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Parametric amplification with friction in heavy ion collisions

Masamichi Ishihara*
Department of Physics, Tohoku University, Aoba-ku, Sendai 980-8578, Japan

~Received 30 March 2000; published 20 October 2000!

We study the effects of the expansion of the system and the friction on the parametric amplification of
mesonic fields in high energy heavy ion collisions within the linears model. The equation of motion which is
similar to the Mathieu equation is derived to describe the time development of the fields in the last stage of a
heavy ion collision after the freeze-out time. The enhanced mode is extracted analytically by comparison with
the Mathieu equation and the equation of motion is solved numerically to examine whether soft modes will be
enhanced or not. It is found that a strong peak appears around 267 MeV in the pion transverse momentum
distribution in cases with weak friction and high maximum temperature. This enhancement may be extracted
by taking the ratio between different modes in the pion transverse momentum distribution.

PACS number~s!: 25.75.Dw, 11.30.Rd
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I. INTRODUCTION

The chiral symmetry restoration has been investiga
theoretically and is expected to be realized in the com
experiments of high energy heavy ion collisions at RHIC a
LHC. The chiral symmetry restoration leads to the sub
quent rebreaking which has been studied in terms of the
teresting phenomena called ‘‘disoriented chiral condensat
~DCC!. DCC is a~quasi!ground state and is characterized
finite pion condensates in the linears model. Though DCC
consists of zero mode in an ideal case, it consists of
modes in a realistic case. In the conventional formation s
narios of DCC, it is assumed that the condensate rolls do
to any direction with equal probability from the top of th
hill of the Mexican hat potential if the thermal equilibrium
above the critical temperature is completely establish
However, this is not always valid in heavy ion collisions
high energies because the initial condition is such that
condensate is settled on the minimum of the potential at z
temperature before the collision. We have shown that
condensate moves almost along the sigma axis when th
fects of random forces are negligible@1,2#. In such cases, the
condensate moves tos ~normal! or 2s direction which is
the opposite side to the normal vacuum. DCC does not
pear if the condensate stays at the normal vacuum, while
stays at2s, then it is just a DCC.

As mentioned above, the condensate may oscillate a
the sigma axis around the minimum of the effective poten
at later time in high energy heavy ion collisions because
condensate moves along the sigma axis. The field wh
couples to the oscillating field may be amplified due to
so-called ‘‘parametric amplification’’@3–6#. It was pointed
out that the enhancement of nonzero mode due to param
amplification on the normal vacuum may occur when
condensate oscillates around the minimum of the potentia
zero temperature@3#. It was also shown that a squeezed st
is formed by parametric amplification@4#. However, it is not
well known whether the enhancement of nonzero mode
curs or not when the amplitude of the oscillation decrea

*Electronic address: m_isihar@nucl.phys.tohoku.ac.jp
0556-2813/2000/62~5!/054908~9!/$15.00 62 0549
d
g
d
-

n-
s’’

ft
e-
n

d.
t
e
ro
e
ef-

p-
it

ng
l
e
h

e

ric
e
at
e

c-
s

because of the expansion and the friction.
The equation of motion for the condensate with a fricti

term was derived by Biro´ and Greiner@7# on the chirally
symmetric vacuum whereT.Tc with T being the tempera-
ture of the system andTc the critical temperature, and b
Rischke@8# on chirally broken vacuum whereT,Tc . The
magnitude of the friction for the condensate on the chira
broken vacuum in the linears model was given by Rischke
There is a finite friction fors field because ofs→2p decay.
Then, it is better to include the friction in the calculation
parametric amplification for soft modes like DCC formatio
and decay studies@7–10#.

The aim of this paper is to investigate whether the e
hancement of nonzero modes occurs or not in one dim
sional scaling case when there is a friction. This pape
organized as follows. In Sec. II, the equation of motion
derived and a constant friction is introduced to describe
dissipative nature effectively. After that, the equation of m
tion is analyzed by comparing with Mathieu equation.
Sec. III, The initial condition is given and a measure to e
tract the amplification of the fields is introduced. The equ
tion of motion is solved numerically to see whether the e
hancement of soft modes occurs or not. Section IV
assigned for conclusions and discussions.

