
PHYSICAL REVIEW C, VOLUME 62, 054907
New solutions to covariant nonequilibrium dynamics
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~Received 22 May 2000; published 19 October 2000!

New solutions of 311D covariant kinetic theory are presented for nuclear collisions in the energy domain
Ec.m.;200A GeV. They are obtained using MPC, a new Monte Carlo parton transport technique that employs
very high parton subdivision that is necessary to preserve covariance. The transport results are compared with
ideal hydrodynamics solutions. We show that the transport evolution differs significantly from hydrodynamics.
In addition, we compare the transport freeze-out distributions to those obtained from ideal hydrodynamics with
the Cooper-Frye isotherm freeze-out prescription. The transport freeze-out four-volume is shown to be sensi-
tive to the reaction rates and deviates from both timelike and spacelike freeze-out 3D hypersurfaces commonly
assumed. In particular, we find that there does not exist a universal freeze-out temperature. Finally, the
transverse momentum distributions are found to deviate by up to an order of magnitude from~Cooper-Frye
frozen! hydrodynamics for a wide range of possible initial conditions and reaction rates at RHIC energies.

PACS number~s!: 25.75.Ld, 24.10.Jv, 24.10.Lx
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I. INTRODUCTION AND CONCLUSIONS

A theoretical framework to study nonequilibrium dynam
ics is provided by Boltzmann transport theory. The dynam
cal variables of this theory are the Lorentz-covariant, o
particle phase space distributionsf i(x,p); while the
dynamics is governed by transition probabilitiesWc→c8 ,
which are Lorentz-covariant functions of the particle m
menta. The theory, while not exact, is rather general. Firs
is not restricted to particular particle types. The partic
could be partons, hadrons, or molecules. Second, the rea
rates that specify the dynamics are also unrestricted in t
origin. For example, the rates could emerge from an effec
quantum field theory or Newtonian mechanics. The prim
limitations of the theory are the neglect of dynamical cor
lations~one-body truncation of the formal BBGKY hierarch
@1#! and the inability, without additional classical fields,
model phase transition dynamics.

We consider here the simplest form of Lorentz-covari
Boltzmann transport theory in which the on-shell pha
space densityf (x,p), evolves with an elastic 2→2 rate as
@2–4#

p1
m]m f 15E

2
E

3
E

4
~ f 3f 42 f 1f 2!W12→34d

4~p11p22p32p4!

1S~x,p1!. ~1!

Here W is the square of the scattering matrix element,
integrals are shorthands for* i[*@gd3pi /(2p)3Ei #, whereg
is the number of internal degrees of freedom, whilef j
[ f (x,pj ). The initial conditions are specified by the sour
function S(x,p), which we discuss later in Sec. II. For ou
applications below, we interpretf (x,p) as describing an ul-
trarelativistic massless gluon gas withg516 ~eight colors,
two helicities!.

Recall several important properties of Eq.~1!. First, the
particle number current and the energy-momentum tenso
given by
0556-2813/2000/62~5!/054907~12!/$15.00 62 0549
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Nm~x![E d3p

~2p!3E
pm f ~x,p! ~2!

and

Tmn~x![E d3p

~2p!3E
pmpn f ~x,p!. ~3!

With these definitions, particle number and energ
momentum conservationfollow from Eq. ~1! @when the
source termS(x,p)50]. Second, there is a class of fixe
points, calledglobal equilibria, which are phase space de
sities of the form

f ~x,p!5
g

~2p!3
expFm2pmum

T G , ~4!

where um is a constant four-vector that specifies a glob
flow velocity, whileT andm correspond to the constant tem
perature and chemical potential. Furthermore, theH-theorem
@1# states that the Boltzmann transport equation drives
system towards global equilibrium.

Despite its relatively simple form, the Boltzmann equ
tion is nonlinear with very few known analytic solution
Until recently, progress to obtain even numerical solutio
has been hampered by its numerical complexity. The ra
increase in computational power has finally made it poss
to break through this barrier. For nuclear collision applic
tions, new numerical algorithms are being developed, tes
and made available via the World Wide Web under a n
Open Standard for Codes and Routines~OSCAR! @5#. The
present work is a further step in that development.

For nuclear collisions at SPS energies (As<20A GeV!,
numerical solutions of hadronic transport models have b
available for some time@6#. However, for higher collider
energies, the emergence of massless partonic degrees of
dom creates the technical challenge of how to retain Lore
covariance. In this paper we present results based on a
©2000 The American Physical Society07-1
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DÉNES MOLNÁR AND MIKLOS GYULASSY PHYSICAL REVIEW C 62 054907
numerical technique, MPC 0.1.2@4#, that provides reliable
solutions in this ultrarelativistic regime.

The difficulty of the analytic treatment of the Boltzman
transport equation has forced workers in the past to m
strong simplifying assumptions. A common simplificatio
has been to ignore the general nonequilibrium problem
to postulate thatlocal equilibrium is maintained at all times
In the framework of the Boltzmann transport theory, th
choice corresponds to substituting a local equilibrium ans
in place of the fixed point global equilibria. Allowing
(um ,T,m) to vary with the coordinatexm, this ansatz corre-
sponds to

f ~x,p!5
g

~2p!3
expFm~x!2pmum~x!

T~x! G . ~5!

It is however well known that local equilibrium isnot a
solution of Eq.~1!. The nonlinear collision term vanishes
local equilibrium, butpm]m f Þ0 in general. Only in the limit
when all the rates go to infinity, i.e., when the mean free p
goes to zero, can the solution approach local equilibrium

A covariant, dynamical theory can nevertheless be po
lated based on the assumption of local equilibrium. Tha
relativistic hydrodynamics@7#, which is widely used in
heavy-ion physics@8,9# to calculate observables. Assumin
an equilibrium initial condition specified on a hypersurfa
s in

m (x), the local energy momentum and baryon number c
servation laws

]mTmn50, ]mNB,m50 ~6!

reduce to~Euler! hydrodynamical equations under the a
sumptions that local chemical and thermal equilibrium
maintained and that dissipation~viscosity and thermal con
ductivity! can be neglected. In that case, the ener
momentum tensor and baryon current can be expresse
Tmn5umun(e1p)2gmnp andNB,m5umn(x) in terms of the
local flow velocityum(x), local pressurep(x), local energy
densitye(x), and local proper densityn(x). The equations
form a closed system if, in addition, the equation of sta
e(p,nB), is specified.

