” structure satisfies the ideal constraint relativelyPaper is within SU). In the OPE side, the quark-gluon
well, which moderately restricts thE/D ratio within the mixed condensate is parametrized a&y;9s0G0;)
range,'F/D.~.C).6—O.8. quever, théys sum ru]es beypnd Emg<qiqi) where g;=u,d,s quark. Also, we take the
the chlrgl limit do not satisfy the constraint, which prpwdes Aisospin symmetric Iimit,(Uu}z(Ed)z(Eq) and m,=m,
L?J?r‘;n"tvs'”dow for the value of thé/D ratio depending on =my. The continuum contribution is denoted by the factor,
. — — n —X H

In the present study, we considered only the(ZUimit Eré)é;r?t%mr?‘n_tﬁres(ﬁglrd)ﬁ oxinhe ™ where S, is
of the meson-baryon couplings. In fact, the OPE for the '
Y50 ,,0%p” structure given in the Appendix contain effects ) _
of SU(3) breaking partially asmy#m=#ms, AyFAz 1. Coupling sum rules from thei ys structure
#\s, (qq)#(ss), andf, #f,. If we include these differ- Here we present theys sum rules up to dimension 8
ences, obtained coupling constants break thé3gsymme-  constructed at the ord@?:mi. AE\’/?B denotes the unknown
try accordingly. We, however, do not quantify this becausesingle-pole term coming from transitions between the ground
other sources of S(3) breaking are expected. Especially, the state baryon and higher resonance states:

2 2

m7T - 7Tm7T
gnm2NZ(1+APSM?)e MM = — gz (5T AT TENAA)M Eo() + :
T o

(—1+2t—t>)M*Eq(x)

16\272

1 — m? — |
T E_ot_42 2np2 2 s .2
wa( 5—-2t—t )mq(qq> M 288f,,( 7+2t+5t )(qq>< Wg >

- 12fﬁ(—7—6t—7t2)mqm(2)(aq>2, (A1)
2 2
m _ 3f;,m
\/§g,7Nmf])\,%,(1+AZ§M2)e’m§I’M2: - ﬁ(—7+2t+5t2)<qq>M4Eo(x)+ 1675 Z(1=2t+t)M*Eg(x)
7 T

1 — m? _ |
o (_7_ T TV 2\n2_ 1 E 2 S52
2f77( 7—14t—3t°)my(qq)°M 288f,7( 5—2t+ 7t )<qq>< WQ >
1 2 2/ 5\2
— Ior (—5-2t=5t)mymy(qa)”,
7
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2

3t
g, =mANZ(1+APSM2)e mEM = — ( 1+ 2t—t2)(qq)M*Eg(X) + — T (1 2t +t2)MAEq(x)

4872 f ( 2

1 2 A\ / ec 2_ m2 -2

1 .
- (1F 2t+t2)mym3(qq)(ss),

m’, 3fs,m?
V3g,=m2\2 (1+A§§M2)e—mé’M2= —Z [(—1+2t—t?)(qq)+12(1—t?)(ss)IM*Eq(x) + 3 7(1-2t+1?)

48m2f, 16\272

><M4Eo<x>—%[—<1+6t+t2>ms<Eq>+2<3+4t+t2)<mq<5q>+ms<§s>)]<?s>M2
7

2

— M [(1— 2t 12)(qg)+ 1201 12)(ss)] | Lg2
288, a4 -
121f [(1+2t+t)my(qq)+2(3+ 2t+3t2)(mq<ss>+ mg(qq))Jma(ss),

2

ms. — 1 — —
0,sm2NE (14 APEM2)e MM = 2oz ("B BNADMEG() ~ (=3 4t=t%) (Mg(qa) + my(ss))(qg)M?
T T

2
288f (— 6+6t2)<QQ><—G> 2 ——(—3—2t—3t?)(my(ss)+ m(qa)) ma(qq),

2

V3g,sm2AE(1+APSM2)e” meMZ_

i o 3f 2
487722 n[_ 6(1—t2)(qq)+2(1—2t+1t?)(ss)IM*Eg(x) + 1675:’; (—2+4t—2t%)
XME(x)— 201+ 61+ 2)g(58) (3 44+ )y d0) + mu(59)) |G M

7

2

m
288f [—6(1—t?)(qq)+2(—1+2t—t? <ss>]<—g>

~ o[- ?)mq(ss) — (3+ 2t+ 3t%) (my(ss) + my(qa)) Jmi(qa).
n
2. Coupling sum rules from the yso,,,g"p” structure

The ys0,,9*p” sum rules up to dimension 7 are the following. AgamLB denotes the unknown single-pole term
contribution:

_ f. —
gon2(1+AT M2)e M= = (1O+4t—l4tz)<qq>M4E0(x)—g(—l—2t+3t2)(qq>M2

1 _ 1
_ 2(_1__ 2 _ 2 >
54f,,5( 1-26t+27 )<qq>+72 12 (17+2t—1% )(qq)< °G >
+ 7—;( —5-6t+11t2)m3(qq), (A2)
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_ f _
(14—4t—10t2)<qq>M4Eo(x)—3”(1—2t+t2)<qq>|\/|2——f 5%(13—26t+13t?)