II. EQUATION OF MOTION IN ONE-DIMENSIONAL
SCALING CASE

We use the linears model to describe the parametr
amplification in the last stage~after freeze-out! of high en-
ergy heavy ion collisions. The Lagrangian is

L5
1

2
]mf]mf2V~f!, V~f!5

l

4
~f22v2!22Hs8,

~1!

wheref5(s8,pW ). The minimum of the potential is deter
mined by differentiatingV(f):

]V~f!

]s8
U

s85 f p ,pW 50

50, ~2!
©2000 The American Physical Society08-1
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where f p is the pion decay constant. Since we are interes
in the motion around the minimum of the potential, the n
field s5s82 f p is introduced and the potential is rewritte
We have the relations

ms
25

def

l~3 f p
2 2v2!, mp

2 5
def

l~ f p
2 2v2!, H5l f p~ f p

2 2v2!,

~3!

wherems is the mass of the sigma meson andmp is that of
the pion. The equations of motion fors and p i( i 51,2,3)
become

hs~x!1ms
2s~x!1l„s2~x!13 f ps~x!1pW 2~x!…s~x!

1l f ppW 250, ~4a!

hp i~x!1mp
2 p i~x!1l„s2~x!12 f ps~x!1pW 2~x!…p i~x!

50, ~4b!

where h5] t
22]x

22]y
22]z

2 . We solve the above equation
of motion, especially for soft modes in the presence of
background oscillation of the condensation~zero mode!.
Since the sum of hard modes generates a friction@7,8,11# in
general, a friction term is introduced phenomenologica
The equations of motion become

hs~x!1hs~x!]ts~x!1ms
2s~x!1l„s2~x!13 f ps~x!

1pW 2~x!…s~x!1l f ppW 250, ~5a!

hp i~x!1hp~x!]tp~x!1mp
2 p i~x!1l„s2~x!12 f ps~x!

1pW 2~x!…p i~x!50, ~5b!

wherehs(x) andhp(x) are the frictions fors andp fields,
respectively. Convenient variablest andh are defined by

t5
def

At22z2, h5
def1

2
lnS t1z

t2zD , ~6!

for one dimensional scaling case. D’Alembertian is rewritt
by using these variables:

h5]t
21

1

t
]t2

1

t2
]h

22]'
2 , ~7!

where]'
2 5]x

21]y
2 . We assume that the frictionshs andhp

depend on onlyt. First, we solve Eq.~5a! without the inter-
action term. The notations (0)(t) which implies zero mode
~the condensate! is introduced. It is the background field fo
nonzero modes. The equation becomes

F]t
21S hs~t!1

1

t D ]t1ms
2 Gs (0)~t!50, ~8!

where it is assumed thats (0) is a function of onlyt. Without
loss of generality, one can substitute the following factoriz
form of s (0)(t) into Eq. ~8!:
05490
d

e

.

n

d

s (0)~t!5 f (0)~t!us
(0)~t!. ~9!

dus
(0)(t)/dt term appears on the right-hand side of Eq.~8!

and its coefficient vanishes iff (0)(t) satisfies the following
equation:

2
d f (0)~t!

dt
1S hs~t!1

1

t D f (0)~t!50. ~10!

The equation forus
(0)(t) becomes

d2us
(0)~t!

dt2
1H 1

2t2
2

1

2

dhs~t!

dt

2
1

4 S hs~t!1
1

t D 2

1ms
2J us

(0)~t!50. ~11!

For a larget, 1/t2 anddhs /dt are negligible ifhs reaches
a constant. Then, Eq.~11! for larget is approximately

d2us
(0)~t!

dt2
1H ms

22
1

4
hs

2~`!J us
(0)~t!50. ~12!

The solutions of Eqs.~10! and ~12! are

f (0)~t!5Ct21/2expS 2
1

2E
t

dshs~s! D
;Ct21/2expS 2

1

2
hs~`!t D , ~13a!

us
(0)~t!5u0 cosF S ms

22
hs

2~`!

4 D 1/2

t1uG , ~13b!

whereC, u0, andu are constants. Then,O(l0) solution of
s (0)(t)5 f (0)(t)us

(0)(t) is given with the help of Eqs.~13a!
and ~13b!. We can obtain the same expression forp fields.
However, we now consider the case in which the motion
p field is negligible, namelyp i

(0);0, because the conden
sate moves almost along the sigma axis.

