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New solutions of 3-1D covariant kinetic theory are presented for nuclear collisions in the energy domain
E.m~200A GeV. They are obtained using MPC, a new Monte Carlo parton transport technique that employs
very high parton subdivision that is necessary to preserve covariance. The transport results are compared with
ideal hydrodynamics solutions. We show that the transport evolution differs significantly from hydrodynamics.

In addition, we compare the transport freeze-out distributions to those obtained from ideal hydrodynamics with

the Cooper-Frye isotherm freeze-out prescription. The transport freeze-out four-volume is shown to be sensi-
tive to the reaction rates and deviates from both timelike and spacelike freeze-out 3D hypersurfaces commonly
assumed. In particular, we find that there does not exist a universal freeze-out temperature. Finally, the
transverse momentum distributions are found to deviate by up to an order of magnitudeCooper-Frye

frozen hydrodynamics for a wide range of possible initial conditions and reaction rates at RHIC energies.

PACS numbegs): 25.75.Ld, 24.10.Jv, 24.10.Lx

I. INTRODUCTION AND CONCLUSIONS

N#(x)
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A theoretical framework to study nonequilibrium dynam- (2m)°E

ics is provided by Boltzmann transport theory. The dynami-
cal variables of this theory are the Lorentz-covariant, one&nd
particle phase space distribution(x,p); while the
dynamics is governed by transition probabilitigg, ../, v V

which are Lorentz-covariant functions of the particle mo- Lis (x)=f (2m)%E PP t(X,p). )

menta. The theory, while not exact, is rather general. First, it

is not restricted to particular particle types. The partlcleg\Nith these definitions, particle number and energy-
could be partons, hadrons, or molecules. Second, the reactighymentum conservatiofiollow from Eq. (1) [when the
rates that specify the dynamics are also unrestricted in theiy ,rce termS(x,p) =0]. Second, there is a class of fixed

origin. For.example, the rates co_uld emerge from an effgctiv oints, calledglobal equilibria, which are phase space den-
quantum field theory or Newtonian mechanics. The primarysiiies of the form

limitations of the theory are the neglect of dynamical corre-
lations(one-body truncation of the formal BBGKY hierarchy _ L
[1]) and the inability, without additional classical fields, to f(x,p) = —3 exp{'u PuM
model phase transition dynamics. )3 T
We consider here the simplest form of Lorentz-covariant
Boltzmann transport theory in which the on-shell phasewhereu, is a constant four-vector that specifies a global
space densityf(x,p), evolves with an elastic 22 rate as flow velocity, whileT andu correspond to the constant tem-
[2-4] perature and chemical potential. Furthermore, Hktheorem
[1] states that the Boltzmann transport equation drives the
system towards global equilibrium.
p‘l’“aﬂflzf f f (fafa—F1F2)Wio  240%(P1+P2— P3s— Pa) Despite its relatively simple form, the Boltzmann equa-
2J3J4 tion is nonlinear with very few known analytic solutions.
(1) Until recently, progress to obtain even numerical solutions
has been hampered by its numerical complexity. The rapid
increase in computational power has finally made it possible
Here W is the square of the scattering matrix element, theto break through this barrier. For nuclear collision applica-
integrals are shorthands fér=[[gd®p;/(27)3E;], whereg  tions, new numerical algorithms are being developed, tested,
is the number of internal degrees of freedom, while and made available via the World Wide Web under a new
=f(x,p;). The initial conditions are specified by the source Open Standard for Codes and Routif€@&SCAR) [5]. The
function S(x,p), which we discuss later in Sec. Il. For our present work is a further step in that development.

d3

, 4

+S(X,p1).

applications below, we interpré{x,p) as describing an ul- For nuclear collisions at SPS energiegs& 20A GeV),
trarelativistic massless gluon gas witl+ 16 (eight colors, numerical solutions of hadronic transport models have been
two helicities. available for some tim¢6]. However, for higher collider

Recall several important properties of H@). First, the energies, the emergence of massless partonic degrees of free-
particle number current and the energy-momentum tensor adom creates the technical challenge of how to retain Lorentz
given by covariance. In this paper we present results based on a new
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numerical technique, MPC 0.1[2], that provides reliable port coefficients of the medium. While such an approach has
solutions in this ultrarelativistic regime. proven useful in nonrelativistic problems and in special rela-
The difficulty of the analytic treatment of the Boltzmann tivistic geometries, severe problems of instability and acau-
transport equation has forced workers in the past to makeality appear when extended into the ultrarelativistic domain
strong simplifying assumptions. A common simplification [10].
has been to ignore the general nonequilibrium problem and The newly formulated, covariant, parton kinetic theory
to postulate thakocal equilibriumis maintained at all times.. technique, MP{4], allows us to compute the highly dissi-
In the framework of the Boltzmann transport theory, thishative evolution during the densest partonic phase of the
choice corresponds to substituting a local equilibrium ansatgaaction in a covariant manner as well as investigate the final
in place of the fixed point global equilibria. Allowing too a0 oyt dynamics. MPC is an extension of Zhang’s co-
(u,,T,u) to vary with the coordinate”, this ansatz corre- variant parton cascade algorithm, ZP&. Both MPC and
sponds to ZPC have been extensively testeld, 12 and compared to
analytic transport solutions and covariant Euler and Navier-
(5) Stokes dynamics in£1D geometry. A critical new element
of both these algorithms is the parton subdivision technique
proposed by Pang2,12]. As shown in detail in Sec. lll,
rather high subdivision-100 is needed to preserve Lorentz
covariance numerically for massless parton evolution.