1
+ 2 m, /M —
\/—gnN)\N(l AT M yer N prY ST 547

n

X Q)+ o (19- 20— 172)(qa)| 2262) + 229 6t 32)m(qa)
72-12f, p 72 o(ag),

1
SNZ(1FATM2)e MM ——r (2 4t+2t2)<qq>M4E0(x)——(1 t2)(ssyM2— f62(7 7t?)(ss)

+;(1—2t+t2)(_> ok +f—”(7—7t2)m2<§s>
72-12f, 9\ 72 0185/,

— _ f _
V3g,=NE(1+AT M) MM [(2—4t+2t%)(qa) + 24( — 1+2)(s8) IM*Eq(x) — F'[(—2+4t—2t*)(qq)

96m°f,

+3(1-t?)(ss) M2~ alf,,(sz[ze(— 1+2t—t3)(qq) +21(1—t?)(ss)]
+ ;[(1—2t+t2)<_ )+36(— 1+t?)(ss)] Zeg2
7212, a4 ™

f — —
+ 25[6(—1+2t—t3)(qa)+9(1—t?)(ss) |mg,
_ f — _
grsME(L+ATIM2)e ™M —%JZf ——121-) ()M *Eo(x) — 5 [(—1+17)(qa) + (1 2t+1?)(ss) IM?
1 52[7(—1+t2)<_)+13(1—2t+t2)<§s)]+;18(1—t2)(_) %o
54' 7 44 72.12f . W\ 7

for - e 2
+ 7—2 (—1+t%)(qq)+3(1—2t+t?)(ss)]mj,

20,2 1 — _ f _
V3g, s A3 (1+ATsM?)e MM = 2 [12(1—'[2)(CIQ>+4(—1+2t—t2)<53>]M4E0(X)—3”[3(—1“2)((1@

7

+(1—2t+t2)(ss) M2~ alf 202021 — 1+t2)(qq) + 13(1— 2t +t?)(ss)]

1
+ 17, 55— [18(1-t?)(qq) +2(—1+2t - t2)<SS>]<—g>
+;—;[15(—1+t2)<aq>+3(1—2t+t2)<§s)]m§.

3. Coupling sum rules from theiysp structure

Theiysp sum rules up to dimension 7 are presented here:

2

f, f.0
g,,NmN)\ﬁ(1+A7PT\,f,M2)e_mﬁl/M2=m(10+ 8t+10t2)MOE (x) — 52 (—20—16t—20t2) M *E(x)
T T

Il —G?)(5+4t+5t)M?+ i(Eq)z(—1—2t+3t2)M2
72 18f,

f 6 Aot ag? 1 ,—0 6t 1112 s
R er i )+ g3 MH(ADH—5 -6t 1), (AY)
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2

f f
V3g M2 (1+APYM 2)e*mﬁ/M2=—”2(8+ 8t+8t2)MOE, (x) — —— (— 22— 4t— 22)M*Eq(X)
24 48

f
”<a >(5+2t+5t2)|v| +—

2 2 2
2 18f, T (A (1—2t+t*)M
f.8° |a o
7 7 S~2 _ o _ 2 2 2a._ g2
36X 18< 7Tg >( 10-4t—10%) + 432fnm0<qq> (9—6t—3t9),

2

f f o
WEmE)\ZE(H—Ai\éM2)e‘m25“\"2=m(—1—t2)M6E1(x)— " 5 (—1+6t—t>)M*Eq(x)
T 7T

fol@s o) e, L L 2M2 f,6° a2
T\ 79 (COMT 1o (qg)(ss)(L—t)M?+ 22— { — 22G2) (~3-t-31)

%),

1
T a3

2

f f, 08
V3g,=2m=AE(1+APEM 2)e MEM’Z T _(_ 19 16— 192)MOE,(X) — —L— (41+ 26t + 412)M*Eq(X)
2472 4872

f” “sg2)(~10- 7t—10t2)|\/|2+—[(3 3t%)(qq) + (— 2+ 4t —2t?)(ss)]
72 18f, a9

X (ssyM?+

2
% (% 11+ 5t+11t?)
36>< 18\ 7 gl

1 _ _
432f ———[9(1-t))(qq) +6(— 1+ 2t—t?)(ss)]m(ss),

)M *Eq(x)

fr
grsMeA2(1+APYM2)e mMMP = T (94 gt +9t2)M
2472

f

+ 7_;<%ng> (5+3t+5t)M2+ [ (1—2t+t2)(qq) + (— L +t2)(ss)1(qq)M?

18f T8r !

f 6%
36>< 18

2)(=7-3t—Tt)+ ! [-3(—1+2t—t?){qq)—(1—t?)
432 49
X <§S>]m3<5q>,

2

f f
\/§gn2m2)\§(1+A;\z’M2)e‘m§”\"2:—”(11+8t+11t2)M6E1(x)— T (—19-22%—19%*)M?Ey(x)
2472 487°

f,|as 1 _ .
+ ’7< >(5+5t+5t2)M2+ [(1—2t+t2)(qq)—3(1—t?)(ss)](qq)M?
72 18f,,

f§2 ag 1
T 3ew 18| 79 (71t

—3(—1+2t—t?)(qq)

432,
—15(1—t?)(ss)]m3(qa).
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