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Parametric amplification with friction in heavy ion collisions

Masamichi Ishihara
Department of Physics, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
(Received 30 March 2000; published 20 October 2000

We study the effects of the expansion of the system and the friction on the parametric amplification of
mesonic fields in high energy heavy ion collisions within the lineanodel. The equation of motion which is
similar to the Mathieu equation is derived to describe the time development of the fields in the last stage of a
heavy ion collision after the freeze-out time. The enhanced mode is extracted analytically by comparison with
the Mathieu equation and the equation of motion is solved numerically to examine whether soft modes will be
enhanced or not. It is found that a strong peak appears around 267 MeV in the pion transverse momentum
distribution in cases with weak friction and high maximum temperature. This enhancement may be extracted
by taking the ratio between different modes in the pion transverse momentum distribution.

PACS numbgs): 25.75.Dw, 11.30.Rd

[. INTRODUCTION because of the expansion and the friction.
The equation of motion for the condensate with a friction

The chiral symmetry restoration has been investigatederm was derived by Birand Greiner{7] on the chirally
theoretically and is expected to be realized in the cominggymmetric vacuum wherg>T. with T being the tempera-
experiments of high energy heavy ion collisions at RHIC andure of the system and the critical temperature, and by
LHC. The chiral symmetry restoration leads to the subseRischke[8] on chirally broken vacuum wheré<T.. The
quent rebreaking which has been studied in terms of the inmagnitude of the friction for the condensate on the chirally
teresting phenomena called “disoriented chiral condensatesbroken vacuum in the linear model was given by Rischke.
(DCC). DCC is a(quasjground state and is characterized by There is a finite friction fowr field because of— 27 decay.
finite pion condensates in the linearmodel. Though DCC  Then, it is better to include the friction in the calculation of
consists of zero mode in an ideal case, it consists of sofparametric amplification for soft modes like DCC formation
modes in a realistic case. In the conventional formation sceand decay studig’—10].
narios of DCC, it is assumed that the condensate rolls down The aim of this paper is to investigate whether the en-
to any direction with equal probability from the top of the hancement of nonzero modes occurs or not in one dimen-
hill of the Mexican hat potential if the thermal equilibrium sional scaling case when there is a friction. This paper is
above the critical temperature is completely establishedorganized as follows. In Sec. Il, the equation of motion is
However, this is not always valid in heavy ion collisions at derived and a constant friction is introduced to describe the
high energies because the initial condition is such that thelissipative nature effectively. After that, the equation of mo-
condensate is settled on the minimum of the potential at zertion is analyzed by comparing with Mathieu equation. In
temperature before the collision. We have shown that thé&ec. Ill, The initial condition is given and a measure to ex-
condensate moves almost along the sigma axis when the dfact the amplification of the fields is introduced. The equa-
fects of random forces are negligiljle,2). In such cases, the tion of motion is solved numerically to see whether the en-
condensate moves @ (norma) or — o direction which is hancement of soft modes occurs or not. Section IV is
the opposite side to the normal vacuum. DCC does not apassigned for conclusions and discussions.
pear if the condensate stays at the normal vacuum, while if it
stays at—o, then it is just a DCC. Il. EQUATION OF MOTION IN ONE-DIMENSIONAL

As mentioned above, the condensate may oscillate along SCALING CASE
the sigma axis around the minimum of the effective potential ) . .
at later time in high energy heavy ion collisions because the We use the linear model to describe the parametric
condensate moves along the sigma axis. The field whicRmPplification in the last stagefter freeze-oytof high en-
couples to the oscillating field may be amplified due to the€rdy heavy ion collisions. The Lagrangian is
so-called “parametric amplificationT3—6]. It was pointed 1 N
out thz_it the enhancement of nonzero mode due to parametric ,_ 20,6 b—N($), V($)= = (#2—v2)2—Ho',
amplification on the normal vacuum may occur when the 2 4
condensate oscillates around the minimum of the potential at (1)
zero temperaturg3]. It was also shown that a squeezed state .
is formed by parametric amplificatid#]. However, it is not where ¢= (o', 7). The minimum of the potential is deter-
well known whether the enhancement of nonzero mode ocmined by differentiatingv(¢):
curs or not when the amplitude of the oscillation decreases

N(P)

do' |, -
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=0, 2
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wheref _ is the pion decay constant. Since we are interested 9)
in the motion around the minimum of the potential, the new
field o=¢’ —f, is introduced and the potential is rewritten. duf,o)(r)/dr term appears on the right-hand side of Eg).