We solve Eqs.~5a! and ~5b! with the interaction term in
order to evaluate the effect of the motion of the condens
Fields are decomposed to substract the background osc
tion as follows:

s~x!5s (0)~x!1s (1)~x!, ~14a!

s (0)~x!5s0t21/2e2(1/2)hs(`)t cosF S ms
22

hs
2~`!

4 D 1/2

t1uG ,
~14b!

p~x!5p (0)~x!1p (1)~x!;p (1)~x!, ~14c!

wheres05Cu0 which is a constant. With the help of Eq
~14a! and ~14c!, we have

s25~s (0)!212s (0)s (1)1~s (1)!2

5O~@s (0)#2!12s (0)s (1)1O~l2!, ~15a!
8-2
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p25O~l2!, ~15b!

s35~s (0)!313~s (0)!2s (1)13s (0)~s (1)!21~s (1)!3

5O~@s (0)#3!1O~@s (0)#2l!1O~s (0)l2!1O~l3!,

~15c!

pW 2s5O~l2!3„s (0)1O~l!…. ~15d!

O(@s (0)#2) and higher contributions are negligible com
pared with O(s (0)) becauses0 is taken to be small and
t21/2exp„2hs(`)t/2… is small for larget. The lowest con-
tribution of the interaction terms is obtained by neglecti
O(l2) and higher terms in Eqs.~15a!–~15d!:

H ]t
21S hs~t!1

1

t D ]t1vs
2~t!

16l f ps (0)~t!J s (1)~t,kT ,kh!50, ~16!

where s (1)(t,kT ,kh) is the Fourier transformation o
s (1)(t,x), kT is the transverse momentum,kh is the conju-
gate momentum of the ‘‘rapidity’’ h @Eq. ~6!# and
vs

2(t,kT ,kh)5kT
21kh

2/t21ms
2 which does not depend o

kh for larget. s (1)(t,kT ,kh)5 f (0)(t)us
(1)(t,kT ,kh) is sub-

stituted into Eq.~16! as Eq.~9! is substituted into Eq.~8!.
Note thatf (0)(t) is the same function as found in Eq.~13a!
except for an overall constant. Then, the equation forus

(1) at
larget becomes

d2us
(1)~t,kT ,kh!

dt2
1H ṽs

2~kT!2
1

4
hs

2~`!

16l f ps0t21/2e2(1/2)hs(`)t

3cosF S ms
22

hs
2~`!

4 D 1/2

t1uG J us
(1)~t,kT ,kh!50,

~17!

whereṽs
2(kT)[vs

2(`,kT ,kh). Applying the change of vari-
able,

2j5S ms
22

hs
2~`!

4 D 1/2

t1u, ~18!

to Eq. ~17!, we obtain

d2us
(1)~j,kT ,kh!

dj2
1@As~kT!22qs~j!cos~2j!#us

(1)~j,kT ,kh!

50, ~19a!

As~kT!54S ṽs
2~kT!2hs

2~`!/4

ms
22hs

2~`!/4
D , ~19b!
05490
qs~j!52S 12l f ps0

ms
22hs

2~`!/4
D t21/2e2(1/2)hs(`)t. ~19c!

The fields (1) is obtained as follows:

s (1)~t,kT ,kh!5Cst21/2e2(1/2)hs(`)tus
(1)~t,kT ,kh!,

~20!

whereCs is a constant. In the same manner, we obtain
equation forp (1)(t,kT ,kh):

d2up
(1)~j,kT ,kh!

dj2
1@Ap~kT!22qp~j!cos~2j!#up

(1)~j,kT ,kh!

50, ~21a!

Ap~kT!54S ṽp~kT!2hp
2 ~`!/4

ms
22hs

2~`!/4
D , ~21b!

qp~j!52S 4l f ps0

ms
22hs

2~`!/4
D t21/2e2(1/2)hs(`)t, ~21c!

whereṽp
2 (kT)5kT

21mp
2 . The fieldp (1) is also obtained as

follows:

p (1)~t,kT ,kh!5Cpt21/2e2(1/2)hp(`)tup
(1)~t,kT ,kh!,

~22!

whereCp is also a constant. The dependence ofkT andkh is
included in onlyAs andAp in Eqs.~19a! and ~21a!.

Equations~19a! and~21a! are similar to Mathieu equation
which is the basic equation for the parametric amplificatio
The Mathieu equation is

d2F~j!

dj2
1@A22q cos~2j!#F~j!50. ~23!