X)—p U(x)
fp)= — r{ﬂ( TFX")

It is however well known that local equilibrium isot a
solution of Eq.(1). The nonlinear collision term vanishes in
local equilibrium, butp*d,f+#0 in general. Only in the limit

when all the rates go to infinity, i.e., when the mean free path Extensséclng]s of MPdC tg mcllude mtelist;cf—ztsh.partomc
goes to zero, can the solution approach local equilibrium. processe are under development, but in this paper we

A covariant, dynamical theory can nevertheless be post gse 'E/”?C in the pure elastic parton interactions mode as in
' PCI[5].

lated based on the assumption of local equilibrium. That i . . . I

relativistic hydrodynamicg7], which is widely used in The aim of this work is to calculate the sensitivity of the

heavy-ion physic$8,9] to caléulate observables. Assuming evolution and freeze-out of an uItrarelativ.isf[(massles).s'

an equilibrium initial condition specified on a hypersurfaceparton sysFem to the trangport rates and initial .COI’ldItIOhS
expected in Adt-Au reactions at RHIC energles\/§

ol (X), the local energy momentum and baryon number con-
servation laws 200A GeV). We compare the results to ti®SCAR com-

pliant) relativistic Euler hydrodynamic code developed by
I*T,,=0, *Ng ,=0 (6) Rischke and Dumitr{i5,14]. An ideal gas €=3p) equation
a H of state is used in that analysis. This work extends Refs.
reduce to(Eulen hydrodynamical equations under the as-[11,15, focusing on the freeze-out problem i8+1)-
sumptions that local chemical and thermal equilibrium aredimensional Bjorken expansion. It is less ambitious than for
maintained and that dissipatigmiscosity and thermal con- example Ref[15] by limiting the study to massless partons.
ductivity) can be neglected. In that case, the energy-This avoids introducing yet further complications due to dis-
momentum tensor and baryon current can be expressed agative hadronization and hadronic transport effects. The
T,,=u,u,(etp)—g,,p andNg ,=u,n(x) in terms of the !nitial conditions are taken from the HIJING multiple mini-
local flow velocityu,,(x), local pressure(x), local energy  Jét generatof5,16].

densitye(x), and local proper densitg(x). The equations One of the main results of this.wolrk is shown in Fig. 1. '
form a closed system if, in addition, the equation of state,TO test whether ideal hydrodynamics is an adequate approxi-
e(p,ng), is specified. mation of the parton transport equatidh), we have fol-

It is clear that the idealization of local equilibrium may lowed the evolution both for the Boltzmann equatidnand
apply, if at all, only in the interior of the reaction volume, Euler hydrodynamics from theameRHIC initial condition
where the local mean free pa)ﬂ@x) = ]_/(O-n(x)) may remain from [16] (See Sec. V for details of the SimulatiohEigure
small for a while as compared to the characteristic dimenl shows the evolution of the transverse enedgy/dy at
sions and gradients of the systein,(x)~|d,log e(x)| % midrapidity. There is a large difference between the transport
However, these assumptions are marginal for conditions er@nd hydrodynamic solutions in both tiig+1)- and (3+1)-
countered in heavy ion collisions and certainly break dowrdimensional case, even for a physically extreme, 15 mb,
near the surface region and throughout the freeze-out phas@f0ss section. Note that these 15 mb curves are equivatent
Due to longitudinal expansion the density decreases as 1@ solution for 3 mb cross section with five times highe7]
until 7~ /3R when three-dimensional expansion rapidly in- initial density than expected with HIJING. Therefore, large
creases\ beyondL. deviations from ideal hydrodynamics are to be expected for

For small departures from local equilibrium, correctionsPOssible initial conditions at RHIC. In addition, this conclu-
to the ideal Euler hydrodynamic evolution can be calculatedion is independent of the initial system sisee explanation
by taking theT*” andN£ moments of an underlying kinetic N Sec. VA.
theory. To first order in\/L, the equations reduce to the
Navier-Stokes equations. The solutions to Navier-Stokes de-
pend therefore not only on the equation of state, but also onlThe equivalence is due to the scaling property of Eq.ex-
the bulk and shear viscosity and thermal conductivity transplained in Sec. Ill.
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MPC vs hydro (1+1D and 3+1D)
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FIG. 1. This figure shows the evolution of the transverse energy
dE;/dy at midrapidity, normalized by the initial transverse area,
from kinetic theory and from hydrodynamics both foi-1 (trans-
verse periodicand 3+1 dimensions. The initial distribution was a
Bjorken cylinder with a radiusRy,=2 fm at proper timer,
=0.1 fm/c in local thermal and chemical equilibrium &t=500
MeV. The cross sections were=15 and 60 mb, with the cutoff
n=0.5 GeV. Note that the hydrodynamical results e from
any arbitrary freeze-out prescriptiobecause they depend only on same but for an initial radiuRy=6 fm with cross sections 3 and 15
the evolution of the phase space distribution angatzas dictated mb 0
by the equations of motiof6). The difference between the hydro- ‘

dynamical and the kinetic theory results, even for a large, 60 mbspace-time freeze-out particle distributions commonly as-

cross section, indicates that ideal hydrodynamics is not applicable : o
for the evolution. sumed using the Cooper-Frye fregze-out prescription, the
transport theory freeze-out volume is four-dimensional. Par-
ticles freeze out over a large four-volume that forms a
This conclusion reinforces the results of Rgf1], where  wedgelike freeze-out region in the- R plane. This freeze-
it was shown that large deviations even from the Navier-out distribution depends strongly on the microscopic reaction
Stokes evolution ir{1+1)D Bjorken expansion are expected rates(higher rates lead to a later freeze-Jolttis not possible
for initial densities up to four times higher than predicted byto tune the Cooper-Frye freeze-out temperature to reproduce
the HIJING model16]. the cascade freeze-out distributions. Though one can arrange
A second main result of this work is shown in Fig. 2. We that the Cooper-Frye freeze-out curve follows more-or-less
tested whether the widely used Cooper-Frye freeze-out prehe ridge, the transport distributiciong that ridge is not
scription could “correct” final observables for the neglect of correctly reproduced by Cooper-Frye frozen hydrodynamics.
the early breakdown of ideal hydrodynamics. Figure 2 showsn particular, hydrodynamic freeze-out surfaces with a time-
the final, experimentally observabpe distributions divided like section result in unphysical spikes in tdé&l/dr distri-
by the thermal initial distribution. We find that there is an bution which are not present in the transport theory calcula-
order of magnitude difference between transport and hydrotions. These spikes arise when the freeze-out temperature is
dynamic solutions aboth low and at highp, for realistic such that the interior of the system freezes out due to longi-
(~ few mb) gluonic cross sections. The difference is still atudinal Bjorken expansiofsee Sec. V B 1 for further discus-
factor of two to three even for a physically extreme, 15 mb,sion).
cross section. In addition, increasing the radius of the initial In summary, our results show that for a rather wide range
Bjorken cylinder from 2 to 6 fm does not reduce the discrep-of initial conditions at RHIC energies, the evolution of the
ancy between the covariant transport solutions and those @fystem deviates strongly from Eulerian hydrodynamics
Cooper-Frye frozen hydrodynamics. To get closer to thehroughout th€3+1)D evolution. It is not possible to mimic
transport p, distributions, one would have to choose athe observables from the nonequilibrium evolution by simply
freeze-out temperature much above the commonly assumexpplying the isotherm Cooper-Frye freeze-out prescription to
100-150 MeV range. ideal hydrodynamics. The space-time four-volume of freeze-
The last main result of this work is illustrated in Fig. 3. out, even for the largesR~ 6 fm) nuclei, does not resemble
This shows that high hydrodynamic freeze-out temperaturea timelike surface. In addition, the observable transverse mo-
that would be needed to “fit” the transport solutions are, mentum spectra are very sensitive to the microscopic reac-
however, inconsistent with the space-time freeze-out distrition rates. These results indicate that while ideal hydrody-
butions of covariant transport theory. Unlike the “sharp” namics is a useful model to explore possible collective