()=t O(7)uO(7).

We have the relations

def
m2=\(3f2-0?),

def
m2=\(f2—v?), H=\f(f2-0?),
)

wherem,, is the mass of the sigma meson ang is that of
the pion. The equations of motion for and =;(i=1,2,3)
become

Do (X)+m2a(X) + A (o2(X) + 3f .o (X) + 72(X) ) or(X)

+f, 72=0, (4a)
Dlari(X) + M2 7 (X) + N (02(X) + 2f Lo (X) + 72(X)) 77 (X)

=0, (4b)

where 0= ; — d;—d;— 5. We solve the above equations

of motion, especially for soft modes in the presence of the

background oscillation of the condensatiérero modé
Since the sum of hard modes generates a fridtig8,11] in

general, a friction term is introduced phenomenologically.

The equations of motion become
To(X)+ 7,(X)2,0(xX) + m2a(x) + N (0?(x) + 3f Lo(X)
(5a)

Oami(X) + 7.,(X) 8,7 (X) + M2 ai(X) + N (0?(X) + 2 Lo(X)

+72(x))o(x) + N f 72=0,

+72(x)) mi(X) =0, (5b)
where 7,(x) and ».(x) are the frictions foror and = fields,
respectively. Convenient variablesand » are defined by

def

=2,

defq

77=Eln

t+z

t—z

: (6)

and its coefficient vanishes f(%(r) satisfies the following
equation:
df©
5 (7)
dr

+< 7,( T)+%) fO(7r)=0. (10)

The equation fou(?(7) becomes

ol2u£,°><r>+ 1 1dp,(7)
a7 |22 2 dr
1 1\2
-7 770(7)+; +m§’u5,°>(7)=o. (11)

For a larger, 1/7? andd, /dr are negligible ify, reaches
a constant. Then, Eq11) for large 7 is approximately

d2ulP(7)
d7?

The solutions of Eqs(10) and (12) are

+

m5— %ni(w)J uP(n)=0. (12

1 (7
fO(r)= cfl’zexp( - EJ dsng(s))

1
~Cr~ 1’2exp( =5 75(*) T) , (13a
1/2

2
75(%0)
7+ 6

., (13b

uO(7r)=u, COﬁ{ ( m?2 —

whereC, u,, and ¢ are constants. The®(\°) solution of

o O(7)=tO()u®(7) is given with the help of Eq4133
and (13b). We can obtain the same expression fofields.
However, we now consider the case in which the motion of
= field is negligible, namelyr(®’~0, because the conden-
sate moves almost along the sigma axis.

for one dimensional scaling case. D’Alembertian is rewritten e solve Eqs(5a) and (5b) with the interaction term in

by using these variables:

()

1 1
O=0°4+-9,— —=3>—d°,
T T T 7_2 n L

whered? = g5+ d; . We assume that the frictiong, and 7.,
depend on onlyr. First, we solve Eq(5a) without the inter-
action term. The notation(®)(7) which implies zero mode
(the condensajés introduced. It is the background field for
nonzero modes. The equation becomes

o®(r)=0, (8)

1 2
77(r( T) + ; ar+ m.,

P2+

where it is assumed that® is a function of onlyr. Without

loss of generality, one can substitute the following factorized

form of ¢(©)(7) into Eq. (8):

order to evaluate the effect of the motion of the condensate.
Fields are decomposed to substract the background oscilla-
tion as follows:

a(xX)=aO(x)+ M(x), (14a
2003\ 12
O (x)=0ao7” l’Ze(l’z)”rr(‘”)fco{ ( m2— 7o) m+6|,
(14b)
w(X)= 7O (x) + 7D (x) ~ 7 (x), (140

where og=Cuy which is a constant. With the help of Egs.
(149 and (140, we have

2= (02425051 4 (5(1)2

=0([¢(D]?) + 20O M+0(N?), (153
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m?=0(\?), (15b)