It is clear that the idealization of local equilibrium ma
apply, if at all, only in the interior of the reaction volume
where the local mean free pathl(x)51/„sn(x)… may remain
small for a while as compared to the characteristic dim
sions and gradients of the system,Lm(x);u]mloge(x)u21.
However, these assumptions are marginal for conditions
countered in heavy ion collisions and certainly break do
near the surface region and throughout the freeze-out ph
Due to longitudinal expansion the density decreases ast
until t;A3R when three-dimensional expansion rapidly i
creasesl beyondL.

For small departures from local equilibrium, correctio
to the ideal Euler hydrodynamic evolution can be calcula
by taking theTmn andNB

m moments of an underlying kineti
theory. To first order inl/L, the equations reduce to th
Navier-Stokes equations. The solutions to Navier-Stokes
pend therefore not only on the equation of state, but also
the bulk and shear viscosity and thermal conductivity tra
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port coefficients of the medium. While such an approach
proven useful in nonrelativistic problems and in special re
tivistic geometries, severe problems of instability and ac
sality appear when extended into the ultrarelativistic dom
@10#.

The newly formulated, covariant, parton kinetic theo
technique, MPC@4#, allows us to compute the highly diss
pative evolution during the densest partonic phase of
reaction in a covariant manner as well as investigate the fi
freeze-out dynamics. MPC is an extension of Zhang’s
variant parton cascade algorithm, ZPC@3#. Both MPC and
ZPC have been extensively tested@11,12# and compared to
analytic transport solutions and covariant Euler and Nav
Stokes dynamics in 111D geometry. A critical new elemen
of both these algorithms is the parton subdivision techniq
proposed by Pang@2,12#. As shown in detail in Sec. III,
rather high subdivision;100 is needed to preserve Loren
covariance numerically for massless parton evolution.

Extensions of MPC to include inelastic 2↔3 partonic
processes@13# are under development, but in this paper w
use MPC in the pure elastic parton interactions mode a
ZPC @5#.

The aim of this work is to calculate the sensitivity of th
evolution and freeze-out of an ultrarelativistic~massless!
parton system to the transport rates and initial conditio
expected in Au1Au reactions at RHIC energies (As
;200A GeV!. We compare the results to the~OSCAR com-
pliant! relativistic Euler hydrodynamic code developed
Rischke and Dumitru@5,14#. An ideal gas (e53p) equation
of state is used in that analysis. This work extends R
@11,15#, focusing on the freeze-out problem in~311!-
dimensional Bjorken expansion. It is less ambitious than
example Ref.@15# by limiting the study to massless parton
This avoids introducing yet further complications due to d
sipative hadronization and hadronic transport effects. T
initial conditions are taken from the HIJING multiple min
jet generator@5,16#.

One of the main results of this work is shown in Fig.
To test whether ideal hydrodynamics is an adequate appr
mation of the parton transport equation~1!, we have fol-
lowed the evolution both for the Boltzmann equation~1! and
Euler hydrodynamics from thesameRHIC initial condition
from @16#. ~See Sec. V for details of the simulations.! Figure
1 shows the evolution of the transverse energydEt /dy at
midrapidity. There is a large difference between the transp
and hydrodynamic solutions in both the~111!- and ~311!-
dimensional case, even for a physically extreme, 15 m
cross section. Note that these 15 mb curves are equivalen1 to
a solution for 3 mb cross section with five times higher@17#
initial density than expected with HIJING. Therefore, lar
deviations from ideal hydrodynamics are to be expected
possible initial conditions at RHIC. In addition, this concl
sion is independent of the initial system size~see explanation
in Sec. V A!.

1The equivalence is due to the scaling property of Eq.~1! ex-
plained in Sec. III.
7-2
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This conclusion reinforces the results of Ref.@11#, where
it was shown that large deviations even from the Navi
Stokes evolution in~111!D Bjorken expansion are expecte
for initial densities up to four times higher than predicted
the HIJING model@16#.

A second main result of this work is shown in Fig. 2. W
tested whether the widely used Cooper-Frye freeze-out
scription could ‘‘correct’’ final observables for the neglect
the early breakdown of ideal hydrodynamics. Figure 2 sho
the final, experimentally observablep' distributions divided
by the thermal initial distribution. We find that there is a
order of magnitude difference between transport and hyd
dynamic solutions atboth low and at highp' for realistic
(; few mb! gluonic cross sections. The difference is still
factor of two to three even for a physically extreme, 15 m
cross section. In addition, increasing the radius of the ini
Bjorken cylinder from 2 to 6 fm does not reduce the discre
ancy between the covariant transport solutions and thos
Cooper-Frye frozen hydrodynamics. To get closer to
transport p' distributions, one would have to choose
freeze-out temperature much above the commonly assu
100–150 MeV range.

The last main result of this work is illustrated in Fig.
This shows that high hydrodynamic freeze-out temperatu
that would be needed to ‘‘fit’’ the transport solutions ar
however, inconsistent with the space-time freeze-out dis
butions of covariant transport theory. Unlike the ‘‘sharp

FIG. 1. This figure shows the evolution of the transverse ene
dEt /dy at midrapidity, normalized by the initial transverse are
from kinetic theory and from hydrodynamics both for 111 ~trans-
verse periodic! and 311 dimensions. The initial distribution was
Bjorken cylinder with a radiusR052 fm at proper timet0

50.1 fm/c in local thermal and chemical equilibrium atT05500
MeV. The cross sections weres515 and 60 mb, with the cutoff
m50.5 GeV. Note that the hydrodynamical results arefree from
any arbitrary freeze-out prescriptionbecause they depend only o
the evolution of the phase space distribution ansatz~5! as dictated
by the equations of motion~6!. The difference between the hydro
dynamical and the kinetic theory results, even for a large, 60
cross section, indicates that ideal hydrodynamics is not applic
for the evolution.
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space-time freeze-out particle distributions commonly
sumed using the Cooper-Frye freeze-out prescription,
transport theory freeze-out volume is four-dimensional. P
ticles freeze out over a large four-volume that forms
wedgelike freeze-out region in thet2R plane. This freeze-
out distribution depends strongly on the microscopic react
rates~higher rates lead to a later freeze-out!. It is not possible
to tune the Cooper-Frye freeze-out temperature to reprod
the cascade freeze-out distributions. Though one can arra
that the Cooper-Frye freeze-out curve follows more-or-l
the ridge, the transport distributionalong that ridge is not
correctly reproduced by Cooper-Frye frozen hydrodynam
In particular, hydrodynamic freeze-out surfaces with a tim
like section result in unphysical spikes in thedN/dt distri-
bution which are not present in the transport theory calcu
tions. These spikes arise when the freeze-out temperatu
such that the interior of the system freezes out due to lon
tudinal Bjorken expansion~see Sec. V B 1 for further discus
sion!.