FIG. 2. The top figure shows the freeze-qut distributions
relative to thenitial (To=500 MeV) p, distribution from an initial
radiusRy=2 fm for the cascade witlr=3, 15, 60 mb, and for
ideal hydrodynamics with Cooper-Frye freeze-out with freeze-out
temperatured ;=100 MeV (dashed-dotted line 130 MeV (thick
solid ling), and 200 MeV(dotted ling. The bottom figure shows the

054907-3



DENES MOLNAR AND MIKLOS GYULASSY PHYSICAL REVIEW C 62 054907

do/dg?~(9ma?/2)/(g?+ 1?)?, which favors small angle
scatterind 11]. However, the relevant transport cross section
is  o=/[dosir 6, ,~(9ma?/2s)log(s4u?), where s
~17T?. In order to maximize the equilibration rate for a
fixed cross section, we take here @otropic differential
cross section in the center-of-mass frame instead. We further
assume an energy-independent cross section with a threshold
specified byu?, i.e., our solutions therefore correspond to
the microscopic dynamics specified by the following ideal-
ized model:

r[fn/c]

7[fm/e]

do=0(s2— u) o2

47TdQ. (7)

The transport cross section igrg/3 in this case.

0 2 4 5 8 It is important to emphasize that while the cross section
suggests a geometrical picture of action over finite distances,
we use Eq(7) only as a convenient parametrization to de-
scribe the effectivdocal transition probability, W. In the
present study this is simply modeled &g//d{) =sda/d().

The particle subdivision technigusee next sectiomeeded

to recover covariance removes all notion of nonlocality in
this approach, just like in hydrodynamics. Thus, the cross
sections, e.g., 60 mb, used in the present study to simulate
rapid local changes of the phase space density in no way
imply that distances bigger than 1 fm play any role.

“ With the above cutoffu, freeze-out of a test particle can
012345678 arise in two different ways: either the system becomes too
7[fm/c] dilute, i.e., Lhoy>L, or the systemcools down and the
hreshold suppresses further interactions. By construction,
he possibility for the latter case occurs along an isotherm,
Te~ul\17. With Eq.(7), we can therefore study the influ-
Bjorken cylinder radius iR,=6 fm in both cases. The right col- ©NC€ gf dissipative _phenomena by varying the two soales
umn shows contour plots corresponding to the left column. The2Nd . The evolution was performed witro=3, 15, 30,
thick lines show Cooper-Frye isotherni;=100 MeV (dashed- 60, 121 mb anct=0, 0.1, 0.5 GeV.

FIG. 3. The left column shows the transverse coordinate ané
proper time distributiod N/RdRdr, of freeze-out coordinates. Top
row corresponds to-=3 mb and middle row to 15 mb. The initial

dotted ling, 130 MeV (thick solid ling, and 200 MeV(dotted ling. The initial condition was taken to be a longitudinally
The bottom figure compares the proper time freeze-out distributionpoost invariant Bjorken cylinder in local thermal and chemi-
dN/dr, for the different cases. cal equilibrium at temperaturé(7,) =500 MeV at proper

time 7o=0.1 fm/c as by fitting the gluon mini-jet transverse
dynamics in nuclear collisions, the interpretation of experi-momentum spectrum predicted by HIJING6]. In order to
mental observables must take into account the finite transisompare to hydrodynamics, we assume that the transverse
tion probabilitiesW;,_(;, that govern the nonequilibrium density distribution is uniform up to a radily=2, 4, 6, or
evolution. Fortunately, numerical techniques such as MP@ fm. The pseudorapidityy=1/2lod (t+2)/(t—2)] distribu-
and ZPC are now readily availabl6]. Experimentally, the tion was taken as uniform betwegn|<5. Since we want to
A, E; ., and multiplicity dependence of the observables procompare to chemically and thermally equilibrated
vides the best way to measure these effective reaction ratéydrodynamicg, the equilibrium initial gluon density was
in the ultradense matter formed in nuclear collisions. taken for thisT(7g) to be

Il. COVARIANT PARTON TRANSPORT THEORY N o= d_'j = %T370%2_65 fm 2. (8)
7 dydx T
Equation (1) is the simplest form of classical Lorentz- A
covariant Boltzmann transport theory. In principle, the trans-

port equation could be extended for bosons with the substi-

tution f;f,—f1f5(1+f3)(1+1f,4) and a similar one fof 5, 2Technically, MPC was run with an out-of-chemical-equilibrium
[where we used the short-hafig=f(x,p;)]. In practice, N0 jjtial gluon densityn, =4 fm~2 as obtained via HIJING includ-
covariant algorithm yet exists to handle such nonlinearities-mg final state radiation and with cross sectiang=2, 10, 20, 40,
We therefore limit our study to quadratic dependence of theind 80 mb. As explained in Sec. IlI, because of the scaling property
collision integral onf. of the solutions of the transport equation, the solutions for the

The elastic gluon scattering matrix elements in dense parechemical equilibrium initial condition are identical when the cross
ton systems are typically of the Debye-screened formsection is rescaled by a factbe 2.6505/4~1/1.5009.
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Evolutions from different initial densities can be obtained by 8 . - . . T
varying the cross section only and using the scaling property by
explained in the next section. O:ﬁ, 6 r A Neagea R ]
E; 4+ v—_‘f """ SR - £
Ill. PARTON SUBDIVISION AND SCALING 5 - '1_ 1 - .
OF SOLUTIONS 21 1=10 @ ]|
We utilize the parton cascade method to solve the Boltz- 0 L L L =g
mann transport equatiofi). A critical drawback of all cas- 0 05 1 15 2 25 3
cade algorithms is that they inevitably lead to numerical ar-
tifacts because they violate Lorentz covariance. This occurs 7ifm/c]
because particle interactions are assumed to occur whenever Vsignal Vsignal, L
the distance of closest approath the relative c.m.is d 10 g 1.7 .
<o/, which corresponds to action at a distance. To re- F B
cover thelocal character of equatiofil) and hence Lorentz I=10 =
covariance, it is essential to use the parton subdivision tech- = 1 F =100 =
nique[2,3]. This is based on the covariance of Et). under = i
the transformation ~ ook
f—f'=If, W—W=W/I (oc—ac'=dgll). (9 !
0.01