If
Ao(é)= —(—2 o ) 7 W2 (V207 (199
3= (0@)34 3(09) 250 1 350 D)2 4 (513 mG— 7,(*)/4
= O([0D]%) + O([o@]2\) + O(ON2) + O(\?), The field o is obtained as follows:
(15C) O'(l)( T, kT ’k77) = CU-'T_ l/2e—(1/2)770.(°°)7'u571)( T, kT 1k7])1
(20
m2a=0(\2) X (D +0(\)). (15d)

whereC, is a constant. In the same manner, we obtain the

i (1) -
O([(®1?) and higher contributions are negligible com- €auation form=(,kr k,):

pared with O(a(®) becauseoy, is taken to be small and UV ke k)
7 Y2exp(— 5,(*)7/2) is small for larger. The lowest con- m STy
tribution of the interaction terms is obtained by neglecting dé&?
O(N\?) and higher terms in Eq$158—(15d):

+[A, (k) —29,(&)cod 28) Ju (& kr k)

=0, (219
2 1 2 ~
| no(1)+ ] It w(7) wn(ky) = 77() /4
A7T( kT) = 4 2 2 ] (Zlb)
m:— n(>)/4
+6Af a0 7')] a3 7,kr.k,) =0, (16)
ANf o P "
" | | . Q€)= = | 57 e WA, (219
where o'Y(7,ks,k,) is the Fourier transformation of m: — ni(°)/4

o®(7,x), kr is the transverse momentui,, is the conju-
gate momentum of the “rapidity” » [Eq. (6)] and wherew?(ks)=kZ+m?. The field 7! is also obtained as
w2(7.k7 K,) =KE+ K2/ 7%+ m?Z which (?o)es not depend on follows:

k, for large 7. o™M(7,kr,k,)=fO(uM(7,ks ,k,) is sub-

stituted ir?to Eq.(lé) asT Ea).(Q) iS(Sl)JbSti'Eute&- inrt}()) Eq(8). 7M(7.kr k,)=C 7 Y%~ W)y (M7 kr k),

Note thatf(®)(7) is the same function as found in Ed.33 (22)
except for an overall constant. Then, the equatiorufdt at

whereC . is also a constant. The dependencé&ptndk, is
large 7 becomes K

included in onlyA, andA, in Egs.(199 and(213.
Equationg193 and(21g are similar to Mathieu equation

dzuffl)(ﬂ kr.K,) which is the basic equation for the parametric amplification.

~ 1
+|w§<kT>—Zn§<w>

d-2 The Mathieu equation is
+6Nf o7 Y2 (WA,(5)7 d?F(¢)
) » > +[A—2qgcog2&)|F(€)=0. (23
75() dé
X cog | m>— 1 m+ 0| (u(1,kr k,) =0,
The coefficient in front of cosine is a constant in the Mathieu

(170  equation, while it is a time dependent function, i.e., a func-
tion of &, in the present case. The stable and unstable regions
Where;g(kT)Ewi(m,kT,kn), Applying the change of vari- of the solution of the Mathieu equation are described in the

able, g-A plane. The unstable regions @t-0 correspond toA
=1,4,9... . Thetime dependence df in the present case
72 ()| Y2 does not change enhanced modes correspondingA to
2§=(m§_— ”4 +0, (18 =1,4,9...,while it changes the magnitude of amplifica-

tion. In the linearoe model, the friction coefficient ofr is
almost zero at zero temperature, while thatsofs not. The
denominator ofA is not negative fory ()<2m,. Then,
the minimum ofA, is not less than 4, while that &, is
_ 1 smaller than 1. Onlyr has the amplification mode fok
FIA(kr) —20,(£)c08 26) Ui (& kr k) =1. The amplified modes are determined Ay1,4, . ..
and has#n dependence. The; dependence is weak for

=0, (199  72/(4m?)<1. %/(4m?) is about 0.1 fory,=2 fm~* and
m,= 600 MeV. In this study, it is apparent that thedepen-

2 (ky)— ,7(2;(00)/4) dence of the amplified modes is weak since this condition is

to Eq.(17), we obtain

d2u(& kr k)
dé&?