In summary, our results show that for a rather wide ran
of initial conditions at RHIC energies, the evolution of th
system deviates strongly from Eulerian hydrodynam
throughout the~311!D evolution. It is not possible to mimic
the observables from the nonequilibrium evolution by simp
applying the isotherm Cooper-Frye freeze-out prescription
ideal hydrodynamics. The space-time four-volume of free
out, even for the largest (R;6 fm! nuclei, does not resembl
a timelike surface. In addition, the observable transverse
mentum spectra are very sensitive to the microscopic re
tion rates. These results indicate that while ideal hydro
namics is a useful model to explore possible collect

y
,

b
le

FIG. 2. The top figure shows the freeze-outp' distributions
relative to theinitial (T05500 MeV! p' distribution from an initial
radius R052 fm for the cascade withs53, 15, 60 mb, and for
ideal hydrodynamics with Cooper-Frye freeze-out with freeze-
temperaturesTf5100 MeV ~dashed-dotted line!, 130 MeV ~thick
solid line!, and 200 MeV~dotted line!. The bottom figure shows the
same but for an initial radiusR056 fm with cross sections 3 and 1
mb.
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DÉNES MOLNÁR AND MIKLOS GYULASSY PHYSICAL REVIEW C 62 054907
dynamics in nuclear collisions, the interpretation of expe
mental observables must take into account the finite tra
tion probabilitiesW$ i %→$ j % that govern the nonequilibrium
evolution. Fortunately, numerical techniques such as M
and ZPC are now readily available@5#. Experimentally, the
A, Ec.m., and multiplicity dependence of the observables p
vides the best way to measure these effective reaction r
in the ultradense matter formed in nuclear collisions.

II. COVARIANT PARTON TRANSPORT THEORY

Equation ~1! is the simplest form of classical Lorentz
covariant Boltzmann transport theory. In principle, the tra
port equation could be extended for bosons with the sub
tution f 1f 2→ f 1f 2(11 f 3)(11 f 4) and a similar one forf 3f 4
@where we used the short-handf i[ f (x,pi)]. In practice, no
covariant algorithm yet exists to handle such nonlinearit
We therefore limit our study to quadratic dependence of
collision integral onf.

The elastic gluon scattering matrix elements in dense
ton systems are typically of the Debye-screened fo

FIG. 3. The left column shows the transverse coordinate
proper time distributiondN/RdRdt, of freeze-out coordinates. To
row corresponds tos53 mb and middle row to 15 mb. The initia
Bjorken cylinder radius isR056 fm in both cases. The right col
umn shows contour plots corresponding to the left column. T
thick lines show Cooper-Frye isotherms:Tf5100 MeV ~dashed-
dotted line!, 130 MeV~thick solid line!, and 200 MeV~dotted line!.
The bottom figure compares the proper time freeze-out distribut
dN/dt, for the different cases.
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ds/dq2'(9pas
2/2)/(q21m2)2, which favors small angle

scattering@11#. However, the relevant transport cross sect
is s t5*ds sin2 uc.m.'(9pa2/2s)log(s/4m2), where s
'17T2. In order to maximize the equilibration rate for
fixed cross section, we take here anisotropic differential
cross section in the center-of-mass frame instead. We fur
assume an energy-independent cross section with a thres
specified bym2, i.e., our solutions therefore correspond
the microscopic dynamics specified by the following ide
ized model:

ds5Q~s22m2!
s0

4p
dV. ~7!

The transport cross section is 2s0/3 in this case.
It is important to emphasize that while the cross sect

suggests a geometrical picture of action over finite distan
we use Eq.~7! only as a convenient parametrization to d
scribe the effectivelocal transition probability,W. In the
present study this is simply modeled asdW/dV5sds/dV.
The particle subdivision technique~see next section! needed
to recover covariance removes all notion of nonlocality
this approach, just like in hydrodynamics. Thus, the cro
sections, e.g., 60 mb, used in the present study to simu
rapid local changes of the phase space density in no
imply that distances bigger than 1 fm play any role.

With the above cutoffm, freeze-out of a test particle ca
arise in two different ways: either the system becomes
dilute, i.e., 1/ns0@L, or the systemcools down and the
threshold suppresses further interactions. By construct
the possibility for the latter case occurs along an isothe
Tf'm/A17. With Eq.~7!, we can therefore study the influ
ence of dissipative phenomena by varying the two scaless0
and m2. The evolution was performed withs053, 15, 30,
60, 121 mb andm50, 0.1, 0.5 GeV.

The initial condition was taken to be a longitudinal
boost invariant Bjorken cylinder in local thermal and chem
cal equilibrium at temperatureT(t0)5500 MeV at proper
time t050.1 fm/c as by fitting the gluon mini-jet transvers
momentum spectrum predicted by HIJING@16#. In order to
compare to hydrodynamics, we assume that the transv
density distribution is uniform up to a radiusR052, 4, 6, or
8 fm. The pseudorapidityh[1/2log@(t1z)/(t2z)# distribu-
tion was taken as uniform betweenuhu,5. Since we want to
compare to chemically and thermally equilibrate
hydrodynamics,2 the equilibrium initial gluon density was
taken for thisT(t0) to be

nh,0[
dN

dhd2x'

U
t0

5
g

p2
T3t0'2.65 fm22. ~8!

2Technically, MPC was run with an out-of-chemical-equilibriu
initial gluon densitynh,054 fm22 as obtained via HIJING includ-
ing final state radiation and with cross sectionss052, 10, 20, 40,
and 80 mb. As explained in Sec. III, because of the scaling prop
of the solutions of the transport equation, the solutions for
chemical equilibrium initial condition are identical when the cro
section is rescaled by a factorl 52.6505/4'1/1.509.

d

e

n,
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Evolutions from different initial densities can be obtained
varying the cross section only and using the scaling prop
explained in the next section.