As shown in Ref[12], the magnitude of numerical artifacts 0051152250051152253

is governed by the diluteness of the systioV\ yep, that Usignal /€ Vsignal,L/C
scales with 1{1. Lorentz violation therefore formally van-

ishes in the — limit. FIG. 4. The top figure shows thE; evolution at midrapidity

(solid lineg for subdivision factord=1, 10, 100 from the initial
conditionRy=2 fm, ¢=10 mb,n, ;=4 fm 2, To=u=0.5 GeV,
A. Convergence with subdivision 79=0.1 fm/c. The dashed curves are for the same initial condition
but all particles were boosted longitudinally by 3 units of rapidity

Figure 4 illustrates the severeness of the cascade NUMELL 4k, /dy was computed ag=3. Though not visible, the curve

cal artifacts in the case of insufficient particle subdivision. ", _ 150 %alis on top of thé=100 curve. The bottom plots show
The top plot n Fig. 4 shows that the parton cascade SOI_Ut_'O'fhe normalized distribution of the signal propagation velocity aver-
for the evolution of the transverse energy per unit rap|d|tyaged over the full evolution.

does not converge until the subdivision factor reaches

~100. The lack of covariance can be seen in the differencgheret is the time between the collision and the previous
between the solutions in frames separated by 3 units of ra:ollision, whiler is the distance between the colliding par-
pidity. The very fact that the cascade evolution is differentsicles at the time of the collisionr&r ). This is a pessimis-
for different particle subdivisions means that the subdivisionjc estimate that maximizes the deviations. Assuming that

covariance(9) is itself violated by the cascade algorithm. sypsequent collisions are uncorrelatedollows a Poisson
Nevertheless, both Lorentz and subdivision covariance argjstributior?

recovered whet is sufficiently large.
The large overshoot in theE; /dy evolution is a result of dn 1
the superluminal signal propagation speed inherent to the P(t)Ea:XeXp(_m‘)' (12)
cascade algorithm. A cascade particle can influence almost
instantaneouslyanother cascade particle that is within the Hence the distribution oAv (with r fixed) is
interaction ranger ,=+o/m. In a very dense system, a

“chain” of almost instantaneous interactions can occur caus- dn dt r r
ing long range superluminal artifacts. P(Avg) = dt dAv. 2 exp{ " JAv |)\)' (13
. . . S (Avs) A S
As a measure of the signal propagation speed in a nonlo-
cal collision in the cascade we define Particle subdivision reduces, asr,(I)=r,(1)/JI. There-
fore, in the large subdivision limit, the subluminal and super-
= Xpaft“e(tc"'"S‘O")_Xpa”ic'e(t'aStCO”iSiO')_ (10) luminal tails of the signal velocity distribution scale as a
® teotision™ tiast collision power law
Analytically, the deviation of the signal propagation speed P(Av )N(Uo/i/r)z - \/E (14
from the speed up light can be roughly approximated by s Avg |’ 0 N

r
Avg=-, 11 . . .
Us t (19 3The scaling(9) leaves the mean free pakhinvariant.
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i.e., the distribution gets narrower &(Av )~ Pl(AvS‘t/l—). TABLE I. Solutions for the sets of parameters below were com-
The “measured” cascade distributions of the magnitudeputed via MPC for the present study.

of the signal propagation speetiy/dv, as defined via Eq.

(10, and the magnitude of its transverse component/To Ro/mo on,o w/To Rolm on,o wl/To Rolm onygo

.dn/dvs,i , are shown in Fig. 4. Though the distribution@‘ 0 20 4 1 6 4 1 40 8
is strongly peaked abs=c, both super- and subluminal
propagation are present. While increasing particle subdiviO 40 1 8 4 1 40 16

sion decreases the deviations from the exact propagatio&2
speedc, convergence is slow. Even for a subdivision of 100,
13% of the collisions correspond to a signal propagatiorp.2 40
velocity larger than 1& One must keep in mind that Fig. 4
shows the distribution of the signal propagation speed meat 2
sured over the length and time scale of a single collision. On 2
larger scales, the deviation is reduced because the large scale
signal velocity is the sum of many small scale signal veloci-1 2 16 1 40 0.8
ties.
In summary we demonstrated that the numerical artifacté 4 4 ! 40 4

due to Lorentz violation and acausality are reduced by sub-
division and the cascade solution convergekiasreases. In

4
20 4 1 20 0.8 1 60 0.8
4 1 20 4 1 60 4

0.8 1 20 8 1 80 0.8

4 1 20 16 1 80 4

the I_—>so Iimi'g the cascade technique g@ves the correct nu- f(xyp)ﬂf’(xyp)z|_3|f(£’g '
merical solution of the transport equati¢h). In practice, P I 1p
rather high subdivisions were found necessary to recover co-
variance. We could explore convergence up 4800, 200, |§ p;
150, and 100, foR,=2, 4, 6, and 8 fm with the worksta- W({pi})HW'({pi})EﬁW([l—D 17
tions available to us. X P
B. Scaling of the transport solutions In our calculation using MPC, we vary the physical param-

Subdivision covariancéd) actually implies that the trans- ©t€rs:@, #, To, Ro, 7, andn, ;=dN/d 7d?X, [, (the ra-
port equation has a broad dynamical range, and the solutiopidity interval 7y,,,=5 was fixed. Keeping in mind Eq.
for any given initial condition and transport property imme- (A3) and that
diately provides the solution to a broad band of suitably
scaled initial conditions and transport properties. This is be- dN
cause solutions for problems withtimes larger the initial e >
densitydN/d»d?x, , but with onelth the reaction rate can dyde
be mapped to the original € 1) case forany . We must use
subdivision to eliminate numerical artifacts. However, oncecovariance under the transformati¢h?) implies that once
that is achieved, we have actually found the solution to ghe solution for a particular choice of these parameters is
whole class of suitably rescaled problems. known, then the solution is known for any other choice of

The dynamical range of the transport equatidhis fur-  the parameters which are related to the original via
ther increased by its covariance under coordinate rescaling

:f dzpldﬂthh(y_ (X, 9, 7.p.,Y),

T

o' =1 M"Y, Ti=1,To, Rs=1Ry,

f(x,p)—Tf"(x,p)=f

X W
I_yp ) W_>W,E |_ (15)
X X n;7,0:|x|n71,0' m =lpu, 70=x70. (18

This is a simultaneous rescaling of space-tiamel the tran- Therefore, we can scale one solution to others provided that
sition probability. In addition, there is also a covariance un- ’ P

der resca"ng of the momenta /.L/To, RolTo, and (Tn,%o"‘ TO/)\MFP remain the same. For
example, three times the density with one-third the cross
P section leaves all three parameters the same, hence the re-
f(x,p)—>f’(x,p)z|p3f<x,|—>, sults can be obtained via scaling without further computa-
p tion. Table | shows sets of the three ratios that we mapped
out via MPC.