(19  hold in the following calculations. Once the parameters of

Ao’(kT)=4(
the linear o model and the magnitude of the friction are

M5, — 75()/4
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chosen, the amplified modes are calculated easily. As an exaode in such calculations. However, the friction used in this
ample,f ,.=92.5 MeV,v=87.4 MeV, and\ =20 are chosen paper comes from only hard modes. Its magnitude is smaller
for numerical calculations in the next section. These paramthan that obtained by summing the contributions from all
eters generaten,~600 MeV andm_~135 MeV. The am- nonzero modes. For these reasons, the following values are
plified modes fory,=0.5fm ! and»,=0fm ! are as fol-  used in the numerical calculations:

lows. The amplified modés; for = fields is about 267 MeV 1

for A,=1,583 MeV forA,=4, and so on. That fo field 7,=(0.25,0.5,1.0,20 fm™", 7,=0. (26)

is about 669 MeV foA,=9. A peak or peaks will appear in
the ky distribution if the parametric amplification is strong
enough. There is no mode which correspondéje=1 and

the mode for,, =4 corresponds to zero modeondensatgs In the previous paperfd,2], it was found that the initial

However, zero mode is the background field for the finite N : S
modes andr()(x) does not include zero mode. Therefore condition is important for the chiral symmetry restoration in
: high energy heavy ion collisions. Then, it is conceivable that

98:4 cannot be a candidate for the parametric ampllflca;[he initial condition for a heavy ion collision affects the ini-

tial condition for the parametric amplification. As already
stated, the condensate moves along the sigma axis because it
lIl. NUMERICAL CALCULATION reflects the initial condition before the collision. The prob-

The remaining task is to solve EqR1a and (199 nu-  able initial condition for the parametric amplification in
merically with an adequate initial condition. The amplitude heavy ion collisions is
of the oscillator is given as an initial condition. On the other
. . . (0) —(0) —(0) _(0) — (.
hand, we choose some magnitude of the friction referring the (o™, my 7wy s )|T:Tf (01i,0,0,0. (27)

results by some authors. In Sec. Ill A, the initial condition . - i
and the initial momentum distribution to solve the equationThe time derivatives of the fields are needed to calculate the

are chosen to mimic the situation in high energy heavy iontime development. The condensate is almost near the mini-

collisions. In Sec. Il B, we discuss the method to extract thd"um ©f the finite temperature effective potential in strong
enhancement due to parametric amplification in the transifiction cases(of course, not too strongand the velocity of

verse momentum distribution. In Sec. Il C, the equation oftn® condensate is small enough. On the contrary, the velocity

motion is solved numerically with the initial condition given 1S N0t small in weak friction cases. The amplitude of the

in Sec. lll A and the characteristics of the enhancement for_condensatg in nonzero velocity cases i.S larger than that in
mulated in Sec. Il B is shown explicitly. zero velocity case. The larger the amplitude of the conden-

sate is, the stronger the amplification is. The amplification
with the initial condition that the time derivatives of the con-
densate are zero is weakest compared with the amplification
In high energy heavy ion collisions, the system can bewith the initial condition that the time derivatives are not
described roughly by scaling-hydrodynamif$2] in the  zero. It will be concluded that the parametric amplification
cooling stage. The time dependence of the temperature in thgill occur in general if the amplification is found in zero

There are three other parameters in the lineanodel. We
use the same values as in the previous sectigr: 92.5
MeV, v=_87.4 MeV, and\ = 20.