The coefficient in front of cosine is a constant in the Mathi
equation, while it is a time dependent function, i.e., a fun
tion of j, in the present case. The stable and unstable reg
of the solution of the Mathieu equation are described in
q-A plane. The unstable regions atq;0 correspond toA
51,4,9, . . . . Thetime dependence ofq in the present case
does not change enhanced modes corresponding tA
51,4,9, . . . , while it changes the magnitude of amplifica
tion. In the linears model, the friction coefficient ofp is
almost zero at zero temperature, while that ofs is not. The
denominator ofAs is not negative forhs(`)<2ms . Then,
the minimum ofAs is not less than 4, while that ofAp is
smaller than 1. Onlyp has the amplification mode forA
51. The amplified modes are determined byA51,4, . . .
and hash dependence. Theh dependence is weak fo
hs

2/(4ms
2)!1. hs

2/(4ms
2) is about 0.1 forhs52 fm21 and

ms5600 MeV. In this study, it is apparent that theh depen-
dence of the amplified modes is weak since this condition
hold in the following calculations. Once the parameters
the linear s model and the magnitude of the friction a
8-3
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chosen, the amplified modes are calculated easily. As an
ample,f p592.5 MeV,v587.4 MeV, andl520 are chosen
for numerical calculations in the next section. These para
eters generatems;600 MeV andmp;135 MeV. The am-
plified modes forhs50.5 fm21 andhp50 fm21 are as fol-
lows. The amplified modeskT for p fields is about 267 MeV
for Ap51 , 583 MeV forAp54, and so on. That fors field
is about 669 MeV forAs59. A peak or peaks will appear in
the kT distribution if the parametric amplification is stron
enough. There is no mode which corresponds toAs51 and
the mode forAs54 corresponds to zero mode~condensates!.
However, zero mode is the background field for the fin
modes ands (1)(x) does not include zero mode. Therefo
As54 cannot be a candidate for the parametric amplifi
tion.

III. NUMERICAL CALCULATION

The remaining task is to solve Eqs.~21a! and ~19a! nu-
merically with an adequate initial condition. The amplitu
of the oscillator is given as an initial condition. On the oth
hand, we choose some magnitude of the friction referring
results by some authors. In Sec. III A, the initial conditio
and the initial momentum distribution to solve the equat
are chosen to mimic the situation in high energy heavy
collisions. In Sec. III B, we discuss the method to extract
enhancement due to parametric amplification in the tra
verse momentum distribution. In Sec. III C, the equation
motion is solved numerically with the initial condition give
in Sec. III A and the characteristics of the enhancement
mulated in Sec. III B is shown explicitly.

A. Initial condition and magnitude of the friction

In high energy heavy ion collisions, the system can
described roughly by scaling-hydrodynamics@12# in the
cooling stage. The time dependence of the temperature in
cooling stage is

T~t!5TmS tm

t D 1/3

u~t f2t! for t.tm , ~24!

whereTm is the maximum temperature of the system,tm is
the time at which the temperature becomes maximum, ant f
is the freeze-out time at which the temperature becomes
suddenly. IfTf is given,t f is calculated as follows:

t f5tmS Tm

Tf
D 3

. ~25!

Though the friction is a time-dependent function in ge
eral, it is expected that its magnitude reaches a constan
cause the temperature becomes~almost! zero after the freeze
out. Then, we use the friction around the true minimum
the potential at zero temperature. The magnitude on
chirally symmetric vacuum atT;Tc obtained by Biro´ and
Greiner is 2.2 fm21 @7# and the magnitudes on chirally bro
ken vacuum atT50 obtained by Rischke are about 3 fm21

for s field and 0 forp fields @8#. The contribution from
nonzero modes are summed to obtain the friction for z
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mode in such calculations. However, the friction used in t
paper comes from only hard modes. Its magnitude is sma
than that obtained by summing the contributions from
nonzero modes. For these reasons, the following values
used in the numerical calculations:

hs5~0.25,0.5,1.0,2.0! fm21, hp50. ~26!

There are three other parameters in the linears model. We
use the same values as in the previous section:f p592.5
MeV, v587.4 MeV, andl520.