YW () =2 &)
W(piH =W ({pi}) 'PW([Ip]’ (16) IV. FREEZE-OUT

such that the particle density is again unchanged. This scal- A. Hydrodynamic freeze-out problem

ing also implies a rescaling of the mass—m’'=m/l,. In Sec. | we argued that hydrodynamics cannot be valid
Combining the three scaling transformations, we find covari-during the complete evolution in nuclear collisions because
ance of the transport theory under the assumption of local equilibrium breaks down. Thus, in
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spite of its appeal, hydrodynamics cannot be compared witfihis formula reveals clearly the highly nonlocal character of
measurements withoaidditionalmodel assumptions needed the freeze-out problem. At any point in space-tirré, the
to specify when and how it breaks down. The problem ofline integral runs over the future trajectory and therefore is
determining those extra model assumptions is the so-calleelxponentially sensitive to the future evolution of the system.
freeze-out problem. This leads to a formidable self-consistency problem. For spe-
For application to nuclear collisions, freeze-out cannot becial geometries such as Bjorken boost invariant expansion, a
formulated as an expansion NiL since by definition it oc- rough estimate oP can be made using the approximate scal-
curs when that ratio exceeds unity. Hence, even the Navieing Bjorken hydrodynamic solution
Stokes hydrodynamics is inadequate to solve the freeze-out
problem.
A common freeze-out prescription, which we here name n(x(7))
“Cooper-Frye frozen hydrodynamics,” is to assume the va-
lidity of ideal hydrodynamics up to a “sharp” 3D freeze-out Together with the Glauber straight line trajectory, this leads
hypersurfacer*(x). Assuming that all interactions suddenly to the characteristic power law survival probability
cease on that hypersurface, the fifbzen-ouj invariant
differential distribution of particles is then computed via the T
Cooper-Frye formuld18]: P~ —

_To 2 2
—7n(X(To))[R —(x,+v, 0] (2D

o1on(7g)

: (22

Tout
3

P that also appears, e.g., in th&) suppression problef25].
(27,.)3d0#(x)p“f(x’p)' (19 While Eq. (20) captures essential global physics of freeze-
out, it is not complete since before freeze-out the trajectories
cannot be straight if local equilibrium is maintained via the
assumed hydrodynamic equations. Also, in the surface re-
ion whereP~1/2 neither hydrodynamics nor eikonal dy-
amics applies.

The solution to the freeze-out problem in classical me-
chanics is given by microscopic transport theory. A hybrid
pproach that partially reaches that end was proposed in Ref.
26], which combines partonic hydrodynamics with hadronic
transport theory. In that approach, hydrodynamics is as-

umed to hold up to only sometermediatecritical tempera-
ture hypersurfaceT (o) =T.>Ts, on which the fluid is
e;. It is not possible to estimate the errors introduced b)}:onverted to_ hadrons via the. Cooper-Erye formula. Subse-

qguent evolution of the hadronic system is then calculated by

such a prescription. ) ; )
Second, the Cooper-Frye formula allows negative contrisSolving the hadronic transport theory as encoded in UrQMD.

butions to the measurable particle yie[@0—-22. This can AS noted in Ref.[24], the. freezg—out ;urface Is actqally a

be avoided[21-23 by choosing a nonequilibrium post diffuse four-volume, and in addition different hadronic spe-

freeze-out distribution that does not have particles in th&€S freeze out over different four-volume domains. This se-

phase space domain wheds*p,<0. However, such a guential freeze-out leads to strong observable correlations
wo '

choice still relies on the existence of a sharp 3D freeze-ou%uc_h as the mass dependence of final transverse spectra. The
surface main limitation (and/or advantageof the above hybrid

Finally, while an idealized sharp freeze-out surface ma)m()dfal [2.7] iﬁ th; need to as§umr<]e the \?alirc]jity o;‘llh.ydrodyj
be adequate for applications to quasistationary macroscoplt2Mics In the dense partonic phase of the collision. It is

systems, it cannot be justified in expanding mesoscopic Syé_dvantageous in_ that possiblg 'coIIective effects due. to the
tems in whichL/\ is never large. The very fact that such quark-gluon confinement transition can be explored with hy-

systems do freeze out, i.e.(o)>L, means that the solution drodynamics_ using_“realistic” equations of state. It. i_s (_Jlisaql-
to freeze-out problem’must entz@jiobal information as the vantageousin that it is far from clear that local equilibrium is

system becomes more and more dilute. Furthermore, there fyer reached during the evolution. Reddll] that dissipa-
no way to justify the neglect of final state interactions duringt've effects on _even.gllobal observables such as the transverse
freeze-out stage of the reactions while expansion and rarefaEN€rgy per unit rapidity cannot be accurately calculated us-
tion are causing the system to depart from local equilibrium.mg| the l_\Iawer-Stokes equations.