III. PARTON SUBDIVISION AND SCALING
OF SOLUTIONS

We utilize the parton cascade method to solve the Bo
mann transport equation~1!. A critical drawback of all cas-
cade algorithms is that they inevitably lead to numerical
tifacts because they violate Lorentz covariance. This occ
because particle interactions are assumed to occur when
the distance of closest approach~in the relative c.m.! is d
,As0 /p, which corresponds to action at a distance. To
cover thelocal character of equation~1! and hence Lorentz
covariance, it is essential to use the parton subdivision te
nique@2,3#. This is based on the covariance of Eq.~1! under
the transformation

f→ f 8[ l f , W→W8[W/ l ~s→s85s/ l !. ~9!

As shown in Ref.@12#, the magnitude of numerical artifact
is governed by the diluteness of the systemAs/lMFP, that
scales with 1/Al . Lorentz violation therefore formally van
ishes in thel→` limit.

A. Convergence with subdivision

Figure 4 illustrates the severeness of the cascade num
cal artifacts in the case of insufficient particle subdivisio
The top plot in Fig. 4 shows that the parton cascade solu
for the evolution of the transverse energy per unit rapid
does not converge until the subdivision factor reachel
;100. The lack of covariance can be seen in the differe
between the solutions in frames separated by 3 units of
pidity. The very fact that the cascade evolution is differe
for different particle subdivisions means that the subdivis
covariance~9! is itself violated by the cascade algorithm
Nevertheless, both Lorentz and subdivision covariance
recovered whenl is sufficiently large.

The large overshoot in thedEt /dy evolution is a result of
the superluminal signal propagation speed inherent to
cascade algorithm. A cascade particle can influence alm
instantaneouslyanother cascade particle that is within t
interaction ranger s[As/p. In a very dense system,
‘‘chain’’ of almost instantaneous interactions can occur ca
ing long range superluminal artifacts.

As a measure of the signal propagation speed in a no
cal collision in the cascade we define

vs[
xpartner~ tcollision!2xparticle~ t last collision!

tcollision2t last collision
. ~10!

Analytically, the deviation of the signal propagation spe
from the speed up light can be roughly approximated by

Dvs5
r

t
, ~11!
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where t is the time between the collision and the previo
collision, while r is the distance between the colliding pa
ticles at the time of the collision (r ,r s). This is a pessimis-
tic estimate that maximizes the deviations. Assuming t
subsequent collisions are uncorrelated,t follows a Poisson
distribution3

P~ t ![
dn

dt
5

1

l
exp~2t/l!. ~12!

Hence the distribution ofDvs ~with r fixed! is

P~Dvs!5
dn

dt

dt

dDvs
5

r

~Dvs!
2l

expS 2
r

uDvsul
D . ~13!

Particle subdivision reducesr s as r s( l )5r s(1)/Al . There-
fore, in the large subdivision limit, the subluminal and sup
luminal tails of the signal velocity distribution scale as
power law

P~Dvs!;S v0 / A4 l

Dvs
D 2

, v0[Ar

l
, ~14!

3The scaling~9! leaves the mean free pathl invariant.

FIG. 4. The top figure shows theEt evolution at midrapidity
~solid lines! for subdivision factorsl 51, 10, 100 from the initial
conditionR052 fm, s510 mb,nh,054 fm22, T05m50.5 GeV,
t050.1 fm/c. The dashed curves are for the same initial condit
but all particles were boosted longitudinally by 3 units of rapid
anddEt /dy was computed aty53. Though not visible, the curve
for l 5400 falls on top of thel 5100 curve. The bottom plots show
the normalized distribution of the signal propagation velocity av
aged over the full evolution.
7-5
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DÉNES MOLNÁR AND MIKLOS GYULASSY PHYSICAL REVIEW C 62 054907
i.e., the distribution gets narrower asPl(Dvs);P1(DvsA4 l ).
The ‘‘measured’’ cascade distributions of the magnitu

of the signal propagation speed,dn/dvs , as defined via Eq
~10!, and the magnitude of its transverse compone
dn/dvs,' , are shown in Fig. 4. Though the distribution ofvs
is strongly peaked atvs5c, both super- and sublumina
propagation are present. While increasing particle subd
sion decreases the deviations from the exact propaga
speedc, convergence is slow. Even for a subdivision of 10
13% of the collisions correspond to a signal propagat
velocity larger than 1.5c. One must keep in mind that Fig.
shows the distribution of the signal propagation speed m
sured over the length and time scale of a single collision.
larger scales, the deviation is reduced because the large
signal velocity is the sum of many small scale signal velo
ties.

In summary we demonstrated that the numerical artifa
due to Lorentz violation and acausality are reduced by s
division and the cascade solution converges asl increases. In
the l→` limit the cascade technique gives the correct n
merical solution of the transport equation~1!. In practice,
rather high subdivisions were found necessary to recover
variance. We could explore convergence up tol 5800, 200,
150, and 100, forR052, 4, 6, and 8 fm with the worksta
tions available to us.

B. Scaling of the transport solutions

Subdivision covariance~9! actually implies that the trans
port equation has a broad dynamical range, and the solu
for any given initial condition and transport property imm
diately provides the solution to a broad band of suita
scaled initial conditions and transport properties. This is
cause solutions for problems withl times larger the initial
densitydN/dhd2x' , but with onel th the reaction rate can
be mapped to the original (l 51) case forany l. We must use
subdivision to eliminate numerical artifacts. However, on
that is achieved, we have actually found the solution to
whole class of suitably rescaled problems.

The dynamical range of the transport equation~1! is fur-
ther increased by its covariance under coordinate rescal

f ~x,p!→ f 8~x,p![ f S x

l x
,pD , W→W8[

W

l x
. ~15!

This is a simultaneous rescaling of space-timeand the tran-
sition probability. In addition, there is also a covariance u
der rescaling of the momenta

f ~x,p!→ f 8~x,p![ l p
23f S x,

p

l p
D ,

W~$pi%!→W8~$pi%![ l p
2WS H pi

l p
J D , ~16!

such that the particle density is again unchanged. This s
ing also implies a rescaling of the massm→m85m/ l p .
Combining the three scaling transformations, we find cov
ance of the transport theory under
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f ~x,p!→ f 8~x,p![ l p
23l f S x

l x
,

p

l p
D ,

W~$pi%!→W8~$pi%![
l p
2

l xl
WS H pi

l p
J D . ~17!