In the previous papers@1,2#, it was found that the initial
condition is important for the chiral symmetry restoration
high energy heavy ion collisions. Then, it is conceivable t
the initial condition for a heavy ion collision affects the in
tial condition for the parametric amplification. As alread
stated, the condensate moves along the sigma axis beca
reflects the initial condition before the collision. The pro
able initial condition for the parametric amplification i
heavy ion collisions is

~s (0),p1
(0) ,p2

(0) ,p3
(0)!ut5t f

5~s ini,0,0,0!. ~27!

The time derivatives of the fields are needed to calculate
time development. The condensate is almost near the m
mum of the finite temperature effective potential in stro
friction cases~of course, not too strong! and the velocity of
the condensate is small enough. On the contrary, the velo
is not small in weak friction cases. The amplitude of t
condensate in nonzero velocity cases is larger than tha
zero velocity case. The larger the amplitude of the cond
sate is, the stronger the amplification is. The amplificat
with the initial condition that the time derivatives of the co
densate are zero is weakest compared with the amplifica
with the initial condition that the time derivatives are n
zero. It will be concluded that the parametric amplificati
will occur in general if the amplification is found in zer
velocity case. The velocity of the condensate at the ini
time is thus taken to be zero. Then, the angleu in Eq. ~17! is
determined byds (0)/dtut5t f

50:

u5arctanS 2
11hs~`!t f

2t f~ms
22hs

2~`!/4!1/2D 2S ms
22

hs
2~`!

4 D 1/2

t f .

~28!

The momentum distribution is proportional to the squa
of the fields. On the other hand, the momentum distribut
depends on onlykT because of the scaling property. Ther
fore, the field which is the square root of the momentu
distribution depends on onlykT . Then, we take the initial
value ofs (1)(t f ;kT ,kh) andp (1)(t f ;kT ,kh) as

s (1)~t f ;kT ,kh!}Ag~kWT ;ms!,

p (1)~t f ;kT ,kh!}Ag~kWT ;mp!, ~29!

whereg(kWT ;m) is the initial distribution function. The abso
lute magnitude which is not given in Eq.~29! is unimportant
in the following discussion because we will consider only t
8-4
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relative ratio. If the system is locally thermalized at the in
tial time, g(kWT ;m) is chosen as follows:

g~kWT ;m!5
1

expSAm21kWT
2

Tf

D 21

. ~30!

B. Extraction of the peaks due to parametric amplification

One important problem is how to extract the peaks in
transverse momentum distribution generated by the para
ric amplification in numerical calculations. The amplitudes
andp become zero asymptotically for all modes because
the expansion and the dissipation. First, we introduce
following quantities to extract the magnitude of the ampl
cation of the fields:

Ra~t;Aa ,t f ![Ra~t;kT ,kh ,t f !5
def ca

(1)~t;kT ,kh!

ca
(1)~t f ;kT ,kh!

,

~31!

wherea5p,s andcp
(1)5p (1), cs

(1)5s (1). The ratioRa os-
cillates as a function oft. The amplification of the fields
is seen explicitly by removing the damping facto
exp@2hs(`)t/2#t21/2 from Ra . It is performed by using the
following quantity:

r a~t;Aa ,t f !5
def

ua
(1)~t,kT!/ua

(1)~t f ,kT!. ~32!

It is useful to consider the envelope ofRa andr a for our
purpose. The envelope ofr a is denoted byr a

e . However,Ra

is not an adequate quantity to extract the amplification
the envelope ofRa too because of the damping. Fortunate
the damping factor is momentum independent. The reduc
of the amplitude by the expansion and the dissipation
cancelled by taking the ratio between different modes.
use ther a

e because the envelope is easily calculated forr a :

Pa~Aa ,Aa,r !5
def

lim
t→`

r a
e~t;Aa ,t f !

r a
e~t;Aa,r ,t f !

, ~33!

whereAp,r and As,r are the references to other modes,Ap

andAs , respectively. Since the ratio of the momentum d
tribution is proportional to@P(A,Ar)#2, it links directly the
amplification and the transverse momentum distribution. T
effects of the initial distribution are taken into account
multiplying the square root of the initial function as follow

Pnew~A,Ar !5
def

P~A,Ar !A g̃~A!

g̃~Ar !
, g̃~A!5g~kT!,

~34!

whereg(kT) is the initial distribution function introduced in
Eq. ~30!. The transverse momentum distribution can be c
culated by Eq.~34! for various initial distributions.
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The time derivative terms are not explicitly included
the quantities introduced in this subsection because the e
of these terms are small. These effects in terms of ab
quantities are evaluated in the Appendix.