Despite these known complications of the freeze-out

In Ref. [24] a continuous emission hydrodynamical . .
freeze-out model was proposed to overcome some of the&mble.m’ ideal hydrodynamlgs and .Cooper-Frye frgeze_-out
are still commonly used to fit experimental data using iso-

problems. The global information relevant to freeze-out in .

that model is taken there as the Glauber escape probabilit)}herm free;e—out hypgrsurfaces anq draw mference§ about

the underlying dynamics. The consistency and significance
of interpretations based on such fits can only be assessed by

P(x,p)= ex;{ _ fTOUth’ o0, N(X(7)) | (20) comparing detailed dynamical transport calculations to the

hydrodynamic limit(see Sec. ¥

EdN=

Here do*(x) is the normal vector to the 3D freeze-out hy-
persurface at the point while f(x,p) is assumed to be in
local equilibrium and hence, for classical particles, given byg
Eq. (5). While this prescription is covariant and appealinglyn
simple, it suffers from several well known problefigs19].
First, because the hydrodynamical solutions do not con
tain dynamical information needed to compute the freeze-o
hypersurface, the assumed one is simplyadrhocexternal
constraint. It is usually parametrized in terms of a few physi
cally “reasonable” parameters, the most common being
freeze-out isothernt (o*)=T; or freeze-out energy density
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B. Formal definition for freeze-out for the Boltzmann equation solely in terms of the phase

An important experimental observable aspect of theSpace distributiorf (x,p), and the assumed transition prob-

space-time evolution of kinetic theory is the freeze-out dis-abilities Wij i -

trlbufuon. In the_ f.rzjimework of discrete parton _cascadg dy- V. NUMERICAL RESULTS

namics, the definition of the freeze-out distributidi;, , is

the number of partons peffxd*p invariant phase space vol- A. Kinetic versus hydrodynamic evolution

ume with momentunp” that have a collision at“ but suffer To test the ideal hydrodynamical assumptions against

no more collisions. Given the trajectorigs,(t),pa(t)] or  transport theory, it is essential to eliminate as many model
the world linesx4(7) of all partonsa, that distribution is  differences as possible. For example, both the hydrodynamic
given by the ensemble average of the space-time coordinatewodel and the kinetic theory should have the same degrees
X4 =[ta1,Xa(tar) 1, Of the last collision together with the fi- of fre_e_dom, the same equat_ion of state, an_d the same ini_tial
nal outgoing momentunp(ty;+0+): conditions. Equatioiil) describes a gas that in thermal equi-
librium has the equation of state=3p, if the partons are

Nfo massless. We therefore used this ideal gas equation of state
fio(X,p)= " a in the hydrodynamical simulations. We also chose the trans-
d*xd"p port initial condition to be in local equilibrium, since hydro-
dynamics is limited to such initial conditions.
= < > S(t—tag) 83(X—Xa(tar)) The hydrodynamic algorithm us¢dl4] is furthermore de-
a signed for particles without a conserved charge, i.e., the par-

ticle number changes as dictated by chemical equilibrium.
_ + The algorithm solves the energy-momentum conservation
X 8(p—Paltar+0 ))> ' @3 equation to obtain the energy density, pressure and flow evo-
lution. Then, instead of the charge conservation equation, it
Because the freeze-out timefy,, are distributed over a exploits the relation between density, particle mass, and tem-
broad time intervalf;, doesnot correspond to perature in chemical equilibrium to compute the freeze-out
particle distribution. It is important to note therefore that Eq.
(1) with elastic collisions has the same hydrodynamic limit
f(x,p)= N< J drs*(x—x(7))&*(p— p(T))> (24 as the hydrodynamic model only if the partons are massless.
This is because ideal hydrodynamics conserves en{2@ly
at any time or on any fixed 3D hypersurface. Note that and for massless particles in thermal and chemical equilib-
measures the phase space density of the world k¢¢s) rium entropy conservation is equivalent to particle number
and their four-velocities at a single poirt. On the other conservatiod.For massive particles, we would have to com-
hand,f;, measures the phase space density of last scatteriRfire transport to hydrodynamics with particle conservation.
events, where the momentum of a particle was last Conversely, we would need to supplement Eg.to include
changed. Pion interferometrj28] measures the Fourier inelastic channels, such as-23 in Ref.[13], to compare to
transform off;,. Note that even after integrating over the cheémically equilibrated hydrodynamics. In the infinite rate
freeze-out points, the final observed momentum spectrunjMit we recover the hydrodynamic model even though we
Jd*xfo(x,p), is only equal to the Cooper-Frye formula if t_ave_ a f|i<ecfj nur_r;_lk))e_r of p?r:t'dfhs' H0\|/ve\r/]er, yvhlen trl;e iOIU'
X" happen o lie on a sharp 3D hypersurfagé({,,¢5,¢s). ion is out of equilibrium(either thermal, chemical, or bot

. S ool it does make a difference whether we include particle num-
We can write the Cooper-Frye freeze-out distribution then ag, changing processes or not.

N To test whether ideal hydrodynamics is an adequate de-
CF _ 3 _ _ scription of the parton transport theofy), we compare the
déxd*p Nf d*¢5%(x— o () 8*(p—p(o(d). (25 evolution of the transverse energiE,/dy at midrapidity
from the two models. This comparison is free from any hy-
As discussed in the Appendix, we can write tfum-shel)  drodynamic freeze-out prescription because the transverse
freeze-out distribution in terms of the solution of the Boltz- energy is given directly by the phase space distribution as

mann equation as dE, , )
G| = pudnatxmicosty )
deO(val) =p (X p )X S(X p ) T
Ydtxdp, O b xmf(y,py, 7%, 7)., 27

M where, through the local equilibrium ansd®, the hydro-

+ ala 5W34—»15 (Pt Ps— P2 dynamic phase space evolution is determined by the evolu-
tion of the flow velocity and local temperature as dictated by
the equations of motiofb).

—Ps)fafsl. (26) Figure 1 shows the transverse energy evolution from
transport theory and hydrodynamics, for an initial Bjorken

While neither normalized nor unique, this expression pro-
vides at least éormal definition of the freeze-out distribution  “Because in this case=4n.
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cylinder radius of 2 fm, withrg=0.1 fm/c, To=u=0.5

2 . . < 30 5 Ihyd;o -
GeV,n, (=2.6505 fm “ (via scaling, o=15, and 60 mb. = 50 4 ?g +
[We chosen,,=5, subdivisions 800 fof3+1)D, 256 for :710 E 3 1
(1+1)D, and a 100 fritransverse area for tHié+1)D evo- EE 0= =,

lution.]

The transverse energy decreases much faster from ideal
hydrodynamics than from kinetic theory, both(it+-1)D and
(3+1)D, showing that hydrodynamics does more work than
the cascade. This is due to the different phase space evolu-
tion in the two models. The early discrepancy, even for cross
sections as extreme as 15 or 60 mb, indicates that either the
transport evolution gets very quickly out of equilibrium, or
the initial evolution is close to equilibrium but the energy-
momentum tensor is not ideal. Note that even if the latter is
true, it does not necessarily mean that this initial, locally
equilibrated, nonideal dynamics can be described by the
Navier-Stokes equations.