In our calculation using MPC, we vary the physical para
eters:s, m, T0 , R0 , t0, and nh,0[dN/dhd2x'ut0

~the ra-

pidity interval hmax55 was fixed!. Keeping in mind Eq.
~A3! and that

nh[
dN

dydx'

2 U
t

5E d2p'dhmtch~y2h!t f ~x' ,h,t,p' ,y!,

covariance under the transformation~17! implies that once
the solution for a particular choice of these parameters
known, then the solution is known for any other choice
the parameters which are related to the original via

s85 l x
21l 21s, T085 l pT0 , R085 l xR0 ,

nh,08 5 l xlnh,0 , m85 l pm, t085 l xt0 . ~18!

Therefore, we can scale one solution to others provided
m/T0 , R0 /t0, and snh,0;t0 /l̄MFP remain the same. Fo
example, three times the density with one-third the cr
section leaves all three parameters the same, hence th
sults can be obtained via scaling without further compu
tion. Table I shows sets of the three ratios that we map
out via MPC.

IV. FREEZE-OUT

A. Hydrodynamic freeze-out problem

In Sec. I we argued that hydrodynamics cannot be va
during the complete evolution in nuclear collisions becau
the assumption of local equilibrium breaks down. Thus,

TABLE I. Solutions for the sets of parameters below were co
puted via MPC for the present study.

m/T0 R0 /t0 snh,0 m/T0 R0 /t0 snh,0 m/T0 R0 /t0 snh,0

0 20 4 1 6 4 1 40 8

0 40 4 1 8 4 1 40 16

0.2 20 4 1 20 0.8 1 60 0.8

0.2 40 4 1 20 4 1 60 4

1 2 0.8 1 20 8 1 80 0.8

1 2 4 1 20 16 1 80 4

1 2 16 1 40 0.8

1 4 4 1 40 4
7-6
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spite of its appeal, hydrodynamics cannot be compared w
measurements withoutadditionalmodel assumptions neede
to specify when and how it breaks down. The problem
determining those extra model assumptions is the so-ca
freeze-out problem.

For application to nuclear collisions, freeze-out cannot
formulated as an expansion inl/L since by definition it oc-
curs when that ratio exceeds unity. Hence, even the Nav
Stokes hydrodynamics is inadequate to solve the freeze
problem.

A common freeze-out prescription, which we here na
‘‘Cooper-Frye frozen hydrodynamics,’’ is to assume the v
lidity of ideal hydrodynamics up to a ‘‘sharp’’ 3D freeze-ou
hypersurfacesm(x). Assuming that all interactions sudden
cease on that hypersurface, the final~frozen-out! invariant
differential distribution of particles is then computed via t
Cooper-Frye formula@18#:

EdN5
d3p

~2p!3
dsm~x!pm f ~x,p!. ~19!

Here dsm(x) is the normal vector to the 3D freeze-out h
persurface at the pointx, while f (x,p) is assumed to be in
local equilibrium and hence, for classical particles, given
Eq. ~5!. While this prescription is covariant and appealing
simple, it suffers from several well known problems@9,19#.

First, because the hydrodynamical solutions do not c
tain dynamical information needed to compute the freeze
hypersurface, the assumed one is simply anad hocexternal
constraint. It is usually parametrized in terms of a few phy
cally ‘‘reasonable’’ parameters, the most common being
freeze-out isothermT(sm)5Tf or freeze-out energy densit
ef . It is not possible to estimate the errors introduced
such a prescription.

Second, the Cooper-Frye formula allows negative con
butions to the measurable particle yields@20–22#. This can
be avoided @21–23# by choosing a nonequilibrium pos
freeze-out distribution that does not have particles in
phase space domain wheredsmpm,0. However, such a
choice still relies on the existence of a sharp 3D freeze-
surface.

Finally, while an idealized sharp freeze-out surface m
be adequate for applications to quasistationary macrosc
systems, it cannot be justified in expanding mesoscopic
tems in whichL/l is never large. The very fact that suc
systems do freeze out, i.e.,l(s).L, means that the solution
to freeze-out problem must entailglobal information as the
system becomes more and more dilute. Furthermore, the
no way to justify the neglect of final state interactions duri
freeze-out stage of the reactions while expansion and rare
tion are causing the system to depart from local equilibriu

In Ref. @24# a continuous emission hydrodynamic
freeze-out model was proposed to overcome some of th
problems. The global information relevant to freeze-out
that model is taken there as the Glauber escape probab

P~x,p!5 expS 2E
t

tout
dt8sv reln„x~t!…D . ~20!
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This formula reveals clearly the highly nonlocal character
the freeze-out problem. At any point in space-time,xm, the
line integral runs over the future trajectory and therefore
exponentially sensitive to the future evolution of the syste
This leads to a formidable self-consistency problem. For s
cial geometries such as Bjorken boost invariant expansio
rough estimate ofP can be made using the approximate sc
ing Bjorken hydrodynamic solution

n„x~t!…5
t0

t
n„x~t0!…Q@R22~x'1v't!2#. ~21!

Together with the Glauber straight line trajectory, this lea
to the characteristic power law survival probability

P;S t

tout
D st0n(t0)

, ~22!

that also appears, e.g., in theJ/c suppression problem@25#.
While Eq. ~20! captures essential global physics of freez
out, it is not complete since before freeze-out the trajecto
cannot be straight if local equilibrium is maintained via t
assumed hydrodynamic equations. Also, in the surface
gion whereP;1/2 neither hydrodynamics nor eikonal dy
namics applies.

The solution to the freeze-out problem in classical m
chanics is given by microscopic transport theory. A hyb
approach that partially reaches that end was proposed in
@26#, which combines partonic hydrodynamics with hadron
transport theory. In that approach, hydrodynamics is
sumed to hold up to only someintermediatecritical tempera-
ture hypersurface,T(s int

m )5Tc.Tf , on which the fluid is
converted to hadrons via the Cooper-Frye formula. Sub
quent evolution of the hadronic system is then calculated
solving the hadronic transport theory as encoded in UrQM
As noted in Ref.@24#, the freeze-out surface is actually
diffuse four-volume, and in addition different hadronic sp
cies freeze out over different four-volume domains. This
quential freeze-out leads to strong observable correlat
such as the mass dependence of final transverse spectra
main limitation ~and/or advantage! of the above hybrid
model @27# is the need to assume the validity of hydrod
namics in the dense partonic phase of the collision. It
advantageous in that possible collective effects due to
quark-gluon confinement transition can be explored with
drodynamics using ‘‘realistic’’ equations of state. It is disa
vantageous in that it is far from clear that local equilibrium
ever reached during the evolution. Recall@11# that dissipa-
tive effects on even global observables such as the transv
energy per unit rapidity cannot be accurately calculated
ing the Navier-Stokes equations.