A. Initial condition and magnitude of the friction

cooling stage is velocity case. The velocity of the condensate at the initial
3 time is thus taken to be zero. Then, the arngjie Eq. (17) is
r : (0) —0:
T(1)=T, Tm) O(r—7) for 7>, (24) determined bydo'”/d7|,_. =0:

) ) . 1+ 2 0 1/2
whereT,, is the maximum temperature of the system,is gzarctar< — 5 n”(zoo)Tf ; ) — ( mi_ 7ol )> ¢
the time at which the temperature becomes maximum,and (MG — 75(0)14) 1 4

is the freeze-out time at which the temperature becomes zero (28)

suddenly. IfT; is given, 7¢ is calculated as follows: o .
The momentum distribution is proportional to the square

IME of the fields. On the other hand, the momentum distribution
TfZTm(T_) (25  depends on onlk; because of the scaling property. There-
f fore, the field which is the square root of the momentum
Though the friction is a time-dependent function in gen_dlstrlbutlon1 depends on onllel. Then, we take the initial
eral, it is expected that its magnitude reaches a constant b¥alue ofo®(ry;kr k,) and7D(7¢ kr k,) as
cause the temperature becont@snos) zero after the freeze- -
out. Then, we use the friction around the true minimum of (7t ik k)% Vg(kr;m,),
the potential at zero temperature. The magnitude on the
chirally symmetric vacuum &f ~ T, obtained by Bifoand a7 ke k)= Vg(kr;m,), (29
Greiner is 2.2fm* [7] and the magnitudes on chirally bro- R
ken vacuum af =0 obtained by Rischke are about 3Tn  whereg(ky:;m) is the initial distribution function. The abso-
for o field and O for# fields [8]. The contribution from lute magnitude which is not given in E9) is unimportant
nonzero modes are summed to obtain the friction for zerdn the following discussion because we will consider only the
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relative ratio. If the system is locally thermalized at the ini- The time derivative terms are not explicitly included in

tial time, g(ET 'm) is chosen as follows: the quantities introduced in this subsection because the effect
of these terms are small. These effects in terms of above
1 guantities are evaluated in the Appendix.

(30

g(kr;m)= - :
Vm?+Kk2 C. Numerical results
expp — /-1

T, What we would like to know ig1) whether parametric
amplification occurs or not, an@) whether its signal can be
observed experimentally or not. The answer to question
can be obtained by studying,. Hereafter, we consider only
One important problem is how to extract the peaks in thehe 7 fields becauser field will not be amplified strongly.
transverse momentum distribution generated by the paramethe reasons that the sigma field is not amplified strongly are
ric amplification in numerical calculations. The amplitude that(1) the smallest amplified mode corresponds\to=9 ,
and 7 become zero asymptotically for all modes because ofind (2) the effect of the friction foro [Eq. (20)] does not
the expansion and the dissipation. First, we introduce theanish, while that forr vanishedEq. (22)] at zero tempera-
following quantities to extract the magnitude of the amplifi- ture.
cation of the fields: First, we show the time development Bf, andr . for
A.=1, on,;=—30 MeV, 7,=0.25fm !, and T;{=100
def ngl)(r; kr,k,) MeV. The evolution ofR, is shown in Fig. 1a) and that of
Ra(T;Aa"’f)ERa(T;kT*kn*Tf):m' r._ is shown in Fig. 1b). The amplitude ofR, increases
a LI ET Ry (31) temporarily because of the parametric amplification and then
decreases because of the expansion and the dissipation. Re-
wherea = 7,0 and lﬂsrl): @, lpgl)zo.(l)_ The ratioR,, os- moving the effect_ pf the expa_msion and tht_a dis_sipation, we
cillates as a function of. The amplification of the fields C€&n See the amplification obviously shown in Figo)1 The
is seen explicitly by removing the damping factor, amplitude ofr . becomes a constant since the faajg( &)
ext] — 7,()7#2]7 ¥2 from R,,. It is performed by using the [S€€ EA(219] becomes zero.