C. Numerical results

What we would like to know is~1! whether parametric
amplification occurs or not, and~2! whether its signal can be
observed experimentally or not. The answer to question~1!
can be obtained by studyingr a . Hereafter, we consider only
the p fields becauses field will not be amplified strongly.
The reasons that the sigma field is not amplified strongly
that ~1! the smallest amplified mode corresponds toAs59 ,
and ~2! the effect of the friction fors @Eq. ~20!# does not
vanish, while that forp vanishes@Eq. ~22!# at zero tempera-
ture.

First, we show the time development ofRp and r p for
Ap51, s ini5230 MeV, hs50.25 fm21, and Tf5100
MeV. The evolution ofRp is shown in Fig. 1~a! and that of
r p is shown in Fig. 1~b!. The amplitude ofRp increases
temporarily because of the parametric amplification and t
decreases because of the expansion and the dissipation
moving the effect of the expansion and the dissipation,
can see the amplification obviously shown in Fig. 1~b!. The
amplitude ofr p becomes a constant since the factorqp(j)
@see Eq.~21c!# becomes zero.

The asymptotic value of the amplitude,r p
e (t5`,Ap), is

shown in Fig. 2 for variousTm as a function ofAp for s ini
5230 MeV, hs50.25 fm21, andTf5100 MeV. There is a
peak nearAp;1 caused by the parametric amplificatio
This strong amplification may give the possibility of the o
servation even when the initial distribution does not ha
enough amplitude atAp;1. It seems that the amplificatio
saturates asTm increases. This is understood as follows. T
increase of the amplitude by the parametric amplificat
depends on the initial amplitude of the condensates and
time interval (s5t2t f). Since the amplitude at the initia
time is fixed in this calculation, the time interval is inves
gated here. Amplification described in the Mathieu equat
is characterized on theq-A plane, whereq and A appear in
Eq. ~23!. The field is amplified if the set of the parametersq
andA is in a unstable region on theq-A plane. The set (q,A)
at the initial time is shown by dot in Fig. 3. The coefficie
q(j) defined by Eq.~21c! is a time dependent function and
moves to zero as shown in Fig. 3, while it is a constant in
Mathieu equation. The point onq-A plane goes out of the
unstable region as time goes by. This implies that the sm
estq(j) for each modes exists for the field to be amplifie
Then, we consider a certain timetQ at whichqp(j) in Eq.
~21c! becomes a certain value,Q. We consider alsoQf(t f)
which is q(j) when t5t f . With the help of Eq.~21c!, we
obtain

exp„2hs~`!s…5
Q2

Qf
2~t f !

S 11
s

t f
D , ~35!

wheres5tQ2t f . The left-hand side is a function of onlys,
while the right-hand side depends on boths andt f . ThatTm
8-5
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goes to infinity corresponds to thatt f goes to infinity. Then,
t f→` limit can be taken with a fixeds. SinceQf(t f) con-
verges at a certain valueQf which is obtained from Eqs
~14b!, ~21b!, and ~28!, the right-hand side of Eq.~35! be-
comes Q2/Qf

2 . Then, s is finite as Tm becomes infinity,
which is obtained by solving Eq.~35!:

s52
2

hs~`!
ln~Q/Qf !. ~36!

FIG. 1. ~a! Time development of the ratioRp with Ap51,
s ini5230 MeV, Tm5300 MeV, Tf5100 MeV, and hs(`)
50.25 fm21. ~b! Time development of the ratioup with Ap51,
s ini5230 MeV, Tm5300 MeV, Tf5100 MeV, and hs(`)
50.25 fm21.
05490
This implies that the time interval for the amplification
still a finite constant even whenTm is infinite. We conclude
that the amplification saturates asTm becomes infinite be-
cause the initial amplitude is finite and the time interval co
verges.

The parameters,hs(`), s ini andTf , are varied to see the
sensitivity of the amplification in the following calculations

The ratio of the amplifications,r p
e (t5`,Ap), is shown in

Fig. 4 for varioushs(`) as a function ofAp . The magni-
tude of the amplification decreases as the magnitude
the friction increases. It is reasonable because the oscilla
of the condensate is reduced rapidly when the friction
strong. It is apparent that the amplitude of the oscillati
decreases since 2qa(j) in Eqs. ~21a! and ~19a! vanishes

FIG. 2. The amplifications of the field amplitude in the bro
range Tm . The initial condition is s ini5230 MeV, hs

50.25 fm21, andTf5100 MeV.