Despite these known complications of the freeze-
problem, ideal hydrodynamics and Cooper-Frye freeze-
are still commonly used to fit experimental data using is
therm freeze-out hypersurfaces and draw inferences a
the underlying dynamics. The consistency and significa
of interpretations based on such fits can only be assesse
comparing detailed dynamical transport calculations to
hydrodynamic limit~see Sec. V!.
7-7
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B. Formal definition for freeze-out

An important experimental observable aspect of
space-time evolution of kinetic theory is the freeze-out d
tribution. In the framework of discrete parton cascade
namics, the definition of the freeze-out distribution,dNf o , is
the number of partons perd4xd4p invariant phase space vo
ume with momentumpm that have a collision atxm but suffer
no more collisions. Given the trajectories@xa(t),pa(t)# or
the world linesxa

m(t) of all partonsa, that distribution is
given by the ensemble average of the space-time coordin
xa f

m [@ ta f ,xa(ta f)#, of the last collision together with the fi-
nal outgoing momentum,p(ta f101):

f f o~x,p![
dNf o

d4xd4p

5K (
a

d~ t2ta f!d
3
„x2xa~ ta f!…

3d4
„p2pa~ ta f101!…L . ~23!

Because the freeze-out times,ta f , are distributed over a
broad time interval,f f o doesnot correspond to

f ~x,p!5NK E dtd4
„x2x~t!…d4~p2p~t!!L ~24!

at any time or on any fixed 3D hypersurface. Note thaf
measures the phase space density of the world linesxm(t)
and their four-velocities at a single pointxm. On the other
hand,f f o measures the phase space density of last scatte
events, where the momentump of a particle was last
changed. Pion interferometry@28# measures the Fourie
transform of f f o . Note that even after integrating over th
freeze-out points, the final observed momentum spectr
*d4x f f o(x,p), is only equal to the Cooper-Frye formula
xa f

m happen to lie on a sharp 3D hypersurface,sm(z1 ,z2 ,z3).
We can write the Cooper-Frye freeze-out distribution then

dNCF

d4xd4p
5NE d3zd4

„x2s~z!…d4
„p2p~s~z!…. ~25!

As discussed in the Appendix, we can write the~on-shell!
freeze-out distribution in terms of the solution of the Bolt
mann equation as

E1

dFf o~x,p1!

d4xd3p1

[P0~x,p1!3FS~x,p1!

1E
3
E

4
E

5
W34→15d

4~p31p42p1

2p5! f 3f 4G . ~26!

While neither normalized nor unique, this expression p
vides at least aformal definition of the freeze-out distribution
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for the Boltzmann equation solely in terms of the pha
space distributionf (x,p), and the assumed transition pro
abilities Wi j →kl .

V. NUMERICAL RESULTS

A. Kinetic versus hydrodynamic evolution

To test the ideal hydrodynamical assumptions aga
transport theory, it is essential to eliminate as many mo
differences as possible. For example, both the hydrodyna
model and the kinetic theory should have the same deg
of freedom, the same equation of state, and the same in
conditions. Equation~1! describes a gas that in thermal equ
librium has the equation of statee53p, if the partons are
massless. We therefore used this ideal gas equation of
in the hydrodynamical simulations. We also chose the tra
port initial condition to be in local equilibrium, since hydro
dynamics is limited to such initial conditions.

The hydrodynamic algorithm used@14# is furthermore de-
signed for particles without a conserved charge, i.e., the
ticle number changes as dictated by chemical equilibriu
The algorithm solves the energy-momentum conserva
equation to obtain the energy density, pressure and flow e
lution. Then, instead of the charge conservation equation
exploits the relation between density, particle mass, and t
perature in chemical equilibrium to compute the freeze-
particle distribution. It is important to note therefore that E
~1! with elastic collisions has the same hydrodynamic lim
as the hydrodynamic model only if the partons are massl
This is because ideal hydrodynamics conserves entropy@29#
and for massless particles in thermal and chemical equ
rium entropy conservation is equivalent to particle numb
conservation.4 For massive particles, we would have to com
pare transport to hydrodynamics with particle conservati
Conversely, we would need to supplement Eq.~1! to include
inelastic channels, such as 2↔3 in Ref. @13#, to compare to
chemically equilibrated hydrodynamics. In the infinite ra
limit we recover the hydrodynamic model even though
have a fixed number of particles. However, when the so
tion is out of equilibrium~either thermal, chemical, or both!,
it does make a difference whether we include particle nu
ber changing processes or not.

To test whether ideal hydrodynamics is an adequate
scription of the parton transport theory~1!, we compare the
evolution of the transverse energydEt /dy at midrapidity
from the two models. This comparison is free from any h
drodynamic freeze-out prescription because the transv
energy is given directly by the phase space distribution a

dEt

dy U
t

5tE d2p'dhd2x'mt cosh~y2h!

3mtf ~y,p' ,h,x' ,t!, ~27!

where, through the local equilibrium ansatz~5!, the hydro-
dynamic phase space evolution is determined by the ev
tion of the flow velocity and local temperature as dictated
the equations of motion~6!.

Figure 1 shows the transverse energy evolution fr
transport theory and hydrodynamics, for an initial Bjork

4Because in this cases54n.
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cylinder radius of 2 fm, witht050.1 fm/c, T05m50.5
GeV, nh,052.6505 fm22 ~via scaling!, s515, and 60 mb.
@We chosehm55, subdivisions 800 for~311!D, 256 for
~111!D, and a 100 fm2 transverse area for the~111!D evo-
lution.#

The transverse energy decreases much faster from
hydrodynamics than from kinetic theory, both in~111!D and
~311!D, showing that hydrodynamics does more work th
the cascade. This is due to the different phase space ev
tion in the two models. The early discrepancy, even for cr
sections as extreme as 15 or 60 mb, indicates that eithe
transport evolution gets very quickly out of equilibrium,
the initial evolution is close to equilibrium but the energ
momentum tensor is not ideal. Note that even if the latte
true, it does not necessarily mean that this initial, loca
equilibrated, nonideal dynamics can be described by
Navier-Stokes equations.