B. Extraction of the peaks due to parametric amplification

following quantity: The asymptotic value of the amplitude.(r=,A,), is
shown in Fig. 2 for variou§ , as a function ofA , for oy,
def =—30 MeV, 5,=0.25fm !, andT;=100 MeV. There is a
(7 AL ) =UD (1, k) IUD (74 k). (32) peak nearA,~1 caused by the parametric amplification.

This strong amplification may give the possibility of the ob-
It is useful to consider the envelope Bf, andr, for our ~ servation even when the initial distribution does not have
purpose. The envelope of, is denoted by ¢ . However,R, ~ €nough amplitude ah,~1. It seems that the amplification
is not an adequate quantity to extract the amplification angaturates as, increases. This is understood as follows. The
the envelope oR, too because of the damping. Fortunately,increase of the amplitude by the parametric amplification
the damping factor is momentum independent. The reductiodepends on the initial amplitude of the condensates and the
of the amplitude by the expansion and the dissipation aréme interval §=7— 7). Since the amplitude at the initial
cancelled by taking the ratio between different modes. Wdime is fixed in this calculation, the time interval is investi-

use ther® because the envelope is easily calculated far gated here. .Amplification described in the Mathieu equ_ation
is characterized on thg-A plane, whereg and A appear in

def (A, ,7) Eq. (23). The field is amplified if the set of the parametgrs
P(A, A, )= lim -~ (33) andAis in a unstable region on tiipA plane. The setq,A)
U e T(T A TH) at the initial time is shown by dot in Fig. 3. The coefficient

q(¢) defined by Eq(21¢ is a time dependent function and it
whereA, , andA, , are the references to other modés,  moves to zero as shown in Fig. 3, while it is a constant in the
andA,, respectively. Since the ratio of the momentum dis-Mathieu equation. The point og-A plane goes out of the
tribution is proportional td P(A,A,)]?, it links directly the  unstable region as time goes by. This implies that the small-
amplification and the transverse momentum distribution. Thestq(é) for each modes exists for the field to be amplified.
effects of the initial distribution are taken into account by Then, we consider a certain timg, at whichq_,,(£) in Eq.
multiplying the square root of the initial function as follows: (21¢) becomes a certain valu€. We consider als®;( ;)

which is q(¢) when 7= 7;. With the help of Eq(210, we

def g(A) - obtain
P"YMAA)=P(AA)\/=—— 9(A)=g(k),
g(Ay)

r 2
(34 exp(— 7,(®)s)= Q (1+ i) (35)

SR - . Qf(r) |~ 7t
whereg(ky) is the initial distribution function introduced in
Eq. (30). The transverse momentum distribution can be calwheres= 74— 7;. The left-hand side is a function of ony
culated by Eq(34) for various initial distributions. while the right-hand side depends on bethnd ;. ThatT,,

054908-5



MASAMICHI ISHIHARA PHYSICAL REVIEW C 62 054908
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25 T T T T T ' T T FIG. 2. The amplifications of the field amplitude in the broad
o0 | (b) ] range T,,. The initial condition is o,;=—30 MeV, 7%,
=0.25fm !, andT;=100 MeV.
15}

This implies that the time interval for the amplification is
10r 1 still a finite constant even when,, is infinite. We conclude
that the amplification saturates ag, becomes infinite be-

. T cause the initial amplitude is finite and the time interval con-
; ol verges.

o The parametersy («), o, andTy, are varied to see the
< 5f sensitivity of the amplification in the following calculations.
= The ratio of the amplifications.(7=,A ), is shown in

1or Fig. 4 for various,(~) as a function ofA . The magni-
tude of the amplification decreases as the magnitude of
the friction increases. It is reasonable because the oscillation
of the condensate is reduced rapidly when the friction is
strong. It is apparent that the amplitude of the oscillation

05 1 1 1 1 1 L 1 1 1 1 i i
o o m o T T e e 200 decreases sinceqg2(¢) in Egs. (219 and (198 vanishes