The above conclusion holds for any initial system size
larger than 2 fm as well. Since thg+1)D curves corre-
spond to the infinite transverse size limit, the hydrodynamic
and transport evolutions for initial sizes larger than 2 fm will
lie between the 2 fm and thel+1)D curves for hydrody-
namics and for transport theory, respectively. Because these
two regions do not overlap, the discrepancy between ideal
hydrodynamics and transport theory will not disappear with
increasing system size.

1/

dN
TdIdr

T[fm/c]

[fm Y]

dv

1
Nioi dr

B. Kinetic vs hydrodynamic freeze-out results

In the previous subsection we showed that parton kinetic FIG. 5 Th? Igft c_olumn shows the transverse coordl_nate and
theory does not reduce to ideal hydrodynamics for initialP™oPer time d'St“bgt'on’iN/ Rdsdr’ dOf .Zgleze'om ngrd'gaterf'
conditions at RHIC. Thus, the final observables from the twa! 2P "OW corresponds to=15 mb and middie row to 60 mb. The
models can be similaonly if the hydrodynamic freeze-out |n|t|§I Bjorken cylinder radius |:1R9—2 fm in both cases in contrast

o o .to Fig. 3, whereRy=6 fm. The right column shows contour plots
pre_scrlptlon helps mimic the observables from the nonequl'corresponding to the left column. The thick lines show Cooper-Frye
librium transport evolution. isotherms: T;=100 MeV (dashed-dotted line 130 MeV (thick

Here we test whether one can reproduce the transport olyyiq |ing), and 200 MeV(dotted ling. The bottom figure compares
servables by a suitable choice of the hydrodynamic freezeme proper time freeze-out distributiodN/dr, for the different
out parameters. We chose the widely-used Cooper-Frygsses.

freeze-out prescriptiof19) with isotherm freeze-out sur-

faces, despite all known problems discussed in Sec. Vpgricles originate from a hypervolume in space-time, rather
Hence, our only adjustable parameter is the freeze-out teMpan from a hypersurface. In the top left pl@tmb, 6 fm in
p_erature. Since Eql) describes. Boltz_mann .class_ical Par- rig. 3, the wedge moved down to- 7o, which is a general
ticles, we must use the classical distributié) in the  featyre for very low reaction rates. In the limit of a vanishing
Cooper-Frye formula. reaction rate, all particles freeze out from 7.

Figures 3 and 5 show that particles freeze out later with
increasing microscopic rates as expected. The maximum of

Freeze-out distributions in space-time from MPC arethe wedge moves outward with increasing rates, hence no
shown in Figs. 3 and 5. Due to the assumed cylindrical symfreeze-out temperature can be universal. If we tune the
metry and longitudinal boost invariance, that distribution isfreeze-out temperature to get as close as possible to the cas-

1. Coordinate space evolution

only a function ofr andR. cade freeze-out distribution, the freeze-out temperature will
Figures 3 and 5 show the freeze-out distribution for initialdepend on the reaction rate.
radii 6 fm and 2 fm, respectively, withp=0.1 fm/c, T, Thus, the remarkable agreement seen in the bottom figure

=u=0.5 GeV,n, ;=2.6505 fm 2 (via scaling, c=3, 15,  of Fig. 5 between Cooper-Frye frozen ideal hydrodynamics
and 60 mb. For comparison, three different freeze-out isowith a 130 MeV freeze-out temperature and the cascade with
therms are also shown from solution of Cooper-Frye frozero=60 mb is a mere coincidence; higher rates would lead to
ideal hydrodynamics(We chosen,,=5, subdivisions 800 a later freeze-out. For very high reaction rates, the 130-MeV
for 2 fm, and 150 for 6 fm). hypersurfacdrom the cascadsvould be very close to that
Unlike the sharp hydrodynamic freeze-out surface, thdrom hydrodynamics because the hydrodynamic evolution is
freeze-out distribution from the cascade is a bresstige  the infinite reaction rate limit of the cascade evolution. But
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that does not mean that the freeze-out distributions are the I 10 T Tl T
same. On the contrary, if hydrodynamics and the cascade are ‘> 1¥ ydro =1
close to each other &t=130 MeV then we have no justifi- S 107 R ‘rff:,nnlib .
cation to stop the hydrodynamic evolution and freeze out G 10_2 i ", 60mb 7
with Eq. (19) because we are still in equilibrium and par- %E 10:4 I SO
ticles will certainly collide in the future, i.e., they have not HE 10_5 I Nad 4]
yet frozen out. S U N
It is not possible to tune the Cooper-Frye freeze-out tem- 0 2 4 6 8
perature to reproduce the cascade freeze-out distribution. p1[GeV]
Though the contour plots in Figs. 3 and 5 suggest that such a
tuning can get the hydrodynamic freeze-auirve close to & 10 T Al
theridge of the wedgef the cascade freeze-out distribution, L 1F hydro -1
that is not enough. As thdN/dr distributions show, the & 107 g ?%nél)b T
resulting hydrodynamic freeze-out distributiomist close to :Qj 0720 N . 1
the cascade distribution because one has to reproduce not ﬁb IO_i r “ ]
only the curve given by the ridge of the wedge higo the HE 10_5 i o+ ]
exact distribution along this curve. = 1077 S
If the freeze-out temperature is high enough to yield a 0 2 4 6 8
freeze-out surface with a timelike portion, we get unphysical P [GeV]
spikes in the freeze-out distribution that are not present in the
cascade calculations. This can be seen in Fig. 5Tpr FIG. 6. The top figure shows the freeze-qut distributions

=200 MeV, and in Fig. 3 fOI’Tf:130 and 200 MeV. For from an initial radiusRy=2 fm for the cascade witlbr=3, 15, 60
example, foiR,=6 fm with T; =130 MeV, Cooper-Frye fro- mb, and for ideal hydrodynamics with Cooper-Frye freeze-out with

. . freeze-out temperature®;=100 MeV (dashed-dotted ling 130
zen hydrodynamics produces most particles at arownd ) S f . -
—5.6 fmic. This is because the inside of the cylinder fol- MeV (thick solid ling, and 200 MeV(dotted ling. The initial p,

lows a 1D Bjorken evolution With(7)=To(7o/7 13 il distribution is shown using pluses. The bottom figure shows the

. . same but for an initial radiuRy=6 fm with cross sections 3 and 15
the rarefaction wave from the boundary arrives. The rarefacr-nb 0

tion wave travels with a speec,= 1//3. If the system is

large enough, most of the system reaches the freeze-out tem- )

peraturebeforethe rarefaction wave arrives, i.e., during the Mmal one, shows that theiis a large, up to a factor of 10
(1+1)D Bjorken evolution. With our parameters,=0.5 difference at both low<{0.5 GeV) and highp, (>2 GeV),

GeV, T;,=130 MeV, andr,=0.1 fmi/c, this gives a freeze- depending on the microscopic rates. For all the cases studied,
out for theinsideof the cylinder atr;,=5.6 fm/c, whichis  Cooper-Frye frozen hydrodynamics has more lpw-par-

in complete disagreement with our transport theory solufticles but fewer higlp, ones than the cascade. This is not
tions. Furthermore, it does not correspond to the infinite renecessarily a general feature because the assumed hydrody-
action rate limit either because in that case particles freezramic freeze-out temperature is an arbitrary number. A later

out very late. freeze-ouflower temperatunegives a larger slope, an earlier
Hence the peaks iIN/dr at 7=5.6 fm/c (T{=130 freeze-out(higher temperatudegives a smaller one.