The above conclusion holds for any initial system s
larger than 2 fm as well. Since the~111!D curves corre-
spond to the infinite transverse size limit, the hydrodynam
and transport evolutions for initial sizes larger than 2 fm w
lie between the 2 fm and the~111!D curves for hydrody-
namics and for transport theory, respectively. Because th
two regions do not overlap, the discrepancy between id
hydrodynamics and transport theory will not disappear w
increasing system size.

B. Kinetic vs hydrodynamic freeze-out results

In the previous subsection we showed that parton kin
theory does not reduce to ideal hydrodynamics for ini
conditions at RHIC. Thus, the final observables from the t
models can be similaronly if the hydrodynamic freeze-ou
prescription helps mimic the observables from the noneq
librium transport evolution.

Here we test whether one can reproduce the transport
servables by a suitable choice of the hydrodynamic free
out parameters. We chose the widely-used Cooper-F
freeze-out prescription~19! with isotherm freeze-out sur
faces, despite all known problems discussed in Sec.
Hence, our only adjustable parameter is the freeze-out t
perature. Since Eq.~1! describes Boltzmann classical pa
ticles, we must use the classical distribution~5! in the
Cooper-Frye formula.

1. Coordinate space evolution

Freeze-out distributions in space-time from MPC a
shown in Figs. 3 and 5. Due to the assumed cylindrical sy
metry and longitudinal boost invariance, that distribution
only a function oft andR.

Figures 3 and 5 show the freeze-out distribution for init
radii 6 fm and 2 fm, respectively, witht050.1 fm/c, T0
5m50.5 GeV,nh,052.6505 fm22 ~via scaling!, s53, 15,
and 60 mb. For comparison, three different freeze-out
therms are also shown from solution of Cooper-Frye froz
ideal hydrodynamics.~We chosehm55, subdivisions 800
for 2 fm, and 150 for 6 fm.!

Unlike the sharp hydrodynamic freeze-out surface,
freeze-out distribution from the cascade is a broadwedge.
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Particles originate from a hypervolume in space-time, rat
than from a hypersurface. In the top left plot~3 mb, 6 fm! in
Fig. 3, the wedge moved down tot5t0, which is a general
feature for very low reaction rates. In the limit of a vanishin
reaction rate, all particles freeze out fromt5t0.

Figures 3 and 5 show that particles freeze out later w
increasing microscopic rates as expected. The maximum
the wedge moves outward with increasing rates, hence
freeze-out temperature can be universal. If we tune
freeze-out temperature to get as close as possible to the
cade freeze-out distribution, the freeze-out temperature
depend on the reaction rate.

Thus, the remarkable agreement seen in the bottom fig
of Fig. 5 between Cooper-Frye frozen ideal hydrodynam
with a 130 MeV freeze-out temperature and the cascade
s560 mb is a mere coincidence; higher rates would lead
a later freeze-out. For very high reaction rates, the 130-M
hypersurfacefrom the cascadewould be very close to tha
from hydrodynamics because the hydrodynamic evolution
the infinite reaction rate limit of the cascade evolution. B

FIG. 5. The left column shows the transverse coordinate
proper time distribution,dN/RdRdt, of freeze-out coordinates
Top row corresponds tos515 mb and middle row to 60 mb. The
initial Bjorken cylinder radius isR052 fm in both cases in contras
to Fig. 3, whereR056 fm. The right column shows contour plot
corresponding to the left column. The thick lines show Cooper-F
isotherms:Tf5100 MeV ~dashed-dotted line!, 130 MeV ~thick
solid line!, and 200 MeV~dotted line!. The bottom figure compare
the proper time freeze-out distribution,dN/dt, for the different
cases.
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that does not mean that the freeze-out distributions are
same. On the contrary, if hydrodynamics and the cascade
close to each other atT5130 MeV then we have no justifi
cation to stop the hydrodynamic evolution and freeze
with Eq. ~19! because we are still in equilibrium and pa
ticles will certainly collide in the future, i.e., they have n
yet frozen out.

It is not possible to tune the Cooper-Frye freeze-out te
perature to reproduce the cascade freeze-out distribu
Though the contour plots in Figs. 3 and 5 suggest that su
tuning can get the hydrodynamic freeze-outcurve close to
the ridge of the wedgeof the cascade freeze-out distributio
that is not enough. As thedN/dt distributions show, the
resulting hydrodynamic freeze-out distribution isnot close to
the cascade distribution because one has to reproduce
only the curve given by the ridge of the wedge butalso the
exact distribution along this curve.

If the freeze-out temperature is high enough to yield
freeze-out surface with a timelike portion, we get unphysi
spikes in the freeze-out distribution that are not present in
cascade calculations. This can be seen in Fig. 5 forTf
5200 MeV, and in Fig. 3 forTf5130 and 200 MeV. For
example, forR056 fm with Tf5130 MeV, Cooper-Frye fro-
zen hydrodynamics produces most particles at arount
55.6 fm/c. This is because the inside of the cylinder fo
lows a 1D Bjorken evolution withT(t)5T0(t0 /t)1/3 until
the rarefaction wave from the boundary arrives. The rare
tion wave travels with a speedcs51/A3. If the system is
large enough, most of the system reaches the freeze-out
peraturebeforethe rarefaction wave arrives, i.e., during th
~111!D Bjorken evolution. With our parametersT050.5
GeV,Tf o5130 MeV, andt050.1 fm/c, this gives a freeze-
out for theinsideof the cylinder att f o55.6 fm/c, which is
in complete disagreement with our transport theory so
tions. Furthermore, it does not correspond to the infinite
action rate limit either because in that case particles fre
out very late.

Hence the peaks indN/dt at t55.6 fm/c (Tf5130
MeV! and t51.6 fm/c (Tf5200 MeV! are a clear conse
quence of the arbitrary freeze-out prescription using Eq.~19!
with isotherm freeze-out hypersurfaces. Smearing the pe
out around their maxima does not help either because
does not change the location of the peaks, while the m
mum from the cascade moves outward with increasing re
tion rates.