20

T (fm) A .
FIG. 1. (@ Time development of the rati®, with A =1, / T
om=—30 MeV, T,,=300 MeV, T;=100 MeV, and 7,(«) Ay
=0.25fm L. (b) Time development of the ratia, with A_=1, @ 1
om=—30 MeV, T,,=300 MeV, T,=100 MeV, and 7,(«) A
=0.25 fm %, (o
I emnnnnn A
goes to infinity corresponds to that goes to infinity. Then, \
7—o limit can be taken with a fixed. SinceQ;(;) con- —p
verges at a certain valu®; which is obtained from Egs. \i:;:i;ii;;iiii;:iiii;;i
(14b), (21b), and (29), the right-hand side of E¢35) be- 5 Nt ERnnt
comesQZ/sz. Then, s is finite asT,, becomes infinity, a
which is obtained by solving Eq35): FIG. 3. Sketch of the stable and unstable regions arcmd
in the g-A plane. The shaded region corresponds to the unstable
5 region. The initial values in thg-A plane are indicated by black

IN(Q/Q;). (36) balls. The setd,A) moves on the thick line to thg=0 direction

S:
with a constant.

()
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FIG. 4. The amplifications of the field amplitude for various

magnitudes of friction. The initial condition i§,,,=300 MeV, o,
=—30 MeV, andT;=100 MeV.

quickly in the strong friction cases. It was found that the
parametric amplification cannot occur for frictions which are

larger than 2 fm .

The ratio of amplificationsy¢(7=,A.), is shown in
Fig. 5 for variouso;, as a function ofA.. The dependence
on oy, is important for the parametric amplification in the

presence of the expansion and the friction because the al

25 T T T
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FIG. 5. The amplifications of the field amplitude for various
oini - The initial condition isT,,=300 MeV, 5,=0.25fm !, and
T;=100 MeV.
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FIG. 6. The amplifications of the field amplitude for varidlis
The initial condition isT,,=300 MeV, 5,=0.5fm !, and oy,
=—30 MeV.

plitude of the oscillatocondensatedecreases as time goes
by. However, we can find a peak near~1, at least, for
on=—10 MeV. Then, it may be possible to find this peak in
the transverse momentum distribution.

The ratio of amplificationr £ (7=,A ), is shown in Fig.
6 for variousT; as a function ofA .. It is obvious thatT;

Hependence is weak.

Hereafter, theA , distribution, namely the transverse mo-
mentum distribution, is displayed taking into account the ini-
tial transverse momentum distribution. The thermal distribu-
tion [Eq. (30)] is assumed and Ed34) is used. We take
A, =0.5 which is the reference iR"" defined in Eq.(34).

The ratio between different modes including the effect of
the initial thermal distribution,P7*(A A, ,=0.5), for
various T, is shown in Fig. 7. The parameters arg,;=
—20 MeV, T;=100 MeV, andy=0.5fm L. The ratio be-
tween the momentum distributions correspondgRE®"2.
Then, it is found from Fig. 7 that the ratio At_~1 is four
times larger than that ah,=0.5 for T,,=300 MeV. The
increase in smalf , and the decrease in large, reflect the
initial thermal distribution. ThenP""(A,A,) for large A
limit becomes zero when the initial distribution is thermal.
Similar calculations can be performed to obtdj™" for
various parameters. For examplB,*(A ~1A_  =0.5)
~12.7 foroj,;= —30.0 MeV, T,,= 300 MeV, T;= 100 MeV,
and 5,=0.25fm 1.

There are manyA’'s at which a field is amplified in
Mathieu equation. The amplification arourdd,=4 is also
investigated, but strong amplification is not found. This
comes from the property of the Mathieu equation and the
small initial amplitude in the initial thermal distribution com-
pared with that aA .~ 1. Then, it is difficult to observe the
effects of amplification except fok ,~1.
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T With o= — 20 MeV, T;=100 MeV, and»=0.5fm 1.