FIG. 3. Sketch of the stable and unstable regions aroundA51
in the q-A plane. The shaded region corresponds to the unst
region. The initial values in theq-A plane are indicated by black
balls. The set (q,A) moves on the thick line to theq50 direction
with a constantA.
8-6
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quickly in the strong friction cases. It was found that t
parametric amplification cannot occur for frictions which a
larger than 2 fm21.

The ratio of amplifications,r p
e (t5`,Ap), is shown in

Fig. 5 for variouss ini as a function ofAp . The dependence
on s ini is important for the parametric amplification in th
presence of the expansion and the friction because the

FIG. 4. The amplifications of the field amplitude for variou
magnitudes of friction. The initial condition isTm5300 MeV,s ini

5230 MeV, andTf5100 MeV.

FIG. 5. The amplifications of the field amplitude for variou
s ini . The initial condition isTm5300 MeV, hs50.25 fm21, and
Tf5100 MeV.
05490
m-

plitude of the oscillator~condensate! decreases as time goe
by. However, we can find a peak nearAp;1, at least, for
s ini<210 MeV. Then, it may be possible to find this peak
the transverse momentum distribution.

The ratio of amplification,r p
e (t5`,Ap), is shown in Fig.

6 for variousTf as a function ofAp . It is obvious thatTf
dependence is weak.

Hereafter, theAp distribution, namely the transverse mo
mentum distribution, is displayed taking into account the i
tial transverse momentum distribution. The thermal distrib
tion @Eq. ~30!# is assumed and Eq.~34! is used. We take
Ar50.5 which is the reference inPnew defined in Eq.~34!.

The ratio between different modes including the effect
the initial thermal distribution,Pp

new(Ap ,Ap,r50.5), for
various Tm is shown in Fig. 7. The parameters ares ini5
220 MeV, Tf5100 MeV, andh50.5 fm21. The ratio be-
tween the momentum distributions corresponds touPp

newu2.
Then, it is found from Fig. 7 that the ratio atAp;1 is four
times larger than that atAp50.5 for Tm5300 MeV. The
increase in smallAp and the decrease in largeAp reflect the
initial thermal distribution. Then,Pnew(A,Ar) for large A
limit becomes zero when the initial distribution is therma
Similar calculations can be performed to obtainPp

new for
various parameters. For example,Pp

new(Ap;1,Ap,r50.5)
;12.7 fors ini5230.0 MeV,Tm5300 MeV,Tf5100 MeV,
andhs50.25 fm21.

There are manyA’s at which a field is amplified in
Mathieu equation. The amplification aroundAp54 is also
investigated, but strong amplification is not found. Th
comes from the property of the Mathieu equation and
small initial amplitude in the initial thermal distribution com
pared with that atAp;1. Then, it is difficult to observe the
effects of amplification except forAp;1.

FIG. 6. The amplifications of the field amplitude for variousTf .
The initial condition is Tm5300 MeV, hs50.5 fm21, and s ini

5230 MeV.
8-7



ric
a

gm
tia
to
lly
e-
on

os

-
igh
re
a

t

m
e
rg

ee

f t
th
a
th
z

to
he
not
dis-
dy.

l

of
ec.

ke

the

s

t

MASAMICHI ISHIHARA PHYSICAL REVIEW C 62 054908
IV. CONCLUSIONS AND DISCUSSIONS

We investigate the effects of the expansion and the f
tion on the parametric amplification in one-dimensional sc
ing case within the linears model. The equation of motion
at zero temperature is derived in the case where the si
condensate oscillates around the minimum of the poten
From this study, we found that the amplitude of the oscilla
~zero mode! and the magnitude of the friction are essentia
important for the parametric amplification in on
dimensional scaling case. In a weak friction case, the str
enhancement will occur atAp;1. (kT;267 MeV! in the
pion transverse momentum distribution and it may be p
sible to be observed by the normalized distribution,uPnewu2.
Then, we have a chance to catch the signal of thetemporal
restoration of chiral symmetry@1#. Contrary to this, it may be
difficult for the field to be amplified by the parametric am
plification in a strong friction case. On the other hand, h
maximum temperature and/or sufficiently strong friction a
needed for chiral symmetry to be restored for a long time
we found before@2#.