2. Momentum space

The freeze-out distribution in momentum space is sho
in Figs. 2 and 6. Figure 6 shows the freeze-o
p'-distribution for initial radii 2 fm and 6 fm, cascade cro
sections 3, 15, and 60 mb compared to ideal hydrodynam
with a Cooper-Frye freeze-out at temperaturesTf5100, 130,
and 200 MeV. As the reaction rate increases, the smallp'

slopes rise as the system cools due to longitudinal work.
p' distribution seems to approach that of Cooper-Frye f
zen hydrodynamics. However, this is only an illusion on
low-resolution logarithmic plot. Figure 2, where we plotte
the finalp'-spectra divided by the initialT05500 MeV ther-
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mal one, shows that thereis a large, up to a factor of 10
difference at both low (,0.5 GeV! and highp' (.2 GeV!,
depending on the microscopic rates. For all the cases stud
Cooper-Frye frozen hydrodynamics has more low-p' par-
ticles but fewer high-p' ones than the cascade. This is n
necessarily a general feature because the assumed hyd
namic freeze-out temperature is an arbitrary number. A la
freeze-out~lower temperature! gives a larger slope, an earlie
freeze-out~higher temperature! gives a smaller one.

It is also striking that one would need rather high,Tf
;3002450 MeV freeze-out temperatures to get closer to
cascadep' spectra. We conclude that it is not possible
reproduceboth the space-time and the momentum spa
transport theory freeze-out distributions using ideal hydro
namics with the isotherm Cooper-Frye freeze-out presc
tion. Either one needs to treat hydrodynamic freeze-out m
accurately than the Cooper-Frye prescription, or one need
use full-scale transport theory instead of ideal hydrodyna
ics. The present work is a step in the latter direction, wh
Refs. @21–23# are important steps in the former directio
looking for a simplification of the full transport theoretica
problem that will still be applicable to a wide class of situ
tions.

VI. OUTLOOK

There are many open problems in the development
covariant transport theory. The most urgent need is to
velop practical convergent algorithms to incorporate inela

FIG. 6. The top figure shows the freeze-outp' distributions
from an initial radiusR052 fm for the cascade withs53, 15, 60
mb, and for ideal hydrodynamics with Cooper-Frye freeze-out w
freeze-out temperaturesTf5100 MeV ~dashed-dotted line!, 130
MeV ~thick solid line!, and 200 MeV~dotted line!. The initial p'

distribution is shown using pluses. The bottom figure shows
same but for an initial radiusR056 fm with cross sections 3 and 1
mb.
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2↔3 processes to allow studies of chemical equilibrati
Preliminary work in Ref.@13# indicated a rather slow con
vergence towards Lorentz covariance with particle subd
sion. Unlike thel 21/2 convergence in 2→2, a much slower
; l 21/5 convergence is expected in 2↔3 processes eve
when nonlocal formation physics (Dt.\/DE) is neglected.

Also, we note that all results in this paper pertain to h
mogeneous initial conditions. In Ref.@30#, it was shown that
jets induce large nonstatistical local fluctuations that m
evolve in a turbulent manner. A transport study of the e
lution from such inhomogeneous initial conditions would
useful to compare to the known hydrodynamic solutions.
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APPENDIX: FORMAL DEFINITION FOR FREEZE-OUT

Unlike in the cascade solution where the freeze-out dis
bution is trivially defined by Eq.~23!, in the Boltzmann
equationf changes continuously and no discrete final co
sions can be identified. In this Appendix we propose a g
eralization of Eq.~20! which is independent of the discre
numerical cascade picture. We motivate here aformal defi-
nition, Eq. ~26!, of the freeze-out distribution using sole
f (x,p) andWi j →kl .

Following the notion of the ‘‘last collision,’’ one can firs
compute the probability that a particle starting at a coor
natex1

m with momentump1 doesnot collide any further. The
collision rate is given by

Gcoll[
dNcoll

d4x
~x,p1 ,p2!

5 f 1~x,p1! f 2~x,p2!s~p1 ,p2!v12d
3p1d3p2 , ~A1!

where the relative velocity and the total cross section
given with the Lorentz scalar

t12[A~p1
mp2m!22m1

2m2
2 ~A2!

as

v125
t12

E1E2
,
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s~p1 ,p2!5
1

t12
E

3
E

4
W12→34d

4~p11p22p32p4!.

~A3!

A free pointlike particle has the phase space distributi

f 1~x,p!5E
0

`

dtd4~x2x12u1t!d4~p2p1!, ~A4!

where for an on-shell particle

d~p02Ap21m2!5d~p22m2!2Am21p2Q~p0!,

i.e.,

d4~p2p1!5d3~p2p1!d~p22m2!2Am21p1
2Q~p0!

and thus5

f 1~x,p!5E
0

`

dtd4~x2x12u1t!d3~p2p1!
Am21p1

2

m
.

~A6!

Plugging this result into Eq.~A1!, the probability that a free
particle will not have any further collisions is6

P0~x1 ,p1!5 expS 2E Gcolld
3p1d3p2d4xD

5 expS 2E dtd3p2

E2m
f 2~x11u1t,p2!

3s~p1 ,p2!t12D . ~A7!

Now we can write the freeze-out distribution as the num
of particles having a collision atxm with outgoingmomen-
tum p1 times the probability that these particles do not c
lide any further, i.e.,

E1

dFf o
coll~x,p1!

d4xd3p1

[P0~x,p1!E
3
E

4
E

5
W34→15d

4~p31p42p1

2p5! f 3f 4 . ~A8!

This definition does not include those particles that
formed but suffer no collisions afterward. Their contributio
is

E1

dFf o
form~x,p1!

d4xd3p1

[S~x,p1!P0~x,p1!. ~A9!

Hence the final freeze-out distribution is given by Eq.~26!.

5Recall, the on-shell phase space distribution is defined via

f~x,p![2md~p22m2!Q~p0!f~x,p!. ~A5!
6This can be derived assuming that subsequent collisions are

correlated~just like the similar formula for the inhomogeneou
Poisson distribution!.
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The definition~26! should be regarded as only one me
sure of the freeze-out distribution because it has sev
shortcomings. The probabilities summed are not probabili
for disjoint events. One shouldexcludethe volume in space
time given by all the linear paths of the already frozen-o
particles. This requires knowledge of multiparticle corre
tions beyond the scope of the Bolztmann equation. As lo
as those excluded volume effects are small, Eq.~26! is ad-
equate. A clear problem with the present formal definition
th
w

H
d
de
O
u/

S

s

o

ys
.

05490
-
al
s

t
-
g

s

that particle number and momentum are not conserved b
as is automatic in Eq.~23!. It is interesting to contrast on th
other hand, the trivial way that the cascade solves this pr
lem through Eq.~23!. In cascade, theN-body correlations are
automatically calculated and freeze-out is easily defined c
serving number and total four-momentum. The continu
limit is thus subtle. Our numerical results define that co
tinuum limit as the limit of infinite subdivisions using th
cascade technique.
n,
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