IV. CONCLUSIONS AND DISCUSSIONS APPENDIX: THE EFFECTS OF THE TIME DERIVATIVE

We investigate the effects of the expansion and the fric- TERMS

tion on the parametric amplification in one-dimensional scal-  |n this Appendix, the effect of the time derivative terms of
ing case within the lineas- model. The equation of motion the fields is checked for the quantities introduced in Sec.
at zero temperature is derived in the case where the sigm@ B. First, we consider the effect oR,. The ratio of the
condensate oscillates around the minimum of the potentiahumber-density-like quantities is evaluated in order to make
From this study, we found that the amplitude of the oscillatort clear that the effect is small in the present case:
(zero modg and the magnitude of the friction are essentially
important for the parametric amplification in one- 0, . ~_5 1
dimensional scaling case. In a weak friction case, the STONgR@)(-a  7,)= [ (1A + 0, Tdy/d7)® '
enhancement will occur a,~1. (ky~267 MeV) in the T (A P e T dyPrd ] - 1P
pion transverse momentum distribution and it may be pos- (A1)
sible to be observed by the normalized distributid®e"2.
Then, we have a chance to catch the signal oftémeporal ~ 2, 2 .
restoration of chiral symmetfi]. Contrary to this, it may be NOte thatw, does not havé;/7” term. Itis 1gqored because
difficult for the field to be amplified by the parametric am- 7 IS large enough. The time derivative ! is
plification in a strong friction case. On the other hand, high
maximum temperature and/or sufficiently strong friction are 1 exy — 5, 7/2) du, 7, exp(— 7,7/2)
needed for chiral symmetry to be restored for a long time as dr ) i 2 ——,  Ua
we found beford2]. 4 T 4 T

High maximum temperaturdabove 100 MeY were also
assumed in this study, which settles the condensate at an
unstable point on the potential. However, the mechanism of
parametric amplification does not always require high tem-
perature. Thepartial chiral symmetry restoration may be
also observed if the amplitude of the condensate is largehere 7, is the friction for ). At the time (r,) at which
enough. du,/dr=0, one has

It is possible to devide the modes of the field into three
parts: the condensate, soft modes, and hard m¢8es. Fig.
8.) The hard modes can be regarded as the cause of the dt//(al)
friction for the condensate and soft modes. There are the dr
energy flows from the condensate and soft modes to hard
modes. In the same way, there is the energy flow from the
condensate to some soft modes. The decreasing of the zefthe same expression is obtained at the initial time for the

1 exp(— 7n,7/2)

5 U (A2)

u,. (A3)

_ <77a 1 )exq_%ﬁelz)

T=Tg
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PARAMETRIC AMPLIFICATION WITH FRICTION IN . ..

initial condition, du,/d7),—,=0. R?) at 7 is evaluated

since the amplification is evaluated at the envelope of

extl — 7u(Te— 0)1| 1+ (20,) At 7 H?|
1+ (204) Aot 7 h)2

ﬁszZ)( Te) = ol 71
e

delexpf — 7,(7e— 71)]

(A4)
Tol T4

Do(7e,7s, M)ITZ.

PHYSICAL REVIEW C62 054908

D (°,7,00=[1+1/(47202%)] %, (A5a)
Vi6wirf+1-1
(A5h)

D =,
a(ooanvU(r)|m|n m_{_l

D, atky=0 is the minimum on thé; axis. 7; is some 10

fm, m, is 135 MeV, andm,, is 600 MeV in the present case.

In such a casd) , andD, at the minimum are about 0.9947

and is about 0.9837, respectively, for=10fm andk;=0.

The maximum difference betwedn, with time derivative

terms and without is less than 2%. These are small enough.
The effect of the time derivative terms B, (A, A, () is

The effect of the time derivative terms is included in evaluated in the same waly, (A, A, ) is the ratio between

Da(Teva ’ 77) Apparentlyv Da(ochf ’ 77&)g Da(Teva 17’01)

<D (7¢,7¢,m,)=1. Then D _(%,7:,0) for #(!) and the
minimum of D (=, 7;,7,) with respect toz, for o) are
evaluated with a fixed :

different modes at the same time, whid?) is the ratio
between different times at the same mode. It is shown that
time derivative terms do not affet_, while it is shown that
time derivative terms affect slightl ..
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