MeV) and 7=1.6 fm/c (T;=200 MeV) are a clear conse- |t is also striking that one would need rather high,

quence of the arbitrary freeze-out prescription using(E8. ~ ~300- 450 MeV freeze-out temperatures to get closer to the

with isotherm freeze-out hypersurfaces. Smearing the peaksiscadep, spectra. We conclude that it is not possible to
out around their maxima does not help either because thaéproduceboth the space-time and the momentum space
does not change the location of the peaks, while the maxitransport theory freeze-out distributions using ideal hydrody-
mum from the cascade moves outward with increasing reagiamics with the isotherm Cooper-Frye freeze-out prescrip-
tion rates. tion. Either one needs to treat hydrodynamic freeze-out more
accurately than the Cooper-Frye prescription, or one needs to
use full-scale transport theory instead of ideal hydrodynam-
S ) ics. The present work is a step in the latter direction, while

_ The freeze-out distribution in momentum space is showrkefs [21-23 are important steps in the former direction
in Figs. 2 and 6. Figure 6 shows the freeze-oufiooking for a simplification of the full transport theoretical

p, -distribution for initial radii 2 fm and 6 fm, cascade cross proplem that will still be applicable to a wide class of situa-
sections 3, 15, and 60 mb compared to ideal hydrodynamicgyns.

with a Cooper-Frye freeze-out at temperatures 100, 130,

and 200 MeV. As the reaction rate increases, the small

slopes rise as the system cools due to longitudinal work. The

ST, VI. OUTLOOK

p, distribution seems to approach that of Cooper-Frye fro-

zen hydrodynamics. However, this is only an illusion on a There are many open problems in the development of
low-resolution logarithmic plot. Figure 2, where we plotted covariant transport theory. The most urgent need is to de-
the finalp, -spectra divided by the initial,=500 MeV ther-  velop practical convergent algorithms to incorporate inelastic

2. Momentum space
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2+ 3 processes to allow studies of chemical equilibration. 1
Preliminary work in Ref[13] indicated a rather slow con- o(P1,P2) = t_f fW12H3454(P1+ P2—P3—Pa).
vergence towards Lorentz covariance with particle subdivi- 127374 A3
sion. Unlike thel “Y? convergence in 2:2, a much slower (A3)
~15 convergence is expected in—23 processes even A free pointlike particle has the phase space distribution
when nonlocal formation physic\(>#/AE) is neglected.

Also, we note that all results in this paper pertain to ho- *
mogeneous initial conditions. In RdB0], it was shown that fa(x.p)= fo d78'(x=x U1 6*(p—p1),  (A4)
jets induce large nonstatistical local fluctuations that may
evolve in a turbulent manner. A transport study of the evowhere for an on-shell particle
lution from such inhomogeneous initial conditions would be
useful to compare to the known hydrodynamic solutions. 8(p°—Vp*+m?) = 5(p?~m?)2/m*+p°O(po),
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APPENDIX: FORMAL DEFINITION FOR FREEZE-OUT
o ) o Xo(p1,p2)tz]. (A7)
Unlike in the cascade solution where the freeze-out distri-

bution is trivially defined by Eq(23), in the Boltzmann Now we can write the freeze-out distribution as the number
equationf changes continuously and no discrete final colli- : . - ; .
of particles having a collision at* with outgoingmomen-

sions can be identified. In this Appendix we propose a gen: . o A
eralization of Eq.(20) which is independent of the discrete tum p; times the_ probability that these particles do not col-
numerical cascade picture. We motivate herferanal defi- lide any further, i.e.,

nition, Eq. (26), of the freeze-out distribution using solely dFe(x py)
f(x,p) andWi; . i L

Following the notion of the “last collision,” one can first d*xd®p;

compute the probability that a particle starting at a coordi-

natex with momentunp, doesnot collide any further. The —ps)fafs.
collision rate is given by

EPo(x,pl)LLLW34_>1554(p3+ Pa=P1

(A8)

This definition does not include those particles that are
formed but suffer no collisions afterward. Their contribution

d I\Icoll IS

[eoi= W(X,Dl,pz)
dFi™(x,py)

d*xd®p,

=f1(%,p1) fa(X,p2) o(P1,P2)v103p1d3p,, (AL S(X,p1)Po(X,p1)- (A9)

where the relative velocity and the total cross section are he final f distribution is ai b
given with the Lorentz scalar Hence the final freeze-out distribution is given by E2f).

t1=1/( PiP2,) %~ mim3 (A2)
SRecall, the on-shell phase space distribution is defined via
as f(x,p)=2m&(p?~ M) (po)f(x,p). (AS)
5This can be derived assuming that subsequent collisions are un-

V==, correlated(just like the similar formula for the inhomogeneous
E.E> Poisson distribution

to
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The definition(26) should be regarded as only one mea-that particle number and momentum are not conserved by it
sure of the freeze-out distribution because it has severals is automatic in Eq23). It is interesting to contrast on the
shortcomings. The probabilities summed are not probabilitiesther hand, the trivial way that the cascade solves this prob-
for disjoint events. One shoulgxcludethe volume in space lem through Eq(23). In cascade, thil-body correlations are
time given by all the linear paths of the already frozen-outautomatically calculated and freeze-out is easily defined con-
particles. This requires knowledge of multiparticle correla-serving number and total four-momentum. The continuum
tions beyond the scope of the Bolztmann equation. As londimit is thus subtle. Our numerical results define that con-
as those excluded volume effects are small, ) is ad- tinuum limit as the limit of infinite subdivisions using the
equate. A clear problem with the present formal definition iscascade technique.
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