High maximum temperatures~above 100 MeV! were also
assumed in this study, which settles the condensate a
unstable point on the potential. However, the mechanism
parametric amplification does not always require high te
perature. Thepartial chiral symmetry restoration may b
also observed if the amplitude of the condensate is la
enough.

It is possible to devide the modes of the field into thr
parts: the condensate, soft modes, and hard modes.~See Fig.
8.! The hard modes can be regarded as the cause o
friction for the condensate and soft modes. There are
energy flows from the condensate and soft modes to h
modes. In the same way, there is the energy flow from
condensate to some soft modes. The decreasing of the

FIG. 7. The ratio of amplification of the amplitude for variou
Tm with s ini5220 MeV, Tf5100 MeV, andh50.5 fm21.
05490
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mode amplitude comes from the energy dissipation due
the friction and the effect of the expansion. However, t
energy flow from the condensate to the soft modes is
taken into account in the present study. Back reaction is
carded too. They will be taken into account in a future stu
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APPENDIX: THE EFFECTS OF THE TIME DERIVATIVE
TERMS

In this Appendix, the effect of the time derivative terms
the fields is checked for the quantities introduced in S
III B. First, we consider the effect onRa . The ratio of the
number-density-like quantities is evaluated in order to ma
it clear that the effect is small in the present case:

R̃a
(2)~t;Aa ,t f !5

@ca
(1)~t;Aa!#21ṽa

22@dca
(1)/dt#2

@ca
(1)~t f ;Aa!#21ṽa

22@dca
(1)/dtut5t f

#2
.

~A1!

Note thatṽa does not havekh
2/t2 term. It is ignored because

t is large enough. The time derivative ofca
(1) is

dca
(1)

dt
5

exp~2hat/2!

t1/2

dua

dt
2

ha

2

exp~2hat/2!

t1/2
ua

2
1

2

exp~2hat/2!

t3/2
ua , ~A2!

whereha is the friction forca
(1) . At the time (te) at which

dua /dt50, one has

dca
(1)

dt
U

t5te

52S ha

2
1

1

2te
Dexp~2hate/2!

~te!
1/2

ua . ~A3!

The same expression is obtained at the initial time for

FIG. 8. Sketch of mode division.h and h8 are frictions. The
arrow with the word ‘‘energy’’ implies the energy flow. The effec
of h8 is ignored in the present study.
8-8
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initial condition, (dua /dt)t5t f
50. R̃a

(2) at te is evaluated

since the amplification is evaluated at the envelope ofr a :

R̃a
(2)~te!5

exp@2ha~te2t f !#

te /t f
F11~2ṽa!22~ha1te

21!2

11~2ṽa!22~ha1t f
21!2G r a

2

5
defexp@2ha~te2t f !#

te /t f
Da~te ,t f ,h!r a

2 . ~A4!

The effect of the time derivative terms is included
Da(te ,t f ,h). Apparently, Da(`,t f ,ha)<Da(te ,t f ,ha)
<Da(t f ,t f ,ha)51. Then Dp(`,t f ,0) for p (1) and the
minimum of Ds(`,t f ,hs) with respect tohs for s (1) are
evaluated with a fixedt f :
va
K.

05490
Dp~`,t f ,0!5@111/~4t f
2ṽp

2 !#21, ~A5a!

Ds~`,t f ,hs!umin5
A16ṽs

2t f
21121

A16ṽs
2t f

21111
. ~A5b!

Da at kT50 is the minimum on thekT axis. t f is some 10
fm, mp is 135 MeV, andms is 600 MeV in the present case
In such a case,Dp andDs at the minimum are about 0.994
and is about 0.9837, respectively, fort f510 fm andkT50.
The maximum difference betweenDa with time derivative
terms and without is less than 2%. These are small enou

The effect of the time derivative terms forPa(Aa ,Aa,r) is
evaluated in the same way.Pa(Aa ,Aa,r) is the ratio between
different modes at the same time, whileR̃a

(2) is the ratio
between different times at the same mode. It is shown
time derivative terms do not affectPp , while it is shown that
time derivative terms affect slightlyPs .
v.
.
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